
Towards the Quantum Machine: Using Scalable
Machine Learning Methods to Predict Photovoltaic
Efficacy of Organic Molecules

Citation
Tingley, Michael Alan. 2014. Towards the Quantum Machine: Using Scalable Machine Learning
Methods to Predict Photovoltaic Efficacy of Organic Molecules. Bachelor's thesis, Harvard
College.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12553271

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:12553271
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Towards%20the%20Quantum%20Machine:%20Using%20Scalable%20Machine%20Learning%20Methods%20to%20Predict%20Photovoltaic%20Efficacy%20of%20Organic%20Molecules&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=b2f7acaae007f1d60706f35665caf537&department
https://dash.harvard.edu/pages/accessibility

Towards the Quantum Machine: Using Scalable
Machine Learning Methods to Predict

Photovoltaic Efficacy of Organic Molecules

A thesis presented by

Michael Tingley

to
the Department of Computer Science of Harvard University

in partial fulfillment of the honors requirements
for the joint degree of

Bachelor of Arts
in Computer Science and Statistics

Harvard College
Cambridge, Massachusetts

April 1, 2014

Michael Tingley Scalable Molecular Feature Learning Thesis

Abstract
Recent advances in machine learning have resulted in an upsurge of interest in develop-

ing a “quantum machine”, a technique of simulating and predicting quantum-chemical

properties on the molecular level. This paper explores the development of a large-scale

quantum machine in the context of accurately and rapidly classifying molecules to deter-

mine photovoltaic efficacy through machine learning. Specifically, this paper proposes

several novel representations of molecules that are amenable to learning, in addition to ex-

tending and improving existing representations. This paper also proposes and implements

extensions to scalable distributed learning algorithms, in order to perform large scale

molecular regression. This paper leverages Harvard’s Odyssey supercomputer in order

to train various kinds of predictive algorithms over millions of molecules, and assesses

cross-validated test performance of these models for predicting photovoltaic efficacy. The

study suggests combinations of representations and learning models that may be most de-

sirable in constructing a large-scale system designed to classify molecules by photovoltaic

efficacy.

April 1, 2014 Page i of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Acknowledgments
Big thanks to my thesis advisor Ryan Adams, who helped me find such an interesting

opportunity at the intersection of systems and statistical machine learning. He is doing

some incredible work in the way that we view and understand molecules, and I’m really

looking forward to what will come out of his lab in the near future. Also a huge thanks to

Margo Seltzer, my academic advisor and thesis reader, for advice on the thesis process in

general and for spending so much of her personal time to offer guidance and discussion.

Also great thanks to Luke Bornn for providing a statistical perspective on machine learning.

I also want to extend thanks to my family and friends for keeping me sane during this

process, and of course for helping to proofread and critique my thesis. I definitely would

not have been able to do this without you all.

April 1, 2014 Page ii of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Contents
Abstract i

Acknowledgments ii

List of figures iv

List of tables iv

1 Introduction 1

2 Related work 4
2.1 Molecular representations . 4

2.1.1 Feature extraction . 4
2.1.2 Coulomb matrix . 4

2.2 Learning approaches . 5
2.2.1 Neural networks . 6
2.2.2 Linear regression . 7
2.2.3 Gaussian processes . 8
2.2.4 Other approaches . 10

3 Experimental approach 10
3.1 Dataset . 11
3.2 Data representations . 11

3.2.1 Feature extraction . 11
3.2.2 Coulomb matrix . 13
3.2.3 Adjacency matrix . 15

3.3 Distributed learning architectures . 16
3.3.1 The Odyssey cluster . 16
3.3.2 Parallelizing OLS and ridge regression 17
3.3.3 Parallelizing LASSO regression . 21
3.3.4 Parallelizing neural networks . 22
3.3.5 Large data considerations . 25

3.4 Data pipeline . 27

4 Results and analysis 30
4.1 Data exploration . 30

4.1.1 Empirical distribution of the response variable 31
4.1.2 Features distribution . 32

4.2 OLS and ridge regression . 34
4.3 LASSO regression . 38
4.4 Neural networks . 42
4.5 Comparative analysis . 49

5 Conclusions and further research 49

6 References 52

April 1, 2014 Page iii of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

List of figures
1 ChemAxon feature compute times . 12
2 Distributed OLS and ridge regression network architecture 18
3 Distributed LASSO regression network architecture 21
4 Distributed neural network architecture . 23
5 Data pipeline . 28
6 HOMO-LUMO distribution . 31
7 Distributions of feature values . 33
8 Linear regression MSEs . 34
9 Linear regression feature weights . 36
10 Linear regression accuracies . 37
11 Linear regression residuals . 38
12 LASSO regression MSEs . 39
13 Sparse weights from LASSO regression . 40
14 Neural network MSEs during training (configuration 1) 43
15 Final test set neural network MSEs (configuration 1) 44
16 Neural network HOMO-LUMO gap prediction accuracies (configuration 1) 45
17 Neural network MSEs during training (configuration 2) 46
18 Final test set neural network MSEs (configuration 2) 47
19 Neural network HOMO-LUMO gap prediction accuracies (configuration 2) 48

List of tables
1 Terminology . 10
2 Extracted ChemAxon features . 13
3 Neural network architectures . 42
4 Comparison of results . 49

April 1, 2014 Page iv of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

1 Introduction
As both the global population size and energy use per individual rise, increasing scientific

effort is being applied to find cheaper and more sustainable sources of energy. One promis-

ing approach is solar photovoltaics, which is the method of converting the energy inherent

in the sun’s rays into usable electrical energy [1]. A major limitation of solar photovoltaics,

however, is the relative inefficiency at extracting electrical energy from incident photons. In

response, this paper seeks to utilize scalable machine learning systems in order to rapidly

identify molecules that may offer promising characteristics as primary agents in solar

photovoltaics.

Photovoltaics exploit the photovoltaic effect in order to output electrical energy. The

photovoltaic effect is caused by incident photons dislodging electrons from the photovoltaic

material. These moving photons can then be used to create a potential difference and

induce a current. The material from which electrons are dislodged is referred to as the

primary agent. Theoretically, any compound can serve as a primary agent for strong

enough intensities of incident light; however, in most compounds, the photovoltaic effect

is too inefficient to be used effectively [2]. Choosing an efficient primary agent in solar

cells is a difficult task due to the large spectrum of possible candidate compounds. The

efficacy of a photovoltaic material is frequently measured in percent conversion efficiency

(PCE), the fraction of potential energy in a photon incident to the solar cell that can

be converted into electric energy [1]. Photovoltaics have primarily been manufactured

using silicon and other semimetals, due to their relatively high PCE and material lifetimes.

Crystalline silicone is able to achieve more than 15% PCE with a lifetime of over 25 years [3].

Comparatively, the 2013 Solar Cell Efficiency Tables report average PCE for organic-based

solar cells to be around 5% [4]. This value is too low for widespread use in most areas of

interest for photovoltaics. However, carbon-based photovoltaics provide a spectrum of

advantages, including inexpensiveness and ease of manufacturing. Further, the material is

April 1, 2014 Page 1 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

flexible, and can therefore be applied in ways that rigid silicon-based photovoltaics cannot.

Additionally, the manufacturing process for silicon-based photovoltaics requires highly

specialized production machinery [5].

The major limiting factor in developing carbon-based photovoltaics is that there is not a

simple procedure for evaluating the effectiveness of a candidate material to be used as the

primary agent. Selection of an organic photovoltaic candidate is “predominantly based

on empirical intuition, professional inspiration, or experience with certain compound

families” [6]. Thus, in order to assess the performance of a photovoltaic candidate, a solar

cell must be engineered using that candidate as the primary agent, and then tests must

be manually undertaken to evaluate performance. This entire procedure is a multi-month

process [6].

The Harvard Clean Energy Project has developed a platform for performing distributed

simulations of this process using the IBM World Community Grid. This works by replicat-

ing a molecule in silico, and modeling first-principles interactions between atoms using

150 million density functional theory calculations. However, this simulation-based process

can still take a month or longer per molecule to achieve reliable PCE numbers [6]. These

times are too long to make reasonable headway into this problem, especially considering

that there is a domain of many millions of candidate organic molecules.

Recent work in machine learning of quantum-molecular features offers hope for reliably

predicting chemical properties without an extensive simulation period. Using a machine

learning approach could serve as a first-pass filter in order to identify promising candidates

for further, more rigorous investigation. These endeavors are part of the broader goal

of developing a quantum machine, a system capable of efficiently predicting complex

chemical characteristics from simple molecular descriptors.

Montavon et al. demonstrate reliable results for learning molecular electronic properties of

April 1, 2014 Page 2 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

chemical compounds, using a number of different intermediate molecular representations

and learning approaches [7]. The work by Montavon et al. also exposes some of the

particular difficulties of building a quantum machine:

1. The exact target property is often not directly computable even if the relevant covari-

ates are known.

2. Regression learning is not directly possible over standard molecular representations,

which are oftentimes strings.

3. Since molecules are highly complex, the amount of data needed for reliable learn-

ing may be prohibitively large or require a prohibitively long training period for

straightforward learning approaches.

This paper intends to find solutions to these limitations for the specific task of identifying

promising photovoltaic candidate molecules. Specifically, this paper proposes several

novel representations for a molecule that are amenable to learning and prediction, and

extends existing representations proposed in the literature. This paper also proposes imple-

mentations of several distributed learning algorithms in order to rapidly perform learning

over a large dataset of molecular features. Finally, the most significant contribution of

this paper is the development of a scalable statistical machine learning system capable of

utilizing a supercomputing cluster to run massively distributed learning experiments over

molecular feature space. This paper analyzes the performance of different learning algo-

rithms and molecular representations in order to suggest promising model combinations

for performing molecular regression, using the Harvard Clean Energy Project’s database

of molecular data.

April 1, 2014 Page 3 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

2 Related work

2.1 Molecular representations

Molecules are often represented in compact, string-based formats. This has the advantage

that the molecular representations are human-interpretable. A drawback to this string-

based representation is that it is challenging to use for machine regression. Much of the

related literature is devoted to identifying molecular representations that are amenable

to machine learning, and identifying machine learning approaches that offer promising

results for molecular regression.

2.1.1 Feature extraction

Ideally, a machine representation of a molecule would succinctly and numerically summa-

rize the molecule. Bergeron et al. demonstrate that, with conscientious variable selection,

features that can be rapidly extracted from molecules can serve as an excellent basis for

advanced property prediction [8]. This trades off a comprehensive specification of the

molecule for a succinct summarization. These basis features can be efficiently computa-

tionally extracted using professional cheminformatics toolchains such as ChemAxon [9]

and RDKit [10]. The nature of these features is diverse and can include properties such as

molecular mass, Merck molecular force field energy, and Van der Waals surface area. Most

of these features can be computationally evaluated within several seconds [9].

2.1.2 Coulomb matrix

A downside to the feature extraction approach is that it is somewhat arbitrary and dictated

by circumstance — the potential selection of features is limited by the software toolkit being

used, and does not exploit the entire structure of a molecule in the machine representation.

Rupp et al. have done extensive work in developing a first-principles quantum structure

known as the Coulomb matrix for representing a molecule in a learnable way [11].

April 1, 2014 Page 4 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

The Coulomb matrix is an electronic structure representation method based on quantum-

mechanical first principles. The Coulomb matrix works by modeling charge interactions

between atoms in a molecule. It is therefore a relatively simple model that, for a given

molecule, requires only the nuclear charges of each atom and their Cartesian coordinates

in three dimensional space to be known. Representationally, the Coulomb matrix is a

symmetric matrix on which the major diagonal models absolute charge strength of each

atom, and off-diagonal entries model the pairwise atomic charge strengths for each pair

of atoms [12]. Rupp et al. show that the Coulomb matrix preserves many properties of a

good descriptor [11].

