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Abstract

Recommender systems are valuable to their users to the extent that they have unique

information about which options are best. One way that such a system can gain this

knowledge is by recommending that a user explore an option whose value is unknown, and

receiving the feedback of the user. If this is done too often, though, the quality of the

recommendations provided may suffer to the point where users begin ignoring the system

altogether. Therefore, I study the mechanism design problem of how a recommender can

quickly learn the values of unknown options, within the constraint that it still be in agents’

interests to follow the recommendations. The main conceptual contribution is a simplifying

abstraction that transforms the problem from one of making decisions based on the total set

of possible histories, into an acquisition problem where purchases made at one time affect

the budget available in the future. I also characterize the optimal policy for exploring all

options in a class of special cases, and prove that the recommender can decrease the time

necessary to explore a particular target option by introducing new options.
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Chapter 1

1.1 Introduction

The ease of modern communication has opened opportunities for a plethora of services

that collect information about the quality of items from its users, aggregate and analyze

this information, and then use it to make recommendations or provide items directly. For

example, Spotify is a music streaming application which, based on a users listening history,

populates a ‘Discover’ page which recommends artists, albums, or songs that a user has

not listened to before. Netflix, a television and movie streaming website, also recommends

content based on the ratings and viewing behavior of its users. TripAdvisor and Yelp

aggregate reviews and provide recommendations for hotels and restaurants respectively.

Examples are practically limitless; there are services of this form making recommendations

on everything from doctors1 to college professors2.

This structure can also be seen in companies that provide physical products themselves.

Birchbox is a subscription service where people pay to receive monthly packages of items

selected by Birchbox (mostly samples of beauty products). Customers can earn reward-

points, redeemable for full-size products, by reviewing the samples sent to them. The value

1http://www.healthgrades.com/
2http://www.ratemyprofessors.com/
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CHAPTER 1. 3

that Birchbox provides is therefore in part the result of the exploration by earlier customers

who tried new products, and then reported back valuable information that Birchbox can

use when constructing future packages. Birchbox writes of their feedback program (Corliss

[2012]):

You [Birchbox subscribers] aren’t afraid to shake off your beauty shackles, try

new things and, most importantly, let us know what you think! [...]

And what happens to your feedback once we receive it? Well, we read it, of

course! It gives us an idea of trending products, fuels ideas for future boxes,

and helps us improve with each month!

A common thread throughout all of these services is a misalignment of interests between

the center (e.g. Spotify, Birchbox) and the agents (subscribers). The agents primarily want

the center to provide or recommend the option that, according to the current knowledge

of the center, is the best. From the agents perspective the costs of exploring some new,

and likely worse, choice are completely internalized. In contrast, the benefit of the explo-

ration, the possibility that the information gained might improve future recommendations,

is spread out over all agents, and so is overwhelmingly externalized. Agents will therefore

desire to perform a socially sub-optimal amount of exploration of new options.

Conversely, from the center’s perspective, the more information it has about the prod-

ucts it recommends, the greater the value of its service. The center cares about the rec-

ommendations given to all agents and so may have an interest in recommending possibly

suboptimal options to some agents, with the hope that the information gained may lead

to more valuable recommendations later on. If Spotify wants to be on the cutting edge

of discovering new popular artists, it may need to recommend newly released albums even

when it doesn’t believe that they are the most likely to be the best recommendations for

a given user. Birchbox may have more popular packages in the long run if it occasionally
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takes a risk by sending a product with uncertain popularity, instead of a product with

known but likely greater popularity, since the rare successes of the uncertain option can

lead to better packages for many subsequent months.

Of course, the center does not have free reign to compel agents to explore unknown

options. If agents do not believe that the recommendations given to them are in their best

interest, they always have the option to ignore the recommendations completely, and act

according to whatever prior beliefs they held about which option is best.

I therefore investigate the mechanism design question of what recommendation policy

a center in this setting should adopt. I assume that there are a finite number of options,

each with unknown value but a commonly known prior. The center first publicly adopts

some policy that determines which option it will recommend to each agent in every circum-

stance. Each agent in an infinite sequence then has a choice either to receive the option

recommended by the center, or to pick any option without knowing the recommendation.

The agent then reports the value of the option they received back to the center. The

center has one of several possible objectives that it is trying to achieve, related to gaining

information about the values of the options.

The restriction that agents must follow a recommendation if they receive one is appro-

priate in settings where the center is actually providing the item being recommended. In

these circumstances, the choice to receive a recommendation is frequently synonymous with

receiving the recommended item itself. For example, subscribing with Birchbox is simulta-

neously choosing to receive a recommendation for beauty products, as well as contracting

to purchase whatever beauty products are recommended.

Alternatively, this same restriction can be motivated under a slightly different setting:

suppose that all agents must always follow the recommendation of the center, and do

not have the option to instead choose an option independently. If the center enacts a

recommendation policy as if the agents could opt to choose any option instead of receiving
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a recommendation, it will ensure that no agent is made worse off under this policy than if

instead there were no center to aggregate information, and each agent individually chose

any option that they wanted. In effect, it ensures that no agent can complain that the

existence of the center has made them worse off.

In Chapter 2 I formally define the model. In Chapter 3 I present the main concep-

tual contribution — notions of surplus and cost that can transform the problem of what

option to recommend given a history of observations, into a simpler problem of how to

best purchase items sequentially when past purchases influence future budgets. Using the

surplus/cost abstraction, I demonstrate a variety of results about this setting, including

the guarantee that it is always possible for the center to learn the values of all the options.

This abstraction is also used throughout the remainder of the paper, and is a crucial tool

for proving the subsequent results.

I then consider two possible goals for the center. In Chapter 4, I analyze a setting in

which the center’s objective is to learn the values of all the options within as few agents

as possible, and attempt to find the optimal recommendation policy. The main result is

a full characterization of the optimal policy the center can adopt for a particular class of

distributions for the values. One natural member of this class is when the prior distributions

for the values of all but the (ex-ante) best option are the same.

In Chapter 5 I consider a setting in which the center’s objective is to instead learn

the value of one particular target option. I ask whether the center can decrease number

of agents necessary to learn the value of some specific target option by introducing new,

additional options. This introduction of new options could correspond to a service like

Netflix adding to its library of movies, or Birchbox assembling its packages by drawing

from a larger pool of potential items. I demonstrate that, in fact, introducing ‘dummy’

options in this way does reduce the expected number of agents needed to learn the value for

a target option. This implies, perhaps counter-intuitively, that recommendation systems
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that wish to more efficiently gain information about some existing array of choices should

broaden, rather than restrict, the possible options they might recommend. Chapter 6 is

the conclusion, and presents ideas for future work in this area.

1.2 Related Work

There is a large body of existing literature on designing effective recommender systems.

The problem is generally approached as a machine learning problem of how to leverage

existing data about users and items in order to make accurate predictions about their

future likes or dislikes. One common technique is nearest-neighbor models, which involve

making recommendations based on known information about similar users/items. Another

is latent factor models, which assume that the available high-dimensional data can be

explained by comparatively low-dimensional hidden properties of the users/items. By

learning these properties, one can make predictions about how much users will like some

new item. For an overview of these techniques and others, see Lu et al. [2012]. In contrast

with these methods, I analyze the missing information as a mechanism design problem,

and not a statistical inference problem. Instead of the recommender making predictions

based on the information it has, in my setting the recommender uses the recommendations

themselves to acquire missing information.

In Golbandi et al. [2011] a recommender must determine the best questions to ask

of a new user in order to elicit information for improving future recommendations. This

is similar to my model, in that it is concerned with information elicitation, rather than

inference. However, in their setting questions are asked as part of an interview process

before any recommendations are made, whereas in my setting all information must be

gained endogenously to the recommendation system itself.

Outside of recommender systems, the model here is reminiscent of the multi-armed
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bandit (MAB) problem. In MAB, there is a set of possible actions, each of which has

a reward non-deterministically generated by some process. An agent must sequentially

decide which action to take. In doing so, the agent must balance exploration, trying new

options to gain information about the likely reward, with exploitation, choosing actions

that the agent has learned are likely to have high rewards. While typically there is only

one agent in MAB, in Bolton and Harris [1999] they consider a case in which there are

many agents, each of which can benefit from the exploration of earlier agents, as in this

setting.

In my setting there is similarly an array of options from which agents choose one and

receive a reward. Exploring new options is costly, but exploiting information about these

options in the future can be beneficial. However, here each agent only acts once, and

so only has reason to exploit. It is only because agents receive information about past

actions exclusively through the center, who determines a policy for selectively revealing

information in the form of a recommendation, that exploration becomes possible.

The idea of selectively revealing information in order to induce a particular action

in others (as in the center giving a recommendation to an agent to induce exploration),

is also present in Kamenica and Gentzkow [2011]. They consider a simpler two agent

setting. The first agent is the sender, who has information and the ability to send a signal

to the receiver. The second is the receiver, who must choose from a set of actions, and

whose utility is a function of the information possessed by the sender. The policy for how

the sender determines the signal from the information is known to the receiver, but the

information itself is not. The sender wants to determine a policy for sending signals that

will maximize the probability that the receiver takes some desired action.

While this is similar to the model for this paper, there are two primary differences. First,

while in their model the receiver can decide any action after he has received the signal,

in my model the agents choose to either not receive a recommendation, or to contract
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with the center and always follow the recommendation. Second, the recommendation

setting is sequential, in that the information available to the center depends on previous

recommendations that have been made. So, the center must consider both the overall

objective, as well as how recommendations for one agent may allow or disallow future

recommendations to other agents.

Finally, the model presented here is closely based on the one in Kremer et al. [2013], and

should be seen as expanding on and generalizing the setting that they present. Kremer

et al. originally conceived of a center adopting a policy for recommending options to a

sequence of agents, constrained by the requirement that it be in each agent’s interest to

follow the recommendation. There are three major alterations between their model and

the one presented here. First, and most importantly, their model assumes that there are

exactly two options that can be recommended, where no such assumption is made here.

