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Recent work has constructed economic mechanisms that are both truthful and differentially private. In these mechanisms,
privacy is treated separately from the truthfulness; it is not incorporated in players’ utility functions (and doing so has been
shown to lead to non-truthfulness in some cases). In this work, we propose a new, general way of modelling privacy in
players’ utility functions. Specifically, we only assume that if an outcome o has the property that any report of player i would
have led to o with approximately the same probability, then o has small privacy cost to player i. We give three mechanisms
that are truthful with respect to our modelling of privacy: for an election between two candidates, for a discrete version of
the facility location problem, and for a general social choice problem with discrete utilities (via a VCG-like mechanism). As
the number n of players increases, the social welfare achieved by our mechanisms approaches optimal (as a fraction of n).

Categories and Subject Descriptors: F.0 [Theory of Computation]: General; J.4 [Social and Behavioral Sciences]: Eco-
nomics

General Terms: Theory, Economics

Additional Key Words and Phrases: Mechanism design, privacy, differential privacy

1. INTRODUCTION

In this paper, we examine the interaction between mechanism design and differential privacy. In
particular, we explicitly model privacy in players’ utility functions and design truthful mechanisms
with respect to it. Our work is motivated by considerations in both fields.

In mechanism design, it has long been recognized that players may not behave as predicted by
traditional incentives analysis out of concerns for privacy: in addition to having preferences about
the outcome of a mechanism (e.g., who wins an auction, or where a hospital is located), they may
also be concerned about what others learn about their private information (e.g., how much they
value the auctioned good, or whether they have some medical condition that makes them care more
about the hospital’s location). The latter concerns are not modelled in most works on mechanism
design, and it is natural to try to bring the new models and techniques of differential privacy to bear
on them.

Differential privacy [Dwork et al. 2006] is a notion developed to capture privacy when perform-
ing statistical analyses of databases. Informally, a randomized algorithm is differentially private if
changing a single individual’s data does not “substantially” change the output distribution of the
algorithm. Thus, differential privacy is not an absolute notion, but rather a quantitative one that
needs to be weighed against other objectives. Indeed, differentially private algorithms typically of-
fer a tradeoff between the level of privacy offered to individuals in a database and the accuracy of
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statistics computed on the database, which we can think of as a “global” objective to be optimized.
However, it is also of interest to consider how privacy should be weighed against the objectives of
the individuals themselves. Mechanism design provides a natural setting in which to consider such
tradeoffs. Attempting to model and reason about privacy in the context of mechanism design seems
likely to lead to an improved understanding about the meaning and value of privacy.

1.1. Previous Work

The first work bringing together differential privacy and mechanism design was by McSherry and
Talwar [2007]. They showed how to use differential privacy as a tool for mechanism design. By
definition, differentially private algorithms are insensitive to individuals’ inputs; a change in a sin-
gle individual’s input has only a small effect on the output distribution of the algorithm. Thus, if a
mechanism is differentially private (and players have bounded utility functions), it immediately fol-
lows that the mechanism is approximately truthful. That is, reporting untruthfully can only provide a
small gain in a player’s utility. With this observation, McSherry and Talwar showed how tools from
differential privacy allow construction of approximately truthful mechanisms for many problems,
including ones where exact truthfulness is impossible.

However, as pointed out by Nissim et al. [2012b], the approximate truthfulness achieved by Mc-
Sherry and Talwar [2007] may not be a satisfactory solution concept. While differential privacy can
guarantee that a player will gain arbitrarily little by lying, it also makes the potential gain from
telling the truth equally small. Thus players may choose to lie in order to protect their privacy. Even
worse, as shown by an example in Nissim et al. [2012b], in some cases misreporting is a dominant
strategy of the game. Thus, it is difficult to predict the outcome and “global” objectives such as so-
cial welfare of differentially private mechanisms. Motivated by this, Nissim et al. [2012b] show how
to modify some of the mechanisms of McSherry and Talwar [2007] to provide exact truthfulness. To
do so, however, they sacrifice differential privacy and/or augment the standard mechanism design
framework so that the mechanism can restrict the way in which players can take advantage of the
selected outcome.

A recent paper by Xiao [2011, 2013] shows how to remedy this deficiency and construct mech-
anisms that simultaneously achieve exact truthfulness and differential privacy. Xiao’s paper also
points out that even this combination may not be sufficient for getting players that value privacy to
report truthfully. Indeed, exact truthfulness only means that a player weakly prefers to tell the truth.
Lying might not reduce the player’s utility at all (and differential privacy implies that it can only
reduce the player’s utility by at most a small amount). On the other hand, differential privacy does
not guarantee “perfect” privacy protection, so it is possible that a player’s concern for privacy may
still outweigh the small or zero benefit from being truthful.

To address this, Xiao advocated incorporating privacy directly into the players’ utility functions,
and seeking mechanisms that are truthful when taking the combined utilities into account. He pro-
posed to measure privacy cost as the the mutual information between a player’s type (assumed to
come from some prior distribution) and the outcome of the mechanism.1 Using this measure, he
showed that his mechanism does not remain truthful when incorporating privacy into the utility
functions, and left as an open problem to construct mechanisms that do. The difficulty is that we can
only incentivize truthfulness by giving players an influence on the outcome, but such an influence
also leads to privacy costs, which may incentivize lying. Reconciling this tension requires finding
models and mechanisms where the privacy costs can be shown to be quantitatively dominated by
the outcome-utility benefits of truthfulness.

1.2. Our Contributions

In this paper, we propose a new, more general way of modelling privacy in players’ utility functions.
Unlike Xiao’s mutual information measure, our model does not require assuming a prior on players’

1The mutual information measure is from the original version of Xiao’s paper [Xiao 2011]. Subsequent to our work, he has
revised his model to use a different, prior-free measure of privacy [Xiao 2013].
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types, and is instead a pointwise model: we simply assume that if an outcome o has the property
that any report of player i would have led to o with approximately the same probability, then o has
small privacy cost to player i. One motivation for this assumption is that such an outcome o will
induce only a small change in a Bayesian adversary’s beliefs about player i (conditioned on the
other players’ reports). (This is inspired by a Bayesian interpretation of differential privacy, due to
Dwork and McSherry and described in Kasiviswanathan and Smith [2008].) While Xiao’s mutual
information measure is not strictly a special case of our model, we show (in the appendix2) that
truthfulness with respect to our modelling implies truthfulness with respect to Xiao’s.

With this modelling, we show that it is possible to construct mechanisms where the privacy costs
are dominated by the outcome-utility benefits of truthfulness. Specifically, we give three mecha-
nisms that are truthful with respect to our model of privacy: one for an election between two candi-
dates, one for a discrete version of the facility location problem, and one for general social choice
problems with discrete utilities (via a VCG-like mechanism). As the number n of players increases,
the social welfare achieved by our mechanisms approaches optimal (as a fraction of n).

To illustrate our ideas, consider an election between two candidates, where each player has a
noticeable preference for one candidate over the other (but this preference could potentially be
outweighed by privacy concerns). To carry out such an election in a differentially private way, we can
use a noisy majority vote. That is, we take a majority rule after adding random noise of magnitude
O(1/ε), where ε is the “differential privacy parameter” that bounds the influence of each player’s
vote on the outcome. Now, as we reduce ε, we also reduce the privacy costs experienced by each
player (according to our model). However, simply bounding the overall privacy cost by a function
of ε does not suffice to argue truthfulness of the election mechanism. Indeed, consider a highly
skewed election, where 2/3 of the voters prefer the first candidate. Then the chance that any single
player’s vote affects the outcome is exponentially small in εn, where n is the number of voters. If
the player’s overall privacy cost can be as large as ε, then we would need to set ε very small (namely
Õ(1/n)) and hence add a very large amount of noise (sacrificing social welfare) in order to achieve
truthfulness. However, we argue that the overall privacy cost of being truthful in a skewed election
should also be exponentially small. Indeed, for most settings of the random noise, a player cannot
affect the outcome by misreporting, so the privacy cost experienced by the player should be the same
regardless of whether the player reported truthfully or not. For the remaining settings of the random
noise, in which the player can affect the outcome, reporting truthfully provides the player with
a noticeable gain in outcome utility, whereas the privacy costs are bounded by a function of ε and
hence can be made arbitrarily small. Put differently, the expected change in privacy cost experienced
by a player that changes her report is bounded by ε times the probability that the outcome changes
(which is always at most O(ε), but can be much smaller, as in the case of a skewed election). This
analysis crucially uses the fact that we adopt a per-outcome model of privacy, and can be viewed
as a generalization of the result of Dwork et al. [2010] showing that every ε-differentially private
mechanism actually has expected privacy loss O(ε2).

