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Abstract 

Microbial fuel cells (MFCs), in which living microorganisms convert chemical energy into 

electricity, represent a potentially sustainable energy technology of the future. In this work, we 

report the single-bacterium level current measurements of Geobacter sulfurreducens DL-1 to 

elucidate the fundamental limits and factors determining maximum power output from a MFC. 

Quantized step-wise current output of 92(33) fA and 196(20) fA are generated from 

microelectrode arrays confined in isolated wells. Simultaneous cell imaging/tracking and current 

recording reveals that the current steps were directly correlated with the contact of one or two 

cells with the electrodes. This work establishes the amount of current generated by an individual 

Geobacter cell in the absence of a biofilm and highlights the potential upper limit of MFC 

performance for Geobacter in thin biofilms.  
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Introduction 

Microbial fuel cells (MFCs) are one of the most progressive alternative energy 

technologies of the future.1-7 The fundamental design behind MFCs has led to systems that can 

generate hydrogen8 or electricity directly from aquatic sediments.9 Electrochemically active 

bacteria (EAB), such as Shewanella and Geobacter, can transfer electrons from oxidative 

metabolism of organic sources to electrodes through reduced outer-membrane proteins or soluble 

redox mediators.2,10-12 While considerable progress has been made in improving MFC 

performance through the optimization of microbe selection13,14 and fuel cell design,7,15 the 

complex nature of biofilms in working MFCs has hindered a detailed understanding of charge 

transport at microbe/electrode and microbe/microbe interfaces.16-19 

Electron transfer from an EAB to an insoluble electron acceptor (i.e. electrode) can occur 

by either direct (cellular contact with surface or biofilm), mediated (soluble redox compounds 

such as flavins and/or quinones), or a combination of both mechanisms (secreted mediators in 

biofilms).20 Unlike the mediated electron transfer that occurs when studying Shewanella 

oneidensis MR-1,21 Geobacter sulfurreducens has only been associated with direct electron 

transfer mechanisms either through extracellular pilin decorated with cytochromes or the cell 

body itself.22.23 Several groups16,18 have actively been debating the mechanism of electron 

transfer by Geobacter after the publication of data suggesting that protein based pilin had 

metal-like conductivity24 and this metal-like conduction was due to secondary π-stacking of 

amino acids comprising the pilin itself.25  Most conductivity and gene expression experiments 

with Geobacter sp. are based on the formation of biofilms, which has led to a focus on 

conductivity of the exopolysaccharide matrix more than the amount of current generated from a 

single cell outside of a developed biofilm or community.26,27   
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To address these fundamental issues and to elucidate the intrinsic limits determining 

power extraction from Geobacter, this manuscript reports the first single-cell level 

electrochemical studies of G. sulfurreducens DL-1. Micro-/nano-electrode arrays have been 

demonstrated as a powerful tool for capacitance-based single-bacterium 

detection/measurement,28,29 and were recently explored as anodes in MFCs  to probe 

extracellular electron transfer in Shewanella species on a single-cell basis.30,31 Our previous work 

was one of the first measurements of current output from a single bacterium using fabricated 

nanoelectrodes.30 These nanostructured electrodes were designed to physically control the 

contact between a single bacterial cell and the metal electrode surface. However, the soluble 

mediators present in S. oneidensis cultures obstructed the quantitative characterization of the 

current output from individual microbes.  

This manuscript reports the first single cell measurement of current from G. 

sulfurreducens DL-1 using nanostructured electrodes. Quantized current outputs of 92(33) fA 

and 196(20) fA were generated from microelectrode arrays confined in isolated wells from the 

interaction of G. sulfurreducens DL-1 directly with the nanoelectrodes. This work establishes the 

amount of current generated by an individual Geobacter cell in the absence of a biofilm and 

highlights the potential upper limit of MFC performance for Geobacter in biofilms. 