Montavon points out that molecules do not necessarily uniquely identify Coulomb matri-

ces; that is, for an individual molecule, there may be multiple possible Coulomb matrix

representations [7]. These arise from the fact that molecules may be indexed in an arbitrary

order, and therefore the rows and columns of the Coulomb matrix are not unique to each

molecule. This is disadvantageous for learning, since it means that a regression algorithm

may correctly provide different predictions for two inputs even if they represent the same

molecule. Workarounds for this and additional details of this construct are examined in

more depth in Section 3.2.2 of this paper.

2.2 Learning approaches

Machine learning has been a topic for learning properties of molecules since the beginning

of the 1990s [13]. However, while much research has been put into learning properties of

individual molecules or types of molecules, the literature on learning properties across

the molecular space is sparse. The main focus of the literature so far has been on using

neural networks, linear regression, and Gaussian processes as a basis for machine learning

of molecular features.

April 1, 2014 Page 5 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

2.2.1 Neural networks

Artificial neural networks are supervised machine learning algorithms for associating

inputs with outputs by a nonlinear model. Neural networks work by iteratively computing

differences between predicted and actual values, and refining the underlying nonlinear

model based on these differences. Neural networks have shown promising results for

molecular regression since at least 2006. Manzhos and Carrington first showed that neural

networks could be used to effectively impute molecular potential energy surfaces from a

body of quantum-molecular data [14]. Recently, much research has been put into using

neural networks to infer electrical-chemical properties from molecules. Since Rupp et al.

introduced the Coulomb matrix to model molecular features, neural networks have been

extensively used in this space, due to their ability to learn patterns from structured data

matrices [11]. Since then, neural networks have been used to learn atomization energies,

static polarizabilities, frontier orbital eigenvalues, ionization potentials, electron affinities,

and other electronic properties [7, 12, 15].

One main drawback of neural networks is their extensive training time. Even for modestly

sized training sets, neural networks can require many training iterations before acceptable

predictive power is achieved. It is therefore necessary to employ parallelization approaches

in order to tractably perform regression over large datasets. Neural networks have tra-

ditionally been parallelized using a method known as “Network Parallel Training” [16].

Network Parallel Training involves replicating each node (or a set of nodes) in the neural

network on each processor. Each processor is then responsible for handling the computa-

tions associated with that node. This process effectively parallelizes the neural network

by dividing up work done by columns of nodes in the network [17]. However, as this

process requires extensive inter-process communication, it is not efficient for distributed

computation over multiple different machines. Dahl, McAvinney, and Newhall suggest

an implementation of “Pattern Parallel Training” for neural networks, whereby the entire

April 1, 2014 Page 6 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

network is duplicated across processes, and each process is responsible for processing a

random subset of the input patterns [16]. This is discussed more in Section 3.3.4 of this

paper. Furthermore, Niu et al. propose a lock-free gradient descent algorithm known as

Hogwild! that could be used, e.g., on each machine within a distributed neural network

architecture to speed up backpropagation [18].

Dean et al. and Coates et al. show how to enhance the above approaches with distributed

deep learning. In this context, deep learning is an unsupervised learning method capable

of learning appropriate initialization weights for neural networks from unlabeled data.

Their paper shows how to extend this technique to datasets with millions of inputs by

exploiting cluster computation [19, 20]. Previous methods have attempted to leverage

distributed computation through GPUs, but have often been limited by the CPU-to-GPU

data transfer bottleneck [21]. This class of approaches is useful, because it can utilize, for

instance, molecular data whose PCE is unknown in order to improve the initial neural

network weights during supervised training.

2.2.2 Linear regression

Linear regression is valuable for its simplicity and interpretability. In learning the chemical

feature space, it has shown to be within an order-of-magnitude as effective as other, more

sophisticated learning approaches [15]. In addition, it leads to a model with interpretable

parameters that does not require significant computational resources to evaluate.

Nonetheless, for large, high-dimensional training sets, computation time for linear regres-

sion can be significant, especially when cross-validation and tuning of various regulariza-

tion parameters is required. This computational cost comes from having to perform large

matrix operations over the entire dataset. Most existing implementations of parallelized

linear regression are based on exploiting QR-matrix decompositions and performing GPU-

distributed concurrent matrix operations [22]. While such GPU-based approaches can

April 1, 2014 Page 7 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

improve the speed of the core algorithm, oftentimes a speed bottleneck comes from the

entire training set being too large to fit into RAM. This results in frequent paging in and

out of the data from the hard disk, which is computationally costly. Parallel algorithms

for linear regression are therefore beneficial not only for speeding up the core algorithm,

but also for dividing data across multiple cores such that each smaller dataset fits into the

RAM of its respective core. Xu, Miller, and Wegman propose an efficient distributed model

for solving linear regression problems by solving subsets of a linear regression problem

across different cores [23].

Instituting regularization is important to prevent overfitting. Unregularized linear regres-

sion is known as ordinary least squares regression (OLS). Ridge regression is a common

and well-known closed-form method of penalizing the `2-norm of the regression weights.

LASSO1 regression is another form of linear regression, which penalizes the `1-norm of

the weights. In LASSO regression, the regularization penalty is proportional to the sum

of the weights, which tends to induce sparsity and pull the weights of the least useful

features to zero before affecting the weights of the other features. This is useful for per-

forming regression-based feature selection. Mateos, Bazerque, and Giannakis provide the

description for an efficient distributed implementation of `1-regularized linear regression

by having multiple cores iteratively converge to a set of weights, regularized by their

magnitudes [24].

2.2.3 Gaussian processes

Gaussian processes are predictive models that maintain a prior over functions to fit the

data. Once new data is observed, we can compute the posterior over these functions to

determine functions that are the most likely to fit the observed data. Bartók and Payne

introduce the use of Gaussian processes to model complex potential energy landscapes for

molecules [25]. They demonstrate very promising results using a representation model

1LASSO stands for “least absolute shrinkage and selection operator”.

April 1, 2014 Page 8 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

achieved by projecting atomic densities onto the surface of a four-dimensional unit sphere.

Bartók and Payne discuss that Gaussian processes are of particular interest for their ability

to improve faster with more data when compared to other models, in particular neural

networks. While Gaussian processes seem to offer promising results in terms of regression,

their significant computational complexity makes them difficult to employ in practice,

even on modestly-sized data sets. The main cost of this approach comes from having to

invert the covariance matrix, which is the size of the data. Gaussian process training incurs

cubic time and quadratic memory in the size of the data [26].

Several papers have been devoted to trying to overcome this computational bottleneck,

either through approximate serial techniques or parallelization. A standard technique for

improving computation time is to use matrix decomposition or matrix-vector multiples

to approximately invert the covariance matrix. Murray overviews some techniques that

use approximately sparse matrix kernels in computation of Gaussian processes. These

techniques generally involve inducing sparsity on the inputs (or approximating them

with a sparse representation), partitioning the inputs into smaller, easier to solve Gaussian

process problems and then merging them, or choosing particular kernel functions that

lead to covariance matrices that can be approximately inverted quickly. However, these

approaches suffer from poor scalability to large datasets or poor approximations with

high-dimensional inputs [27]. Bo and Sminchisescu demonstrate an efficient serial method

of approximately solving Gaussian processes using greedy block coordinate descent. This

is a dense solver, which uses iterative methods instead of inverting the full covariance

matrix [26]. Gramancy, Niemi, and Weiss demonstrate several approaches for approximate

Gaussian process parallelization using clusters and GPUs. These methods generally involve

splitting approximate subproblems across several computers or the GPU. While these tests

showed reasonable similarity between the exact and approximate methods for small input

sizes (under 10000), due to the complexity of the exact algorithm, it was not possible to

April 1, 2014 Page 9 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Table 1: Terminology

Representation type Refers to a way of numerically modeling a molecule. In this
project, these are features, Coulomb matrix, Coulomb eigenspec-
trum, binary adjacency matrix, binary adjacency eigenspectrum,
n-ary adjacency matrix, and n-ary adjacency eigenspectrum.

Input The collection of data that fully describes a single molecule
within a representation.

Predictor The scalar value defined for each dimension of an input.
Feature A predictor for the features representation.

Response variable The HOMO-LUMO gap for a specific input.
Core A single computational unit in a distributed environment.

determine how accurate the parallelized algorithm was for larger input sizes [28]. Overall,

Chen et al. show that combining matrix decomposition techniques with a parallelized

approach may be the most effective way to extend Gaussian process regression to very

large datasets. However, such approaches require either assumptions about the data model

or use approximations that may result in significantly degraded predictive performance

for very large data sets [29].

2.2.4 Other approaches

Many learning approaches other than those discussed above have been presented in the

quantum machine literature. In particular, Hansen et al. provide a comprehensive analysis

of the performance of different types of learning approaches [15]. These approaches are

divided into roughly four different areas-of-interest: basic learning methods, methods with

Gaussian kernels, methods with Laplacian kernels, and neural networks.

3 Experimental approach
This section discusses the specific model and regression choices made throughout this

project. It also details the specifics of the dataset and the derivations used to parallelize

molecular regression.

In order to disambiguate some of the terms used in this section, please refer to Table 1 for

April 1, 2014 Page 10 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

a list of select terms and their usages in this paper.

3.1 Dataset

The Harvard Clean Energy Project (CEP) is an initiative at Harvard University to identify

organic molecules with promising photovoltaic properties. Using the IBM World Commu-

nity Grid, the CEP has computed various molecular characteristics for over 1.8 million

molecules. The CEP has generously made available their dataset for this project.

These molecules are listed in canonical SMILES format. The Simplified Molecular-Input

Line-Entry System is a compact string-based representation for molecules [30]. This is

one of the industry standards for molecular representation, and the initial input for our

regression system.

Literature shows that the HOMO-LUMO gap, the difference in energy between the Highest

Occupied Molecular Orbital and the Lowest Unoccupied Molecular Orbital, is a good

proxy for photovoltaic efficacy of a molecule [31]. These values take a long time to compute

through simulation but, fortunately, the dataset provided by the CEP lists these values.

The HOMO-LUMO gap is the response variable that we are targeting in this paper for

each molecule.

This project uses the CEP’s entire molecular database for analysis in this paper. This

database is comprised of 1,824,230 primarily carbon-based molecules. Each molecule is

comprised of up to 35 individual atoms.

3.2 Data representations

3.2.1 Feature extraction

From a SMILES string, the ChemAxon cheminformatics toolchain can be used to directly

and efficiently extract features from a molecule. There are many features available, and

only a subset of them are numeric. Figure 1 lists the 77 available real-valued features and

April 1, 2014 Page 11 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

pkat
formalcharge

dipole
molecularsurfacearea

vdwsa
asa

mmff94energy
resonantcount

maximalprojectionradius
maximalprojectionsize
maximalprojectionarea
minimalprojectionsize
minimalprojectionarea

minimalprojectionradius
tholepolarizability

volume
dreidingenergy

averagemicrospeciescharge
isoelectricpoint
tautomercount

stereoisomercount
tetrahedralstereoisomercount

logp
pienergy

hmopienergy
hbonddonoracceptor

refractivity
stereodoublebondcount

topanal
chiralcentercount
hyperwienerindex

wienerindex
asymmetricatomcount

szegedindex
wienerpolarity

heteroaromaticringcount
fusedaromaticringcount
carboaromaticringcount

hararyindex
aromaticringcount

aromaticringcountofsize
balabanindex

rotatablebondcount
fusedaliphaticringcount

heteroaliphaticringcount
aliphaticatomcount

carboaliphaticringcount
aliphaticringcount

aromaticbondcount
aromaticatomcount
aliphaticbondcount

largestringsize
aliphaticringcountofsize

largestringsystemsize
smallestringsystemsize
ringsystemcountofsize

smallestringsize
ringcount

ringsystemcount
ringatomcount

chainbondcount
ringbondcount

ringcountofsize
heteroringcount

fsp3
fusedringcount
carboringcount

chainatomcount
randicindex

plattindex
markushenumerationcount

fragmentcount
cyclomaticnumber

bondcount
mass

atomcount
polarsurfacearea

0 2 4 6
Average computation time (s)

Compute times for various ChemAxon features

Figure 1: Average per-molecule ChemAxon feature compute times. These are the compute names;
the corresponding interpretable names are at https://www.chemaxon.com/marvin/help/
applications/cxcalc-calculations.html.

their computation times. (Note that these feature names are the compute names; most

compute names actually correspond to more than one interpretable molecular feature.)