Our mechanism for discrete facility location is inspired by Xiao’s mechanism [Xiao 2013] (which
he shows to be differentially private and truthful if we don’t incorporate privacy into the utility func-
tions), but with some variation in order to be apply an analysis like the above. For both the election
and facility location mechanisms, an analysis like the one sketched above establishes universal
truthfulness—truthfulness for every choice of the mechanism’s random coins. For our VCG-like
mechanism for general social choice problems, we need to work a bit harder to also ensure that the
payments requested do not compromise privacy, and this leads us to only achieve truthfulness in
expectation.

Unlike previous works, we do not treat differential privacy as an end in itself but rather as a means
to incentivize truthfulness from agents that value privacy. Thus, we do not necessarily need to set
the differential privacy parameter ε to be very small (corresponding to very high privacy, but a larger
price in social welfare); we only need to set it small enough so that the privacy costs are outweighed

2An appendix with omitted proofs and analyses appears in the version of this paper available on the authors websites.
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by the agents’ preferences for outcomes. Specifically, our analysis shows that as we decrease ε,
agents’ ability to affect the outcome falls, but their expected privacy cost falls even faster. Thus, it
is natural to conclude (as we do) that there is some value of ε (which may be large if the agents
care much more about the outcome than their privacy) at which the privacy cost is small enough
relative to the benefit that agents are willing to report truthfully. Moreover, by taking agents’ value
for privacy into account in the incentives analysis, we can have greater confidence that the agents
will actually report truthfully and achieve the approximately optimal social welfare our analysis
predicts.

The appropriate setting of ε depends on agents’ relative valuation of privacy versus the outcomes,
and needs to be determined exogenously to apply our mechanisms. Eliciting agents’ values for
privacy is an orthogonal problem to the one we consider, and is the subject of a different line of work,
starting with Ghosh and Roth [2011] (discussed more in the next section). Since we use a dominant-
strategy solution concept, it is not disastrous if our assumption about the privacy valuations (and
hence our setting of ε) is incorrect for some of the agents; the other agents will still have an incentive
to report truthfully.

1.3. Other Related Work

Independently of our work, Nissim et al. [2012a] have considered a related way of modelling privacy
in players’ utilities and constructed truthful mechanisms under their model. They assume that if all
outcomes o have the property that no player’s report affects the probability of o much (i.e., the
mechanism is differentially private), then the overall privacy cost of the mechanism is small for
every player. This is weaker than our assumption, which requires an analogous bound on the privacy
cost for each specific outcome o. Indeed, Nissim et al. [2012a] do not consider a per-outcome model
of privacy, and thus do not obtain a reduced privacy cost when a player has a very low probability
of affecting the outcome (e.g., a highly skewed election). However, they require assumptions that
give the mechanism an ability to reward players for truthfulness (through their concept of “agents’
reactions,” which can be restricted by the mechanism). For example, in the case of an election or poll
between two choices (also considered in their paper), they require that a player directly benefits from
reporting their true choice (e.g., in a poll to determine which of two magazines is more popular, a
player will receive a copy of whichever magazine she votes for, providing her with positive utility at
no privacy cost), whereas we consider a more standard election where the players only receive utility
for their preferred candidate winning (minus any costs due to privacy). In general, we consider the
standard mechanism design setting where truthfulness is only rewarded through the public outcome
(and possibly payments), and this brings out the central tension discussed earlier: we can only
incentivize truthfulness by giving players an influence on the outcome, but such an influence also
leads to privacy costs, which may incentivize lying.

Another recent paper that considers a combination of differential privacy and mechanism design
is that of Ghosh and Roth [2011]. They consider a setting where each player has some private infor-
mation and some value for its privacy (measured in a way related to differential privacy). The goal is
to design a mechanism for a data analyst to compute a statistic of the players’ private information as
accurately as possible, by purchasing data from many players and then performing a differentially
private computation. In their model, players may lie about their value for privacy, but they cannot
provide false data to the analyst. So they design mechanisms that get players to truthfully report
their value for privacy. In contrast, we consider settings where players may lie about their data (their
private types), but where they have a direct interest in the outcome of the mechanism, which we use
to outweigh their value for privacy (so we do not need to explicitly elicit their value for privacy).

Subsequent to our work, Huang and Kannan [2012] examined the properties of the exponential
mechanism [McSherry and Talwar 2007], which can be thought of as noisy version of VCG that is
slightly different from the one we study. They showed that, with appropriate payments, this mech-
anism is truthful, individually rational, approximately efficient, and differentially private, but their
model does not incorporate privacy costs into players’ utility functions.
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We remark that there have also been a number of works that consider secure-computation-like
notions of privacy for mechanism design problems (see Naor et al. [1999], Dodis et al. [2000],
Izmalkov et al. [2005], Parkes et al. [2008], and Feigenbaum et al. [2010] for some examples). In
these works, the goal is to ensure that a distributed implementation of a mechanism does not leak
much more information than a centralized implementation by a trusted third party In our setting,
we assume we have a trusted third party to implement the mechanism and are concerned with the
information leaked by the outcome itself.

2. BACKGROUND ON MECHANISM DESIGN

In this section, we introduce the standard framework of mechanism design to lay the ground for
modelling privacy in the context of mechanism design in next section. We use a running exam-
ple of an election between two candidates. A (deterministic) mechanism is given by the following
components:
• A number n of players. These might be voters in an election between two candidates A and B.
• A set Θ of player types. In the election example, we take Θ = {A, B}, where θi ∈ Θ indicates

which of the two candidates is preferred by voter i ∈ [n].
• A set O of outcomes. In the election example, we take O = {A, B}, where the outcome indicates

which of the two candidates win. (Note that we do not include the tally of the vote as part of the
outcome. This turns out to be significant for privacy.)

• Players’ action spaces Xi for all i ∈ [n]. In general, a player’s action space can be different from
his type space. However, in this paper we view the types in Θ to be values that we expect players
to know and report. Hence, we require Xi = Θ for all i ∈ [n] (i.e., we restrict to direct revelation
mechanisms, which is without loss of generality). In the election example, the action of a player
is to vote for A or for B.

• An outcome functionM : X1×· · ·×Xn → O that determines an outcome given players’ actions.
Since we require Xi = Θ, the outcome function becomesM : Θn → O. For example, a majority
voting mechanism’s function maps votes to the candidate who received a majority of votes.

• Player-specific utility functions Ui : Θ × O→ R for i = 1, . . . , n, giving the utility of player i as
a function of his type and the outcome.

To simplify notation, we use a mechanism’s outcome function to represent the mechanism. That
is, a mechanism is denoted M : Θn → O. The goal of mechanism design is then to design a
mechanism M : Θn → O that takes players’ (reported) types and selects an outcome so as to
maximize some global objective function (e.g. the sum of the players’ utilities, known as social
welfare) even when players may falsely report their type in order to increase their personal util-
ity. The possibility of players’ misreporting is typically handled by designing mechanisms that are
incentive-compatible, i.e., it is in each player’s interest to report their type honestly. A strong for-
mulation of incentive compatibility is the notion of truthfulness (a.k.a. dominant-strategy incentive
compatibility): for all players i, all types θi ∈ Θ, all alternative reports θ′i ∈ Θ, and all profiles θ−i of
the other players’ reports3, we have:

Ui(θi,M(θi, θ−i)) ≥ Ui(θi,M(θ′i , θ−i)). (1)

If Inequality (1) holds for player i (but not necessarily all players), we say that the mechanism
is truthful for player i. Note that we are using θ−i here as both the type and the report of other
players. Since truthfulness must hold for all possible reports of other players, it is without loss of
generality to assume that other players report their true type. This is in contrast to the notion of a
Nash equilibrium which refers to the incentives of player i under the assumption that other players
are using equilibrium strategies.