The generalization to more than two options vastly increases the complexity of possible

policies that the center can adopt, which implies a need for more robust abstractions to

succinctly reason about them. Second, like in Kamenica and Gentzkow [2011], in Kremer

et al. [2013] agents can always receive a recommendation and then choose any option,

whereas under the model presented here, before learning the recommended option agents

must contract with the center and agree to follow the recommendation. Third, Kremer

et al. [2013] assumes that the objective of the center is to maximize the average utility of the

agents, to which exploring new options is merely an instrumental goal. In contrast, while

the model presented here is general enough to accommodate an arbitrary objective for the

center, both of the objectives considered explicitly in the paper are to gain information,

and not increase the utility of the agents.



Chapter 2

2.1 Notation and Model

There are N ≥ 2 options. These represent the set of items that the center can rec-

ommend. Each of the options has a value, which are defined by continuous, independent,

random variables O1, . . .ON respectively. These correspond to the quality of each option,

and the utility that each option provides to an agent. Note that a value is a random

variable, not a distribution, and so a single realization for the value of an option will hold

for all agents. This implies that the that the utility for receiving any given option is the

same for all agents. The vector (O1, . . .ON ) is denoted O, and has continuous probability

density function f . For all j, the distribution for Oj has probability density function fj ,

and µj is defined to be E(Oj). All of the distributions are commonly known to all agents

and the center. All of the realizations of the values are initially unknown.

In order to make learning the values of the options non-trivial for the center, I assume

that there is a single ‘best’ option ex-ante — if not for the recommendation mechanism

provided by the center, all agents would maximize their expected utility by choosing this

single option, and so the center would not be able to learn the values of the other options.

So, let µ1 > µ2 ≥ · · · ≥ µN . The strict inequality corresponds to requiring that there be

a single option which has higher expected value than all others. The weak inequalities are

9
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without loss of generality.

Additionally, I assume that:

P (O1 ≤ µ2) > 0 (exploration possibility condition)

Below, I show that this condition is necessary for the center to learn values other than O1.

At the end of Chapter 3, I use the surplus/cost abstraction to show that it is also sufficient.

There is an infinite sequence of unique agents who arrive in order, choose an option j,

receive utility Oj , and then report the value Oj back to the center. Agents are risk-neutral

utility maximizers. They are aware of their location in the sequence, but do not know

the options chosen by previous agents, or the values that previous agents have received.

Conversely, the center is always aware of the history at any point in time, which includes

both which option each agent chose, as well as the realized values for those options. If an

agent is the first in the sequence to choose option j, then they are said to have explored

Oj .

The center publicly adopts a recommendation policy π, known to all agents, which is

a function from histories to [N ] (where [N ] is the set {1, 2, . . . N}). π(h) = j denotes that

if the center observes history h, the next option it will recommend is option j (abusing

notation, I will write ‘recommending Oj ’ to mean recommending option j from now on).

Before choosing an option on their own, agents may first contract with the center. If they

do, then they learn the recommendation of the center as defined by the recommendation

policy, and must then choose this option.

Without a recommendation, the highest expected utility an agent can receive is by

picking option 1, receiving µ1. Therefore, in order to incentivize agents to follow the rec-

ommendation policy, the center must ensure that the expected value for the recommended

option is greater than µ1. Let recij be the event that a given policy recommends Oj to
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agent i. A policy π is ex-ante incentive compatible (IC) if, for all i:

∑
j∈[N ]

E(Oj |recij)P (recij) ≥ µ1 (ex-ante IC condition)

Intuitively, this means that each agent is weakly better off always following the recom-

mendation than they would be if they instead always picked O1, the best option to choose

without having a recommendation. The use of ‘ex-ante’ in this context refers to the fact

that it is in the agent’s interest to follow the recommendation prior to knowing what option

is recommended.1

The IC condition motivates the ‘exploration possibility condition’ stated above. If there

is no possibility that O1 ≤ µ2, then there is no circumstance under which it would be IC

for an agent to explore an option other than O1.

Theorem 2.1.1. If P (O1 ≤ µ2) = 0, then the unique IC policy is to always recommend

option 1 to all agents.

Proof. Let agent k be the first agent such that P (reckj ) > 0 for some j 6= 1. Then

for all j 6= 1, E(Oj |reckj ) = µj ≤ µ2, since whether the center recommends option j

cannot depend Oj before the center learns Oj , and the center cannot learn Oj before

agent k by choice of k. Since P (O1 ≤ µ2) = 0, E(O1|reckj ) > µ2 for all j. But then,∑
j∈[N ]

E(Oj |reckj )P (recij) <
∑
j∈[N ]

E(O1|reckj )P (recij) = µ1 violating the IC condition. So,

all agents must always be recommended option 1.

Throughout the paper, I will consider two different objectives that the center might be

trying to achieve. In both cases, an IC recommendation policy is optimal if no other IC

policy performs strictly better according to the objective.

1In Kremer et al., the authors consider a slightly modified setting in which agents can choose any option
even after learning the center’s recommendation. Intuitively, this would imply a stricter IC condition.
However, they also restrict the setting to the special case where there are only 2 options. When there are
only 2 options, the two IC conditions are equivalent. See Appendix A for details.



Chapter 3

3.1 Example of Reasoning about Policies

A short example of reasoning about recommendation policies will build intuitions and

make subsequent arguments much easier to follow. Suppose there are 3 options (N = 3).

O1 ∼ Unif(−2, 6), O2 ∼ Unif(−3, 5), and O3 ∼ Unif(−2, 4). First, the center must

determine which option to recommend to agent 1. Observe that only recommending option

1 will be IC — if the policy recommended either of the other two options, the agent would

prefer choose option 1 instead of receiving a recommendation. In fact, any IC policy will

always recommend option 1 to agent 1 (not just in this example), since by assumption

µ1 > µj for j 6= 1.

Next, consider what recommendation the center can give to agent 2. It is easy to verify

that again always recommending option 1 would be IC, and always recommending either

option 2 or 3 would again not be IC. However, now O1 has been explored, and so the center

knows O1, and can condition the recommendation on this value. So, the center could define

the policy as follows: if O1 < 4, then recommend option 2. Otherwise, recommend option

1. The expected value for agent 2 when he follows this policy is:

P (O1 < 4)E(O2) + P (O1 ≥ 4)E(O1|O1 > 4) =
3

4
∗ 1 +

1

4
∗ 5 = 2 = µ1

12
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So, this is IC. This is clearly not the only possibility. One can easily verify that, e.g.,

recommending option 2 when O1 < 1 and option 3 when O1 > 5 would also be IC.

Observe that in both of these examples, there are realizations for which following the

recommendation is beneficial to the agent (when O1 < 1), and realizations for which

following the recommendation is detrimental to the agent (1 < O1 < 4 in the former case,

5 < O1 in the latter). By balancing the utilities associated with these two cases, the center

has managed to explore other options within the constraints of the IC condition, even for

high realizations of O1.

Next, let’s consider the policy for agent 3 (assuming agent 2 explores O2 for O1 < 4).

The center always knows O1. Also, if O1 < 4, then the center knows O2. The center can

exploit all of this information to increase the utility of agent 3 for some realizations of O,

which enables the center to make agent 3 explore in other realizations. To do this most

effectively, for all realization of O for which the center does not recommend that agent 3

explore, the center should recommend the maximum of the known options.

For example, consider recommendingO3 forO1 > 5, O1 for 4 ≤ O1 ≤ 5 and max (O1,O2)

for O1 < 4. The utility for agent 3 would then be:

P (O1 > 5)E(O3) + P (4 ≤ O1 ≤ 5)E(O1|4 ≤ O1 ≤ 5)

+ P (O1 < 4 ∧ −2 < O2 < 4)E(max (O1,O2)|O1 < 4 ∧ −2 < O2 < 4)

+ P (O1 < 4 ∧ O2 < −2)E(O1|O1 < 4) + P (O1 < 4 ∧ O2 > 4)E(O2|O2 > 4)

= 1
81 + 1

8
9
2 + 3

4
3
42 + 3

4
1
81 + 3

4
1
8
9
2 = 149

64 > µ1

So, this policy would be IC for agent 3 even though, unlike agent 2, agent 3 doesn’t

explore for any realizations which are beneficial. Instead, agent 3 is able to benefit from

the exploration of earlier agents, which enables the center to recommend the maximum of

O1 and O2 for some realizations.

The key takeaway is that exploring can be enabled in two ways. First, by having an

agent explore Oj for realizations O1 < µj . Second, by exploiting the exploration of earlier
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agents. The surplus/cost abstraction formalizes and quantifies this insight, reframing the

IC condition in terms of the costs associated with exploring a new option for some set of

realizations, and the surplus that exploration from previous agents has provided.

3.2 Surplus/Cost Abstraction

3.2.1 Surplus

Surplus represents the increase in utility that exploration by previous agents provides.

Let supp(O) = {O : f(O) > 0} be the support of O, and EXPL be the set of functions

expl : supp(O) 7→ 2[N ]. Members of EXPL are referred to as exploration states. Intu-

itively, an exploration state expl ∈ EXPL denotes which options are explored for each

possible realization of O at a given time.

Define the surplus function S : EXPL 7→ R by:

S(expl) =

∫
supp(O)

f(O)

(
max

k∈expl(O)
(Ok)−O1

)
dO (surplus function)

S(expl) is the increase in utility that an agent would get if he was always recommended

the maximum of the previously explored options (according to expl), as opposed to not

participating in the mechanism (and so always choosing O1). The marginal surplus for a

realization, denoted S|O is simply the integrand evaluated at that realization.