Examining the table, it is clear that extracting features is highly computationally intensive.

Even though these features can be computed in parallel, we chose to eliminate a few

features based on long computation times. The final list of 59 computed features used in

April 1, 2014 Page 12 of 56

https://www.chemaxon.com/marvin/help/applications/cxcalc-calculations.html
https://www.chemaxon.com/marvin/help/applications/cxcalc-calculations.html

Michael Tingley Scalable Molecular Feature Learning Thesis

Table 2: Extracted ChemAxon features. Descriptions can be found at https://www.chemaxon.
com/marvin/help/applications/cxcalc-calculations.html. Note that these are the
interpretable names; the compute names are listed in the above URL.

a(xx) a(yy) a(zz)
Acceptor count Acceptor site count Aliphatic atom count
Aliphatic bond count Aliphatic ring count Aromatic atom count
Aromatic bond count Aromatic ring count ASA
ASAH ASAP ASA+
ASA- Atom count Balaban index
Bond count Chain atom count Chain bond count
Charge Dipoles Donor count
Donor site count Dreiding energy Formal charge
FSP3 Harary index Hetero ring count
Heteroaliphatic ring count Heteroaromatic ring count Hyper Wiener index
Largest ring size log P Mass
Maximal projection area Maximal projection radius Minimal projection area
Minimal projection radius MMFF94 energy molecular
pI Pi energy Platt index
Polar surface area Randic index Refractivity
Ring atom count Ring bond count Ring count
Rotatable bond count Smallest ring size Szeged index
Van der Waals surface area (3D) Van der Waals volume Wiener index
Wiener polarity

this project are displayed in Table 2.

3.2.2 Coulomb matrix

The Coulomb matrix is a promising representation because it exploits the entire molecu-

lar structure in a learning representation for the molecule. The Coulomb matrix can be

computed simply from the Cartesian coordinates of the atoms and their atomic charges.

For atom number 1 ≤ i ≤ n, if we let Zi be its atomic charge and Ri be its Cartesian

coordinates, then, according to [7], we can specify each i, jth element of the n× n Coulomb

matrix as

Ci,j =

0.5Z2.4

i if i = j

ZiZj
|Ri−Rj|

if i 6= j

There are two major problems with the Coulomb matrix representation. First, since the

April 1, 2014 Page 13 of 56

https://www.chemaxon.com/marvin/help/applications/cxcalc-calculations.html
https://www.chemaxon.com/marvin/help/applications/cxcalc-calculations.html

Michael Tingley Scalable Molecular Feature Learning Thesis

matrix is constructed from pairwise interactions of atoms, the matrix for the kth molecule

will have dimensions nk × nk, where nk is the number of atoms in the kth molecule. Clearly,

the size of the matrix will, in general, be different for different molecules, which makes

consistent learning difficult. Hansen et al. propose a simple solution to this problem, by

padding all molecules in the dataset with a sufficient number of “dummy atoms” such that

all molecules have the same total number of real plus dummy atoms [15]. These dummy

atoms have zero independent and pairwise charges.

The second problem is that the Coulomb matrix is not unique — for a single molecule, there

exist a number of different, valid Coulomb matrices computable by permuting the atom

indices. Montavon et al. propose several Coulomb matrix transformations that circumvent

this difficulty [7].

1. Sorted eigenspectrum. Although the Coulomb matrix itself depends on the ordering

of the atoms, the eigenvalues do not. For each matrix, the eigenvalues can be com-

puted in decreasing order. This is referred to as the sorted eigenspectrum representation,

and is clearly invariant to the ordering of the atom indices.

2. Sorted Coulomb matrix. If we apply a deterministic sorting method to the matrices,

then the matrices can be coherently compared. The matrix can be sorted row-wise,

where rows with a higher “length” appear earlier. The “length” is computed by

considering each row as a vector and computing its `2-norm.

3. Random Coulomb matrix. Finally, Montavon et al. propose utilizing randomly-

sorted Coulomb matrices. This is done by randomly permuting the columns and

rows of a Coulomb matrix based on the probability of that Coulomb matrix being

generated by a random permutation of the atoms.

The sorted eigenspectrum representation has the advantage of being a succinct representa-

tion of the matrix, but has the downside of losing some of the information represented in

April 1, 2014 Page 14 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

the Coulomb matrix. Nonetheless, it is amenable to linear regression in addition to neural

network regression, and is a simple and robust way of summarizing the Coulomb matrix,

and so we choose to use this representation in our analysis. The sorted Coulomb matrix is

also fairly straightforward and ensures the comparability of Coulomb matrices, and so we

use it in our analysis as well. In order for the random Coulomb matrix representation to

produce useful results, the matrix must be replicated many times in the dataset. However,

since our dataset is already very large, we chose to exclude this representation for the sake

of computational tractability. For smaller datasets, it has been shown that randomly sorted

Coulomb matrices can yield an up to tenfold increase in regression performance in certain

circumstances, and so this is an area of interest for further research [15].

3.2.3 Adjacency matrix

As examined in the Section 2.1.2, existing representation methods exploit quantum-

chemical effects to create the Coulomb matrix. However, this approach ignores important

classical chemistry relations of atomic bonds and physical structure of the molecule. In

some sense, these features may offer lower fidelity insight into the nature of the molecule;

however, this may be viewed as a form of sparsity in the representation type, and is some-

times desirable in machine learning for both improved speed and precision of learning.

We propose a new but simple learning representation form for the molecule, the adjacency

matrix. This representation is basic and comes in two forms, binary and n-ary.

Binary adjacency matrix. The binary adjacency matrix for a molecule with n atoms is an

n× n symmetric matrix. The diagonals of this matrix are zero, and the i, jth element of this

matrix is 1 if there exists a bond of any type between atoms i and j.

n-ary adjacency matrix. The n-ary adjacency matrix is similar to the binary adjacency

matrix, except that the i, jth element in the matrix represents the number of bonds between

atoms i and j. For instance, if all bonds are single bonds, this is the same as the binary

April 1, 2014 Page 15 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

adjacency matrix. However, if there are double, triple, or aromatic bonds, this matrix will

have 2s, 3s, and 1.5s in it respectively.

The resultant adjacency matrices can be transformed in the same way that we transformed

Coulomb matrices in order to ensure invariance with respect to the permutation of the

atoms.

3.3 Distributed learning architectures

Performing full-data regression on the entire dataset of 1.8 million molecules is very

computationally-intensive. Due to time constraints, this study had to be selective on

which regressions to perform. All core procedures were parallelized on a massive scale

using the Harvard Odyssey cluster (explained more below in Section 3.3.1). Literature

suggests that linear regression, neural networks, and Gaussian processes may be among

the most promising models for molecular regression. Due to the huge computational cost

and difficulty in parallelization associated with Gaussian processes, we decided to use

parallelized linear regression techniques and neural networks to predict the HOMO-LUMO

gap for molecules.

3.3.1 The Odyssey cluster

This project utilizes the Message Passing Interface (MPI) protocol extensively to perform

distributed experiments across multiple machines with communication. In order to exploit

the massively parallelized computing capabilities of MPI, this project was deployed on

the Odyssey supercomputing cluster, hosted by Harvard University’s Faculty of Arts

and Sciences Research Computing Team (see [32]). The partition of Odyssey used for this

project consists of 28,000 AMD Opteron 6376 “Abu Dhabi” processor cores running on

Linux CentOS6. Each computational unit is referred to as a ‘core’, and may or may not be

an individual, physical machine. A node contains 64 cores. Each node is connected via

Infiniband high-speed interconnect. Each node has a pool of 256GB of RAM [33]. Jobs are

April 1, 2014 Page 16 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

submitted and queued according to a fairshare-based scheduler running the Simple Linux

Utility for Resource Management [34].

3.3.2 Parallelizing OLS and ridge regression

Most existing implementations of parallelized OLS are based on exploiting QR-matrix de-

composition and performing GPU-distributed concurrent matrix operations [22]. However,

in our case, this is limiting in two ways:

1. If the data is so large that a core cannot sufficiently represent the entire data in RAM,

then disk communication costs will significantly inhibit computation time.

2. For systems lacking high-availability GPUs like Odyssey, this is an inconvenient

option.

For these reasons and drawing on motivations from the work by Xu, Miller, and Wegman

[23], we have derived distributed OLS for an MPI-based interface. This has the advantage

that one core is not responsible for performing computations over the full dataset. We

could also employ GPU-based matrix multiplication techniques on individual cores to

further speed up computation.

The distributed linear regression compute network is modeled in Figure 2. This network

model assumes m total cores. In the implementation description below, 1` refers to an

`-length column vector of ones. 1 ≤ k ≤ m is used to refer to an arbitrary core. Variables

subscripted with (k) refer to the set of the variable local to core k. Our goal is to derive the

standard OLS regression weights vector used in linear regression,

β̂OLS =
(

XTX
)−1

XTy.

Phase 1. This is the data distribution phase. The root core reads the n inputs, each of

which have p predictors, as the n× p matrix of inputs X, and the n-length column vector of

April 1, 2014 Page 17 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

response variables y. Note that the inputs X should be centered and rescaled so that each

predictor type has mean 0 and variance 1. This ensures that the regularization levels are

interpreted correctly and penalize each of the weights independently of the nominal scale

of the predictors. The root splits the data into m approximately-equally-sized matrices and

distributes it to the other cores using MPI’s SCATTER.

Phase 2. This phase completes all computation that can be done without sharing in-

formation. The information computed in this phase summarizes the data for succinct

computation by other cores in the next phase. Core k receives nk inputs. Each core then

computes the following quantities over the inputs on that core.

• The p-length column vector of predictor column means, x(k) = XT
(k)1nk /nk. This is

the mean for each type of predictor.

• The nk × p centered predictor matrix, X(k) = X(k) − 1nk xT
(k). This is the matrix of

predictor differences from their means.

• The scalar response mean, y(k) = yT
(k)1nk /nk.

• The nk-length centered response vector, y(k) = y(k) − 1nk y(k). This is the column

root Phase 1: Distribute data

p1 . . . pk . . . pm Phase 2: Distributed compute

p1 . . . pk . . . pm Phase 3: ALLREDUCE and compute

root Phase 4: Final compute

Figure 2: Distributed OLS and ridge regression network architecture

April 1, 2014 Page 18 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

vector of response variable differences from their mean.

• The p× p square of centered predictors matrix, XT
(k)X(k). Entry i, j of this matrix is

the dot product of the ith and jth centered predictor vectors. So the ith diagonal entry

of this matrix is the sum of the squares of the ith centered predictor.

• The p-length total centered predictors times centered responses vector, XT
(k)y(k). The

ith entry of this column vector is the dot product of the ith centered predictor vector

and the centered response vector.

• The p-length column vector representing this core’s responsibility for each type of

predictor, InResp(k) = nkx(k)/n.

• The scalar representing this core’s responsibility for the response variable,

OutResp(k) = nky(k)/n.

Phase 3. Using MPI’s ALLREDUCE, we efficiently sum up the input and output respon-

sibilities across all cores onto all cores. The sum of the InRespk’s is clearly x (the global

predictor column means), and the sum of the OutRespk’s is y (the global response mean),

and so each core now has access to these quantities, in addition to the quantities computed

in the previous phase. Each core now computes the following two quantities.

