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Computational complexity in electronic structure

James Daniel Whitfield,*abc Peter John Loved and Alán Aspuru-Guzik*e

In quantum chemistry, the price paid by all known efficient model chemistries is either the truncation of

the Hilbert space or uncontrolled approximations. Theoretical computer science suggests that these

restrictions are not mere shortcomings of the algorithm designers and programmers but could stem

from the inherent difficulty of simulating quantum systems. Extensions of computer science and

information processing exploiting quantum mechanics has led to new ways of understanding the

ultimate limitations of computational power. Interestingly, this perspective helps us understand widely

used model chemistries in a new light. In this article, the fundamentals of computational complexity

will be reviewed and motivated from the vantage point of chemistry. Then recent results from the

computational complexity literature regarding common model chemistries including Hartree–Fock and

density functional theory are discussed.

1 Introduction

Quantum chemistry is often concerned with solving the Schrö-
dinger equation for chemically-relevant systems such as atoms,
molecules, or nanoparticles. By solving a differential and/or
eigenvalue equation, the properties of the system and the
dynamics of the state are obtained. Examples of properties
include equilibrium geometries, the dissociation energy of
molecules, and the vibrational frequencies.

The difficulty stems from the accuracy required and the apparent
exponential growth of the computational cost with both the number
of electrons and the quality of the description of the system. For
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practical applications, the accuracy required is typically orders of
magnitude smaller than the total energy of the system. As a concrete
example, the Carbon atom has total electronic energy of about 37.8
Hartrees while the energy of a Carbon–Hydrogen bond is only 0.16
Hartrees. Solving the full eigenvalue equation takes on the order of
n3 operations for an n � n matrix. However, when describing
interacting many-electron systems, the dimension of the matrix
increases exponentially with the number of electrons.

Consequently, the computational methods of electronic
structure in chemistry are aimed at circumventing exact diag-
onalization, in this context called the full configuration inter-
action method. Avoiding exact diagonalization has led to a wide
range of computational methods1–4 for computing properties of
chemical interest. These methods have recently5–9 begun to
include quantum simulation following Feynman’s suggestion10

to use quantum computers as simulators. Subsequent develop-
ment of these ideas in quantum chemistry has led to new
proposed methods utilizing quantum computational techni-
ques8,11–14 and proof-of-principle experiments.15,16 However,
questions about when and where one would expect a quantum
computer to be useful17,18 have not been fully answered.
Ideally, computational complexity can provide some answers
about when, where, and why quantum computers would be
useful for chemistry. At the same time, it could also help
formalize intuitive understanding of when we can expect reli-
able results from traditional computational methods.

Many results in computational complexity have inter-
changed classical and quantum computers fluidly leading to
new results on the complexity of computing properties of
quantum systems.19 We review some recent results appearing
in the computational complexity literature that touch on why
electronic structure calculations are difficult. Our hope is to
encourage future investigations into quantitative understand-
ing of difficult instances of electronic structure calculations.

A similar, but much shorter, discussion of computational com-
plexity in quantum chemistry by Rassolov and Garashchuk20

appeared in 2008 and provided many conjectures that have since
been proven or extended.

This perspective assumes exposure to second quantization
and mixed states in quantum mechanics. Standard braket
notation is used when referring to quantum states. All the
necessary concepts from computational complexity and quan-
tum computation are briefly introduced and motivated to make
the article as self-contained as possible. A key omission from
the present review is a number of computational complexity
results21,22 concerning quantum-information based wave func-
tion ansatzes such matrix product states, density matrix renor-
malization group and their generalizations.23 These methods
are becoming accepted into the mainstream of computational
chemistry,24–26 but do not yet have the widespread availability
of the selected methods included in the present work.

1.1 Overview and goals of this perspective article

The objective of this perspective is to provide the interested
theoretical chemists access to the emerging subfield of computa-
tional complexity focused on classifying quantum Hamiltonians
and approximants. We wish to provide new insights into quantum
chemistry by encouraging an examination of the essence of
computational model chemistries and its relation to the numerical
simulations performed routinely in physical chemistry. To this
end, we survey recent results in computational complexity that
concern the methods used in the computational chemistry com-
munity. Admittedly, such a task is ambitious, but our hope is to
provide a useful entry point to the growing literature by presenting
a digestible account of key results to-date.