 

Results 

Experimental design and device characterization. A new platform has been designed, 

developed and applied to probe single to multi-cellular charge transport from a model bacterial 

system known for extracellular electron transport, G. sulfurreducens DL-1. This bacterium does 
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not release soluble redox mediators2 and thus is a suitable candidate for single-cell 

electrochemical studies. An overview of the experimental approach (Fig. 1a) illustrates the 

optically transparent microelectrode arrays confined in separated wells, which allows localized 

current recordings from multiple electrodes with a controlled microenvironment. The chip 

fabrication was completed with a two-step photolithography process defining the array of 

transparent Ti/Au finger electrodes and SU-8 wells sequentially (see Methods). Tilted 

field-emission scanning electron microscopy (SEM) image highlights a 100 x 100 m2 well 

containing two parallel finger electrodes with 20 m interspacing (Fig. 1b). The height of SU-8 

wall, ~40 m, is larger than the biofilm thickness that can be formed during our measurement 

period, thus allowing only the cells confined within the well to be able to make substantial 

contribution to the local current generation. The exposed area for all electrodes from different 

wells was designed to be identical and was confirmed by cyclic voltammetry of a ferricyanide 

solution, which showed comparable steady state currents of ~1 nA (Fig. 1c). In contrast, the 

current recorded from a fully passivated control electrode is <0.1%, indicating minimal leakage 

from SU-8 layer (Fig. 1c). 

 

Investigation of single-cell current output. The G. sulfurreducens DL-1 cell culture and 

measurement were carried out under strict anaerobic conditions (Fig. 2) with acetate and 

fumarate concentrations monitored over time. In short, 0.1 mL of early stationary phase cultures 

were injected into the measurement chamber at ~4 min (indicated by purple arrow in Fig. 3a) 

after recording the stable baseline. To minimize the effect of external voltages and 

non-invasively probe the current output from individual cells, the short-circuit current was 

recorded at an acquisition rate of 10 Hz with a reference electrode/cathode (Ag/AgCl) grounded. 
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Multiplex recordings on four electrodes from two separated wells, well-1 and well-2, exhibit 

independent, stepwise current increases after ~2 hours (Fig. 3a). Each step consisted of two 

processes: an initiation by a fast-decaying peak, which might be attributed to the quick discharge 

of the cell membrane with accumulated electrons, followed by a stable plateau corresponding to 

sustained current output (Fig. 3b). Occurrences of these steps are not correlated between adjacent 

electrodes from the same well (Fig. 3b), indicating that (1) there is no cross-talk between 

electrodes, and (2) the measured signals are localized to individual electrodes at the initial stage. 

Control experiment with dead DL-1 cells or acetate-depleted DL-1 cells did not yield detectable 

current (Supplementary Figures S1a and b), which further demonstrates that the measured 

currents originate from cell metabolism vs interfacial impedance change.  

The amplitude distribution of the current steps recorded within the first 6.5 hours features 

two peaks at 92 (33) fA and 196 (20) fA (Fig. 4a, inset), which were consistent with single- 

and double-cell scenario, respectively. Furthermore, phase-contrast microscopy was used during 

the experiment to monitor the cell position change around the measured electrode during 

electrical recording. When a DL-1 cell approached and physically made contact with the 

electrode surface, the short-circuit current increased to ~82 fA (Fig. 4b), indicating that the 

observed current was directly correlated with cell and electrode interaction. The contact of a 

two-bacterium assembly with measured electrode, correspondingly, leads to a larger current step 

of ~185 fA (Fig. 4c), showing that the current amplitude was determined by the number of cells 

that were involved in the interaction. While every observed current step-up can be correlated 

with the cell-electrode interaction, it is worth mentioning that only ~30% of cell contact can 

translate into current output, which could be due to the requirement of optimal cell configuration 

for establishing electrical connection or the competition from residual fumarate as alternative 
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electron acceptors. These results represent the first unambiguous characterization of the amount 

of current generated by a single Geobacter cell and also demonstrated direct electron transfer as 

the dominant electron pathway at DL-1/electrode interface outside of a biofilm. 

 

 

Long-range charge transport studies. In order to use this technique to probe how much the 

current correlates with biofilm formation, the short-circuit current was measured over time. As 

expected, as more cells landed into the well, the current steadily increased (Fig. 5) while the 

measured open circuit voltage remained around 0.4 V vs. Ag/AgCl. The generation of current 

and cell distribution around measured electrodes was first monitored and analyzed before the 

formation of a cell monolayer (Fig. 5a). Unlike the incremental current increases recorded within 

the first 6 hours (Fig. 5a, t1-t3), a dramatic rise of current output was observed for both 

electrodes in well-1 at almost the same time when the cell density approaches close-packed (Fig. 