3We adopt the standard game-theory convention that θ−i refers to all components of the vector θ except the one corresponding
to player i, and that (θi, θ−i) denotes the vector obtained by putting θi in the i’th component and using θ−i for the rest.



Proceedings Article

In the election example, it is easy to see that standard majority voting is a truthful mechanism.
Changing one’s vote to a less-preferred candidate can never increase one’s utility (it either does not
affect the outcome, or does so in a way that results in lower utility).

In this paper, we will allow randomized mechanisms, which we define as M : Θn × R → O,
where R is the probability space from which the mechanism makes its random choices (e.g., all
possible sequences of coin tosses used by the mechanism). We write M(θ) to denote the random
variable obtained by sampling r from R and evaluatingM(θ; r). This (non-standard) definition of a
randomized mechanism is equivalent to the standard one (where the mechanism is a function from
reported types to a distribution over outcomes) and makes our analysis clearer.

For randomized mechanisms, one natural generalization of truthfulness is truthfulness in expec-
tation: for all players i, all types θi, all utility functions Ui, all reports θ′i , and all profiles θ−i of the
other players’ reports, we have:

E[Ui(θi,M(θi, θ−i))] ≥ E[Ui(θi,M(θ′i , θ−i))],

where the expectation is taken over the random choices of the mechanism.
A stronger notion is that of universal truthfulness: for all players i, all types θi and utility functions

Ui, all alternative reports θ′i , and all profiles θ−i of the other players’ reports, and all r ∈ R, we have:

Ui(θi,M(θi, θ−i; r)) ≥ Ui(θi,M(θ′i , θ−i; r)).

Thus M being universally truthful is equivalent to saying that for every r ∈ R, M(·; r) is a deter-
ministic truthful mechanism.

3. MODELLING PRIVACY IN MECHANISM DESIGN

The standard framework of mechanism design does not consider a player’s value of privacy. In
this section, we incorporate privacy into mechanism design and adapt the definitions of truthfulness
accordingly. We continue considering the basic mechanism-design setting from Section 2. However,
players now care not only about the outcome of the mechanism, but also what that outcome reveals
about their private types. Thus, a player’s utility becomes

Ui = Uout
i + U priv

i , (2)

where Uout
i : Θ×O→ R is player i’s utility for the outcome and U priv

i is player i’s utility associated
with privacy or information leakage. Before discussing the form of U priv (i.e., what are its inputs),
we note that in Equation (2), there is already an implicit assumption that privacy can be measured in
units that can be linearly traded with other forms of utility. A more general formulation would allow
Ui to be an arbitrary monotone function of Uout

i and U priv
i , but we make the standard quasi-linearity

assumption for simplicity.
Now, we turn to functional form of U priv

i . First, we note that U priv
i should not just be a function

of player i’s type and the outcome. What matters is the functional relationship between player i’s
reported type and the outcome. For example, a voting mechanism that ignores player i’s vote should
have zero privacy cost to player i, but one that uses player i’s vote to entirely determine the outcome
may have a large privacy cost. So we will allow U priv

i to depend on the mechanism itself, as well
as the reports of other players, since these are what determine the functional relationship between
player i’s report and the outcome:

U priv
i : Θ × O × {M : Θn × R → O} × Θn−1 → R. (3)

Thus, when the reports of the n players are θ′ ∈ Θn and the outcome is o, the utility of player i is

Ui(θi, o,M, θ′−i) = Uout
i (θi, o) + U priv

i (θi, o,M, θ′−i).

In particular, Ui has the same inputs as U priv above, including M. Unlike standard mechanism
design, we are not given fixed utility functions and then need to design a mechanism with respect to
those utility functions. Our choice of mechanism affects the utility functions too!
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Note that we do not assume that U priv
i is always negative (in contrast to Xiao [2011]). In some

cases, players may prefer for information about them to be kept secret and in other cases they may
prefer for it to be leaked (e.g., in case it is flattering). Thus, U priv

i may be better thought of as
“informational utility” rather than a “privacy cost”.

It is significant that we do not allow the U priv
i to depend on the report or, more generally, the

strategy of player i. This is again in contrast to Xiao’s modelling of privacy [Xiao 2011]. We will
discuss the motivation for our choice in Section 8, and also show (in the appendix) that despite this
difference, truthfulness with respect to our modelling implies truthfulness with respect to Xiao’s
modelling.

Clearly no mechanism design would be possible if we make no further assumptions about the
U priv

i ’s and allow them to be arbitrary, unknown functions (as their behavior could completely cancel
the Uout

i ’s). Thus, we will make the natural assumption that U priv
i is small if player i’s report has little

influence on the outcome o. More precisely:

Assumption 3.1 (privacy-value assumption). ∀θ ∈ Θn, o ∈ O,M :∣∣∣∣U priv
i (θi, o,M, θ−i)

∣∣∣∣ ≤ Fi

 max
θ′i ,θ

′′
i ∈Θ

Pr
[
M(θ′i , θ−i) = o

]
Pr

[
M(θ′′i , θ−i) = o

]  ,
where Fi : [1,∞) → [0,∞] is a privacy-bound function with the property that Fi(x) → 0 as x → 1,
and the probabilities are taken over the random choices ofM.

If the mechanism ignores player i’s report, the right-hand side of (3.1) is Fi(1), which naturally
corresponds to a privacy cost of 0. Thus, we are assuming that the privacy costs satisfy a conti-
nuity condition as the mechanism’s dependence on player i’s report decreases. The privacy-bound
function Fi could be the same for all players, but we allow it to depend on the player for generality.

Assumption (3.1) is inspired by the notion of differential privacy, which is due to Dinur and
Nissim [2003], Dwork and Nissim [2004], Blum et al. [2005], and Dwork et al. [2006]. We restate
it in our notation:

Definition 3.2. A mechanismM : Θn × R → O is ε-differentially private iff

∀θ−i ∈ Θn−1, o ∈ O max
θ′i ,θ

′′
i ∈Θ

Pr
[
M(θ′i , θ−i) = o

]
Pr

[
M(θ′′i , θ−i) = o

] ≤ eε .

By inspection of Assumption (3.1) and Definition 3.2, we have the following result.

Proposition 3.3. If M is ε-differentially private, then for all players i whose utility functions
satisfy Assumption (3.1), all θ−i ∈ Θn−1, and o ∈ O, we have

∣∣∣∣U priv
i (θi, o,M, θ−i)

∣∣∣∣ ≤ Fi(eε).

In particular, as we take ε → 0, the privacy cost of any given outcome tends to 0.
Like differential privacy, Assumption (3.1) makes sense only for randomized mechanisms, and

only measures the loss in privacy contributed by Player i’s report when fixing the reports of the
other players. In some cases, it may be that the other players’ reports already reveal a lot of in-
formation about player i. See Section 8 for further discussion, interpretation, and critiques of our
modelling. With this model, the definitions of truthfulness with privacy are direct analogues of the
basic definitions given earlier.

Definition 3.4 (Truthfulness with Privacy). Consider a mechanism design problem with n play-
ers, type space Θ, and outcome space O. For a player i with utility function Ui = Uout

i + U priv
i , we

say that a randomized mechanism M : Θn × R → O is truthful in expectation for player i if for
all types θi ∈ Θi, all alternative reports θ′i ∈ Θ for player i, and all possible profiles θ−i of the other
players’ reports, we have:

E[Ui(θi,M(θi, θ−i),M, θ−i)] ≥ E[Ui(θi,M(θ′i , θ−i),M, θ−i)].
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We say thatM is universally truthful for player i if the inequality further holds for all r ∈ R:

Ui(θi,M(θi, θ−i; r),M, θ−i) ≥ Ui(θi,M(θ′i , θ−i; r),M, θ−i).