• nk(x(k) − x)(y(k) − y)

• nk(x(k) − x)(x(k) − x)T

These values can be used in conjunction with those computed in Phase 2 in order to

compute the following quantities.

• XT
(k)y(k) + nk(x(k) − x)(y(k) − y). This p-length column vector is the fraction of XTy

that can be computed using the data available on the kth core.

• XT
(k)X(k) + nk(x(k) − x)(x(k) − x)T. This p× p matrix is the fraction of XTX that can

be computed using the data available on the kth core.

April 1, 2014 Page 19 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Phase 4. We know now that each core owns a fraction of XTy and XTX, which are global

quantities that we need in order to perform the linear regression. We can compute the

value for these quantities that represents the entire dataset simply by summing over the

fractions of these values owned by each core.

We use MPI’s REDUCE on the root core to sum up remote values across the other cores.

Specifically, we have that

XTy = ∑
k

[
XT

(k)y(k) + nk(x(k) − x)(y(k) − y)
]

XTX = ∑
k

[
XT

(k)X(k) + nk(x(k) − x)(x(k) − x)T
]

Final compute. Finally, we can compute the maximum likelihood weights for OLS. For

regression of the form y = β0 + β1x, we have that

β̂
OLS

1 =
(

XTX
)−1

XTy

β̂OLS
0 = y− xTβ̂1

Note for the final compute that XTX is a p× p matrix. This means that the size of the

matrix is a function of the number of dimensions in the dataset and not a function of the

total number of inputs n. Since p is small, this means that it is computationally easy to

perform the required inversion on XTX. Furthermore, realize that XTy is a column vector

of length p. Therefore, it is computationally easy to multiply (XTX)−1 with XTy.

Given this framework, we can easily introduce arbitrary `2 regularization to perform

ridge regression. If Ip is the p× p identity matrix, then we can add `2 regularization of

magnitude λ to the linear regression by using

β̂
ridge
1 =

(
λIp + XTX

)−1
XTy.

April 1, 2014 Page 20 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

(A derivation of this is provided in [35].)

From a Bayesian perspective, Murphy shows that this approach is equivalent to assuming a

Gaussian prior on the weights with mean zero and variance σ2/λ, where σ2 is the variance

of the true weights [35].

3.3.3 Parallelizing LASSO regression

As discussed in Section 2.2.2, LASSO regression is useful for identifying the most important

predictors in the dataset. Mateos, Bazerque, and Giannakis provide an efficient distributed

implementation for LASSO regression using coordinate descent in [24].

The LASSO regression compute network is modeled in Figure 3. Unlike the other dis-

tributed algorithms discussed in the current paper, we use this distributed procedure as

described in [24] verbatim. As a result, rather than motivating and deriving the distributed

algorithm, we present only the final method here, referring an interested reader to [24] as

a reference. The listing is shown in Algorithm 1. This algorithm iteratively refines weight

estimates in order to choose the intercept β0 and weights β that fit the LASSO objective for

a given regularization level λ, which is defined as

β̂0, β̂ = arg min
β0,β

1
2
||y− 1nβ0 − Xβ||22 + λ||β||1,

root Phase 1: Distribute data, initialize iterates

p1 . . . pk . . . pm
Phase 2: ALLREDUCE to compute intercept;
ALLGATHER to share current weights

p1 . . . pk . . . pm Phase 3: Refine weight estimates

Figure 3: Distributed LASSO regression network architecture

April 1, 2014 Page 21 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Algorithm 1: Distributed Coordinate Descent LASSO
Data: λ > 0: regularization level

X: n× p matrix of inputs, centered and scaled so each column has mean 0 and variance 1
y: n-length vector of responses
m: total number of machines
c > 0: penalty coefficient to determine rate of coordinate descent (we use 100 in this paper)

1 Use MPI to SCATTER X, y to each machine. Machine k receives X(k): nk × p matrix subset of X and y:
nk-length vector subset of responses.

2 for each machine k do in parallel
3 Compute Intercept by ALLREDUCEing the local weighted average of responses, 1T

nk
y(k)/n

4 We will now use the intercept-compensated data: y(k) := y(k) − (1nk · Intercept)
5 Initialize Weights(k) to p-length vector of 0s ;
6 Initialize CumDiv(k) to p-length vector of 0s ; /* CumDiv stands for cumulative divergence */
7 repeat
8 Use MPI’s ALLGATHER across each machine to share all Weights(k) with all machines ;

9 CumDiv(k) := CumDiv(k) + c ∑
k′ 6=k

[
Weights(k) −Weights(k′)

]
;

10 for i ∈ {1, ..., p} do /* Each weight index */
11 /* PartErr(−i)

(k) is the partial residual error, not including the contribution of the ith predictor.

Weights(k)Ji′K means i′th element of Weights(k); X(k)J, i′K means i′th column of X(k). */

12 PartErr(−i)
(k) := y(k) − ∑

i′ 6=i

(
Weights(k)Ji′K× X(k)J, i′K

)
;

13 let S be the soft thresholding operator, where S(z, µ) = sign(z)×max{|z| − µ, 0} ;
14 Weights(k)JiK := (2c(m− 1) + ||X(k)J, iK||2)−1 ×

S
(

X(k)J, iKTPartErr(−i)
(k) +

(
c ∑

k′ 6=k

[
Weights(k) + Weights(k′)

]
−CumDiv(k)

)t
i

|

,
λ

m

)
15 until convergence of Weights;

16 return Intercept, Weights(root) ;

Here, ||...||2 denotes the `2-norm, and ||...||1 denotes the `1-norm.

3.3.4 Parallelizing neural networks

In their 2008 work, Dahl, McAvinney, and Newhall outline a data-parallel approach for

distributing neural network computation known as Pattern Parallel Training (PPT) [16].

Motivated by this work, we extend and modify the description in order to suit the unique

facets of the CEP’s dataset.

The distributed neural network derivation is modeled in Figure 4. This network model

assumes m total available cores, and the variable 1 ≤ k ≤ m is used to refer to an arbitrary

April 1, 2014 Page 22 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Input neural network

root

p1 . . . pm

Phase 1: Distribute data

Input Patterns

N
eu

ra
ln

et
w

or
k

...

...

...

Input Patterns

N
euralnetw

ork

...

...

...

Phase 2: Local neural
network simulation

Weight
Exchange

Phase 3:

Figure 4: Distributed neural network architecture

core.

Phase 1. This algorithm works by modeling identical neural networks on each of the

m cores. We accomplish this by reading in an input neural network on the root core. If

running this algorithm for the first time, this neural network can be initialized offline

using any desired parameters. Otherwise, this neural network can be a partially-trained

neural network, allowing a single network to be trained over multiple executions of

this algorithm. In this algorithm, the input neural network and the entire dataset X are

replicated on all cores. Note that X must be normalized to be between 0 and 1 in order for

the neural network to work correctly. These structures can be replicated easily using MPI’s

BROADCAST, after the data has been read from disk. This ensures that the entire neural

network structure and initialization weights are replicated exactly on each core.

April 1, 2014 Page 23 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Phase 2. Each core selects a random subset X(k) of the data (these do not have to be

disjoint subsets). The size of the data per core, |X(k)|, is a parameter to this algorithm. For

each core index k, the neural network on core k computes—but does not apply—the batch

weight updates for inputs X(k).

Phase 3. Using MPI’s ALLREDUCE, sums of all batch weight updates are sent to all cores

in the network. Each core then updates its recorded original weights from before the last

training iteration by adding these batch weight updates (scaled by the learning rate), with

momentum applied from the previous run of Phase 3. We then repeat from Phase 2 with a

new random subset.

Final compute. The above sequence of phases is repeated as long as desired. Note that,

after the weights exchange, the state of the neural network on each core is identical.

Therefore, we can simply use the neural network on one of the cores at the end of the

process as the output of the algorithm. This can also be used to output incremental trainings

of the neural network during the algorithm. We can estimate the global mean squared error

rate by averaging together the local squared error rates across all cores when performing

the ALLREDUCE.

Using the algorithm described above is limiting for two reasons. We discuss these and

propose solutions below.

1. Batch weight updates. This algorithm uses batch weight updates, although it has

been shown that incremental neural network training will asymptotically outperform

batch training with enough data [36]. In our dataset, we found that using batched

weight updates significantly slowed down neural network convergence time. We

implemented the alternative described below.

Instead of computing batch updates, before each training cycle we record the current

April 1, 2014 Page 24 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

weights. Then, we perform incremental learning for all of the data on the local core.

When ALLREDUCEing the weight updates to all cores, what we communicate is the

difference between the final weights and the weights before training. We update

the network’s weights to be the original weights plus these ALLREDUCEd weight

updates.

This has the major conceptual advantage that it allows the network to descend the

contour gradient during the training process, rather than only when cross-core weight

updates are applied. This results in faster convergence and significantly reduces the

chance that the neural network will fall into a shallow local minima.

2. Weight updates overshoot. From testing, we observed that certain pathological

subsets of the data would result in weight updates on one of the cores that would

dominate the weight values. Applying these weight updates would result in a

network weight divergence that would cause the network to ‘fail’ by applying larger

and larger weight changes to try to find a reasonable set of weights. Although this

event is rare for any individual subset of the data, since we are applying so many

distributed weight updates, its occurrence was likely in our dataset. We found that a

simple but effective remedy to this problem was to divide the weight updates by the

total amount of data being trained over on that iteration, which tended to prevent

the weight updates from ever dominating the current weights.

3.3.5 Large data considerations

The above algorithms are effective, distributed architectures for performing machine

learning over modestly sized molecular datasets. However, these approaches run into data

issues when being run over the large dataset of 1.8 million molecules used in this paper.

In the matrix representations of the molecules, some of the representation types had a

memory footprint of more than 20GB on disk.

April 1, 2014 Page 25 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Loading the entire dataset into memory is unfeasible for these representations. Although

Odyssey can support up to 256GB per 64 cores, this means that we cannot replicate the

entire dataset on each core. For linear regression, this is a simple task of having each core

read only the segment of the dataset that it is responsible for (preprocessing can be used to

divide the entire dataset into the appropriate segments).

However, for parallelizing neural networks, we run into the difficulty that, according to

the algorithm outlined above, each core is responsible for random subsets of the entire

dataset for each epoch. We propose the two solutions below for this problem.

1. The first solution is basic but effective. Each molecule’s representation can be written

to disk as a separate file. Then, at the beginning of Phase 2, each core selects a random

subset of the files and loads them as its working set. The runtime of this approach

is dependent upon the file I/O time. This approach has the benefit that it can scale

to arbitrarily large datasets, independent of the number of available cores: since the

entire dataset doesn’t need to be read for each epoch, the cores can be made to read a

small enough random fraction of the data so that molecular data can be fully stored

in memory.

2. The second solution is to partition the entire dataset equally across the cores. A

possible downside to this is that, during training, each core will descend along the

gradient for the same inputs. This could cause the algorithm to be biased towards a

specific local minima if, for instance, the inputs on one of the cores result in weight

updates that consistently dominate the other weight updates. However, in practice

and for the large dataset used in this paper, this has not shown to be an issue. A

second limitation of this approach is that it does not scale independently of the

number of cores: each core must be able to store its fraction of the dataset in RAM.

There are certainly more advanced techniques available to counteract this problem, such

April 1, 2014 Page 26 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

as using a live database to store the molecule data, but these kinds of services were not

available for this project.

3.4 Data pipeline

This section discusses the full data pipeline used when processing the entire dataset in this

project. The full data pipeline is outlined in Figure 5.

Parse the input record. The raw input record contains entries for 1.8 million molecules.

Although the actual input record is somewhat more sophisticated than portrayed in Figure

5, from the records we can compute the HOMO and LUMO values and their gaps. The

record itself is quite small, since the 1.8 million molecules are all represented in SMILES

notation. As a result, we can use a serial parser to parse the input record in a series of

tuples of 〈SMILES, HOMO-LUMO gap〉. We partition this list of parsed tuples in 512 lists

of tuples and write them to the file system.