5a, t4). It is worth noting that the cell number change on measured electrodes from t3 to t4 

(approx. 7 to 10 for electrode-A and 6 to 8 for electrode-B) were negligible compared with >5 

fold increase of current output. These results conclude that this dramatic current increase does 

not originate from direct cell/electrode interaction. Instead, these data indicate a more intimate 

cell-cell contact which triggers intercellular electron transfer through membrane proteins. As a 

result, cells remote from the measured electrode were also able to contribute to the current 

generation through long-range charge transport, leading to a higher current level consistent with 

literature precedents using biofilms.16,18 
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Mechanism for electron transfer to electrodes. Several experiments were performed to 

confirm if the current generated by G. sulfureducens DL-1 was mediated by secreted soluble 

mediators in our system (Fig. 5b). First, the supernatant in the measurement chamber was 

carefully removed and replaced with fresh, N2/CO2 (80/20) purged medium after 70 hours. In 

contrast to the results from Shewanella oneidensis MR-1 which showed >95% decrease in 

current amplitude after removing the soluble mediators,30 the current retained >98% of original 

level in G. sulfurreducens DL-1, indicating that contributions from the mediated electron transfer 

process is negligible. Furthermore, after adding 0.1% glutaraldehyde as a biocide32 to the 

measurement chamber, current generation was completely quenched within 30 min, verifying 

that the short-circuit current we measured was associated with cellular metabolism rather than 

unknown electrochemical processes. 

We have further investigated the extracellular electron transfer using our first generation of 

nanoelectrodes, in which an array of nanoholes (200x400 nm) precludes or single window (6x10 

µm) allows for direct microbe/electrode contacts (Supplementary Figure S2).30 Despite the same 

exposed metal area between the two types of electrodes, current generation was only observed on 

the window electrode within the first 8 hours, indicating the importance of Geobacter/electrode 

contact at the initial stage. This result is also in direct contrast with our previous measurement 

with Shewanella oneidensis MR-1 cells, which gave almost identical current output between 

window and nanohole electrodes.30 At longer times, it is interesting to note that the nanohole 

electrode was also able to yield a current, albeit at a much smaller magnitude, which could be 

attributed to the ability of G. sulfurreducens to grow electrically conductive pili or excrete 

proteins to overcome the nanohole barrier.23-25  
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Discussion 

The complete mechanism of extracellular electron transport by EAB remains a matter of 

controversy and has raised growing discussion/debate in recent years.16,18,21,22 In this work, we 

observed for the first time the quantized, stepwise current production in a model system, G. 

sulfurreducens DL-1. DL-1 current output was directly correlated with single-cell/electrode 

contact through in-situ optical imaging. The amount of current generated per Geobacter cell is 

on the same order of magnitude as other estimates for Shewanella using time-dependent biofilm 

formation in a microbial fuel cell (80-200 fA/cell)33 or Shewanella precultured at +200mV vs. 

Ag/AgCl (200 fA/cell).31 The results from DL-1 differ significantly from our previous studies 

involving S. oneidensis MR-1 due to presence of soluble redox mediators which allowed for 

current generation independent of cell and electrode contact.30 Combined with experiments 

designed for studying electron transfer mechanisms after biofilm formation, these results 

unambiguously demonstrate that direct electron transfer was the dominant mechanism used by 

DL-1 cells. However, the use of the wild-type strain does not allow for the impact of residual 

exopolysaccharide matrix associated with single cells to be ascertained.  

 The results from these single cell measurements also represents a unique insight into 

electron transfer from Geobacter.  Biofilms (of various thickness) are typically formed on 

interdigitated electrodes and the long induction times to observe current from these systems has 

led researchers to conclude that electrode attachment is required for the expression of 

extracellular electron transfer proteins.26,27 However, our results suggests an entirely different 

mechanism where immediate attachment of Geobacter leads to a step-wise current increase study 

that require developed biofilms to be formed are observing electron transfer mediated by only 

bulk biofilm conductivity in addition to the impact of quorum sensing. Time dependent gene 
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transcription biofilm studies of early stage Geobacter biofilms on conductive and 

non-conductive supports would provide valuable data for this argument but is currently outside 

the scope of this work.  

The single-cell study of current generation and charge transport also enabled the 

estimation of the intrinsic limit of MFC current density, which could be simplified by dividing 

the single DL-1 current output with cell volume. This gave a value of ~106 A/m3 which was 2-3 

orders of magnitude higher than the best volumetric current density reported in working 

MFCs,34-36 and more than one order of magnitude higher than the value obtained from G. 

sulfurreducens DL-1 biofilm studies.37 The current experiments do not address potential 

stratification related to electron transfer as thicker biofilms are formed (>400 µm) but does 

present a compelling support for the theory that individual cells outside of a biofilm are 

unilaterally active while their inclusion in biofilms results in potential deactivation to sustain the 

bacteria in the biofilm.38 Although this estimation was very crude and could only serve as the 

upper bound limit, it does suggest that the low current density of state-of-the-art MFCs is not 

limited by the current generation capability of EAB, and there is substantial room for 

improvement through novel electrode architectures.  