Unlike in standard settings,M being universally truthful does not mean that the deterministic mech-
anisms M(·; r) are truthful. Indeed, even when we fix r, the privacy utility U priv

i (θ, o,M, θ−i) still
depends on the original randomized functionM, and the privacy properties ofM would be lost if
we publicly revealed r. What universal truthfulness means is that player i would still want to report
truthfully even if she knew r but it were kept secret from the rest of the world.

4. PRIVATE TWO-CANDIDATE ELECTIONS

Using Proposition 3.3, we will sometimes be able to obtain truthful mechanisms taking privacy
into account by applying tools from differential privacy to mechanisms that are already truthful
when ignoring privacy. In this section, we give an illustration of this approach in our example of a
two-candidate election.

Mechanism 4.1. Differentially private election mechanism
Input: profile θ ∈ {A, B}n of votes, privacy parameter ε > 0.

(1) Choose r ∈ Z from a discrete Laplace distribution, namely Pr[r = k] ∝ exp(−ε|k|).
(2) If #{i : θi = A} − #{i : θi = B} ≥ r, output A. Otherwise output B.

We show that for sufficiently small ε, this mechanism is truthful for players satisfying Assump-
tion 3.1:

Theorem 4.2. Mechanism 4.1 is universally truthful for player i provided that, for some function
Fi:

(1) Player i’s privacy utility U priv
i satisfies Assumption 3.1 with privacy bound function Fi, and

(2) Uout
i (θi, θi) − Uout

i (θi,¬θi) ≥ 2Fi(eε),

Note that Condition 2 holds for sufficiently small ε > 0 (since Fi(x)→ 0 as x→ 1). The setting of ε
needed to achieve truthfulness depends only on how much the players value their preferred candidate
(measured by the left-hand side of Condition 2) and how much they value privacy (measured by the
right-hand side of Condition 2), and is independent of the number of players n.

Proof. Fix the actual type θi ∈ {A, B} of player i, a profile θ−i of reports of the other players,
and a choice r for M’s randomness. The only alternate report for player i we need to consider is
θ′i = ¬θi. Let o = M(θi, θ−i; r) and o′ = M(¬θi, θ−i; r). We need to show that Ui(θi, o,M, θ−i) ≥
Ui(θi, o′,M, θ−i), or equivalently

Uout
i (θi, o) − Uout

i (θi, o′) ≥ U priv
i (θi, o′,M, θ−i) − U priv

i (θi, o,M, θ−i). (4)

We consider two cases:

Case 1: o = o′. In this case, Inequality (4) holds because both the left-hand and right-hand sides
are zero.

Case 2: o , o′. This implies that o = θi and o′ = ¬θi. (If player i’s report has any effect on the
outcome of the differentially private voting mechanism, then it must be that the outcome equals
player i’s report.) Thus the left-hand side of Inequality (4) equals Uout

i (θi, θi) − Uout
i (θi,¬θi). By

Proposition 3.3, the right-hand side of Inequality (4) is at most 2F(eε). Thus, Inequality (4) holds
by hypothesis.

Of course, truthfulness is not the only property of interest. After all, a mechanism that is simply a
constant function is (weakly) truthful. Another property we would like is economic efficiency. Typ-
ically, this is defined as maximizing social welfare, the sum of players’ utilities. Here we consider
the sum of outcome utilities for simplicity. As is standard, we normalize players’ utilities so that
all players are counted equally in measuring the social welfare. In our voting example, we wish to
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maximize the number of voters’ whose preferred candidates win, which is equivalent to normaliz-
ing the left-hand side of Condition 2 in Theorem 4.2 to 1. Standard, deterministic majority voting
clearly maximizes this measure of social welfare. Our mechanism achieves approximate efficiency
(proofs of efficiency results can be found in the appendix):

Proposition 4.3. For every profile θ ∈ Θn of reports, if we select o ← M(θ) using Mecha-
nism 4.1, then:

(1) Pr
[
#{i : θi = o} ≤ maxo′∈{A,B} #{i : θi = o′} − ∆

]
< e−ε∆.

(2) E [#{i : θi = o}] > maxo′∈{A,B} #{i : θi = o′} − 1/ε.

Thus, the number of voters whose preferred candidate wins is within O(1/ε) of optimal, in expec-
tation and with high probability. This deviation is independent of n, the number of players. Thus if
we take ε to be a constant (as suffices for truthfulness) and let n → ∞, the economic efficiency ap-
proaches optimal, when we consider both as fractions of n. This also holds for vanishing ε = ε(n),
provided ε = ω(1/n). Despite the notation, ε need not be tiny, which allows a tradeoff between
efficiency and privacy.

This analysis considers the social welfare as a sum of outcome utilities (again normalizing so that
everyone values their preferred candidate by one unit of utility more than the other candidate). We
can consider the effect of privacy utilities on the social welfare too. By Proposition 3.3, the privacy
utilities affect the social welfare by at most

∑
i Fi(eε), assuming player i satisfies Assumption 3.1

with privacy bound function Fi. If all players satisfy Assumption 3.1 with the same privacy bound
function Fi = F, then the effect on social welfare is at most n · F(eε). By taking ε → 0 (e.g.,
ε = 1/

√
n), the privacy utilities contribute a vanishing fraction of n.

Another desirable property is individual rationality: players given the additional option of not
participating should still prefer to participate and report truthfully. This property follows from the
same argument we used to establish universal truthfulness. By dropping out, the only change in out-
come that player i can create is to make her less preferred candidate win. Thus, the same argument
as in Theorem 4.2 shows that player i prefers truthful participation to dropping out.

Proposition 4.4. Under the same assumptions as Theorem 4.2, Mechanism 4.1 is individually
rational for player i.

5. TOOLS FOR PROVING TRUTHFULNESS WITH PRIVACY

The analysis of truthfulness in Theorem 4.2 is quite general. It holds for any differentially private
mechanism with the property that if a player can actually change the outcome of the mechanism by
reporting untruthfully, then it will have a noticeable negative impact on the player’s outcome utility.
We abstract this property for use in analyzing our other mechanisms.

Lemma 5.1. Consider a mechanism design problem with n players, type space Θ, and outcome
space O. Let player i have a utility function Ui = Uout

i +U priv
i satisfying Assumption 3.1 with privacy

bound function Fi. Suppose that randomized mechanismM : Θn → O has the following properties:

(1) M is ε-differentially private, and
(2) For all possible types θi, all profiles θ−i of the other players’ reports, all random choices

r of M, and all alternative reports θ′i for player i: if M(θi, θ−i; r) , M(θ′i , θ−i; r), then
Uout(θi,M(θi, θ−i; r)) − Uout(θi,M(θ′i , θ−i; r)) ≥ 2Fi(eε),

ThenM is universally truthful for player i.