S|O(expl) = f(O)

(
max

k∈expl(O)
(Ok)−O1

)
(marginal surplus)

The surplus function for a region (set of realizations) R, S|R, is similarly defined by:

S|R(expl) =

∫
R

f(O)

(
max

k∈expl(O)
(Ok)−O1

)
dO (surplus for a region)



CHAPTER 3. 15

The interpretations for these functions is straightforward: the marginal surplus is the

instantaneous increase in utility at O from being recommended the maximum explored

option, instead of always O1, given exploration state expl. The surplus over a region is the

increase in utility for an agent due to exploration over that region, which is just the result

of integrating over the marginal surplus. The total surplus can then just be seen as the

surplus over all possible realizations.

For all IC policies, before agent 1 no options are explored, and agent 1 always explores

O1. For agents i > 1, each policy defines an exploration state expli, where expli(O) = A

denotes that given a realization O, the options in A have been explored before agent i.

Given a fixed policy, the surplus for an agent i is defined by Si = S(expli), and similarly

for Si|O and Si|R

3.2.2 Gain

Gain represents how much the exploration by an agent according to a policy will increase

the surplus for the subsequent agent. Let single(A) = {{a} : a ∈ A} be the set of singleton

subsets of A, and E be the set of functions e : supp(O) 7→ single([N ])∪ {∅}. Intuitively, a

function e ∈ E represents exploration performed by a single agent, mapping each realization

either to the set containing the option he explores for that realization, or to the empty set

if he does not explore for that realization (and so is recommended the maximum known

value).1

For expl ∈ EXPL and e ∈ E, let expl ∪ e ∈ EXPL be the exploration state defined

by expl ∪ e(O) = expl(O) ∪ e(O). Intuitively, expl ∪ e is the exploration state if you have

previously explored according to expl, and then explore new options according to e.

From this it is possible to define the gain in surplus that exploring new options for some

1For readers having trouble remembering the distinction between e/E and expl/EXPL, note that e/E
have a single letter, and so represent exploration taken by only a single agent, while expl/EXPL have
multiple letters, and so represent the previous exploration of multiple agents.
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realizations will provide. Define the gain function Gain : EXPL× E 7→ R by:

Gain(expl, e) = S(expl ∪ e)− S(expl) (gain function)

If previously the exploration state is expl, and new options are explored according to

e, then Gain(expl, e) represents the increase in surplus provided by that new exploration.

Define the marginal gain and the gain for a region by Gain|O = S|O(expl∪e)−S|O(expl)

and Gain|R = S|R(expl∪e)−S|R(expl) respectively. These have analogous interpretations

to the marginal surplus and surplus for a region.

A policy defines for each agent i the function ei, the exploration performed by that

agent, including both the realizations for which the agent explores, and the option explored

for each of these realizations. These definitions allow the expression of basic identities,

such as expli ∪ ei = expli+1 (the exploration performed before agent i + 1 is exactly

the exploration by agent i, combined with the exploration performed by agent i), and

Si +Gain(Si, ei) = Si+1 (the surplus for agent i+ 1 is the surplus for agent i plus the gain

in surplus from agent i’s exploration).

3.2.3 Cost

Cost represents how much exploration by an agent according to a policy will decrease

the utility for that agent. Abusing notation, for e ∈ E let supp(e) = {O : e(O) 6= ∅} be

the set of realizations for which e implies that an agent is actually exploring.

Define the cost function Cost : EXPL× E 7→ R as:

Cost(expl, e) =

∫
supp(e)

f(O)
(
O1 −Oe(O)

)
dO + S|supp(e)(expl) (cost function)

The cost is the loss in utility from being recommended to explore according to e, instead
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of always being recommended the maximum known values. The first term is the difference

in utility between being recommended O1 and being recommended according to e. The

second is the additional loss of the surplus the agent would have received if he had been

recommended not just O1, but the maximum of the known options. When they need to

be referred to separately, I will refer to the first term as the base cost, and the second as

the opportunity cost. The marginal cost (for values in the support of e) and cost for a

region R ⊆ supp(e) are defined Cost|O(expl, e) = f(O)
(
O1 −Oe(O)

)
+ S|O(expl) and

Cost|R(expl, e) =

∫
R

f(O)
(
O1 −Oe(O)

)
dO + S|R(expl) respectively.

It will frequently be necessary to refer to the ratio of gain to cost. The gain-to-cost

ratio for exploring an option at a point with positive cost is simply the marginal gain at

that point divided by the marginal cost at that point. Similarly, for a region that has

positive marginal cost everywhere, the gain-to-cost ratio for exploring is just the gain from

exploring divided by the cost from exploring.

If a point has negative or 0 cost, then its gain-to-cost ratio is defined to be ∞. This

matches the intuitive idea that gain-to-cost should be a measure of how ‘efficient’ a purchase

is, and purchasing something with 0 or negative cost is more efficient than any purchase

with positive cost.

3.2.4 Reframing the IC Condition

The IC condition can then be rewritten the surplus/cost notation. Intuitively, since the

surplus represents the increase in utility from recommending the maximum value explored

instead of O1, and the cost represents a decrease in utility from exploring instead of rec-

ommending the maximum known value, a recommendation should have higher expected

utility than µ1 iff the cost is less than the surplus. I confirm this intuition below.
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Theorem 3.2.1. A policy is IC iff agent 1 explores O1, and for each agent i > 1:

Cost(expli, ei) ≤ Si (cost/surplus inequality)

Proof. As observed earlier, all IC policies must recommend O1 to agent 1. So, consider

agent i > 1. The utility for agent i under the recommendation policy can be written as:

∫
supp(ei)

f(O)Oei(O)dO +

∫
supp(O)−supp(ei)

f(O)O1dO + Si|(supp(O)− supp(ei))

To see this, note that the utility is just the value recommended at O times f(O) integrated

over supp(O). The first term in the sum is that integral over the region supp(ei). The sum

of the second and third terms is the integral over supp(O)− supp(ei). It follows that the

utility of agent i is:

∫
supp(ei)

f(O)Oei(O)dO −
∫

supp(ei)

f(O)O1dO +

∫
supp(O)

f(O)O1dO + Si − Si|supp(ei)

=

∫
supp(ei)

f(O)
(
Oei(O) −O1

)
dO − Si + µ1 + Si = −Cost(expli, ei) + µ1 + Si

So, invoking the definition of IC, the policy will be IC so long as:

−Cost(expli, ei) + µ1 + Si ≥ µ1

Si ≥ Cost(expli, ei)

From now on I use the cost/surplus inequality interchangeably with the IC condition.
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3.3 Policies using Surplus/Cost

3.3.1 Example cont.

Returning to the earlier example, we can see how to use cost/surplus inequality to show

the policy from the beginning of the chapter is IC for the first 3 agents. The first agent

explores O1, as required. The second agent has a surplus of 0 (S2 = 0), and explores O2

when O1 < 4. This means exploring option 2 over the region R2 = [−2, 4]×[−3, 5]×[−2, 4].

To find the cost we calculate:

S|R2(expl2) =

∫
R

f(O) (O1 −O1) dO = 0

∫
R2

f(O)(O1 −O2)dO = P (O ∈ R2) (E(O1|O1 ∈ [−2, 4])− E(O2|O2 ∈ [−3, 5])) = 0

So, the cost(expl2, e2) = 0 ≤ 0 = S2 as desired. Observe that the region for which it was

beneficial to explore O2, when O1 < 1, had a negative cost, and so allowed exploration

even when there was no surplus. In fact, it is now possible to reinterpret the exploration

possibility condition (Theorem 2.1.1) as proving that no exploration is possible unless there

is some region with negative cost.

For agent 3, we first calculate S3:

S3 =

∫
supp(O)

f(O)

(
max

k∈expl3(O)
(Ok)−O1

)
dO

=

∫
R2

f(O) (max(O2,O1)−O1) dO +

∫
supp(O)−R2

f(O) (max(O1)−O1) dO

= P (O ∈ R2)(E(max(O1,O2)|O ∈ R2)− E(O1|O ∈ R2)) + 0
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=

(
3

4

)(
1

8
∗ 1 +

1

8

9

2
+

3

4
2− 1

)
=

57

64

Agent 3 explores O3 when O1 > 5, so for the region R3 = [5, 6] × [−3, 5] × [−2, 4].

S|R3(expl3) = 0 (the work is identical to above), and:

∫
R3

f(O)(O1 −O3)dO = P (O ∈ R3) (E(O1|O1 ∈ [5, 6])− E(O3|O3 ∈ [−2, 4]))

=
1

8

(
11

2
− 1

)
=

36

64

As desired cost(expl3, e3) = 36
64 ≤

57
64 = S3, so again it is IC. Observe that, even though

there was no region explored that had negative cost, exploration was possible because of

the surplus generated by agent 2.

3.3.2 Possible Policies and Distinguishability

The example above demonstrates how to confirm that a given policy is IC using sur-

plus/cost. However, we do not yet have the tools to properly describe new policies with

this language in a way that ensures that the result validly describes a policy that is pos-

sible. For example, continuing the example above, it would be possible for a policy to

recommend that agent 4 should explore O3 for the region R4 = [−2, 4]× [−3, 4]× [−2, 4].

This is because agent 1 will have already explored O1 for all realizations O, and agent 2

will have explored O2 when O1 < 4. So, even though the center will not know the complete

realization O by agent 4, the center will be able to know with certainty whether or not

O ∈ R4.

In contrast, it would not describe a possible policy to say that agent 4 should explore

O2 for (exactly) the region R′4 = [4, 5]× [−3, 5]× [−2, 0], because when recommending for

agent 4, if O1 ∈ [4, 5], the center will not be able to know based on the history of options
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explored whether or not O3 ∈ [−2, 0]. So, it is not possible for a policy to recommend

O3 to agent 4 for only R′4, given the information the center will have at the time. It

would also obviously not describe a possible policy to say that both O2 and O3 should be

recommended to agent 4 over the same region.