 

Methods 
 

Growth of Geobacter sulfurreducens DL-1. DL-1 was grown from frozen 50% DMSO stocks 

(generated from cultures provided by D. Lovley, UMass Amherst) in sterile sealed tubes 

containing 10mL of freshwater media degassed with a N2/CO2 (80/20) gas mixture. 22,39 All 

transfers were performed in the 80/20 gas mix. Approximately 30 minutes ahead of inoculating 

of the media with Geobacter, 0.1 mL of a sealed L-cysteine solution (0.1 M) degassed with 
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nitrogen and sterilized via autoclave (15min, 121°C) was added to the media under the gas mix 

atmosphere. This step was essential since it was the partially decomposed cysteine used in this 

step that eliminated residual oxygen from the culture media.  This reduced form of cysteine also 

reacted with the fumarate as observed from the shift of the fumarate peak during HPLC analysis 

(data not shown). Without this preparation of cysteine, inoculation with the frozen stocks did not 

result in cellular growth. Cysteine was not detected after the 30 minutes by HPLC. Cells were 

grown with 10 mM acetate at 30°C. The first subculture after 48 hours of growth from the frozen 

stock was used for growth experiments as well as with inoculating the measurement chamber. 

No current was observed when cells were not present in the electrode system. 

Aliquots were removed periodically during each growth experiment for analysis by high 

performance liquid chromatography (HPLC; Varian, Inc.) with a refractive index detector. The 

mobile phase was a 5 mM sulfuric acid solution and the column was PL Hi-Plex H+ ion exchange 

column (60°C) at a flow rate of 0.6 mL/min. Variable concentration standards of acetate, lactate, 

and fumarate were calibrated using the HPLC method and for peak identification. The aliquots 

were centrifuged (3 min, 20,000 g, 22°C) to pellet the bacteria and insoluble particles.  

Following centrifugation, sample supernatants were syringe filtered with a 0.2-µm 

polytetrafluoroethylene (PTFE; Fisher Scientific) filter and stored at 4°C before analysis by 

HPLC. 

 

Freshwater medium formulation: In one liter of 18MΩ water the following components were 

mixed: 30 mM of sodium bicarbonate, 4.7 mM of ammonium chloride, 3.8 mM of sodium 

potassium monobasic, and 1.3 mM of potassium chloride. Additionally, 10 mL of both a stock 

Vitamin Solution40 and Mineral Solution41 were incorporated. 10 mM of sodium acetate and 40 
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mM of sodium fumarate were added as carbon sources. After proper mixing, the appropriate 

aliquots were gassed with 20.06% Carbon Dioxide balanced Nitrogen Mix (Airgas custom gas 

mixtures part #X02NI80C3003240) and anaerobically sealed, before autoclaving at 121˚C for 15 

minutes. 

 
 
Cell cultures for nanoelectrode measurements. Before inoculation of the measurement 

chamber, the culture media was contained in anaerobic pressure tubes with butyl rubber stoppers 

under an 80% N2-20% CO2 atmosphere and grown at 30°C for 48 hrs with approximately 

10-15mM fumarate remaining in the culture medium. OD600nm of the inoculating cultures were 

0.3-0.4 prior to adding 0.1 mL to the measurement chamber. The measurement chamber 

contained degassed 10 mM acetate in 0.9 mL freshwater medium. 

  

Chip fabrication. Glass substrates (50 x 22 mm, 0.17 mm thick; VWR) were cleaned in Piranha 

solution (3:1 concentrated sulfuric acid to 30% hydrogen peroxide) for 30 min, rinsed with 

deionized (DI) water (15s), acetone (15s), isopropanol (15s), and dried in N2 flow. A two-layer 

photoresist consisting of LOR3A and S1805 (Microchem) was sequentially deposited by 

spin-coating, and baked for 5 min at 185°C and 115 C respectively. The metal electrodes were 

defined by photolithography, followed by thermal evaporation of 2 nm Ti and 8 nm Au. Each 

glass chip has 32 finger electrodes (2 m wide) defined at the chip center with fan out wiring to 

I/O points at the two ends of the chip. The finger electrodes were arranged in 16 groups of 2 

parallel electrodes that are 20 m apart, and the distance between adjacent groups is 250 m. 