Following this overview, the article continues with an intro-
duction to computer science for chemists. We try to use
examples from physical chemistry to make the key ideas of
theoretical computer science concrete and motivate the tech-
nical results presented later. We also provide a discussion of
accuracy which is essential for interpreting the complexity of
numerical or experimental results in a useful way.

Section 3 focuses on links between quantum chemistry and
quantum physics which will be useful as the article progresses. We
recall relevant aspects of quantum chemistry and draw connections
to spin systems. This is essential as many of the early results in
quantum computational complexity sprang out of investigations of
spin systems which were likely candidates for constructing a
quantum computer. Those results have since been extended in
many directions, but in this article we focus on the difficulty of
computing the ground state energy of quantum Hamiltonians.

In Section 4, our discussion of computation complexity in
quantum chemistry begins, in earnest, with a discussion of
Hartree–Fock and related mean-field approximations. The run-
time of Hartree–Fock can be much worst than the heuristic
arguments about the computation of the four-center integrals
would suggest. This behavior is exemplified by calculations
involving transition metals or actinide species where conver-
gence of self-consistent solutions can be difficult to achieve.
The crux of the argument is that Hartree–Fock could be used to
solve for the ground state of certain spin systems which are
known to belong to a difficult computational class of problems.

Next, we focus on approaches that do not involve the wave
function as the fundamental variable. The first of these two
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approaches, discussed in Section 5, uses the two-body reduced
density matrix. With the correct reduced density matrix, the
evaluation of the ground state energy is straightforward. However,
computing the criteria for valid density matrices is, in the worst
cases, computational intractable. Here, the difficulty is demon-
strated by showing, if the criterion were simple, then computations
that are identified as difficult could be completed easily.

The final method of quantum chemistry to be expounded
upon is density functional theory in Section 6. This is also the
most nuanced result presented, in that its relevance to tradi-
tional quantum chemistry is weakened by relying on local
magnetic fields. Using only the one-electron probability density
as a computational variable requires that one introduces an
unknown universal functional in order to obtain a practical
route to computing the ground state energy. These unknown
functionals are shown to belong to the same class of computa-
tional problems as computing the validity criteria for reduced
density matrices. This is done, once more, by mapping a
problem that is known to be computational intractable to the
problem of computing the value of the universal functional.
However, in this case, there is a series of two intermediate
problems whose complexity is used to show that density func-
tional theory is computationally difficult.

In Section 7, we provide a cursory discussion of other standard
methods in quantum chemistry which were not covered earlier.
Either we will relate them to the techniques discussed in this article
or we point to what is known so far. Specifically, we briefly discuss
multi-configuration wave function approaches, perturbation tech-
niques, quantum Monte Carlo, de Broglie–Bohm, and time-depen-
dent density functional theory.

In the penultimate section, we provide further technical
remarks about error tolerance that are aimed at providing an
introduction to contemporary computational complexity ques-
tions about extending what is known about the hardness of
approximation to the quantum regime.

By time the reader reaches the final section, we hope that he
or she appreciates the extension of the theoretical foundations
of quantum chemistry offered by computational complexity. To
increase the usability of the article for a typical reader of PCCP,
we give an outlook for computational chemists in Section 9. We
hope that this article will motivate further investigation of the
connections between chemical physics and quantum computa-
tional complexity theory. To facilitate future inquiry, we under-
line several important open questions.

2 Worst-case computational complexity for
chemists

The purpose of this section is to provide a quick but precise
introduction to computational complexity concepts.27,28 The
aim is to set the stage for the results subsequently reviewed.

Computational complexity is the study of how resources required
to solve a problem change with its size. For instance, space complex-
ity is the scaling of memory requirements with the problem size,
but, in this article, we focus on time complexity which investigates

how the running time of the computation changes as the problem
size increases.

Computational chemists often informally discuss common-
place concepts in computer science such as the complexity
classes of polynomial-time problems (P) and non-deterministic
polynomial-time problems (NP). For instance, it is sometimes
stated that Hartree–Fock has a runtime which scales as the
third power of the number of basis functions. This scaling
disregards difficult instances of the calculation where
Hartree–Fock does not converge. Such instances require
manual intervention to tweak the algorithm used or adjust
the convergence thresholds in a case-by-case fashion.