To allow for concise descriptions of policies using surplus/cost, but ensuring that these

problems do not arise, I introduce the notion of distinguishability. For a given policy and

agent i, two realizations O = (O1, . . .ON ) and O′ = (O′1, . . .O′N ) are distinguishable to

that agent if there exists j ∈ [N ] such that Oj 6= O′j , and j ∈ expli(O) ∩ expli(O′). In

words, two realizations are distinguishable to the agent if they differ on some coordinate

j, and exploration before agent i would allow the center to know Oj for both realizations,

and so allow the center to rule out either O or O′ as the actual realization. Region R is

said to be closed under indistinguishability (or CUI) for agent i if for every point O ∈ R,

if O and O′ are not distinguishable by agent i (and O′ ∈ supp(O)), then O′ ∈ R.

It is now possible to describe an IC policy simply by listing region/option pairs for

each agent. Each list denotes that the policy will have the agent explore each option for

the corresponding region, and explore the maximum of the known options everywhere else.

A policy which recommends (R1,Oi1), (R2,Oi2), . . . (R`,Oi`) to agent k is possible and IC

if it satisfies the cost/surplus inequality, all pairs of regions Ri 6= Rj are disjoint, and

all regions Ri are CUI to agent k. The CUI condition ensures that, based only on the

observed history, the center will be able to tell apart any two realizations for which the

recommendation differs, and so that the policy described is possible.

The following aids in reasoning about CUI regions, and so which regions it is possible

for an agent to explore:

Lemma 3.3.1. Suppose that R and R′ are both CUI for agent k. Then R ∩ R′, R ∪ R′

and R−R′ are also CUI for agent k.
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Proof. Suppose O ∈ R ∩R′, and O and O′ are not distinguishable by agent k. Since R is

CUI, O′ ∈ R. Similarly, O′ ∈ R′. So, R ∩R′ is CUI.

If O ∈ R ∪ R′, then either O ∈ R or O ∈ R′. If O′ is not distinguishable from O by

agent k, then, either O′ ∈ R or O′ ∈ R′, and so O′ ∈ R ∪R′. So, R ∪R′ is CUI.

Suppose O ∈ R −R′, and O and O′ are not distinguishable by agent k. Since O ∈ R

and R is CUI, O′ ∈ R. So, O′ ∈ R − R′ or O′ ∈ R ∩ R′. If O′ ∈ R ∩ R′, this contradicts

that R ∩R′ is CUI, since O and O′ are not distinguishable. So, O′ ∈ R−R′, and R−R′

is CUI.

3.4 Exploration using Surplus/Cost

Using the surplus/cost abstraction, it is possible to prove general properties about ex-

ploration independent of the center’s objective. For example, while the gain from exploring

Oi over R may depend on the full distribution for Oi, the cost for exploring depends only

on µi.

Theorem 3.4.1. If region R is CUI for agent k, then the cost for exploring Oi over R is:

P (O ∈ R)(E(O1|O ∈ R)− µi) + Sk|R.

Proof. The cost is:

∫
R

f(O)(O1 −Oi)dO + Sk|R = P (O ∈ R)(E(O1|O ∈ R)− E(Oi|O ∈ R)) + Sk|R

So, it suffices to show that E(Oi|O ∈ R) = µi.

Suppose R includes O = (O1, . . .Oi, . . .ON ). Since R is CUI, and Oi is not previously

explored, it includes the line ` = {(O1, . . .O′i, . . .ON ) : O′i ∈ supp(Oi)}. For any such line

`, consider E(Oi|O ∈ `):
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E(Oi|O ∈ `) =

∫
supp(O)

Oif(O|O ∈ `)dO =

∫
`

Oi

∏
j
fj(Oj)∏

j 6=i
fj(Oj)

dO

=

∫
`

Oifi(Oi)dO = µi

Partition R into equivalence classes, where two points O and O′ are equivalent if they

differ only on the value Oi. By above, each of these classes must be a complete line. Since

the expected value of Oi within each line is µi, the expected value across all lines, and so

all of R, must also be µi.

It trivially follows that the costs for exploring the options over any fixed region R are

ordered in the same way as the means of the options.

Corollary 3.4.2. If region R is CUI for agent k, then the cost for exploring Oi over R is

less than the cost of exploring Oj over R iff µi > µj.

Intuitively, the gain-to-cost ratio seems like a good measure of what regions you should

explore; if the surplus for an agent is viewed as a budget that enables exploration, then

exploring regions with a high gain-to-cost ratio is analogous to spending your fixed budget

in the most efficient way possible for increasing the surplus of the subsequent agent. The

surplus/cost abstraction shows that the gain-to-cost ratio for exploring a region is inde-

pendent of the probability density over that region, but depends both on the maximum

explored value for each point in the region and on the full distribution of the option being

explored.

Theorem 3.4.3. Let ` = {(O1, . . . ,O′i . . .On) : O′i ∈ supp(Oi)} be a line, Oi be an unex-

plored option over `, and V be the max of the explored values in O1 . . .Oi−1,Oi+1, . . .ON .

Then the marginal gain for exploring Oi over ` is f(`)(E(max(Oi, V )) − V ), and the
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marginal cost for the line is f(`)(V − µi). So, the gain-to-cost ratio over ` is:

E(max(Oi, V ))− V
V − µi

Since the numerator is non-increasing in V , and the denominator is increasing in V , it

follows that the gain-to-cost ratio is decreasing in V .

Proof. By the definition of Gain:

Gain|` = S|`(expl ∪ e)− S|`(expl)

= f(`) (E(max(Oi, V ))−O1)− f(`) (V −O1)

= f(`) (E(max(Oi, V ))− V )

By Theorem 3.4.1:

Cost|`(expl, e) = f(`) (E(O1 −Oi)) + S|`(expl)

= f(`)(O1 − µi) + f(`)(V −O1) = f(`)(V − µi)

Note the use of V , rather than Oj , in the statement of the lemma above. This is meant

to emphasize that it depends only on the actual numerical value of the maximum explored

option, and not even what option that value came from.

In addition to allowing for a quantification of the gain-to-cost ratio, the surplus/cost

abstraction demonstrates that early exploration cannot allow for new regions with better

gain-to-cost ratios to become available; there are increasing costs, and decreasing gains,

for continuing to explore different options over the same region.
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Lemma 3.4.4. The cost of exploring Oi over a region R is non-decreasing, and the gain of

exploring Oi over region R is non-increasing, as more options other than Oi are explored

over R.

Proof. The marginal cost of exploring Oi for realization O depends only on Oi, f(O), and

the maximum of the previously explored options at O. Exploring a new option Oj at O

cannot change Oi or f(O), but may increase that maximum of the explored options at O,

and so increase the marginal cost. Since exploring never decreases the marginal cost at a

point, it also cannot decrease the cost for a region, since that is just the integral of the

marginal costs over the region. Analogous reasoning shows that gain is non-increasing.

The above lemma, however, is far too weak. It is likely obvious that exploring a

region will only increase the cost of that region (by increasing the opportunity cost), and

cannot increase the gain from exploring some other option over that same region. However,

exploring has the benefit of making more points distinguishable, and so allows for new

regions to be explored that previously could not. So, the above lemma is not sufficient to

show that agent k exploring cannot make a new region R CUI for agent k + 1, such that

exploring some other option over R has higher gain-to-cost for than any CUI region agent

k could have explored.

The following theorem proves this stronger claim. If there is some region that is CUI

for an agent, then if that agent had explored strictly fewer options over that same region,

then that agent could have explored some other overlapping CUI region for higher gain

and lower cost. It follows that exploring cannot make new regions with higher gain-to-cost

CUI.

Theorem 3.4.5. Let A be the set of options previously explored for CUI region R under

policy π for agent k. Also let agent k exploring Oi 6∈ A for R have cost C and gain G.
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Suppose that under policy π′, agent k′ has explored options A′ ⊂ A (where A′ includes

at least O1) for region R. Then there exists some CUI region R′ where R ∩ R′ 6= ∅ such

that agent k′ can explore Oi over R′ for cost C ′ ≤ C and gain G′ ≥ G.

Proof. Let S ⊇ R be the transitive closure of R under indistinguishability for agent k′.

Since all the added points are indistinguishable to some point in R for agent k′, the set of

explored options for all added points must also be A′, since two indistinguishable points

must be explored for the same set of options. Note that S is now CUI for agent k′.

If the cost for agent k′ to explore Oi over S is no more than C, then let R′ = S.

Otherwise, define F : R 7→ 2S as follows: F (n) = {O : O ∈ S ∧max
j∈A′

(Oj) ≤ n}. Let c(n)

be the cost to agent k′ of exploring Oi over F (n). Choose n′ to satisfy c(n′) = C, and

let R′ = F (n′).2 In other words, if agent k can explore S for cost less than C, R′ = S.

Otherwise, R′ is the subset of S with cost C made by including points with the lowest

maximum values explored before agent k′.

It immediately follows that C ′, the cost for R′, is no more than C. I claim that R′ is

CUI for agent k′, overlaps with R, and that exploring Oi over R′ has gain G′ ≥ G.

R′ is CUI: Suppose O ∈ R′, and O′ does not differ from O on any option in A′. Since

S is CUI and O ∈ R′ ⊆ S, O′ ∈ S. Also, the maximum explored value of O must be the

same as that for O′, since they are the same for all explored options. So, by construction

of R′, since O ∈ R′, O′ ∈ R′.

R overlaps with R′: Consider any point O ∈ R′. Since R′ ⊆ S, O ∈ S. This means

that either O ∈ R, or O is indistinguishable from a point O′ ∈ R, by construction of S. If

the former, then there is an overlap between R and R′. If the latter, then since R′ is CUI,

O′ ∈ R′, and so again there is an overlap between R and R′.

G′ ≥ G: If R′ = S, then since S ⊇ R, R′ ⊇ R. This means agent k′ explores for the

2Such an n′ is guaranteed to exist because lim
n→∞

c(n) > C, lim
n→−∞

c(n) = 0, and continuity of cost as

points are continuously added.
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entire region that agent k does. By Lemma 3.4.4, then, he also gets at least as large of a

gain for that region, and so G′ ≥ G as desired.