Compute predictors in parallel. The next phase computes predictors for each of the

molecules in an embarrassingly parallel way using the methods outlined in Section 3. Since

we have 512 records on disk, we can compute our desired predictors over the dataset using

512 different cores. Specifically, for each molecule, we compute the following predictors:

1. The 59 real-valued ChemAxon features listed in Table 2

2. Full sorted Coulomb matrix

3. Coulomb matrix eigenvalues in decreasing order

4. Full binary adjacency matrix

5. Binary adjacency matrix eigenvalues in decreasing order

6. Full n-ary adjacency matrix

7. n-ary adjacency matrix eigenvalues in decreasing order

Reduce to compute data statistics. Now that the predictors have been computed for all

April 1, 2014 Page 27 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

SMILES Many other attributes HOMO LUMO
c3c4 · · · · · · -5.47 -3.44
c1cc2 · · · · · · -5.10 -3.47
c1=cc · · · · · · -5.23 -3.09

...

Parser

SMILES Gap
c3c4 · · · 2.47

...

SMILES Gap
CC=N · · · 1.72

...

· · · SMILES Gap
C2N1 · · · 1.83

...V
al

id
at

io
n

...C o m p u t e p r e d i c t o r s i n p a r a l l e l

V
al

id
at

io
n

Use Map/Reduce architecture
to get full-data statistics

V
al

id
at

io
n

...T r a n s f o r m i n p u t p r e d i c t o r s

V
al

id
at

io
n

· · · · · · · · · · · ·
Divide/shuffle/rewrite the data onto disk in batches that are appropriate for training

V
al

id
at

io
n

Perform distributed machine learning

Figure 5: The data pipeline for the full dataset

April 1, 2014 Page 28 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

molecules, we need to compute a few statistics from the data.

1. Global mean and variance of each predictor. This is needed to center and rescale

the predictors for linear regression.

2. Maximum dimensions for each representation type. We need to determine the

maximum dimensions for each representation type. For eigenspectra, this means

counting the max number of eigenvalues, and for matrices, this means counting the

max number of entries in the matrix (as the matrix will be flattened during learning).

3. Get high/low values for each predictor type. For instance, for the matrix represen-

tations, we need to know the high and low values for each position of the matrix

across the entire dataset. We also need to know the high and low values for the

response variable. These will be used to normalize the inputs for neural network

regression.

These values can be efficiently computed using a distributed Map/Reduce framework.

Transform predictors. As suggested in the previous section, the representation types

as computed may have different numbers of dimensions. This is a result of different

molecules having different numbers of atoms. We make an embarrassingly parallel pass

through the data in order to clean this up. During this pass, we pad eigenvalue lists or

matrix dimensions with a number of zeros so that each input for a given representation

type has the same number of dimensions. For the full dataset, this means padding all

matrices to be shape 35× 35 and padding all eigenspectra to be lists of length 35.

For the linear regression approaches, we want each predictor type to be centered and

rescaled to have a mean of 0 and variance of 1. This ensures that the regularization levels

are interpreted correctly and penalize each of the weights independently of the scale of

the predictors (Figure 7 shows that the scales of the predictors vary significantly). For

the neural network approaches, we want each predictor and the response variable to be

April 1, 2014 Page 29 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

normalized to between 0 and 1. These transformations can be done during this phase.

Divide and rewrite data. This phase is used to rewrite each input in preparation for

learning. This can involve rewriting each datum as a separate entry on the filesystem, or

dividing them into batches suitable for the different learning approaches.

Perform machine learning. At this point, our dataset is in the appropriate form to perform

regression, and we can use either linear regression or neural networks, as discussed in

Section 3.3, to perform molecular feature learning.

Validation at each step. Note that, at each step that involves distributed processing, a

post-processing validation step must be used to ensure the integrity of the computation.

As was found during experimentation, cores would sometimes report success despite

having actually been unsuccessful in computing their desired value due to, e.g. network

communication failure or I/O failure. This would potentially cause a core to receive an

empty list or fail to actually write a file to the filesystem. Although these failures were

infrequent, validation was necessary to rectify the instances in which they did occur.

Validation took a different shape for each different phase. In general, when writing to the

filesystem, the validation phase would ensure that the number of files that we expected

to write were written correctly. When transforming the inputs, we would verify that

each input had a specific length. Of course, since the validation phases had to be run in

parallel, it’s possible for these phases to fail erratically as well, but we had to accept this

shortcoming as part of the distributed nature of this project.

4 Results and analysis

4.1 Data exploration

This section examines some of the basic features of the input data before any machine

learning was done.

April 1, 2014 Page 30 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

0

20000

40000

60000

80000

0 2 4
HOMO−LUMO Gap

F
re

qu
en

cy
Histogram of the HOMO−LUMO Gap

HOMO-LUMO
Gap Stats
Mean 1.916

Variance 0.166
Median 1.91

Min -1.49
Max 3.8

< 0 5

Figure 6: Empirical HOMO-LUMO distribution with statistics. The inferred normal distribution is
overlaid.

4.1.1 Empirical distribution of the response variable

Figure 6 shows the histogram of the HOMO-LUMO gaps observed in the input dataset.

From the histogram, the distribution of HOMO-LUMO gap values appears to be approx-

imately normal. In the diagram, we have also overlaid a normal distribution curve to

the data, with mean and variance set to the mean and variance observed in the response

variable. This inferred distribution appears to be a very good fit, demonstrating that the

empirical distribution is only very slightly positively skewed.

This is beneficial for several reasons. This distribution tells us something about the re-

sponse values that we are predicting. From a Bayesian perspective, we could conceptualize

this empirical distribution as a prior on our model. Since this empirical distribution is very

well-modeled by the normal distribution, we can instead use the normal distribution as a

prior for the response variable, which would lead to appealing predictive properties. Fur-

thermore, the fact that the full-data distribution is well-described by a single distribution

April 1, 2014 Page 31 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

increases our confidence that each response variable is individually modeled by a distribu-

tion of the same form over its predictors. This is a nice property, because it simplifies our

learning approaches. If the distribution of the response variables were to be many-modal,

for instance, we would expect standard learning techniques to underperform, and we

would have to consider more sophisticated approaches. Finally, this empirical distribution

informs us about the types of values that we should be predicting, and gives a sense about

what HOMO-LUMO gap values we would tend to consider high and low in our dataset.

One strange observation from the empirical distribution is that there are five negative

HOMO-LUMO gaps values. The gap is computed by subtracting the highest occupied

molecular orbital from the lowest unoccupied molecular orbital, and so negative values

are not valid. This is likely a result of incorrectly computed data in the original dataset,

and so these values can be thrown out.

4.1.2 Features distribution

Figure 7 shows boxplots of the feature values. This can help give a sense of the molecular

covariates that we’re examining in a more interpretable way.

It is clear from these boxplots that the features can take on many different ranges of

values. We’ve identified four bands of feature values, and these correspond to the four

groupings in Figure 7. Each of these bands covers approximately a different order of

magnitude of values: 1-10, 10-100, 100-1000, 1000-10000. Interestingly, these bands also

somewhat separate different types of features. The 1-10 band is comprised mostly of counts

of different molecular features, such as different types of bonds and rings. The 10-100 band

contains counts, but also has several features relating to polarity and energy (realize that

a(xx), a(yy), and a(zz) are polarities). The 100-1000 band contains a mix of energies and

areas (the ASA features are areas). Finally, the 1000-10000 band has three features, two of

which are indices that summarize the molecular density, and a volume.

April 1, 2014 Page 32 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

●
●

●
●
●

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●

●
●

Balaban.index
Charge

Aliphatic.ring.count
Mass

Hyper.wiener.index
Hetero.ring.count

Minimal.projection.radius
Aromatic.bond.count

Largest.ring.size
logP

Acceptor.count
Heteroaliphatic.ring.count

Ring.atom.count
Aromatic.atom.count

Donor.count
Donor.site.count

Refractivity
Aromatic.ring.count

Ring.count
Smallest.ring.size

Heteroaromatic.ring.count
Count

Chain.bond.count
Van.der.Waals.surface.area..3D.

Acceptor.site.count
Maximal.projection.area

0.0 2.5 5.0 7.5 10.0 12.5

●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

Maximal.projection.radius
Dipole

a.yy.
Aliphatic.bond.count

Dreiding.energy
Minimal.projection.area

a.zz.
a.xx.

Atom.count
Wiener.polarity

Aliphatic.atom.count
FSP3

Chain.atom.count
Rotatable.bond.count

Ring.bond.count
Bond.count

25 50 75 100

●
●

●
●

●
●

●
●

●
●

●
●
●

●

ASA..1
ASA_P

Randic.index
Pi.energy

ASA.
ASA

Szeged.index
Polar.surface.area

ASA_H
Formal.charge

pI
Harary.index

MMFF94.energy
molecular

200 400 600

●
●

●

Platt.index
van.der.Waals.volume

Wiener.index

3000 6000 9000

Feature values

Figure 7: Distributions of feature values. Boxplots Indicate 5%, 25%, 50%, 75%, and 95% quantiles,
points indicate means. Features are sorted by their medians.

Realizing the different bands of features is important for future study. These bands may be

exploited in order to perform dimensionality reduction or to develop additional learning

approaches tailored to each feature, group of features, or band. Examination of the bands

after machine regression may also help to identify which groups of features are the most

useful predictors for the response variable.

April 1, 2014 Page 33 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

●

●

●

●

●

●
●

●

●

Features Coulomb eigenspectra

Binary adjacency eigenspectra N−ary adjacency eigenspectra

0.04

0.08

0.12

0.16

0.04

0.08

0.12

0.16

0 10 100 1000 10000 100000 1000000 0 10 100 1000 10000 100000 1000000

Regularization coefficient

Te
st

 s
et

 M
S

E

Ridge regression 5−fold cross−validated mean
squared errors for various representation types

Figure 8: MSEs for OLS and ridge regression at different regularization levels. λ = 0 corresponds
to OLS in the above figures. The boxplots show the test set MSE for each of the five cross-validation
folds used.

4.2 OLS and ridge regression

We performed `2-regularized ridge regression by choosing a regularization level λ on the

weights β̂1 and solving for them as

β̂1 =
(

λIp + XTX
)−1

XTy.

We used different orders of magnitude of λ between 10 and 1 million to approximate the

optimal regularization penalty. Note that when λ = 0, this is the same as OLS regression.

A plot of the resultant cross-validated MSEs is listed in Figure 8. For each regularization

April 1, 2014 Page 34 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

level, we split the data into five folds and ran five tests, knocking out one fold in each

test to use as the test set. After performing learning over the training set, we performed

prediction over the test set, and recorded the mean squared errors in the figure.

From the results, we note several observances. It seems apparent that, of all the representa-

tion types, the features representation performed the best. While most other representations

appear to have a best test set median MSE on the order of 0.1, this representation had a best

test set median MSE of under 0.05 for a regularization level of λ = 10. The two adjacency

representations appear to perform analogously, with the n-ary representation in general

performing slightly worse. The Coulomb eigenspectra representation seems to perform

slightly worse than the adjacency representations. In terms of regularization, we note that

introducing even a small amount of regularization is very important. For all representation

types except Coulomb eigenspectra, the MSE for λ = 0 was significantly higher than

the MSE for λ > 0. However, realize that the optimal λs, which for all models appear to

be between 10 and 100, are very small considering the number of inputs. This suggests

that there may be only a modest amount of overfitting, which is what is expected given

the large size of the dataset. Interestingly, we notice that there is virtually no influence

of λ on the MSE for the Coulomb eigenspectra representation. Most likely, this means

that the observed data very strongly implies a certain set of weights despite even large

regularizations. Further, there is very little difference between the OLS and ridge regression

MSEs for the Coulomb eigenspectra, which means that there is essentially no overfitting.