Lemma 5.1 implicitly requires that players not be indifferent between outcomes (unless there is
no way for the player to change one outcome to the other). A condition like this is necessary because
otherwise players may be able to find reports that have no effect on their outcome utility but improve
their privacy utility. However, we show in Section 7 that in some settings with payments, truthfulness
can be achieved even with indifference between outcomes since payments can break ties.
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It is also illustrative and useful to consider what happens when we take the expectation over the
mechanism’s coin tosses. We can upper-bound the privacy utility as follows:

Lemma 5.2. Consider a mechanism design problem with n players, type space Θ, and outcome
space O. Let player i have type θi ∈ Θi and a utility function Ui = Uout

i + U priv
i satisfying Assump-

tion 3.1. Suppose that randomized mechanismM : Θn × R → O is ε-differentially private. Then for
all possible profiles θ−i of the other players’ reports, all random choices r ofM, and all alternative
reports θ′i for player i, we have∣∣∣∣E[U priv

i (θi,M(θi, θ−i),M, θ−i)] − E[U priv
i (θi,M(θ′i , θ−i),M, θ−i)]

∣∣∣∣ ≤ 2Fi(eε) · SD(M(θi, θ−i),M(θ′i , θ−i)),

where SD denotes statistical difference.4

Proof. For every two discrete random variables X and Y taking values in a universeU, and every
function f : U → [−1, 1], it holds that |E[ f (X)] − E[ f (Y)]| ≤ 2SD(X,Y). (The f that maximizes
the left-hand side sets f (x) = 1 when Pr[X = x] > Pr[Y = x] and sets f (x) = −1 otherwise.) Take
U = O, X = M(θi, θ−i), Y = M(θ′i , θ−i), and f (o) = U priv

i (θi, o,M, θ−i)/Fi(eε). By Proposition 3.3,
we have f (o) ∈ [−1, 1].

By this lemma, to establish truthfulness in expectation, it suffices to show that the expected gain in
outcome utility from reporting θi instead of θ′i grows proportionally with SD(M(θi, θ−i),M(θ′i , θ−i)).
(Specifically, it should be at least the statistical difference times 2Fi(eε).) In Lemma 5.1, the gain
in outcome utility is related to the statistical difference by coupling the random variablesM(θi, θ−i)
andM(θ′i , θ−i) according to the random choices r ofM. Indeed, Prr[M(θi, θ−i; r) ,M(θ′i , θ−i; r)] ≥
SD(M(θi, θ−i),M(θ′i , θ−i)). Thus, if the outcome-utility gain from truthfulness is larger than 2Fi(eε)
wheneverM(θi, θ−i; r) , M(θ′i , θ−i; r), then we have truthfulness in expectation (indeed, even uni-
versal truthfulness).

We note that ifM is differentially private, then SD(M(θi, θ−i),M(θ′i , θ−i)) ≤ eε − 1 = O(ε), for
small ε. By Lemma 5.2, the expected difference in privacy utility between any two reports is at most
O(Fi(eε) · ε). Thus, ε-differential privacy helps us twice, once in bounding the pointwise privacy
cost (as 2Fi(eε)), and second in bounding the statistical difference between outcomes. On the other
hand, for mechanisms satisfying the conditions of Lemma 5.1, the differential privacy only affects
the expected outcome utility by a factor related to the statistical difference. This is why, by taking ε
sufficiently small, we can ensure that the outcome utility of truthfulness dominates the privacy cost.

Lemma 5.2 is related to, indeed inspired by, existing lemmas used to analyze the composition of
differentially private mechanisms. These lemmas state that while differential privacy guarantees a
worst case bound of ε on the “privacy loss” of all possible outputs, this actually implies an expected
privacy loss of O(ε2). Such bounds correspond to the special case of Lemma 5.2 when Fi = ln and
we replace the statistical difference with the upper bound eε − 1. These O(ε2) bounds on expected
privacy loss were proven first in the case of specific mechanisms by Dinur and Nissim [2003] and
Dwork and Nissim [2004], and then in the case of arbitrary differentially private mechanisms by
Dwork et al. [2010]. In our case, the O(ε2) bound does not suffice, and we need the stronger bound
expressed in terms of the statistical difference. Consider the differentially private election when the
vote is highly skewed (e.g., 2/3 vs. 1/3). Then a player has only an exponentially small probability
(over the random choice r of the mechanism) of affecting the outcome, and so the expected outcome
utility for voting truthfully is exponentially small. On the other hand, by Lemma 5.2, the expected
privacy loss is also exponentially small, so we can still have truthfulness.

4The statistical difference (aka total variation distance) between two discrete random variables X and Y taking values in a
universeU is defined to be SD(X,Y) = maxS⊆U |Pr[X ∈ S ] − Pr[Y ∈ S ]|.
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6. DISCRETE FACILITY LOCATION

In this section, we apply our framework to discrete facility location. Let Θ = {`1 < `2 < · · · <
`q} ⊂ [0, 1] be a finite set of types indicating player’s preferred locations for a facility on the unit
interval and O = [0, 1]. Players prefer to have the facility located as close to them as possible:
Uout

i (θi, o) = −|θi − o|. For example, the mechanism may be selecting a location for a bus stop along
a major highway, and the locations `1, . . . , `q might correspond to cities along the highway where
potential bus riders live.

Note that the voting game we previously considered can be represented as the special case
where Θ = {0, 1}. This problem has a well-known truthful and economically efficient mechanism:
select the location of the median report. Xiao [2011] gave a private and truthful mechanism for
this problem based on taking the median of a perturbed histogram. His analysis only proved
that the mechanism satisfies “approximate differential privacy” (often called (ε, δ) differential
privacy). To use Proposition 3.3, we need the mechanism to satisfy pure ε differential privacy (as in
Definition 3.2). Here we do that for a variant of Xiao’s mechanism.

Mechanism 6.1. Differentially private discrete facility location mechanism
Input: profile θ ∈ Θn of types, privacy parameter ε > 0.

(1) Construct the histogram h = (h1, . . . , hq) of reported type frequencies where h j is the number of
reports θi of type ` j and q = |Θ|.

(2) Choose a random (nonnegative, integer) noise vector r = (r1, . . . , rq) ∈ Nq where the components
r j are chosen independently such that Pr

[
r j = k

]
is proportional to exp(−εk/2).

(3) Output the type corresponding to median of the perturbed histogram h + r. That is, we output
`Med(h+r), where for z ∈ Nq we define Med(z) to be the minimum k ∈ [q] such that

∑k
j=1 z j ≥∑q

j=k+1 z j.

Xiao’s mechanism instead chooses the noise components r j according to a truncated and shifted
Laplace distribution. Specifically, Pr[r j = k] is proportional to exp((ε/2) · |k − t|) for k = 0, . . . , 2t
and Pr[r j = k] = 0 for k > 2t, where t = Θ(log(1/δ)/ε). This ensures that the noisy histogram
h + r is (ε, qδ) differentially private, and hence the outcome `Med(h+r) is as well. Our proof (in the
appendix) directly analyzes the median, without passing through the histogram. This enables us to
achieve pure ε differential privacy and use a simpler noise distribution. On the other hand, Xiao’s
analysis is more general, in that it applies to any mechanism that computes its result based on a
noisy histogram.

Lemma 6.2. Mechanism 6.1 is ε-differentially private.

We note that the only property the proof uses about the noise distribution is that Pr[r = s] =
eε/2 · Pr[r = f j(s)]. This property does not hold for Xiao’s noise distribution as described, due to it
being truncated above at 2t, but would hold if his noise distribution was truncated only below.

We next show that this mechanism is truthful and individually rational. (The proof can be found
in the appendix.)

Theorem 6.3. Mechanism 6.1 is universally truthful and individually rational for player i pro-
vided that, for some function Fi:

(1) Player i’s privacy utility U priv
i satisfies Assumption 3.1 with privacy bound function Fi, and

(2) For all o, o′ ∈ Θ such that θi < o < o′ or o′ > o > θi, we have Uout
i (θi, o) −Uout

i (θi, o′) ≥ 2Fi(eε).

In particular, if all players share the standard outcome utility function Uout
i (θi, o) = −|θi−o| and have

the same privacy bound function Fi = F, then the mechanism is universally truthful and individually
rational provided that

min
j,k
|` j − `k | ≥ 2F(eε).
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So, for a fixed set Θ of player types (preferred locations), we can take ε to be a small constant and
have truthfulness and individual rationality.

Proposition 6.4. Suppose that every player i has the standard outcome utility function
Uout

i (θi, o) = −|θi − o|. Then for every profile of types θ ∈ Θn, if we choose o ← M(θ) using
Mechanism 6.1, we have

(1) Pr
[∑

i Uout
i (θi, o) ≤ maxo′

(∑
i Uout

i (θi, o′)
)
− ∆

]
≤ q · e−ε∆/q.