If R′ 6= S, then by construction of R′, C ′ = C. Consider the regions R′ ∩ R, R′ − R,

and R − R′. Agent k′ explores Oi for R′ ∩ R and R′ − R, while agent k explores Oi for

R′ ∩ R and R − R′. I show that agent k′ gets no less gain from R′ ∩ R than agent k does

for the same region, and also that agent k′ gets no less gain from R′−R than agent k does

from R−R′. Together, these show G′ ≥ G.

First, consider R′∩R: by Lemma 3.4.4, agent k′ gets no less gain from this region than

agent k does, because the options explored before agent k′ are a subset of those explored

before agent k. Additionally note that, also by Lemma 3.4.4, the cost over this region is

less for agent k′ than agent k.

Since the cost is less for agent k′ to explore R′ ∩ R, but the total costs for agent k

exploring R and agent k′ exploring R′ are equal (C = C ′), it must be that the cost for

agent k′ to explore R′ −R is greater than the cost for agent k to explore R−R′.

Consider O ∈ R ∩ R′, and O′ that differs from O only on the coordinate Oi. Since

R is CUI for agent k, O′ ∈ R. Similarly, since R′ is CUI for agent k′, O′ ∈ R′. So,

O′ ∈ R ∩ R′. It follows that for every point O = (O1, . . .Oi, . . .ON ) in R ∩ R′, the entire

line ` = {(O1, . . .O′i, . . .ON ) : O′i ∈ supp(Oi)} is contained in R ∩R′.

So, consider any point O ∈ R − R′, and a point O′ which differs from O only on the

coordinate Oi. Since O ∈ R and R is CUI for agent k, O′ ∈ R. If O′ ∈ R ∩ R′, then

by above the entire corresponding line is in R ∩ R′, contradicting that O ∈ R − R′. So,

O′ ∈ R−R′. It follows that for every point O = (O1, . . .Oi, . . .ON ) in R−R′, the entire

line ` = {(O1, . . .O′i, . . .ON ) : O′i ∈ supp(Oi)} is contained in R−R′.

By the same reasoning, for every point O = (O1, . . .Oi, . . .ON ) in R′ − R, the entire

line ` = {(O1, . . .O′i, . . .ON ) : O′i ∈ supp(Oi)} is contained in R′ −R.

So, partition R′−R and R−R′ into the lines (varying only on Oi) that make them up.
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I claim that the every line in R′ − R has higher gain-to-cost ratio for agent k′ than every

line in R−R′ does for agent k. Combined with the observation that the cost for R′−R is

higher for agent k′ than R − R′ is for agent k, this implies that the gain from R′ − R for

agent k′ is higher than the gain from R−R′ for agent k, completing the proof.

So, consider O ∈ R − R′. Since O ∈ R, O ∈ S. O ∈ S and O 6∈ R′, means that

max
j∈A′

(Oj) is higher than the maximum explored value for every point in R′, and so every

point in R′−R, by the construction of R′. max
j∈A

(Oj) ≥ max
j∈A′

(Oj) because A′ ⊆ A, meaning

that the highest value in O explored before agent k is higher than the highest explored

value for agent k′ for every point in R′ −R. By Lemma 3.4.3, then, the line containing O

has lower gain-to-cost ratio for agent k than every line in R′ −R does for agent k′.

The preceding theorem is complicated, but constructive. So, it may be helpful to see an

example of the procedure it describes using the distributions from the continued example.

Suppose under some policy π, before agent k, O1 and O3 have been explored for the

region R = [−2, 6] × [−3, 5] × [−2, 2]. In another policy π′, before agent k′, only O1 has

been explored for R. Lemma 3.4.5 shows that if agent k can explore O2 for R with cost C

and gain G, then there must be some other region R′ such that agent k′ can explore O2

over R′ for cost C ′ ≤ C and gain G′ ≥ G. Let’s find R′:

The transitive closure of R under indistinguishability by agent k′ is

S = [−2, 6]× [−3, 5]× [−2, 6], because agent k′ has not yet explored O3. Then, calculating

C gives:

C = P (O ∈ R)(E(max(O1,O3)|O ∈ R)− µ2) =
2

3
(
1

2

2

3
+

1

2
4− 1) =

8

9

The cost for agent k′ to explore O2 over S is 1, greater than C = 8
9 . So, to construct

R′, one needs to calculate the value n′ such that exploring all points in S with O1 ≤ n′
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(since O1 is the only explored option for agent k′) will yield a region with cost C:

8

9
= P (O ∈ R′ ∧ O1 ≤ n′)(E(O1|O1 ∈ R′ ∧ O1 ≤ n′)− µ2)

8

9
=
n′ + 2

8

(
n′ − 2

2
− 1

)
n′ = 1 +

√
209/3

So, R′ = [−2, 1+
√

209/3]× [−3, 5]× [−2, 6]. Continuing with the argument in Theorem

3.4.5, one can demonstrate that R′ has a larger gain for agent k′ than R does for agent k.

Exploring the overlapping region, R∩R′ = [−2, 1 +
√

209/3]× [−3, 5]× [−2, 2], gives more

gain at less cost for agent k′ than it does for agent k, by Lemma 3.4.4. Then, compare

R′ −R to R−R′:

R′ −R = [−2, 1 +
√

209/3]× [−3, 5]× [2, 6]

R−R′ = [1 +
√

209/3, 6]× [−3, 5]× [−2, 2]

The maximum explored option for agent k′ in R′ − R is never more than 1 +
√

209/3.

Conversely, the maximum explored option for agent k inR−R′ is never less than 1+
√

209/3.

So, by Lemma 3.4.3, every line in R′ − R has higher gain-to-cost ratio for agent k′ than

every line in R−R′ does for agent k. Since the cost of R′ −R must be higher for agent k′

than R−R′ is for agent k, it follows that the gain from R′ −R is higher for agent k′ than

R−R′ is for agent k.

Lastly, the surplus/cost abstraction can easily show that the exploration possibility

condition from section 2 is sufficient for all options to eventually be explored.

Theorem 3.4.6. If it is possible to explore an option other than O1 for any realization O,

then it is possible to always explore all options over supp(O) within a fixed finite number

of agents.
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Proof. By Lemma 2.1.1, if it is possible to ever explore an option other than O1, then

the exploration possibility condition must hold. Namely, P (O1 < µ2) > 0. So, the region

defined by O1 < µ2 has non-zero mass, and by Theorem 3.4.1 has negative cost. So, agent

2 can explore O2 over this region for a cost of −c, as well as O2 over another region with

cost c, while still being IC. Note that the total cost for exploring O2 for all remaining

realizations does not change before and after agent 2 explores, since the net cost spent by

agent 2 is 0.

Also, P (O1 < O2|O1 < µ2) > 0, and so this negative cost region must have positive

surplus. So, S3 > 0. Since surplus can never decrease from exploration, Si ≥ S3 > 0 for all

i ≥ 3.

It is then possible to just explore each option, in order. By above, the total cost for

exploring O2 over remaining realizations of O after agent 2 is the same as exploring O2

over supp(O) before agent 2. By Theorem 3.4.1, since only O1 is previously explored, this

is µ1 − µ2. It will then require no more than
⌈
µ1−µ2
S3

⌉
agents after agent 2 to explore O2

for all of these realizations, since each agent can spend a surplus of at least S3, and once a

total cost of µ1 − µ2 for exploring O2 is paid across all agents, O2 will have been explored

for all realizations.

More generally, by Theorem 3.4.1, to explore Oi over supp(O) after options O1 . . .Oi−1

have been explored has cost E( max
j∈[i−1]

(Oj))− µi. So, after options O1 . . .Oi−1 have can be

explored, it requires no more than

⌈
E( max

j∈[i−1]
(Oj))−µi

S3

⌉
agents to explore Oi.

So, all options can be explored with no more than 2 +
∑

i∈[2,N ]


E( max

j∈[i−1]
(Oj))− µi

S3


agents.

This result is particularly surprising, since it only relies on P (O1 < µ2) > 0. It still
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holds if for i > 2, P (O1 < µi) = 0 (it is never negative cost for an agent to explore Oi). In

fact, it even holds if for i > 2, P (O1 < Oi) = 0 (there is never positive gain from exploring

Oi)! If any option can ever be explored, then for all realizations, all options, no matter

how bad, can always be explored.3

3A similar proof is carried out in Kremer et al. in the special case of 2 options (and so without the
surprising implications detailed here), and without surplus/cost abstraction hiding the details of various
integrals and inequalities. As a result, however, there are several mistakes in their proof. While under

Theorem 3.4.6 there is a bound of 2 +
⌈
µ1−µ2
S3

⌉
before both options are explored, in Kremer et al. the

bound is given as simply µ1−µ2
S3

. The missing 2 is because the authors forget that the S3 surplus is only
available starting with agent 3, and the missing de is because the authors forget that, even if an agent does
not need to spend their full surplus, that agent will still need to explore (e.g. if µ1 − µ2 = 3 and S3 = 2, it
may require 2 agents before the total cost of 3 is spent).

While these mistakes seem clear in this context, without the surplus/cost abstraction they correspond
to subtle mistakes in manipulating complex inequalities between sums of integrals. This provides some
evidence that, aside from the technical results it enables, the surplus/cost abstraction is useful for providing
semantic context for the important integrals in this setting, and so making it easier to reason precisely and
correctly.
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In this chapter, I apply the surplus/cost abstraction to the setting in which the center’s

objective is to explore all options within the fewest number of agents in the worst-case.

So, a policy is optimal if it is IC, and there is no other IC policy that explores all options

within fewer agents in the worst case. I succeed in characterizing the optimal policy in

this setting under the conditions that the options are orderable, and that in an optimal

policy the options are explored in the corresponding order. I first define orderability, and

find an optimal policy under these conditions. Then I analyze in what circumstances these

conditions hold, and present a natural example of a case in which they do.