In computer science, often the focus is on worst-case complexity
where the most difficult instances of a problem are used to
classify the problem’s complexity. This is one of the major areas
of theoretical computer science, although work on average case
complexity does exist.29,30 In this article, the complexity of the
problems discussed are characterized by the worst-case scaling.

2.1 Time complexity in equivalent computer models

A proper measure of the time complexity of an algorithm is how
many basic operations (or how much time) it takes to solve problems
of increasing size. Conventionally, a computational problem is
described as easy or tractable if there exists an efficient algorithm
for solving it, i.e. one that scales polynomially, O(nk) with fixed k and
input size n.† Otherwise, the problem is considered intractable. This
is an asymptotic definition that may not capture the full utility of the
algorithm. For example, an asymptotically efficient algorithm may
run slower than an asymptotically inefficient algorithm for small or
fixed size problem instances. Nevertheless, this asymptotic classifi-
cation of algorithms has proved useful. From a theoretical computer
science perspective, the division allows for considerable progress to
be made without considering the minutiae of the specific system,
implementation, or domain of application.

From a practical standpoint, Moore’s31 law (or more aptly,
Moore’s conjecture) states the density of transistors in classical
computers doubles every two years. Thus, for a fixed computational
time, if the computer cannot solve an instance when using
a polynomial-time algorithm, one need not wait long as the
exponential growth of computing power will reasonably quickly
overtake the polynomially large cost. However, if the algorithm runs
in exponential-time, one may be forced to wait several lifetimes in
order for an instance to become soluble even if Moore’s law
continues indefinitely. Complicating matters, the exponential
growth according to Moore’s law is expected to cease sometime
this century; hence the recent emphasis on quantum computation.

The time complexity can be characterized using any computa-
tionally equivalent model. In the context of computer science,
equivalent means that one model can simulate the other with an
overhead that scales polynomially as a function of system size.

† The notation, f(x) = O(g(x)), implies that function f(x) is bounded above by g(x)
times a constant for asymptotically large values of x e.g. there exists a positive
constant C such that Cg(x) Z f(x) as x - N. To indicated that f(x) is
asymptotically bounded below by g(x), we write f(x) = O(g(x)). If there are
constants C and K such that f(x) is bounded above by Cg(x) and bounded below
by Kg(x) as x goes to infinity, then we write f(x) = Y(g(x)).
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These mappings respect the boundary between efficient and ineffi-
cient algorithms described earlier. Turing machines and circuits are
two typical models discussed in the context of computational
complexity.

The Turing computer or Turing machine was introduced by
Alan Turing32 in 1936 before transistors and electronic circuits
and formalizes the idea of a computer as a person to whom
computational instruction could be given. Turing32 introduced
the concept in order to answer David Hilbert’s challenge to
decide if a polynomial has roots which are integers using a
‘‘finite number of operations.’’ Turing proved that this was not
possible using his Turing machine. An illustration depicting
the salient features of the Turing machine is given in Fig. 1.

The circuit model of computation has been more widely
used when generalizing to the quantum setting although the
quantum Turing machine formulation does exist.33,34 The time
complexity in the circuit model is characterized by the number
of circuit elements (or gates) used to compute the accept/reject
boolean value corresponding to an input. So long as a universal
set of gates, e.g. NAND, FAN-OUT, and FAN-IN for classical
circuits, are used, the time complexity will only differ by a
polynomial factor. The key caveat to consider when using this
model is the notion of uniformity. To properly define an
algorithm in the circuit model, a way of generating circuits
for all input sizes must be given concisely. A circuit family for
an algorithm is uniform if there is a polynomial-time algorithm
that specifies the circuit given the input size.

2.2 Computational problems and problem instances

In computer science, computational problem often refers to
decision problems which are collections of yes/no questions
that an algorithm can decide. Each question is called a problem
instance and the answer is called the solution to that instance.

Although we focus on decision problem, in many situations the
decision problem can be used to extract numerical values by
asking sufficiently many yes/no questions.