(2) E
[∑

i Uout
i (θi, o)

]
≥ maxo′

(∑
i Uout

i (θi, o′)
)
− O(q/ε).

Thus, the social welfare is within ∆ = Õ(q)/ε of optimal, both in expectation and with high prob-
ability. Like with Proposition 4.3, these bounds are independent of the number n of participants, so
we obtain asymptotically optimal social welfare as n → ∞. Also like the discussion after Propo-
sition 4.3, by taking ε = ε(n) to be such that ε = o(1) and ε = ω(1/n) (e.g., ε = 1/

√
n), the sum

of privacy utilities is a vanishing fraction of n (for participants satisfying Assumption 3.1 with a
common privacy bound function F).

7. GENERAL SOCIAL CHOICE PROBLEMS WITH PAYMENTS

In the preceding two sections we have considered social choice problems where a group needs
to choose among a (typically small) set of options with mechanisms that do not use money. In
this section, we apply our framework social choice problems where payments are possible using
an adaptation of the Vickrey-Clarke-Groves (VCG) mechanism. (This is the setting for which the
Groves mechanism was originally designed and unlike in auction settings the number of outcomes
is independent of the number of players.) In the general case we examine now, we don’t assume
any structure on the utility functions (other than discreteness), and thus need to use payments to
incentivize players to truthfully reveal their preferences.

Specifically, the type θi ∈ Θ of a player will specify a utility Uout(θi, o) ∈ {0, 1, . . . ,M} for each
outcome o from a finite set O. This could correspond, for example, to players having values for
outcomes expressible in whole dollars with some upper and lower bounds. This assumption ensures
a finite set of types Θ and that if a player changes his reported value it must change by some
minimum amount (1 with our particular assumption). Note that this formulation still allows players
to be indifferent among outcomes. Gicen our notion of a type, all players share the same outcome
utility function Uout

i = Uout In order to reason about individual rationality, we also assume that the
set of types includes a type ⊥ that corresponds to not participating (i.e., Uout

i (⊥, o) = 0 for all o and
i). For notational convenience, we assume that O = {0, 1, . . . , |O| − 1}.

Our goal is to choose the outcome o∗ that maximizes social welfare (ignoring privacy), i.e., o∗ =
argmaxo∈O

∑
i Uout(θi, o). A standard way to do so is the Groves mechanism, a special case of the

more general VCG mechanism. Each player reports his type and then the optimal outcome o∗ is
chosen based on the reported types. To ensure truthfulness, each player is charged the externality he
imposes on others. If o−i = argmaxo

∑
j,i Uout(θ j, o) is the outcome that would have been chosen

without i’s input, then player i makes a payment of

Pi =
∑
j,i

(
Uout(θ j, o−i) − Uout(θ j, o∗)

)
, (5)

for a combined utility of Uout(θi, o∗) − Pi.
In addition to subtracting payments from player i’s utility as above, we also need to consider the

effect of payments on privacy. (The modelling in Section 3 did not consider payments.) While it
may be reasonable to treat the payments players make as secret, so that making the payment does
not reveal information to others, the amount a player is asked to pay reveals information about
the reports of other players. Therefore, we will require that the mechanism releases some public
payment information π that enables all players to compute their payments, i.e., the payment Pi of
player i should be a function of θi, π, and o∗. For example, π could just be the n-tuple (P1, . . . , Pn),
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which corresponds to making all payments public. But in the VCG mechanism it suffices for π to
include the value Vo =

∑
i Uout(θi, o) for all outcomes o ∈ O, since

Pi = (Vo−i − Uout(θi, o−i)) − (Vo∗ − Uout(θi, o∗)) = maxo

(
(Uout(θi, o∗) − Uout(θi, o)) − (Vo∗ − Vo)

)
,

which can be computed using just the Vo’s, o∗, and θi. Moreover, we actually only need to release the
differences Vo∗ −Vo, and only need to do so for outcomes o such that Vo∗ −Vo ≤ M, since only such
outcomes have a chance of achieving the above maximum. (Recall that Uout(θi, o) ∈ {0, 1, . . . ,M}.)
This observation forms the basis of our mechanism, which we will show to be truthful for players
that value privacy (under Assumption 3.1).

Before stating our mechanism, we summarize how we take payments into account in our mod-
elling. Given reports θ′ ∈ Θn and randomness r, our mechanism M(θ′; r) outputs a pair (o∗, π),
where o∗ ∈ O is the selected outcome and π is “payment information”. Each player then should
send payment Pi = P(θ′i , o

∗, π) to the mechanism. (The payment function P is something we design
together with the mechanismM.) If player i’s true type is θi, then her total utility is:

Ui(θi, o∗, π,M, θ′) = Uout(θi, o∗) − P(θ′i , o
∗, π) + U priv

i (θi, (o∗, π),M, θ′−i).

Note that we measure the privacy of the pair (o∗, π), since both are released publicly.
To achieve truthfulness for players that value privacy, we will modify the VCG mechanism de-

scribed above by adding noise to the values Vo. This yields the following mechanism:

Mechanism 7.1. Differentially private VCG mechanism
Input: profile θ ∈ Θn of types, privacy parameter ε > 0.

(1) Choose λo from a (discrete) Laplace distribution for each outcome o. Specifically, we set Pr[λo =
k] ∝ exp(−(ε · |k|)/(M · |O|)) for every integer k ∈ Z.

(2) Calculate values Vo =
∑

j Uout(θ j, o) + λo + o/|O| for each outcome o. (Recall that we set O =
{0, . . . , |O| − 1}. The o/|O| term is introduced in order to break ties.)

(3) Select outcome o∗ = arg maxo Vo.
(4) Set the payment information π = {(o,Vo∗ − Vo) : Vo ≥ Vo∗ − M}.
(5) Output (o∗, π).

Each player i then sends a payment of
Pi = P(θi, o∗, π) = maxo

(
(Uout(θi, o∗) − Uout(θi, o)) − (Vo∗ − Vo)

)
.

By standard results on differential privacy, the tuple of noisy values {Vo} is ε-differentially private.
Since the output (o∗, π) is a function of the Vo’s, the output is also differentially private:

Lemma 7.2. Mechanism 7.1 is ε-differentially private.

We now prove that the mechanism is truthful in expectation for players that value privacy (satisfy-
ing Assumption 3.1). To do this, we use Lemma 5.2, which shows that by taking ε sufficiently small,
the expected change in privacy utility from misreporting θ′i instead of θi can be made an arbitrarily
small fraction of the statistical difference SD(M(θi, θ−i),M(θ′i , θ−i)). Thus, to show truthfulness in
expectation, it suffices to show that the statistical difference is at most a constant factor larger than
the expected decrease in utility from misreporting. That is, we want to show:

SD(M(θi, θ−i),M(θ′i , θ−i)) = O
(
E[Uout(θi,M(θi, θ−i)) − P(θi,M(θi, θ−i))]

− E[Uout(θi,M(θ′i , θ−i)) − P(θ′i ,M(θ′i , θ−i))]
)
.
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To bound the statistical difference, we writeM(θ; r) = (M1(θ; r),M2(θ; r)), whereM1 gives the
outcome o∗ andM2 gives the payment information π. Then we have:

SD(M(θi, θ−i),M(θ′i , θ−i)) ≤ Pr
r

[M(θi, θ−i; r) ,M(θ′i , θ−i; r)]

≤ Pr
r

[M1(θi, θ−i; r) ,M1(θ′i , θ−i; r)] + Pr
r

[M1(θi, θ−i; r)

=M1(θ′i , θ−i; r) ∧M2(θi, θ−i; r) ,M2(θ′i , θ−i; r)].

The next lemma bounds the statistical difference coming from the outcome:

Lemma 7.3.

Pr
r

[M1(θi, θ−i; r) ,M1(θ′i , θ−i; r)] ≤|O| · (E[Uout(θi,M
1(θi, θ−i)) − P(θi,M(θi, θ−i))]

− E[Uout(θi,M
1(θ′i , θ−i)) − P(θ′i ,M(θi, θ−i))]).