4.1 Introducing Orderability

Recall that the values O1 . . .ON were numbered such that µ1 > µ2 ≥ · · · ≥ µN . Values

O2 . . .ON are orderable if they additionally satisfy for all m ∈ R:

E(max (O2,m)) ≥ · · · ≥ E(max (ON ,m)) (orderability condition)

If the values are orderable, then Oi is said to precede Oj , written Oi ≺ Oj , if i < j.

Note that if two different option’s values have the same distribution, then there might be

more than one valid way the options could have been ordered, just as there could have
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been more than one way to index the options initially. Nevertheless, a single ordering is

arbitrarily chosen by breaking ties based on the index of the option. ≺ is therefore a total

order over the options.

Intuitively, orderability can be thought of as a strong condition ensuring that exploring

earlier options is ‘better’ than exploring later ones. Just µi > µj , is not strong enough

of a condition to ensure that there is greater gain from exploring Oi than there is from

exploring Oj over some region. For example, consider a region over which there is a

previously explored option with value at least V . Then if P (Oi > V ) = 0, exploring Oi

over that region will have 0 gain. It is possible that another option Oj will have positive

gain over that region (P (Oj > V ) > 0), even though µj < µi. Oi ≺ Oj , however, is strong

enough to rule out these situations.

Theorem 4.1.1. If R is CUI and Oi ≺ Oj, then the gain from exploring Oi over R is no

less than that of exploring Oj. Additionally, the cost for exploring Oi is no greater, and so

the gain-to-cost ratio is no less.

Proof. R is CUI and neither Oi nor Oj has been previously explored over it. So, for

any point O = (O1,O2, . . .ON ) ∈ R, R also contains the entire plane defined by p =

{(O1, . . .O′i, . . .O′j , . . .ON ) : O′i ∈ supp(Oi),O′j ∈ supp(Oj)}. So, R can be partitioned

into planes of this form.

Fix one such plane p, and Let V be the maximum of the explored options over p.

Then by the same reasoning as in Theorem 3.4.3, the gain from exploring Oi over p is

f(p)(E(max(Oi, V )) − V ), and the gain from exploring Oj is f(p)(E(max(Oj , V )) − V ).

Since Oi ≺ Oj , the first quantity is greater, so the gain from exploring Oi is greater.

Oi ≺ Oj , so µi ≥ µj , and by Corollary 3.4.2 the cost for exploring Oi is no greater than

the cost from exploring Oj .

Since the marginal gain from every plane is no less for Oi, and the marginal cost from
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every plane is no greater for Oi, the result follows.

If the options are orderable, then they are said to be explored in order if whenever Oi is

explored for O, if Oj ≺ Oi, then Oj has already been explored for O. This can be stated

equivalently using the notion of a layer—exploration over a region is said to occur in layer

n if, after exploring, there are n explored options for every point in that region. So, for

example, the initial exploration of O1 by the first agent occurs in layer 1, since afterwards

there is exactly 1 options explored at every point. Agent 2 will then explore some regions

for which O1 is already explored, and so will explore layer 2 regions. Agent 3 might explore

some regions where both O1 and O2 have been previously explored (layer 3), or regions

over which only O1 has been explored (layer 2).

A region R is said to be in layer n if currently there are n − 1 options explored over

R. In other words, saying that exploration occurs in layer n is equivalent to saying that

exploration occurred over a region in layer n. With N options, the possible layers are 1 to

N . Using this terminology, options are explored in order iff for all i, Oi is explored only in

layer i (Oi is the ith option to be explored for any realization).

I claim that if the options are orderable, and there is an optimal policy that explores

options in order, the optimal policy is greedy, having each agent explore regions with the

highest possible gain-to-cost ratio.

4.2 Greediness

Assume that the options are orderable. A policy is greedy if it always explores regions

with the highest gain-to-cost ratio that are available to each agent—when an agent explores

Oi over CUI region R, then there is no CUI region R′ and option O′i which has a higher

gain-to-cost ratio, but which the agent does not explore—and every agent spends as much
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of the surplus as possible.1 Observe that by theorem 4.1.1, a greedy policy explores the

options in order, since for any region it explores, there is higher gain-to-cost by exploring

an earlier option over a later one.

To build an intuition for what a greedy policy looks like, it is helpful to characterize

the way that a greedy policy determines what to explore within a given layer, and between

different layers. Specifically, a greedy policy is intra-layer greedy (ILG) and between-layer

greedy (BLG).2 As the names suggest, these respectively correspond to requirements that

agents explore higher gain-to-cost regions within each layer first, and that agents explore

higher gain-to-cost regions across layers first.

Formally, a policy is ILG if, after every agent, the region explored within layer i can

be expressed as R = {O′ : O′ ∈ supp(O) ∧ max
j∈[i−1]

(O′j) ≤ V } for some V . Note that by

Theorem 3.4.3, the gain-to-cost ratio is decreasing in V , the maximum previously explored

value. Exploring when the maximum previously explored value is small will both increase

the gain, and decrease the cost. So, within layer i, the greatest gain-to-cost for exploring

Oi is where the maximum previously explored value, V , is the smallest. If within layer i

a policy explores in increasing values of V (that is, small values of V first), the resulting

region will always be defined by a set of the form above. So, any policy which is greedy,

and so explores regions in increasing order of gain-to-cost, will be ILG.

A policy is BLG if whenever an agent explores a region R in layer i, there is no CUI

region in layer j 6= i with a higher gain-to-cost ratio that the agent does not explore. Where

the ILG condition ensures that regions within a given layer are explored greedily, the BLG

condition ensures that, between different layers, regions with higher gain-to-cost ratio are

explored earlier.

1And, so that the greedy policy is unambiguously defined, if there are multiple regions with 0-gain the
greedy policy explores lower cost regions first. See Appendix B for an example where this occurs.

2While inter-layer greediness seems a more fitting counterpart, it unfortunately does not have a unique
initialism.
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Together, these conditions are enough to straightforwardly implement a greedy policy,

meaning that the greedy policy can be effectively determined by the center. This is done

at the end of the chapter.

Note that a greedy policy does not, between agents, necessarily explore regions in

strictly increasing order of gain-to-cost. For example, agent 2 will explore some region

with negative cost (where O1 < µ2), as well as some region with positive cost. Agent 3

might then also explore a region with negative cost (where max(O1,O2) < µ3), and some

region with positive cost. Both might have explored greedily, but agent 3 still explored a

region with higher gain-to-cost ratio than a region explored by agent 2 (the negative cost

region for agent 3, compared to the positive cost region for agent 2). Observe, though,

that in these cases the reason why agent 2 does not explore for this negative cost region

is that the region was in a layer higher than it was possible to explore — agent 2 cannot

explore in layer 3, since exploration must occur on layer 2 first. If it were not ‘blocked’ in

this way, the greedy policy would have explored the higher gain-to-cost region first. So, it

is possible to make a more restricted claim about the order of exploration between agents:

in a greedy policy, when a region R in layer i with higher gain-to-cost is explored after

another region in a different layer with lower gain-to-cost, R is explored in layer i by the

first agent who could do so while still exploring in order. This observation is sufficient to

show that the greedy policy is optimal.

Theorem 4.2.1. If the options are orderable, and an optimal policy explores in order, then

greedy is an optimal policy.

Proof. Fix an optimal policy that explores in order. Let the surplus for each agent i under

this policy be Si. Let S′i be the surplus for agent i under the optimal policy. I claim that

for all i, S′i ≥ Si.

Let the surplus after all options have been explored over supp(O) be S∗. This means
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that if Sk = S∗, and so all options are explored in the optimal policy before agent k, then

S′k = S∗, and so all options are explored before agent k in the greedy policy. It follows

that the greedy policy does not take more agents in the worst-case to explore all options,

and so that the greedy is an optimal policy.

First, both the greedy and the optimal policy have agent 1 explore O1, since all IC

policies do so. This means that, S2 = 0 = S′2.

For the sake of contradiction, consider the first agent i for which S′i < Si. Since i is

selected to be the first agent where this condition holds, it must be that the total cost spent

across all agents 1 . . . i− 1 in the greedy policy is no smaller than the total cost for those

agents in the optimal policy. But, since S′i < Si, the gain across those agents must have

been greater in the optimal policy. It follows that, before agent i, the optimal policy has

higher gain-to-cost aggregated over all regions/options it has explored than greedy does.

Since both greedy and optimal explore in order, whenever either explores Oj over R,

both have the same gain and cost for doing so (both have explored exactly O1 . . .Oj−1

previously over that region). So, over the (region, option) pairs explored by both greedy

and optimal, they both received the gain at the same cost. It follows that in order for

optimal to have higher gain-to-cost than greedy, there must be some pair (R, Oj) explored

in optimal but not greedy before agent i which has higher gain-to-cost than some region

(R′, O′j) explored in greedy but not in optimal before agent i. Otherwise, it would be

impossible for the gain-to-cost to be higher in optimal than greedy before agent i.

But, since greedy eventually explores (R, Oj), and this has higher gain-to-cost than

(R′, O′j) which is explored earlier, it follows that (R, Oj) is explored by the first agent who

can do so while still exploring options in order. Thus, that the optimal policy explores this

earlier contradicts the assumption that the optimal policy explores in order.

So, S′i ≥ Si for all i, completing the proof.
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4.3 Investigating Orderability

Since the result above relies on the orderability of the options, it makes sense to consider

how natural of an assumption it is. So, I find general characterizations of pairs of random

variables X and Y that satisfy (∀m)E(max(X,m)) ≥ E(max(Y,m)). For this section, say

that X ≺ Y iff (∀m)E(max(X,m)) ≥ E(max(Y,m)). By chaining together pairs of this

form, it is possible to construct natural sets of distributions which are orderable. That is,

if X ≺ Y and Y ≺ Z, then by transitivity {X,Y, Z} is also orderable.