After lift-off, a ~40 m thick SU-8 layer was uniformly deposited and pre-baked at 95 C for 30 

min. Photolithography was then used to define different sized wells around the finger electrode 
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tips. The positions of wells were precisely controlled so that all electrodes exposed the same 

metal area of 24 m2. After post-baking at 60 C for 2 hours and development, the chip was 

hard-baked at 180 C for 30 min. Finally, organic residues were removed from the electrodes by 

UV ozone treatment for 2 min at 200 C.  

 

Electrochemical measurements. All measurements were carried out in a two-electrode 

configuration because of the small current levels,42,43 with Ag/AgCl as both cathode and 

reference electrode. The millimeter-scale Ag/AgCl electrode has 5-6 orders of magnitude larger 

surface area than the anodes (microelectrodes), so would not be the limiting factor even in 

long-term experiments. The current at the working electrode was detected using a current 

preamplifier (1211; DL Instruments, Inc.) with a gain of 109-1011 V/A. The amplified signals 

were digitized using a multichannel A/D converter (Digidata 1440A; Molecular Devices). The 

Digidata 1440A was also used to apply potentials during cyclic voltammetry measurements, with 

a typical sweep rate of 10 mV/s. The whole electrochemical cell was housed in a Faraday cage, 

yielding a noise level of < 40 fA. All experiments were performed with more than 20 

independent measurements across 5 different devices.   

 

Cell measurements and in-situ optical imaging. The short-circuit current was recorded at an 

acquisition rate of 10 Hz with reference/cathode electrode grounded. A polydimethylsiloxane 

(PDMS) housing was incorporated to the outside of inner measurement chamber, allowing for 

continuous or batch solution exchange, and control of anaerobic atmosphere by continuously 

flowing 20 sccm N2/CO2 (80/20) gas mixture during measurement (Supplementary Figure S3). 
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In-situ optical imaging was carried out with an inverted phase-contrast microscope (IX71; 

Olympus Inc.) and 100X oil-immersion lens. A 518.5-699.5 nm bandpass filter (FF01-609/181; 

Semrock) was applied after the lamp house to block UV and IR light that are known to be 

hazardous to cells in long-term recording. 

 

Experimental detail for control experiments in Figure 5c: For the flush experiment, the 

supernatant in measurement chamber was carefully removed with a syringe, and then 1 mL 

N2/CO2 (80/20) purged media was added to the chamber. The process was repeated twice to 

insure removal of all possible mediators in the measurement chamber. For the biocide 

experiment, 0.1 mL 1% glutaraldehyde was injected into the measurement chamber (containing 

~1 mL solution), leading to final glutaraldehyde concentration of ~0.1% with minimal dilution of 

other species. 

 

Estimation of single-Geobacter current density. In this calculation, the space of other 

components of the MFC (anode, cathode, electrolyte, etc.) were ignored and only the volume of 

a single bacterial cell was considered, which was ~10-19 m3 based on a cylindrical model with 

300-nm diameter and 1.5-m height. The current output per Geobacter cell, according to Fig. 4a, 

was 92(33) fA. As a result, the intrinsic limit of current density for Geobacter DL-1 cells was 

estimated to be on the order of 106 A/m3. Similarly, the volumetric current density in G. 

sulfurreducens DL-1 biofilm studies37 was approximated by dividing the projected-area based 

current density (3.5 A/m2) with biofilm thickness (50 m), which gives the value of 7 x 104 

A/m3. 
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Figure legends 

Figure 1 Design and characterization of nanoelectrode chip. (a) Schematic of experimental 

design. Transparent electrode array was fabricated on 0.17mm glass slide. SU-8 wells were 

sequentially defined on top with photolithography. Each well contained two parallel electrodes 

with precisely controlled position, interspacing and exposed area. (b) Tilted-view SEM image of 

a 100 x 100 m2 well containing two finger electrodes (electrode A and B) with 20 m 

interspacing. The exposed area for each electrode is 24 m2, and thickness of the SU-8 wall is 40 

m. Scale bar, 20 m. (c) Cyclic voltammetry measurement of four finger electrodes from two 

separated wells (electrode-A,B from well-1: red, blue; electrode-A,B from well-2: black, green) 

and full SU-8 passivation (purple) in 1 mM ferricyanide solution.  