This hypothesis is corroborated by observations with LASSO regression in Section 4.3.

It is not surprising that the features representation had the best performance. The features

directly model attributes of a molecule, while the eigenspectra are summarizations of

larger matrices. The weights for the individual standardized features are displayed in

Figure 9.

April 1, 2014 Page 35 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Figure 10 shows the accuracies of the ridge regression models on the training set. For the

features and Coulomb eigenspectra representations, these were generated using λ = 10,

and for the adjacency representations, these were generated using λ = 100. From the plots,

we can see that the predictions are decent, but not excellent. The features representation

plot looks very promising, with most of the data lying closely along the actual = predicted

line. However, for the other representations, the data has somewhat higher variance. In

particular, the Coulomb eigenspectra representation appears to be particularly poor, with

strange clusters of significantly under-approximated points. The adjacency representations

have more tolerable accuracies, but seem to have strange bands of misidentified points for

certain predicted values.

−2

0

2

4

V
an

 d
er

 W
aa

ls
 s

ur
fa

ce
 a

re
a

(3
D

)
R

in
g

bo
nd

 c
ou

nt
C

ha
in

 a
to

m
 c

ou
nt

m
ol

ec
ul

ar
R

ot
at

ab
le

 b
on

d
co

un
t

F
S

P
3

R
in

g
co

un
t

S
m

al
le

st
 r

in
g

si
ze

W
ie

ne
r

in
de

x
A

lip
ha

tic
 r

in
g

co
un

t
B

on
d

co
un

t
A

ro
m

at
ic

 a
to

m
 c

ou
nt

C
ha

rg
e

a(
xx

)
H

et
er

oa
ro

m
at

ic
 r

in
g

co
un

t
D

ip
ol

e
M

M
F

F
94

 e
ne

rg
y

A
S

A
_H

H
et

er
o

rin
g

co
un

t
A

S
A

_P
M

ax
im

al
 p

ro
je

ct
io

n
ra

di
us

M
as

s
F

or
m

al
 c

ha
rg

e
A

ro
m

at
ic

 b
on

d
co

un
t

A
S

A
−

S
ze

ge
d

in
de

x
P

ol
ar

 s
ur

fa
ce

 a
re

a
C

ha
in

 b
on

d
co

un
t

a(
yy

)
a(

zz
)

M
in

im
al

 p
ro

je
ct

io
n

ra
di

us
A

cc
ep

to
r

co
un

t
La

rg
es

t r
in

g
si

ze
M

in
im

al
 p

ro
je

ct
io

n
ar

ea
C

ou
nt

lo
gP

R
in

g
at

om
 c

ou
nt

A
lip

ha
tic

 b
on

d
co

un
t

H
yp

er
 w

ie
ne

r
in

de
x

B
al

ab
an

 in
de

x
R

ef
ra

ct
iv

ity
A

S
A

+
H

et
er

oa
lip

ha
tic

 r
in

g
co

un
t

W
ie

ne
r

po
la

rit
y

A
lip

ha
tic

 a
to

m
 c

ou
nt

va
n

de
r

W
aa

ls
 v

ol
um

e
A

cc
ep

to
r

si
te

 c
ou

nt pI
D

on
or

 s
ite

 c
ou

nt
R

an
di

c
in

de
x

P
la

tt
in

de
x

D
on

or
 c

ou
nt

H
ar

ar
y

in
de

x
A

ro
m

at
ic

 r
in

g
co

un
t

A
S

A
P

i e
ne

rg
y

M
ax

im
al

 p
ro

je
ct

io
n

ar
ea

D
re

id
in

g
en

er
gy

A
to

m
 c

ou
nt

W
ei

gh
t

Feature weights (for standardized predictors)
from best median ridge regression model

Figure 9: All feature weights for the cross-validation fold with the median best performance at the
λ = 10 regularization level for ridge regression.

April 1, 2014 Page 36 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

We can also get a sense of model accuracy by examining prediction residuals. Figure 11

shows histograms of the differences between the actual HOMO-LUMO gaps and their

predicted values. As expected, the features representation results in the narrowest band of

residual values. However, importantly, we realize that the residuals for all of the models

appear to resemble normal distributions centered around zero, with worse models having

higher variance in their residuals. The fact that the residuals look normal is important,

because it means that there is little improvement to be made through transforming the input

data. If these distributions were not normal, then we may be able to apply transformations

Features Coulomb eigenspectra

Binary adjacency eigenspectra N−ary adjacency eigenspectra

0

1

2

3

0

1

2

3

1 2 3 1 2 3
Predicted

A
ct

ua
l

200

400

600
count

Ridge regression HOMO−LUMO gap prediction
 accuracies for various representation types

Figure 10: Scatter plot of actual value versus predicted value using the cross-validation fold
with the median best MSE under ridge regression. For the features and Coulomb eigenspectra
representations, these were done with λ = 10 for the regularization level, and for the adjacency
eigenspectra, these were done with λ = 100. The ideal actual = predicted line is overlaid.

April 1, 2014 Page 37 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Features Coulomb eigenspectra

Binary adjacency eigenspectra N−ary adjacency eigenspectra

0

10000

20000

30000

0

10000

20000

30000

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0
Residual

co
un

t
Ridge regression prediction residuals

for various representation types

Figure 11: Histogram of prediction residuals using the cross-validation fold with the median best
MSE under ridge regression. For the features and Coulomb eigenspectra representations, these
were done with λ = 10, and for the adjacency eigenspectra, these were done with λ = 100.

that the regression could more easily fit; however, these residuals show that we are

probably predicting about as well as we can using linear models.

4.3 LASSO regression

We performed `1-regularized LASSO regression by iteratively solving the minimization

problem

β̂0, β̂ = arg min
β0,β

1
2
||y− 1nβ0 − Xβ||22 + λ||β||1.

We used different orders of magnitude of λ between 100 and 10 million to approximate

the optimal regularization penalty. A plot of the MSEs is listed in Figure 12. The cross-

validation procedure is the same as that used in the ridge regression experiments (Sec-

April 1, 2014 Page 38 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

●

●

●

●

●

●

Features Coulomb eigenspectra

Binary adjacency eigenspectra N−ary adjacency eigenspectra
0.04

0.08

0.12

0.16

0.04

0.08

0.12

0.16

0 100 1000 10000 100000 1000000 10000000 0 100 1000 10000 100000 1000000 10000000

Regularization coefficient

Te
st

 s
et

 M
S

E

Best median MSE
from ridge regression

LASSO regression 5−fold cross−validated mean
squared errors for various representation types

Figure 12: MSEs for LASSO regression at different regularization levels. The boxplots show the test
set MSE for each of the five cross-validation folds used. The OLS MSEs are also shown for reference.

tion 4.2). The accuracies and residuals looks almost identical to those found with ridge

regression in Figures 10 and 11, and so will be omitted.

From the plots, we notice that the optimal LASSO regularization values are all around

100. The optimal observed MSEs for these regularization levels are very similar to their

counterparts found with ridge regression. Note that, in both approaches, the optimal

regularization levels were very small compared to the size of the dataset. This means

that there is likely very little overfitting in the model, and explains why the optimal

MSEs achieved by using the two methods are very similar — at low regularization levels,

these regressions are essentially performing the same process. The results of the Coulomb

April 1, 2014 Page 39 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

−0.6

−0.3

0.0

0.3

0.6

−0.1

0.0

0.1

0.2

−0.100

−0.075

−0.050

−0.025

0.000

A
ro

m
at

ic
 b

on
d

co
un

t
P

i e
ne

rg
y

F
S

P
3

M
in

im
al

 p
ro

je
ct

io
n

ar
ea

a(
xx

)
F

or
m

al
 c

ha
rg

e
R

in
g

co
un

t
A

lip
ha

tic
 r

in
g

co
un

t
S

m
al

le
st

 r
in

g
si

ze
m

ol
ec

ul
ar

M
M

F
F

94
 e

ne
rg

y
M

in
im

al
 p

ro
je

ct
io

n
ra

di
us

B
on

d
co

un
t

R
in

g
bo

nd
 c

ou
nt

H
et

er
o

rin
g

co
un

t
D

on
or

 c
ou

nt
M

as
s

M
ax

im
al

 p
ro

je
ct

io
n

ra
di

us
A

S
A

_H
R

ot
at

ab
le

 b
on

d
co

un
t

A
cc

ep
to

r
si

te
 c

ou
nt

P
ol

ar
 s

ur
fa

ce
 a

re
a

C
ha

in
 b

on
d

co
un

t
R

ef
ra

ct
iv

ity
va

n
de

r
W

aa
ls

 v
ol

um
e pI

A
to

m
 c

ou
nt

C
ou

nt
B

al
ab

an
 in

de
x

A
S

A
_P

R
in

g
at

om
 c

ou
nt

lo
gP

R
an

di
c

in
de

x

W
ei

gh
t

Regularization
1000
10000
100000

Features Coulomb eigenspectra

Binary adjacency eigenspectra

N−ary adjacency eigenspectra

−0.15

−0.10

−0.05

0.00

−0.2

−0.1

0.0

−0.2

−0.1

0.0

0.1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

Eigenvalue index

Sparse weights (for standardized predictors) generated
from LASSO regression for various regularization levels

Figure 13: Nonzero feature weights and eigenspectra predictor weights for the cross-validation
fold with the median best performance for LASSO regression. We here show the weights for several
informative regularization levels for the different representations.

eigenspectra in this experiment corroborate the beliefs that we asserted about its overfitting

in Section 4.2: the MSE does not seem to change even for quite large regularization penalties,

which means that there is likely very little overfitting and that the observed data strongly

implies the observed feature weights.

The sparsity-inducing nature of LASSO regression is useful for performing feature selection.

For low regularization levels (such as the ones that led to the best MSE), not much sparsity

will be induced. However, for higher regularization levels, LASSO regression suggests a

small set of features which may best characterize the data. Some of the more informative

April 1, 2014 Page 40 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

regularization levels are shown in Figure 13. For brevity of presentation, this figure shows

the feature weights for three different regularization levels, and the eigenspectra weights

for one regularization level each.

From the graphs for features, we see that the nature of the desired features changes as

we regularize less and less. At the high regularization level, we see weights on features

such as energy, FSP3 (a measure of the fraction of carbon atoms), projection area, and

a(xx) (a measure of polarity). These features descriptors that summarize characteristics

of the molecule as a whole. At the middle regularization level, some of these features

become less important, and we see that ring counts and descriptions of ring size become

important. We also see that the Randic index becomes prominent, which is a measure

of molecular connectivity. These are descriptors that, when considered together, provide

information about the structure of the molecule. At the low regularization level, there are

many weights, and these weights are often over low-level characteristics such as counts of

various features of a molecule. These observations are as expected: when we restrict the set

of weights more, more importance is placed on high-level characteristics that can describe

the molecule as a whole. When weights are less restricted, they can focus on lower-level

features that differentiate molecules more specifically.

The eigenspectra graphs are interesting in that they all show a large spike for the 15th

eigenvalue. We would expect the binary and n-ary adjacency eigenspectra to lead to similar

sparse weights. However, the fact that both the Coulomb and adjacency representations

share the same strongest weight is peculiar, and worth investigation to determine if this

is merely a coincidence. Overall, it is interesting that the models place weights toward

the more mid-ranged eigenvalue indices as opposed to the earlier indices. This emphasis

suggest that subtle differences between the underlying matrices may be the most impor-

tant differentiating factors in identifying the HOMO-LUMO gap from a matrix-based

representations.

April 1, 2014 Page 41 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

4.4 Neural networks

The neural networks were trained using two different architectures. Both architectures

used are listed in Table 3. The types of configurations were chosen so that the number

of nodes in each layer was mathematically related to the number of input dimensions.