A collection of decision questions with affirmative answers
such as, ‘‘Is 149 prime?’’ or ‘‘Is 79 prime?,’’ is called a language.
Languages define decision problems where only the accept
instances are included in the language. If an algorithm accepts
(returns ‘‘True’’ or outputs 1) on all strings contained in a
language, then the device is said to recognize the language. If
the computer is also required to halt on all inputs, then it is
said to decide the language. The difference being, a Turing
machine may recognize a language but fail to halt on some
instances, i.e. run forever. The problem of deciding if a Turing
machine algorithm halts is called the HALTING problem. This
problem has a rich and storied history beginning with the first
paper of Turing.32 In Fig. 1, the algorithm decides the language
of strings beginning with ‘01’ or ‘10.’

As an example from chemistry, the computational problem
of deciding if a molecule has a dipole moment, DIPOLE, is a
collection of questions: ‘‘Does x have a dipole moment?’’ Here,
x is a string representing the molecule in each instance. The
questions ‘Does BCl3 have a dipole moment?’, and ‘Does NH3

have a dipole moment?’ are instances of this computational
problem. The string x = ‘‘BCl3’’ is not in the language DIPOLE

since ‘‘BCl3’’ does not have dipole moment while ‘‘NH3’’ is in
the language since it has a dipole moment. A reasonable
modification of the problem would be ‘Does x have a dipole
moment greater than 0.1 Debyes?’ so that small dipole
moments may be ignored.

It may also be necessary to promise that x represents a
molecule in a specific way such that ill formatted inputs can be
ignored. This is accomplished using promise problems where
the promise would be that x is indeed a string that properly
encodes a molecule. Promise problems also arise in order to
account for issues of numerical or experimental precision as
illustrated in the next paragraph.

Promise problems also play a key role throughout the
remainder of this text since we are discussing physical proper-
ties where infinite precision is neither required nor expected.
As an illustration, we use an example from thermochemistry,
where language A is the set of strings corresponding to (ideal)
gases with heat capacity at constant pressure, Cp, less than
some critical value. Imagine you have an unreasonable lab
instructor, who gives you a substance that has heat capacity
extremely close to the critical value that decides membership in
A. It may take a large number of repetitions of the experimental
protocol to be confident that the substance belongs or does not
belong to language A. A reasonable lab instructor would
announce at the beginning of the lab that all the substances
handed out for the experiment are promised to be at least one
Joule per Kelvin away from the critical value. Given this
promise, the student will be able to complete their lab in a
single lab period. Without such a promise, it may take the
student several lab periods to repeat the experiment in order to
establish a sufficiently precise value of the heat capacity to
decide the instance. Instead when using a promise, if the

Fig. 1 Illustration of a Turing machine that accepts input strings beginning with
‘01’ or ‘10.’ The computer is specified by the set of states (modes of operation),
an alphabet of symbols for the scratch space, and the transition rules. The
computer performing an algorithm reads the symbol on the current line, then
based on the computer’s current state and the given transition rules, the
computer changes the symbol of the current line, changes its current state and
moves either up or down. The computer halts when it enters the ACCEPT or
REJECT states which indicate the output of the computation. In the figure, the
possible states are {BGN, CHK, SWP, REJECT, ACCEPT}, the alphabet is {‘0’,‘1’}, and
the transition rules are listed in the box to the left. Depicted is the second step of
a computation that began with input ‘10’.
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student has a compound that violates the promise then the
instructor would give full credit for either answer.

More formally, in the usual decision problems, the problem
is defined using one language, L, specifying the accept
instances. The language of reject instances is all strings not
in L. Promise problems differ in that they are specified using
two languages: one for the accept instances, Laccept, and a
separate language for the reject instances, Lreject. If an instance
is not in either of these languages, then the promise is violated
and the computation can terminate with any result.