First, say that X is a translation up of Y if X is distributed the same as Y + c for some

constant c > 0.

Theorem 4.3.1. If X is a translation up of Y , then X ≺ Y .

Proof. Since c > 0, for all m:

E(max(X,m)) = E(max(Y + c,m)) ≥ E(max(Y,m))

Next, let µY = E(Y ), and let Y be a symmetric distribution. Say that X is a stretch

of Y if X is distributed the same as a(Y −µY )+µY for a > 1. Intuitively, this corresponds

to centering Y at 0, multiplying by a constant to ‘stretch’ the PDF for Y , and then re-

centering Y at the correct mean.

Theorem 4.3.2. If X is a stretch of Y , then X ≺ Y .

Proof. First, observe that if for all m: E(max(X − µY ,m)) ≥ E(Y − µY ,m), then

E(max(X,m+µY ))−µY ≥ E(Y,m+µY )−µY , and so for all m, E(max(X,m)) ≥ E(Y,m).

So, let Y ′ = Y − µY and X ′ = X − µY , and I show that E(max(X ′,m)) ≥ E(Y ′,m). Ob-
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serve that now, X ′ and Y ′ are both symmetric and centered at 0, and X ′ is distributed

the same as aY ′ for a > 1.

Fix any m ≥ 0. Then:

E(max(X ′,m))

= E(max(X ′,m)|X ′ ≤ am)P (X ′ ≤ am) + E(X ′|X ′ > am)P (X ′ > am)

= E(max(aY ′,m)|Y ′ ≤ m)P (Y ′ ≤ m) + E(aY ′|Y ′ > m)P (Y ′ > m)

≥ mP (Y ′ ≤ m) + E(Y ′|Y ′ > m)P (Y ′ > m) = E(max(Y ′,m))

Fix any m < 0. Then:

E(max(X ′,m))

= E(X ′|m ≤ X ′ ≤ −m)P (m ≤ X ′ ≤ −m) +mP (X ′ < m) +E(X ′|X ′ > −m)P (X ′ > −m)

= mP (aY ′ < m) + E(aY ′|aY ′ > −m)P (aY ′ > −m)

≥ mP (Y ′ < m) + E(Y ′|Y ′ > −m)P (Y ′ > −m)

= E(Y ′|m ≤ Y ′ ≤ −m)P (m ≤ Y ′ ≤ −m) +mP (Y ′ < m) + E(Y ′|Y ′ > −m)P (Y ′ > −m)

= E(max(Y ′,m))

Where the first inequality comes from observing that P (aY ′ < m) ≥ P (Y ′ < m) when

m < 0, and that:

E(aY ′|aY ′ > −m)P (aY ′ > −m) =

∞∫
−m
a

fY (y)(ay)dy
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≥
∞∫
−m

fY (y)(ay)dy ≥
∞∫
−m

fY (y)(y)dy = E(Y ′|Y ′ > −m)P (Y ′ > −m)

So, for all m, E(max(X ′,m)) ≥ E(Y ′,m) as desired.

Using just the notions of translating and stretching, it is possible to create many natural

families of orderable distributions. For example, suppose the options were distributed as

follows: O1 ∼ Unif(1, 6), O2 ∼ Unif(−2, 6), O3 ∼ Unif(−3, 5), and O4 ∼ Unif(−2, 4).

O2 ≺ O3, since O2 is just O3 translated up. And, O3 ≺ O4, since O3 is just a stretch of

O4. So, this set of distributions is orderable.

In addition to uniform distributions, normal distributions also fall nicely into this pat-

tern. If X1 ∼ N (µ1, σ
2
1), and X2 ∼ N (µ2, σ

2
2), then if µ1 ≥ µ2 and σ1 ≥ σ2, then X1 ≺ X2.

To see this, note that increasing the mean is just a translation, and increasing the variance

is just a stretch. So, increasing both is just a translation followed by a stretch, which by

transitivity of ≺ over the intermediary state ensures that X1 ≺ X2.

However, this result is limited by the fact that orderability was only one of the require-

ments from the greediness result — it also required that all options be explored in order.

None of above responds to the question of under what circumstances an optimal policy will

explore options in order. This is an important area of further research.

Fortunately, there is a single case in which it can be easily deduced that options are

orderable, and they are explored in order in an optimal policy. Namely, if O2 . . .ON all

have the same distribution. When this is the case, the options trivially are orderable. And,

by symmetry, the gain, cost, and surplus is identical no matter which option is explored

when. So, any optimal policy can be modified so that the options are explored in order,

without changing the surplus after any agent, and so resulting in another optimal policy.

Therefore, when O2 . . .ON are all distributed the same way, the greedy policy is optimal.

This is not a particularly unnatural setting — it represents a circumstance in which there is
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a single option which has some positive information known about it (a higher expectation),

and then a set of remaining options for which there is no information, and so symmetrically

they have the same prior distribution.

4.4 Implementing an Optimal Greedy Policy

Since the greedy policy is optimal when O2 . . .ON are all IID, it might be enlightening

to begin calculating a concrete example of an optimal policy. In particular, it will show

how ILG and BLG can be used to find the regions with the highest gain-to-cost. So, let

O1 ∼ Unif(0, 2), and O2,O3 ∼ Unif(−1, 2).

Agent 1: agent 1 always explores O1 over supp(O). So, agent 1 explores O1 over

[0, 2]× [−1, 2]× [−1, 2].

Agent 2: S2 = 0, and since exploring in order, O2 is explored for layer 2. So, agent 2

explores O2 as much as possible for a total cost of 0. By ILG, this is exploring for O1 ≤ V

for some V . By Theorem 3.4.1, exploring for 0 ≤ O1 ≤ 1 has cost 0. So, agent 2 explores

O2 over [0, 1]× [−1, 2]× [−1, 2].

Agent 3: By Theorem 3.4.3, since O2 and O3 have the same distribution, the highest

gain-to-cost across both layers is for the lowest values of V , the maximum previously

explored option. So, to satisfy BLG, no region in layer 2 can be explored before all layer 3

regions are explored for V ≤ 1. So, agent 3 explores O3 for at least [0, 1]× [−1, 1]× [−1, 2].

This has a base cost of:

P (O1 ≤ 1)E(O1 − µ3|O1 ≤ 1) =
1

2
(
1

2
− 1

2
) = 0

So, instead of finding the total cost, I just calculate the remaining surplus excluding this
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region. The surplus over the region R = [0, 1]× [1, 2]× [−1, 2] is:

P (O ∈ R)E(max(O1,O2)−O1|O ∈ R) =

(
1

2

1

3

)(
3

2
− 1

2

)
=

1

6

By BLG, this surplus will be spent exploring in both layers 2 and 3 for all regions with

maximum explored values less than V for some V . And by ILG and Theorem 3.4.3, this

will be the same V for both. To calculate this V , I find total cost across both layers as a

function of V , and set it equal to 1
6 , using Theorem 3.4.1:

1

6
= C(V ) = cost layer2(V ) + cost layer3(V )

= P (1 ≤ O1 ≤ V )(E(O1|1 ≤ O1 ≤ V )−µ2)+P (O1 ≤ 1∧1 ≤ O2 ≤ V )(E(O2|1 ≤ O2 ≤ V )−µ3)

=
V − 1

2

(
V + 1

2
− 1

2

)
+

(
1

2

V − 1

3

)(
V + 1

2
− 1

2

)

=
V 2 − V

3

So, V = 1+
√
3

2 . This means that, (including the exploration for O3 detailed first), agent

3 explores O2 for [1, 1+
√
3

2 ]× [−1, 2]× [−1, 2], and O3 for [0, 1]× [−1, 1+
√
3

2 ]× [−1, 2].

Agent 4, etc.: Calculating subsequent agents is much the same as agent 3. First, by

BLG, agent 4 will definitely explore O3 for [1, 1+
√
3

2 ]× [−1, 1+
√
3

2 ]× [−1, 2]. The cost for this

region is calculated. Then, the new V must be calculated, by finding the cost as a function

of V and setting it equal to the remaining surplus after [1, 1+
√
3

2 ]× [−1, 1+
√
3

2 ]× [−1, 2] has

been explored. Agent 4 then explores explores O2 for [1+
√
3

2 , V ]× [−1, 2]× [−1, 2], and O3

for [1, 1+
√
3

2 ]× [1+
√
3

2 , V ]× [−1, 2].

Another example of an implemented optimal policy is included in Appendix B.
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5.1 Setting

In this chapter, I apply the surplus/cost abstraction to the setting in which the center’s

objective is to explore a particular option within the fewest number of agents in expec-

tation. Rather than attempting to find the optimal policy, I ask whether the center can

improve upon the optimal policy by introducing a new option, referred to as the dummy.

I find that under mild conditions introducing a dummy does improve upon the optimal

policy. It simplifies the details of these conditions greatly to fix the number of options,

so I assume that there are only three options: the target option, one other option with a

higher expectation than the target option, and (possibly) the dummy. However, it will be

clear from the technique used that it can be generalized to larger cases.

Formally, Ot (the target option), O1 (the better option), and Od (the dummy option)

are the options. As in the original setting, I assume that µ1 > µt (so that the optimal policy

is not recommending agent 1 explore the target) and that P (O1 ≤ µt) > 0, ensuring that

it is possible to explore the target even without the dummy. However, unlike in the earlier

setting where all options are always present, in this setting the center can decide as part

of the policy whether to allow Od to be chosen by agents. This might correspond to the

center broadening its array of choices (e.g. Yelp adding new restaurants to their website),
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or even bringing a new option to market (e.g. Netflix commissioning a new original TV

series). Since these actions tend to be costly, it is important to investigate when these costs

can be offset by the added value of exploring unknown options. The question is whether

Od is introduced in the optimal policy.

When Od is not present, the IC condition is the same as in the original case. When

Od is added, though, there is the possibility that the best option in expectation, and so

the option that agents would choose if they didn’t follow the recommendation policy, is

now Od. In this case the IC condition (and the cost/surplus equations) would need to be

modified so that all references to O1 are instead to Od. This will not present any difficulty,

though, since the result in the following section will assume that µd < µ1.