Proof. It suffices to show that for every value of r, we have:

I[M1(θi, θ−i; r) ,M1(θ′i , θ−i; r)] ≤ |O| · (Uout(θi,M
1(θi, θ−i; r)) − P(θi,M(θi, θ−i; r))

− Uout(θi,M
1(θ′i , θ−i; r)) − P(θ′i ,M(θi, θ−i; r))), (6)

where I[X] denotes the indicator for the event X. (Then taking expectation over r yields the desired
result.)

If M1(θi, θ−i; r) = M1(θ′i , θ−i; r), then both the left-hand and right-hand sides are zero. (Recall
that the payment made by player i on an outcome o depends only on the reports of the other players
and the randomness of the mechanism.)

So consider a value of r such that M1(θi, θ−i; r) , M1(θ′i , θ−i; r) (i.e., where the indicator is 1).
We can treat the λo + o/|O| term added to each Vo as the report of another player to the standard
VCG mechanism. We know that

Uout(θi,M
1(θi, θ−i; r)) − P(θi,M(θi, θ−i; r)) − Uout(θi,M(θ′i , θ−i; r)) − P(θ′i ,M(θi, θ−i; r)) ≥ 0

because VCG is incentive compatible for players who don’t have a privacy utility. Since the mech-
anism adds an o/|O| term to Vo to avoid ties, the above inequality is strict. Moreover, the left-hand
side is at least 1/|O|, which establishes Inequality (6).

In more detail, let o∗ = M1(θi, θ−i; r) and o′ = M1(θ′i , θ−i; r) for some o′ , o∗. Write Wo =∑
j,i Uout

j (θ j, o) + λo + o/|O| for each outcome o (Wo is just Vo excluding the report of player i), and
o−i = argmaxo Wo. Since the mechanism chose o∗ on report θi, we must have

Wo∗ + Uout(θi, o∗) ≥ Wo′ + Uout(θi, o′).

Since the fractional parts of the two sides are different multiples of 1/|O| (namely o∗/|O| and o′/|O|),
we have:

Wo∗ + Uout(θi, o∗) ≥ Wo′ + Uout(θi, o′) + 1/|O|.

Thus:

Uout(θi,M
1(θi, θ−i; r)) − P(θi,M(θi, θ−i; r)) = Uout(θi, o∗) − (Wo−i −Wo∗ )

≥ Uout(θi, o′) − (Wo−i −Wo′ ) + 1/|O|

= Uout(θi,M(θ′i , θ−i; r)) − P(θ′i ,M(θi, θ−i; r)) + 1/|O|,

establishing Inequality (6).

Now we need to prove a similar bound for the probability of misreporting only affecting the
payment information π. We note that one trivial solution for handling payments is to only collect
payments with a very small probability p, but increase the magnitude of the payments by a factor of
1/p. In order for payments to not contribute more to the statistical difference than the outcome, we
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can take p to be the minimum possible nonzero value of the probability that a misreport can change
the outcome (i.e., Prr[M1(θi, θ−i; r) ,M1(θ′i , θ−i; r)]). However, this quantity is exponentially small
in n. This would make the magnitude of payments exponentially large, which is undesirable. (Our
assumption that players are risk neutral seems unreasonable in such a setting.) However, it turns out
that we do not actually need to do this; our mechanism already releases payment information with
sufficiently low probability. Indeed, we only release payment information relating to an outcome
o when Vo is within M of Vo∗ , and the probability that this occurs cannot be much larger than the
probability that the outcome is changed from o∗ to o.

Lemma 7.4.

Pr
r

[M1(θi, θ−i; r) =M1(θ′i , θ−i; r) ∧M2(θi, θ−i; r) ,M2(θ′i , θ−i; r)]

≤ 2Meε/|O| · Pr
r

[M1(θi, θ−i; r) ,M1(θ′i , θ−i; r)].

Proof. First observe that

Pr
r

[M1(θi, θ−i; r) =M1(θ′i , θ−i; r) ∧M2(θi, θ−i; r) ,M2(θ′i , θ−i; r)]

≤
∑

o1,o2

Pr
r

[M1(θi, θ−i; r) =M1(θ′i , θ−i; r) = o1 ∧M
2(θi, θ−i; r) ,M2(θ′i , θ−i; r) on o2],

by which we mean that either (o2,Vo1 −Vo2 ) is released in one case but not the other or it is released
in both cases but with different values.

Fix o1 and o2 as above. If Uout(θi, o1) − Uout(θi, o2) = Uout(θ′i , o1) − Uout(θ′i , o2), then
Prr[M1(θi, θ−i; r) = M1(θ′i , θ−i; r) = o1 ∧ M

2(θi, θ−i; r) , M2(θ′i , θ−i; r) on o2] = 0 because the
difference between Vo1 and Vo2 is not changed by the misreporting. So assume that Uout(θi, o1) −
Uout(θi, o2) , Uout(θ′i , o1) − Uout(θ′i , o2); these values must differ by at least 1 due to the discrete-
ness assumption. Fix λo = ko for o , o2. Denote them as a vector λ−o2 = k−o2 . Consider some
value ko2 such that when λo2 = ko2 we have M1(θi, θ−i; (ko2 , k−o2 )) = M1(θ′i , θ−i; (ko2 , k−o2 )) = o1

andM2(θi, θ−i; (ko2 , k−o2 )) ,M2(θ′i , θ−i; (ko2 , k−o2 )) on o2. (If there is no such ko2 then the event has
probability 0 for this choice of k−o2 .) Now consider increasing the value of λo2 . Let k̂o2 be the min-
imum value such that eitherM1(θi, θ−i; (k̂o2 , k−o2 )) = o2 orM1(θ′i , θ−i; (k̂o2 , k−o2 )) = o2. At the first
such value of k̂o2 , only one of these two events will happen because Uout(θi, o1) − Uout(θi, o2) and
Uout(θ′i , o1)−Uout(θ′i , o2) differ by at least 1. Moreover, we have k̂o2 ≤ ko2 +M because with λo2 = ko2

we have Vo1 − Vo2 ≤ M for either report θi or θ′i . Since Pr[λo2 = k] ∝ exp(−ε · |k|/(M · |O|)), we have
Pr[λo2 = ko2 ] ≤ exp(ε/|O|) · Pr[λo2 = k̂o2 ]. Furthermore, there can be at most M such values of ko2 .
Thus,

Pr
r

[λ−o2 = k−o2 ∧M
1(θi, θ−i; r) =M1(θ′i , θ−i; r) = o1 ∧M

2(θi, θ−i; r) ,M2(θ′i , θ−i; r) on o2]

≤ Meε/|O| Pr
r

[λ−o2 = k−o2 ∧M
1(θi, θ−i; r) ,M1(θ′i , θ−i; r)

∧M1(θi, θ−i; r) ∈ {o1, o2} ∧M
1(θ′i , θ−i; r) ∈ {o1, o2}]

Summing over all o1 , o2 and k−o2 gives us the lemma. The factor 2 in the lemma statement is due
to the fact that ∑

o1,o2,ko2

Pr
r

[λ−o2 = k−o2 ∧M
1(θi, θ−i; r) ,M1(θ′i , θ−i; r)

∧M1(θi, θ−i; r) ∈ {o1, o2} ∧M
1(θ′i , θ−i; r) ∈ {o1, o2}]

= 2 Pr
r

[M1(θi, θ−i; r) ,M1(θ′i , θ−i; r)].



Proceedings Article

Combining Lemmas 7.3 and 7.4, we have

SD(M(θi, θ−i),M(θ′i , θ−i)) ≤ |O| · (1 + 2Meε/|O|) · (E[Uout(θi,M
1(θi, θ−i)) − P(θi,M(θi, θ−i))]

− E[Uout(θi,M
1(θ′i , θ−i)) − P(θ′i ,M(θi, θ−i))]).