Reusing the DIPOLE example, if we can reformulate the
problem to find out about non-zero dipole moments as a
promise problem to account for experimental error. Now the
computational task of DIPOLE is: ‘Given a molecule, x, a trial
value for the dipole dT, and an error tolerance d, decide if the
dipole moment of x is greater than dT + d or less than dT � d,
promised that the dipole moment is not between dT � d.’ In
this case, there are two languages defining the problem Ld>dT+d

and LdodT � d. If a molecule has a dipole moment of exactly dT it
would violate the promise and the experimenter or computer
does not need to answer or can respond with any answer. The
value d allows us to meaningfully define problems in the
presence of errors resulting from imperfect experimental mea-
surements or from the finite precision of a computing device.

2.3 Computational reductions

The idea of computational reduction is at the heart of classify-
ing computational problems. Reducibility is a way of formaliz-
ing the relationship between problems. Essentially, it asks, ‘‘If I
can solve one problem, what other problems can I solve using
the same resources?’’

There are two main types of reductions: Turing reductions and
Karp reductions. For the reductions to be useful, they must be
limited to polynomial time. The polynomial-time Turing reduction,
also called the Cook reduction, of problem A to problem B uses
solutions to multiple instances of B to decide the solutions for
instances of A. The solutions to instances of B are provided by an
oracle and each questions is called a query. Algorithms deciding A
which require only polynomial queries of the oracle for B are
efficient whenever the oracle for B answers in polynomial time.

The other type of reduction is called a Karp reduction or
polynomial transformation. If, instead of an oracle, there is an
embedding of instances of problem A into instances of problem

B, then an efficient solution for all instances of problem B imply
efficient solutions for instances of problem A. This transforma-
tion is a Karp reduction. When A can be reduced to B, under
either Karp of Turing reductions, it is denoted A r B.

To illustrate the difference, we use examples from thermo-
dynamics. Consider trying to determine if the heat capacity at
constant pressure, Cp, of an ideal substance is less than some
critical value (language A). Now, suppose an oracle, probably in the
form of a bomb calorimeter, has been provided for deciding if the
heat capacity at constant volume, CV, of a given substance is above
or below a critical value. Call language B the set of strings labeling
substances with CV below this value. By adding the number of
moles times the ideal gas constant to the critical value, one can
determine membership in language A via the formula Cp = CV + nR.
Since each instance of A can be embedded into an instance of B,
language A is Karp reducible to B and we can write A r B.

Suppose instead, an oracle for evaluating if, at fixed pres-
sure, the internal energy, U, of the given substance at a given
temperature is less than some critical value (language C) is
given. Then by evaluating the internal energy at two different
temperatures, the heat capacity at constant pressure can be
bounded by numerically estimating the derivative. Because the
reduction has to use the oracle for C more than once to decide
instances of A, language A is Turing reducible to C and A r C.

2.4 Basic complexity classes

Equipped with the basic definitions from computer science, we
now introduce the concept of computational complexity
classes. This will give some insights into why quantum chem-
istry is difficult. We will introduce six basic complexity classes
to classify the time complexity of decision problems. The first
three complexity classes are characterized by algorithms that
can decide instances in time proportional to a polynomial of
the input size; the other classes are characterized by polynomial
time verification of problem instances.

In Table 1, the three polynomial time complexity classes are
listed. First, P, is the class of all decision problems with instances
that can be accepted or rejected by a Turing machine in polynomial
time. If the Turing machine has access to an unbiased random
number generator, then the complexity class of problems that can
be decided in polynomial time is called BPP. The term ‘‘bounded
error’’ refers to the requirement that the probability of acceptance
and of rejection must be bounded away from half so that repetition

Table 1 Polynomial time complexity classes are separated by the resources the computer has access to while the non-deterministic polynomial time complexity classes
are characterize by the resources of polynomial time computational verifiers

Class Name Computer type taking only poly. time

P Polynomial time Turing machine
BPP Bounded error probabilistic polynomial time Turing machine with access to random number generator
BQP Bounded error quantum polynomial time Turing machine with access to quantum resources

Class Name Verifier’s computer type taking only poly. time

NP Non-deterministic polynomial time Turing machine
MA Merlin–Arthur Turing machine with access to random number generator
QMA Quantum Merlin–Arthur Turing machine with access to quantum resources
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can be employed to boost the confidence in the answer. An
important class of problems falling into this complexity class are
efficient Monte Carlo simulations often grouped under the umbrella
term quantum Monte Carlo35–37 used for computing electronic
structure in chemistry. Lastly, the complexity class BQP is character-
ized by problems solvable in polynomial time with quantum
resources. In the quantum computational model,38 the quantum
algorithm is conceptually simpler to think of as a unitary circuit, U,
composed of unitary circuit element that affect, at most, two
quantum bits. As mentioned earlier, the number of gates used
determines the time complexity. The outcome of the algorithm with
input |Inputi is ‘‘accept’’ with probability |hAccept|U|Inputi|2. Simi-
larly, for the ‘‘reject’’ cases.