5.2 Dummy as Insurance

The intuition behind why the dummy option can easily be shown to improve upon

the optimal policy using just O1 and Ot, is to observe that the requirements for there

eventually being a region for which it is negative cost to explore Od are very limited. So

long as there is some probability that µd is greater than O1 and Ot, exploring Od over

the region where O1 < µd and Ot < µd will have negative cost, and positive gain. This

negative cost and positive gain translates into being able to have the corresponding agents

explore Ot over more regions. I demonstrate this formally, including several caveats to the

above intuition, below.

Theorem 5.2.1. If µd < µ1, P (O1 < µd ∧ Ot < µd) > 0, and Ot is not explored over

supp(O) before agent 4, then any optimal policy will include introducing Od.

Proof. Suppose there were some optimal policy π that didn’t introduce Od. I show that

this policy can be improved by introducing Od, contradicting that this is an optimal policy.
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First, observe that since µd < µ1, it would be IC to introduce Od and make no changes

to what recommendations were made to each agent. So, it is sufficient to find a single

modification that improves the policy, and then leave the rest of the policy unchanged.

Next, I confirm that all exploration over regions with negative cost is done by agent 2.

Suppose Ot is explored for some region R by an agent i > 2 in π, and that R has negative

cost. Observe that the surplus from exploring this region is greater than the negation of

the cost:

−Cost|R(expli, e) = −
∫
R

f(O)(O1 −Ot)dO =

∫
R

f(O)(Ot −O1)dO

≤
∫
R

f(O)(max(O1,Ot)−O1)dO = Surplus|R(expli+1)

So, suppose instead of agent i exploring R, agent 2 explored R. This would be IC for

agent 2, since it would only lower his total cost. All agents 2 < j < i would have greater

surplus and no greater cost. Agent i would have greater cost, but by above the increase in

surplus is greater than this increase in cost, so it would be IC for agent i. And, all agents

j > i would have their IC condition unaffected. So, this is an IC policy. And, for some

realizations Ot is explored earlier, so this is better for the objective, contradicting that π is

an optimal policy. Therefore, there can be no such region R, and all regions with negative

cost are explored by agent 2.

So, agent 2 must explore Ot for the region defined by O1 < min(µt, µd), since it has

negative cost. So the region defined by max(O1,Ot) < min(µt, µd) is CUI for agent 3. Agent

3 can explore Od over this region, which has negative cost −c. Since Ot is not explored

over supp(O) before agent 4, some agent j > 3 must explore Ot for some realizations of

O1. Since now the IC condition for agent 3 is not tight, some region explored by agent j

can instead be explored by agent 3 (by making the region small enough, it will have cost
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less than c). This improves upon π, since Ot is explored no later under any realization,

and for some realizations it is explored by agent 3 instead of agent j > 3, contradicting

that π is optimal. Therefore, any optimal policy must introduce Od.

One way to think about the construction in the proof for how to improve upon a

policy by using a dummy, is that the dummy item is acting as insurance. Exploring

over that negative cost region corresponds to assuring agents that, in the case that the

realizations for O1 and Ot are especially poor, they can instead receive this new option.

The additional utility corresponding to having insurance for these realizations allows the

center to recommend that agents explore Ot earlier in other realizations.

One can also see how the idea behind this result could be generalized to cases when

there are more options initially, or when more than one dummy item can be added: So

long as a dummy isn’t the new best option ex-ante, introducing it won’t change the IC

condition. And, so long as there is some probability that all other options will be less than

the mean for a new dummy item, there will be a region for which the dummy will have

negative cost (act as insurance). Exploring the dummy over that negative cost region can

therefore be used to explore the target earlier for some realizations.

Lastly, suppose the center could choose the expectation of the dummy by translating its

distribution. Raising the expectation lowers the cost and increases the surplus for exploring

the dummy, and so allows for more exploration of Ot (i.e. it is better insurance). However,

once the expectation surpasses µ1, it ceases to act as insurance, since now it is the best

option ex-ante and will be explored first by agent 1. Increasing the expectation of the

dummy even more past µ1 raises the cost and lowers the surplus for exploring both Ot and

O1, without any corresponding benefit. This implies that if the center wants to introduce

a new option in order to improve their ability to gain information, they should aim to

introduce an option as good as the currently best option but no better.
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6.1 Future Work

The mechanisms designed in this paper are highly unlikely to be used as-is by any

recommender system in the real world. The IC condition implies that the optimal pol-

icy under one of these mechanisms should make an agent indifferent between using the

recommendation service, and abandoning it completely. Competition from other recom-

menders, the necessity to provide a good user experience, and a slew of other un-modeled

considerations make this solution impractical.

However, there is a strong possibility of effectively including mechanisms similar to these

in otherwise statistically-oriented recommender systems. Some options may be positioned

such that gaining information about their quality allows for a broad range of inferences

about other options. For example, if two clusters of movies are known to be internally

similar, but the relationship between the clusters is unknown, learning that a movie in one

cluster is similar to another movie in the other cluster could transitively imply similarities

between all movies in both clusters. If key unknown options of this form can be identified,

a mechanism design approach could be used to elicit specific information in a targeted

fashion.

There are many technical results presented here which can be improved or expanded
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upon. Characterizing those distributions which are both orderable and explored in order in

an optimal policy would greatly increase the applicability of the optimal policy in Chapter

4. Chapter 5 only demonstrates that introducing new options will be part of an optimal

policy for exploring a target option, and does not begin to fully define the optimal policy.

However, advancements in either of these directions are likely to be less impactful than

designing a protocol for incorporating the existing results into a realistic machine learning

style recommender.



Appendix A

Suppose, as in Kremer et al., that agents could choose any option even after hearing

the recommendation of the center. Then, in order for it to be in an agents interest to follow

the recommendation, the following must hold for all agents i and options j:

E(Oj |recij) ≥ max
k 6=j

(E(Ok|recij)) (ex-interim IC condition)

Intuitively, this means that after being recommended Oj , Oj must have the highest

expected value. The use of ‘ex-interim’ refers to the fact that it is IC for the agent after

having heard the recommendation, but before learning the realized value of the recom-

mended option.

This is no-weaker of a requirement than the ex-ante IC condition; it is trivial to demon-

strate that if a policy is ex-interim IC, then it is also ex-ante IC. In the special case where

there are exactly 2 options, as in Kremer et al., the two conditions are actually equivalent.

Theorem A.0.1. When there are exactly 2 options (N = 2), a recommendation policy is

ex-ante IC iff it is ex-interim IC.

Proof. Suppose a recommendation policy is ex-ante IC for some agent i. Then:

E(O1|reci1)P (reci1) + E(O2|reci2)P (reci2) ≥ E(O1)
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⇐⇒ E(O2|reci2) ≥
E(O1)− E(R1|reci1)P (reci1)

P (reci2)

⇐⇒ E(O2|reci2) ≥
E(O1|reci2)P (rec2)

P (reci2)

⇐⇒ E(O2|reci2) ≥ E(O1|reci2)

So, recommending O2 is ex-interim IC. It is also proven in Kremer et al. [2013] that

if recommending O2 is ex-interim IC for an agent, then so is recommending O1. For

completeness, I reproduce an equivalent proof below:

Theorem A.0.2. If N = 2 and recommending O2 to agent i is ex-interim IC, then rec-

ommending O1 to agent i is IC.

E(O2|reci1)P (reci1) + E(O2|reci2)P (reci2) = E(O2)

≤ E(O1) = E(O1|reci1)P (reci1) + E(O1|reci2)P (reci2)

≤ E(O1|reci1)P (reci1) + E(O2|reci2)P (reci2)

So, E(O2|reci1)P (reci1) ≤ E(O1|reci1)P (reci1), and E(O2|reci1) ≤ E(O1|reci1) as desired.



Appendix B

Let O1 ∼ Unif(0, 2), and O2,O3 ∼ Unif(0, 1)

Agent 1: agent 1 always explores O1 over supp(O). So, agent 1 explores O1 over

[0, 2]× [0, 1]× [0, 1].

Agent 2: S2 = 0, and since exploring in order, O2 is explored for layer 2. So, agent 2

explores O2 as much as possible for a total cost of 0. By ILG, this is exploring for O1 ≤ V

for some V . By Theorem 3.4.1, exploring for 0 ≤ O1 ≤ 1 has cost 0. So, agent 2 explores

O2 over [0, 1]× [0, 1]× [0, 1].

Agent 3: By Theorem 3.4.3, the highest gain-to-cost is for the lowest values of V ,

the maximum previously explored option. So, to satisfy ILG, no region in layer 2 can be

explored before all layer 3 regions are explored for V ≤ 1. So, agent 3 explores O3 for

[0, 1] × [0, 1] × [0, 1]. The opportunity cost for this region is exactly the surplus, and the

base cost is 0, so this uses the entire surplus exactly. So, no other region is explored.

At this point, there are no regions with positive gain remaining. So, whatever the

surplus is for agent 4, will be the surplus for all subsequent agents. So:

S4 = P (O1 ≤ 1)(E(max(O1,O2,O3)|O1 ≤ 1)− E(O1|O1 ≤ 1)) =
1

2
(
3

4
− 1

2
) =

1

8
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To calculate how many more agents are required, calculate the total cost for exploring

the rest of layer 2 followed by layer 3, and divide by 1
8 :

The total remaining cost for layer 2 of [1, 2]× [0, 1]× [0, 1] is:

P (O1 > 1)(E(O1|O1 > 1)− µ2) =
1

2
(
3

2
− 1

2
) =

1

2

The total remaining cost for layer 3 is the same, since max(O1,O2) = O2 over this

region. So, in the greedy policy, agents 4-7 explore the rest of layer 2, and agents 8-11

explore the rest of layer 3.
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