For configuration 1 this was a proportional relationship, and for configuration 2 this was

an nth root relationship. We chose the specific number of hidden layer nodes such that

there would be neither very many nor very few numbers of nodes in each dimension.

From experimentation, we found that too few nodes inhibited learning. Too many nodes

compared to the input dimensions resulted in immediate overfitting; within a few epochs,

the neural networks would converge prematurely to local minima, and subsequently not

benefit from additional training. It has been observed in the literature that using more than

two hidden layers often does not improve training performance [37]. In fact, using too

many hidden layers will cause the network to explore too many local minima, and could

impair overall training if random restarts are not used [38]. The choice of architectures

used was limited by the amount of available computation, training, and research time, and

interesting follow-up research could certainly explore the differences between a variety of

network architectures. Also due to time restrictions, instead of performing cross-validation,

we held back 1/10 of the data as a test set, and used the rest of the data for training.

Figure 14 shows the test set MSEs as a function of number of training epochs for the first

configuration of neural networks. Figure 15 compares the final test set MSEs after training.

Configuration Representations # Layers Number of hidden nodes
(p is # dimensions)

Configuration 1 List types 2 Layer 1: p/2, layer 2: p/4
Matrix types 2 Layer 1: p/8, layer 2: p/16

Configuration 2 List types 2 Layer 1: 2
√

p, layer 2: 2 3
√

p
Matrix types 2 Layer 1:

√
p, layer 2: 3

√
p

Table 3: Neural network architectures. Note that ‘list types’ refers both to the eigenspectra repre-
sentations and the features representation.

April 1, 2014 Page 42 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Unfortunately, time constraints limited the number of training iterations. In particular, the

matrix-type representations took significantly longer to train due to the additional number

of dimensions and especially because of the additional number of nodes per hidden layer.

Even accounting for this, however, these plots are very informative for providing insight

into the comparative performance of the different representation types. From these figures,

it is clear that the list-type representations perform significantly better than the matrix-type

representations. In fact, the matrix-type neural networks performed on average even worse

than the linear regression models.

The accuracy plots in Figure 16 provide additional insight into the neural network perfor-

mance. It is clear due to the density of points along the predicted = actual line that the

features representation performs very well. It is interesting to observe that the accuracy

plots of the matrix representations seem to be rotated slightly counterclockwise away from

Matrices

Lists

0.13

0.14

0.15

0.05

0.10

0.15

0 250 500 750 1000

0 2500 5000 7500
Epoch

Te
st

 s
et

 M
S

E

Representation

N−ary matrices

Binary matrices

Coulomb matrices

Coulomb eigenspectra

Binary eigenspectra

N−ary eigenspectra

Features

Neural network training mean squared errors (configuration 1)

Figure 14: Approximate neural network MSEs during training for neural network configuration 1

April 1, 2014 Page 43 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

0.1406

0.1329

0.1304

0.0986

0.0749

0.0581

0.0238

N.ary.matrices

Binary.matrices

Coulomb.matrices

Coulomb.eigenspectra

Binary.eigenspectra

N.ary.eigenspectra

Features

0.00 0.05 0.10
Test set MSE

Final test set neural network MSEs (configuration 1)

Figure 15: Neural network test set MSEs after training for neural network configuration 1

what may appear to be the optimal values. This means that these neural networks are

predicting too conservatively: they often predict molecules with low HOMO-LUMO gaps

as having higher HOMO-LUMO gaps than they really do, and they predict molecules with

high gaps as having lower gaps than they actually do. This would be particularly bad if we

were to try to use these networks to identify molecules with high potential photovoltaic

efficacies.

There are two likely causes for the fact that the matrix representations perform worse than

the eigenspectra representations. Importantly, we had to sort these Coulomb matrices in

order to maintain invariance between permutations of the atoms. However, in doing this,

important information that was encoded in the original matrices was lost. Each element of

the matrix is no longer interpretable on its own. Neural networks are quite powerful at

learning patterns in the input data, but performing this transformation threw out many

patterns that could potentially be used for regression. Furthermore, our transformation

was arbitrary. As seen in the literature, there are other possible transforms, and in fact

any transformation that maintains invariance to permutation of the atoms is valid. What

makes one transformation better than another is a difficult question to answer and an area

of ongoing research.

Secondly, it is quite possible that there is a substantial amount of overfitting occurring with

April 1, 2014 Page 44 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Features Coulomb eigenspectra Binary eigenspectra N−ary eigenspectra

Coulomb matrix Binary matrix N−ary matrix

1

2

3

1

2

3

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
Predicted

A
ct

ua
l

100

200

300
count

Neural network HOMO−LUMO gap prediction accuracies (configuration 1)

Figure 16: Scatter plot of actual value versus predicted value using on the test set using neural
network configuration 1. The ideal actual = predicted line is overlaid.

the matrix-type representations. Overfitting is likely because of the additional number of

inputs and the additional number of hidden nodes compared to the list-type representa-

tions. Having additional inputs means that there are simply more predictors per input for

the neural network to learn from. The network is therefore more likely to learn artifacts due

to coincidental patterns in the data. The additional number of hidden nodes means that the

network is more likely to wind up in local minima. Since the network has more flexibility

in its weight assignments, for a given error residual, each weight can be updated by a

smaller amount when compared with the list-type neural networks. In short, the list-type

neural networks have more constrained weights, which helps to prevent overfitting.

With these remarks, we can look to the list-type representations to determine relative

efficacy. It appears that the eigenspectra representations all perform similarly well, while

April 1, 2014 Page 45 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

the features representation offers the best test set mean squared error. As with linear

regression, we suspect that this is a result of the features representation more directly

modeling properties of the molecule when compared to the eigenspectra. With neural

networks, however, we are able to achieve a significantly lower mean squared error

compared to linear regression. This is because there are likely complex interactions between

the attributes of a molecule. For instance, it is possible that a molecule would have a high

HOMO-LUMO gap if it has either high drieding energy or high MMFF94 energy, but not

both. This type of nonlinear relationship can be learned and modeled with neural networks

but not with linear regression.

A final remark about this data is that it appears that these neural networks have not

yet converged, especially for the matrix-type representations. This means that further

significant decreases in MSE may be observed simply by training the neural networks for

Matrices

Lists

0.08

0.12

0.16

0.05

0.10

0.15

0 500 1000 1500

0 1000 2000 3000 4000
Epoch

Te
st

 s
et

 M
S

E

Representation

Coulomb matrices

Binary matrices

N−ary matrices

Coulomb eigenspectra

Binary eigenspectra

N−ary eigenspectra

Features

Neural network training mean squared errors (configuration 2)

Figure 17: Approximate neural network MSEs during training for neural network configuration 2

April 1, 2014 Page 46 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

0.1017

0.1006

0.086

0.0655

0.0643

0.0494

0.0258

Coulomb.eigenspectra

Coulomb.matrices

Binary.eigenspectra

N.ary.eigenspectra

Binary.matrices

N.ary.matrices

Features

0.000 0.025 0.050 0.075 0.100
Test set MSE

Final test set neural network MSEs (configuration 2)

Figure 18: Neural network test set MSEs after training for neural network configuration 2

longer. The current MSE data is complete enough to draw conclusions about the relative

performance of the different models. However, additional training offers the potential

for significantly improved prediction, and would be desirable in the implementation of a

large-scale quantum-molecular classifier.

We repeated these experiments for the second neural network configuration. Figure 17

shows the test set MSE during training, and Figure 18 shows the final MSEs achieved at

the end of training. An important difference between this configuration and the previous

one is that this configuration provides fewer hidden nodes to the list representations, and

significantly fewer nodes to the matrix representations.

Overall, we observe significant improvement for all matrix-type representations. While

the features representation performs about the same as in configuration 1, the eigenspectra

representations perform slightly worse.

These results are significant because they reveal the importance of the neural network

structure. The matrix-based neural networks were able to perform better in this config-

uration than their eigenspectra counterparts did in the first configuration. This is strong

evidence that overfitting is a major concern in this domain. Providing fewer hidden nodes

to the matrix representations prevented overfitting and allowed them to perform very

April 1, 2014 Page 47 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Features Coulomb eigenspectra Binary eigenspectra N−ary eigenspectra

Coulomb matrix Binary matrix N−ary matrix

1

2

3

1

2

3

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0
Predicted

A
ct

ua
l

100

200

300
count

Neural network HOMO−LUMO gap prediction accuracies (configuration 2)

Figure 19: Scatter plot of actual value versus predicted value using on the test set using neural
network configuration 2. The ideal actual = predicted line is overlaid.

well. Conversely, the eigenspectra representations performed worse in this configuration.

This may be evidence for underfitting: we have taken away key degrees of flexibility that

may have allowed the eigenspectra-based neural networks to learn patterns of the true

model in the data. Nonetheless, the features representation still performed the best, which

is consistent with the belief that this representation directly models the most important

attributes of the input data.

Figure 19 illustrates the accuracy plots for this configuration. These plots somewhat

resemble those in Figure 16, with the main difference being that the matrix representation

predictions tend to have fewer fringe prediction points. Again, it is important to note

that these networks do not appear to have converged. Additional training could result in

substantial improvements to test set prediction.

April 1, 2014 Page 48 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Table 4: Comparison of results in this study

Representation Best median
OLS MSE

Best median ridge
regression MSE

Best median LASSO
regression MSE

Neural network
MSE (config. 1)

Neural network
MSE (config. 2)

Features 0.0943 0.0456 0.0562 0.0238 0.0258
Coulomb eigenspectra 0.1157 0.1157 0.1157 0.0986 0.1017
Binary eigenspectra 0.1054 0.1044 0.1051 0.0749 0.0860

n-ary eigenspectra 0.1199 0.1107 0.1108 0.0581 0.0655
Coulomb matrices 0.1304 0.1006

Binary matrices 0.1329 0.0643
n-ary matrices 0.1406 0.0494

4.5 Comparative analysis

Table 4 presents a summarization of the major results of this study. From these results, it is

clear that the features representation across-the-board has the best performance. It also

shows that, in general, the linear models perform fairly poorly compared to the neural

networks. This suggests that the underlying HOMO-LUMO gap model has a nonlinear

relationship with the predictors used in this study. However, with a poor neural network

structure, we can severely overfit and actually perform worse than the simple linear

models. Other than the features representation, the best MSEs in general were found using

the matrix representations with the second neural network configuration. Within these,

we found that the adjacency representations significantly outperformed the Coulomb

representation.

We were only able to train two neural network configurations for this study due to

limitations on computation time on the distributed cluster. However, these results are

encouraging and lead us to believe that further research into these neural network methods

may yield improved results. Different network structures and longer training times may

lead to lower MSEs with relatively little required research time.

5 Conclusions and further research
This paper has devised and implemented a series of machine learning approaches to

predict photovoltaic efficacy based on molecular covariates. This paper has examined

the existing molecular representation of the Coulomb matrix. In addition, this paper

April 1, 2014 Page 49 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

has also examined the features representation, which is underexamined in the literature,

and proposed and examined the binary and n-ary adjacency representations. This paper

has derived distributed linear and neural network regression algorithms that can scale

to molecular databases of arbitrary size. Finally, this paper has implemented a scalable

distributed system to perform molecular feature learning and analysis on the Harvard

Clean Energy Project’s database of 1.8 million organic molecules.

Overall, it appears that there is significant potential in determining photovoltaic efficacy of

organic molecules using machine learning with almost no domain knowledge of chemistry

or physics. The approaches used in this paper show that even simple linear models are able

to achieve remarkably small test set mean squared errors. However, substantial gains can

be achieved if the computational time can be afforded to train a neural network to perform

molecular feature regression. This approach also has the advantage that it allows for

regression over structured matrix data, which seems to lead to some of the best predictive

models. The lowest test set MSEs were achieved using extracted features and adjacency

matrix representations of molecules with neural networks.