So far, the discussion has centered on complexity classes con-
taining problems that are solvable in polynomial time given access
to various resources: a computer (P), a random number generator
(BPP), and a controllable quantum system (BQP). Now, our attention
turns to the class of problems that can be computed non-deter-
ministically. The original notion of non-determinism is a Turing
machine whose transition rule maps the computer state and the
tape symbol to any number of possible outputs. In essence, this is a
computer that can clone itself at will to pursue all options at once.
NP is the class of problems that could be solved in polynomial time
by such a computer. Whether a deterministic polynomial time
computer can be used to simulate such a computer is a restatement
of the famous open question in computer science: ‘‘Does P = NP?’’
This question was selected as a millennium problem by the Clay
Mathematics Institute which has offered a one million dollar prize
for a correct proof of the answer.

Rather than resorting to imaginary computers, the non-
deterministic classes can be defined by considering verification
of solutions which have been obtained in some non-determi-
nistic way, see Fig. 2. For every ‘‘accept’’ instance, x, there exists
at least one proof state y such that the verifier returns ‘‘accept’’
in polynomial time. If x is should be rejected, then for every
proof state y, the verifier should output ‘‘reject’’, again, in a
polynomial amount of time. Each of the non-deterministic
classes listed in Table 1, are characterized by the computational
power of the verifier. Note that P is a subset of NP because any
problem that can be easily solved can be easily verified.

2.5 Completeness and hardness

The goal of classifying computational problems into complexity
classes motivates introduction of the terms hard and complete.
The classification of a computational problems as hard for a
complexity class means if an algorithm can solve this problem,
then all problems in the class can be solved efficiently. In other
words, this problem contains all problems in the class either
via Karp or Turing reductions. More precisely, a language B is
hard for a complexity class CC if every language, A, in CC is
polynomial-time reducible to B, i.e. A r B.

Complete problems for a class are, in some sense, the hardest
problems in that class. These problems are both a member of the
class and are also hard for the class. That is, a language B is
complete for a complexity class CC if B is in the complexity class
CC and for every other language A in CC, A r B.

The simplest illustration of the difference between hard and
complete computational problems is the distinction between opti-
mization problems and decision problems. Optimization problems
such as finding saddle points or minima in energy landscapes are
frequently encountered in computational chemistry, but these
problems are not in the complexity class NP. However, if one can
perform optimization quickly, then responding with the answer to
yes/no questions about the solution would be simple. Thus,
optimization problems can be classified as NP-hard but not
NP-complete since the computational task of optimization is, in a
sense, harder than just answering yes or no.

3 Electronic structure and other Hamiltonian
problems

Now, armed with the key ideas from computer science, we return
to our original inquiry into why quantum chemistry is hard. We
answer this questions by exploring the computational complexity
of three different widely used methods for computing electronic
energy in computational chemistry: Hartree–Fock, two-electron
reduced density matrix methods, and density functional theory.

Before delving into the specific complexities of these
problems, we first establish notation by reviewing necessary
concepts from quantum chemistry, then discussing computa-
tional problems concerning classical and quantum spin Hamil-
tonians. We end the section with mappings between systems of
electrons and spin systems.

3.1 Quantum chemistry and second quantization

In quantum chemistry, the annihilation, {ak}, and creation
operators, {a†

k}, correspond respectively to removing and adding
an electron into one of M single particle wave functions, {fk(x1)}M

k=1.
The single-particle wave functions are called orbitals and the set of
orbitals is typically called the basis set. To include the electron spin,
the single particle orbitals fk are functions of spatial coordinates
and a spin variable which are collectively denoted x.