Applying Lemma 5.2 gives us our theorem.

Theorem 7.5. Mechanism 7.1 is truthful in expectation and individually rational for player i
provided that, for some function Fi:

(1) Player i’s privacy utility U priv
i satisfies Assumption 3.1 with privacy bound function Fi, and

(2) 2Fi(eε) · |O| · (1 + 2Meε/|O|) ≤ 1.

In particular, if all players have the same privacy bound function Fi = F, it suffices to take ε to be
a sufficiently small constant depending only on M and |O| (and not the number n of players).

Truthfulness in expectation relies on players being risk neutral in terms of their privacy utility
so that it is acceptable that with some low probability, the privacy costs are larger than their utility
from the outcome. An alternative approach that does not rely on risk neutrality is to switch from the
VCG mechanism to the Expected Externality mechanism. This is a variant on VCG that, rather than
charging players the actual externality they impose as in Equation (5), charges them their expected
externality

Eθ∼p

∑
j,i

Uout(θ j, o−i) − Uout(θ j, o∗)

 , (7)

where p is a prior distribution over Θn, o−i is the outcome that maximizes the sum of outcome
utilities of players other than i, and o∗ is the outcome that maximizes the sum of outcome utilities
when i is included. Essentially, i is charged the expected amount he would have to pay under VCG
given the prior over types. Since the amount players are charged is independent of the actual reports
of others, collecting payments has no privacy implications. (The proof of Lemma 7.3 shows that if
we only consider the privacy cost of the outcome, then we have universal truthfulness.) However,
the use of a prior means that the truthfulness guarantee only holds in a Bayes-Nash equilibrium. On
the other hand, this mechanism does have other nice properties such as being adaptable to guarantee
budget balance.

Finally, we show that Mechanism 7.1 approximately preserves VCG’s efficiency.

Proposition 7.6. For every profile of types θ ∈ Θn, if we choose o ← M(θ) using Mecha-
nism 7.1, then we have:

(1) Pr
[∑

i Uout
i (θi, o) < maxo′

(∑
i Uout

i (θi, o′)
)
− ∆

]
≤ 2|O| · e−ε∆/(2M·|O|),

(2) E
[∑

i Uout
i (θi, o)

]
≥ maxo′

(∑
i Uout

i (θi, o′)
)
− O(|O|2 · M/ε).

Thus, the social welfare is within Õ(|O|2) · M/ε of optimal, both in expectation and with high
probability. Like with Proposition 4.3, these bounds are independent of the number n of partici-
pants, so we obtain asymptotically optimal social welfare as n → ∞. Also like the discussion after
Proposition 4.3, by taking ε = ε(n) to be such that ε = o(1) and ε = ω(1/n) (e.g., ε = 1/

√
n), the

sum of privacy utilities is also a vanishing fraction of n (for participants satisfying Assumption 3.1
with a common privacy bound function F).

8. DISCUSSION

We conclude by discussing a Bayesian interpretation of our privacy model and several of the model’s
limitations.

Our modelling of privacy in Section 3 is motivated in part by viewing privacy as a concern about
other’s beliefs about you. Fix a randomized mechanism M : Θn × R → O, a player i ∈ [n], and



Proceedings Article

a profile θ−i ∈ Θn−1 of other player’s reports. Suppose that an adversary has a prior Ti on the type
of player i, as well as a prior S i on the strategy σ : Θ → Θ played by player i. Then upon seeing
an outcome o from the mechanism, the adversary should replace Ti with a posterior T ′i computed
according to Bayes’ Rule as follows:

Pr[T ′i = θi] = Pr[Ti = θi|M(S i(Ti), θ−i) = o] = Pr[Ti = θi] ·
Pr[M(S i(Ti), θ−i) = o|Ti = θi]

Pr[M(S i(Ti), θ−i) = o]
.

Thus if we set x = maxθ′,θ′′∈Θ(Pr [M(θ′, θ−i) = o] /Pr [M(θ′′, θ−i) = o]) (the argument of Fi in As-
sumption 3.1), then we have

x−1 · Pr[Ti = θi] ≤ Pr[T ′i = θi] ≤ x · Pr[Ti = θi].

So if x is close to 1, then the posterior T ′i is close to the prior Ti, having the same probability mass
functions within a factor of x, and consequently having statistical difference at most x − 1. Thus,
Assumption 3.1 can be justified by asserting that “if an adversary’s beliefs about player i do not
change much, then it has a minimal impact on player i’s privacy utility.” One way to think of this is
that player i has some smooth value function of the adversary’s beliefs about her, and her privacy
utility is the difference of the value function after and before the Bayesian updating. This reasoning
follows the lines of Bayesian interpretations of differential privacy due to Dwork and McSherry, and
described in Kasiviswanathan and Smith [2008].

This Bayesian modelling also explains why we do not include the strategy played by i in the
privacy utility function U priv

i . How a Bayesian adversary updates its beliefs about player i based
on the outcome do not depend on the actual strategy played by i, but rather on the adversary’s
beliefs about that strategy, denoted by S i in the above discussion. Given that our mechanisms are
truthful, it is most natural to consider S i as the truthful strategy (i.e., the identity function). If the
Bayesian adversary values possessing a correct belief about players, this is analogous to a notion of
equilibrium. If we treat the adversary as another player then if the players report truthfully and the
adversary assumes the players report truthfully each is responding optimally to the other. However,
if player i can successfully convince the adversary that she will follow some other strategy S i, then
this can be implicitly taken into account in U priv

i . (But if player i further deviates from S i, this should
not be taken into account, since the adversary’s beliefs will be updated according to S i.)

Our modelling of privacy in terms of other’s beliefs is subject to several (reasonable) critiques:
• Sometimes a small, continuous change in beliefs can result in discrete choices that have a large

impact in someone’s life. For example, consider a ranking of potential employees to hire, stu-
dents to admit, or suitors to marry—a small change in beliefs about a candidate may cause
them to drop one place in a ranking, and thereby not get hired, admitted, or married. On the
other hand, the candidate typically does not know exactly where such a threshold is and so from
their perspective the small change in beliefs could be viewed as causing a small change in the
probability of rejection.

• Like in differential privacy, we only consider an adversary’s beliefs about player i given the
rest of the database. (This is implicit in us considering a fixed θ−i in Assumption 3.1.) If an
adversary believes that player i’s type is correlated with the other players (e.g., given by a joint
prior T on Θn), then conditioning on T−i = θ−i may already dramatically change the adversary’s
beliefs about player i. For example, if the adversary knew that all n voters in a given precinct
prefer the same candidate (but don’t know which candidate that is), then conditioning on θ−i
tells the adversary who player i prefers. We don’t measure the (dis)utility for leaking this kind
of information. Indeed, the differentially private election mechanism of Theorem 4.2 will leak
the preferred candidate in this example (with high probability).

• The word “privacy” is used in many other ways. Instead of being concerned about other’s beliefs,
one may be concerned about self-representation (e.g., the effect that reporting a given type may
have on one’s self-image).
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Finally, we remark that for some of the mechanism design settings we consider, privacy may
not be a major concern on its own. For example, in a standard, deterministic majority-vote election
with a large number of voters, each voter’s privacy may intuitively be protected because the other
voters provide sufficient noise to obscure her vote. However, just like in our mechanism, the limited
influence that voters have on the outcome also means that they gain very little in outcome utility
from being truthful, and it may not be clear which of these considerations (privacy or interest in
the outcome) should prevail. Our model and analysis can be viewed as a quantitative argument for
truthfulness in such real-life election scenarios. We also note that introducing noise artificially, as
in differentially private mechanisms, has significant advantages over relying on natural noise, par-
ticularly with respect to composition. (For example, if we run a deterministic majority-vote election
twice, with a new voter the second time, and the outcome changes, then the new voter’s prefer-
ence has been revealed despite any uncertainty about the other voter’s votes. Adding independent
artificial noise to each tally solves this problem, and ensures differential privacy.)
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