The results observed in this paper are somewhat surprising given the previous literature.

While this paper agrees with the previous literature that neural networks tend to be the

superior learning approach, it disagrees in the best representation type. Most other studies

examine Coulomb matrices and eigenspectra, citing that these representations are the

most suitable for learning. However, in this study, we found that these representations

made for relatively poor models. Our study suggests that extracted molecular features, a

representation type that does not appear to be examined at depth in other studies, was the

best representation type for regression. Furthermore, this paper found that the adjacency

matrix representations had surprisingly good predictive power.

The research in this paper varies significantly from prior literature. While other studies

April 1, 2014 Page 50 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

focus primarily on the learning approach, this paper also emphasizes the analysis of

different representation types. Interestingly, the overall MSEs observed in this paper seem

to be somewhat higher than in the literature. However, this is likely due to the differences

in the datasets used. We found no similar study that performed regression over more than

10,000 molecules, compared to this study’s 1.8 million. Additionally, the types of molecules

examined vary significantly between studies. Whereas this study included molecules of

up to 35 atoms, prior studies include molecules with a maximal size of 23 atoms per

molecule [15].

The differences between this paper and the prior research demonstrates that there is still

significant room for advancement in the area of molecular regression, due to the huge

number of parameters in this space. Additional learning approaches and feature represen-

tations may offer promising improvements. Furthermore, no studies so far have exploited

sophisticated domain-specific knowledge of quantum chemistry, which, combined with

machine learning, may expand the type and efficacy of molecular representations. This is

a burgeoning field, and continued research may help lead to the eventual development of

a quantum machine.

April 1, 2014 Page 51 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

6 References
[1] Joshua M Pearce. Photovoltaics - a path to sustainable futures. Futures, 34(7):663 –

674, 2002.

[2] Olivia Mah. Fundamentals of photovoltaic materials. pages 1–10, 1998.

[3] M Riede, T Mueller, W Tress, R Schueppel, and K Leo. Small-molecule solar cells—

status and perspectives. Nanotechnology, 19(42):424001, 2008.

[4] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, and Ewan D.

Dunlop. Solar cell efficiency tables (version 42). Progress in Photovoltaics: Research and

Applications, 21(5):827–837, 2013.

[5] A. Heeger. Low-cost plastic solar cells: a dream becoming a reality. In N. Stern

V. Huber H. J. Schellnhuber, M. Molina and S. Kadner, editors, Global Sustainability - A

Nobel Cause. Cambridge University Press, Cambridge, UK, 2010.

[6] Johannes Hachmann, Roberto Olivares-Amaya, Adrian Jinich, Anthony L. Appleton,

Martin A. Blood-Forsythe, Laszlo R. Seress, Carolina Roman-Salgado, Kai Trepte,

Sule Atahan-Evrenk, Suleyman Er, Supriya Shrestha, Rajib Mondal, Anatoliy Sokolov,

Zhenan Bao, and Alan Aspuru-Guzik. Lead candidates for high-performance organic

photovoltaics from high-throughput quantum chemistry - the harvard clean energy

project. Energy Environ. Sci., 2014.

[7] Gregoire Montavon, Matthias Rupp, Vivekanand Gobre, Alvaro Vazquez-Mayagoitia,

Katja Hansen, Alexandre Tkatchenko, Klaus-Robert Mller, and O Anatole von Lilien-

feld. Machine learning of molecular electronic properties in chemical compound

space. New Journal of Physics, 15(9):095003, 2013.

April 1, 2014 Page 52 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

[8] Charles Bergeron, Michael Krein, Gregory Moore, Curt M. Breneman, and Kristin P.

Bennett. Modeling choices for virtual screening hit identification. Molecular Informatics,

30(9):765–777, 2011.

[9] ChemAxon Ltd. Chemaxon cheminformatics toolchain suite. https://www.

chemaxon.com/, 1998–2013.

[10] Greg Landrum. Rdkit: A software suite for cheminformatics, computational chemistry,

and predictive modeling. http://www.rdkit.org/, 2013.

[11] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld. Fast and accurate

modeling of molecular atomization energies with machine learning. Physical Review

Letters, 108:058301, 2012.

[12] Grgoire Montavon, Katja Hansen, Siamac Fazli, Matthias Rupp, Franziska Biegler, An-

dreas Ziehe, Alexandre Tkatchenko, Anatole von Lilienfeld, and Klaus-Robert Mller.

Learning invariant representations of molecules for atomization energy prediction.

In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Lon Bottou, and

Kilian Q. Weinberger, editors, NIPS, pages 449–457, 2012.

[13] Axel Grob Sonke Lorenz and Matthias Scheffler. Representating high-dimensional

potential-energy surfaces for reactions at surfaces by neural networks. Chemical

Physical Letters, 395, 2004.

[14] Sergei Manzhos and Tucker Carrington. A random-sampling high dimensional model

representation neural network for building potential energy surfaces. The Journal of

Chemical Physics, 125(8):–, 2006.

[15] Katja Hansen, Grégoire Montavon, Franziska Biegler, Siamac Fazli, Matthias Rupp,

Matthias Scheffler, O. Anatole von Lilienfeld, Alexandre Tkatchenko, and Klaus-

April 1, 2014 Page 53 of 56

https://www.chemaxon.com/
https://www.chemaxon.com/
http://www.rdkit.org/

Michael Tingley Scalable Molecular Feature Learning Thesis

Robert Müller. Assessment and validation of machine learning methods for predicting

molecular atomization energies. Journal of Chemical Theory and Computation, 9(8):3404–

3419, 2013.

[16] George Dahl, Alan McAvinney, and Tia Newhall. Parallelizing neural network train-

ing for cluster systems. In Proceedings of the IASTED International Conference on Parallel

and Distributed Computing and Networks, PDCN ’08, pages 220–225, Anaheim, CA,

USA, 2008. ACTA Press.

[17] Lyle N. Long and Ankur Gupta. AIAA Paper No. 2005-7168 Scalable Massively

Parallel Artificial Neural Networks.

[18] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild: A lock-free

approach to parallelizing stochastic gradient descent. In J. Shawe-taylor, R.s. Zemel,

P. Bartlett, F.c.n. Pereira, and K.q. Weinberger, editors, Advances in Neural Information

Processing Systems 24, pages 693–701. 2011.

[19] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,

Marc’aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and An-

drew Y. Ng. Large scale distributed deep networks. In P. Bartlett, F.c.n. Pereira,

C.j.c. Burges, L. Bottou, and K.q. Weinberger, editors, Advances in Neural Information

Processing Systems 25, pages 1232–1240. 2012.

[20] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Bryan C. Catanzaro, and An-

drew Y. Ng. Deep learning with cots hpc systems. In ICML (3), volume 28 of JMLR

Proceedings, pages 1337–1345. JMLR.org, 2013.

[21] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. Large-scale deep unsupervised

learning using graphics processors. In Proceedings of the 26th Annual International

April 1, 2014 Page 54 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

Conference on Machine Learning, ICML ’09, pages 873–880, New York, NY, USA, 2009.

ACM.

[22] Rudi Helfenstein and Jonas Koko. Parallel preconditioned conjugate gradient algo-

rithm on {GPU}. Journal of Computational and Applied Mathematics, 236(15):3584 – 3590,

2012. Proceedings of the Fifteenth International Congress on Computational and

Applied Mathematics (ICCAM-2010), Leuven, Belgium, 5-9 July, 2010.

[23] Mingxian Xu, J.J. Miller, and E.J. Wegman. Parallelizing multiple linear regression

for speed and redundancy: An empirical study. In Distributed Memory Computing

Conference, 1990., Proceedings of the Fifth, pages 276–283, 1990.

[24] Gonzalo Mateos, Juan Andrs Bazerque, and Georgios B. Giannakis. Distributed sparse

linear regression. IEEE Transactions on Signal Processing, 58(10):5262–5276, 2010.

[25] Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. Gaussian approxi-

mation potentials: The accuracy of quantum mechanics, without the electrons. Phys.

Rev. Lett., 104:136403, Apr 2010.

[26] Liefeng Bo and Cristian Sminchisescu. Greedy block coordinate descent for large

scale gaussian process regression. CoRR, abs/1206.3238, 2012.

[27] Iain Murray. Gaussian processes and fast matrix-vector multiplies, 2009.

[28] Robert B. Gramacy, Jarad Niemi, and Robin Weiss. Massively parallel approximate

gaussian process regression. CoRR, abs/1310.5182, 2013.

[29] Jie Chen, Nannan Cao, Kian Hsiang Low, Ruofei Ouyang, Colin Keng-Yan Tan, and

Patrick Jaillet. Parallel gaussian process regression with low-rank covariance matrix

approximations. CoRR, abs/1305.5826, 2013.

April 1, 2014 Page 55 of 56

Michael Tingley Scalable Molecular Feature Learning Thesis

[30] Inc. Daylight Chemical Information Systems. Smiles - a simplified chemical lan-

guage. http://www.daylight.com/dayhtml/doc/theory/theory.smiles.

html, Sept 2008.

[31] Jonathan D. Servaites, Mark A. Ratner, and Tobin J. Marks. Practical efficiency limits in

organic photovoltaic cells: Functional dependence of fill factor and external quantum

efficiency. Applied Physics Letters, 95(16):–, 2009.

[32] Harvard Research Computing Team. Odyssey: The research computing linux clus-

ter. https://rc.fas.harvard.edu/kb/high-performance-computing/

odyssey-the-research-computing-linux-cluster/, 2014.

[33] Harvard Research Computing Team. Advanced odyssey training. Slides

hosted at https://software.rc.fas.harvard.edu/training/Advanced_

Odyssey_Training.pdf, 2014.

[34] SchedMD. Slurm, the simple linux utility for resource management. http://slurm.

schedmd.com/priority_multifactor.html, July 2012.

[35] Kevin P Murphy. Machine learning: a probabilistic perspective. Cambridge, MA, 2012.

[36] L Eon Bottou and Yann Le Cun. Large scale online learning. In In NIPS, page 2004.

MIT Press, 2003.

[37] Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Léon Bot-

tou, Olivier Chapelle, D. DeCoste, and J. Weston, editors, Large Scale Kernel Machines.

MIT Press, 2007.

[38] Warren S. Sarle. ai-faq/neural-nets/part3. ftp://ftp.sas.com/pub/neural/

FAQ3.html, May 2001.

April 1, 2014 Page 56 of 56

http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://rc.fas.harvard.edu/kb/high-performance-computing/odyssey-the-research-computing-linux-cluster/
https://rc.fas.harvard.edu/kb/high-performance-computing/odyssey-the-research-computing-linux-cluster/
https://software.rc.fas.harvard.edu/training/Advanced_Odyssey_Training.pdf
https://software.rc.fas.harvard.edu/training/Advanced_Odyssey_Training.pdf
http://slurm.schedmd.com/priority_multifactor.html
http://slurm.schedmd.com/priority_multifactor.html
ftp://ftp.sas.com/pub/neural/FAQ3.html
ftp://ftp.sas.com/pub/neural/FAQ3.html

	Abstract
	Acknowledgments
	List of figures
	List of tables
	Introduction
	Related work
	Molecular representations
	Feature extraction
	Coulomb matrix

	Learning approaches
	Neural networks
	Linear regression
	Gaussian processes
	Other approaches

	Experimental approach
	Dataset
	Data representations
	Feature extraction
	Coulomb matrix
	Adjacency matrix

	Distributed learning architectures
	The Odyssey cluster
	Parallelizing OLS and ridge regression
	Parallelizing LASSO regression
	Parallelizing neural networks
	Large data considerations

	Data pipeline

	Results and analysis
	Data exploration
	Empirical distribution of the response variable
	Features distribution

	OLS and ridge regression
	LASSO regression
	Neural networks
	Comparative analysis

	Conclusions and further research
	References