 

Figure 2 Growth characteristics and carbon cycle for Geobacter sulfurreducens DL-1. 

Growth of the inoculating culture was characterized using optical density at 600 nm with 

simultaneous measurement of acetate and fumarate concentration by HPLC. The growth phase 

was important to allow for reproducible results during replicate single cell measurements. 

Cultures were utilized at early stationary phase which was approximately 40 hours after 

inoculation and 10 hours prior to complete acetate consumption.  



 22

 

 

Figure 3 Multiplex current recording at early stage of cell landing. (a) Short-circuit current 

recording on four selected electrodes that were characterized in Fig. 1c. The purple arrow 

indicates the injection of DL-1 cells into the measurement chamber. The red, blue, black and 

green arrows mark the occurrence of the first current step on each electrode. (b) Zoomed view of 

the current steps marked in Fig. 2a. For comparison, the data from adjacent electrode in the same 

well are also plotted together.  

 

Figure 4 Detailed analysis of the stepwise current increases. (a) Short-circuit current data 

from electrode-A from well-1 within the first 6.5 hours. The arrows indicate the steps analyzed 

in Fig. 3b and 3c. Inset: statistic analysis of the amplitude distribution of the current steps in Fig. 

3a. (b and c) Evolution of in-situ phase-contrast images of DL-1 cells on and around the 

measured electrode when a 82 fA (b) and 185 fA step (c) occurs, respectively. The current 

changes recorded at the same time are also included, and the cells that contact electrode 

concurrently with these current increases are marked in red.  

 

Figure 5 Charge transport studies at longer times. (a) Short-circuit current recording from 

electrode-A (red) and B (blue) in well-1 and correspondent monolayer cell density at 1 (t1), 3 

(t2), 5.5 (t3) and 8 hours (t4) after cell injection. (b) Phase-contrast optical images of cells 

around measured electrodes at t1-t4. Scale bar, 20 m. (c) Short-circuit current recording at > 60 

hrs for electron transfer mechanism experiments. The cyan and purple arrows indicate flush by 

fresh media and biocide addition, respectively.  
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Supplementary Figures 
 

 

 

Figure S1⏐ Control experiments for using Geobacter in the nanoelectrode system. 

Short-circuit current recording on microelectrode when dead G. sulfurreducens DL-1 cells (a) or 

DL-1 cells without acetate (b) were injected into the measurement chamber. The G. 

sulfurreducens DL-1 cells were killed by autoclaving at 121 °C for 20 min. In order to remove 

the remaining acetate in culture solution, the culture tube was centrifuged to remove supernatant 

and washed twice with degased media without acetate. The black, red and blue arrows indicate 

the addition of dead DL-1 cells, DL-1 cells without acetate, and 10 mM degased acetate solution, 

respectively. 
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Figure S2⏐ Characterization of nanoelectrodes and experimental setup. Short-circuit current 

measurement on our first generation of nanostructured electrodes.30 In short, photolithography 

and thermal evaporation were used to fabricate the array of transparent Ti/Au finger electrodes, 

and then plasma-enhanced chemical vapor deposition was used to deposit a 400nm-thick silicon 

nitride passivation layer, and electron-beam lithography was used to define either nanoholes 

(200nm x 400nm) or windows (6µm x 10 µm) at alternating electrodes in the array. We designed 

the openings such that nanoholes and window exposed the same electrode area, 12 μm2, to 

solution. (a) The schematic of electrode design. (b) SEM image of the window and nanohole 

electrodes. Scale car, 5 μm. (c) Cyclic voltammetry measurement of window (blue) and hole (red) 

electrodes in 1 mM ferricyanide solution. (d) Short-circuit current recording on window and hole 

electrodes after injection of G. sulfurreducens DL-1 cells. 
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Figure S3⏐ Schematic of chip design. Transparent electrode array was fabricated on 0.17mm 

glass slide, enabling simultaneous current recording and optical imaging of cells on electrodes. 

The inner measurement chamber was mounted to the center of substrate using silicone glue 

(World Precision Instruments Inc.). A PDMS housing was attached and sealed to the outside of 

inner chamber, allowing for continuous or batch solution exchange, and control of anaerobic 

atmosphere by continuously flowing 20 sccm N2/CO2 (80/20) gas mixture during measurement. 

 

 

 
 