The electronic spin will play an important role when dis-
cussing the connections between systems of electrons and
systems of quantum spins. Since electrons are spin-1

2 particles,
the electron spin is either up or down. Accordingly, there are
M/2 orbitals with spin up and M/2 with spin down. Unless
explicitly noted, the summation over orbitals includes a sum-
mation over the spatial and spin indices of the orbitals.

Anti-symmetry of the N-electron is enforced by the canonical
anti-commutation relations for fermions, i.e. electrons,

[ap, aq]+ = apaq + apaq = 0, [ap, a†
q]+ = dpq1. (1)

In chemistry, typically the electronic structure is often the
primary concern, but if interested in vibrational structure, we
would have to consider bosonic canonical commutation rela-
tions: [bp, bq] = bpbq � bqbp = 0 and [bp, b†

q] = dpq1. The vacuum
state, |vaci, is the normalized state that the creation/annihila-
tion operators act on and it represents the system with no
particles.
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Acting on the vacuum state with a strings of N distinct
creation operators yields N-electron wave functions. The most
general N-electron state within a basis set is,

jCi ¼
XM
K

CK a
y
K1
a
y
K2
� � � ayKN

jvaci; ð2Þ

with K = (K1,. . .,KN) and the complex valued CK are con-

strained such that
P

K jCK j2 ¼ 1. To convert between creation
and annihilation operators and the coordinate represent-

ation, one uses field operators: f̂ðxÞ ¼
P

k fkðxÞak as in

Cðx1; . . . ; xNÞ ¼ hvacjf̂ðx1Þ � � � f̂ðxNÞjCi=
ffiffiffiffiffiffi
N!
p

. The factor of N!
accounts for permutation symmetries in the summation. Each
state C or |Ci is called an N-electron pure state. A valid N-
electron mixed state,

rðNÞ ¼
X

pijCii Cih j ð3Þ

has
P

pi = 1 where each |Cii is an N-electron wave function. The
k-th order reduced density matrix, abbreviated k-RDM, is
defined using the field operators:

rðkÞðx1;x01; . . . ;xk;x0kÞ¼
1

ðNÞk
hCjf̂yðx0kÞ � � � f̂

yðx01Þf̂ðx1Þ � � �f̂ðxkÞjCi

ð4Þ

¼ 1

ðNÞk
Tr f̂ðx1Þ � � � f̂ðxkÞrðNÞf̂

yðx0kÞ � � � f̂
yðx01Þ

h i
ð5Þ

With (N)k = N!/(N � k)!, the reduced density matrices are
normalized to unity and, in eqn (5) , the trace sums over the
expectation values of states from a complete set of (N � k)-
electron wave functions.

Lastly, we define the primary computational chemistry
problem encountered in computation of electronic structure:

ELECTRONIC STRUCTURE. The inputs are the number of elec-
trons, N, a set of M orbitals, a static configuration of nuclei, a
trial energy, ET, an error tolerance d and Hamiltonian,

Helec ¼ Te þ Vee þ VeN ¼
X
ij

ðT e
ij þ VeN

ij Þa
y
i aj þ Vee

ijkla
y
i a
y
j akal

ð6Þ

with Te the electronic kinetic energy operator, Vee the electron–
electron interaction operator and VeN the electron–nuclear inter-
action. The task is to decide if the ground state energy is less than
ET � d or greater than ET + d promised that the energy is not
between ET � d.

Methods related to getting approximate solutions to ELECTRONIC

STRUCTURE have complexities ranging from NP-complete to QMA-
complete as shown in Sections 4 and 5. The complexity of ELECTRONIC

STRUCTURE itself is not yet clear. In the literature, only Hamiltonians
with more flexibility, namely a local magnetic field, have been
demonstrated to be QMA-complete as shown see Section 6.1.

3.2 Classical and quantum spin Hamiltonians

The problem of estimating the ground-state energy of Hamiltonians
of different forms lies at the intersection of computer science,
physics and chemistry. In this section, we define computational
problems related to both classical and quantum spin Hamiltonians.
Spin systems have long been known to provide fertile ground for
complexity theory.19,39–41 Given a Hamiltonian, deciding if a there
exists a spin configuration, e.g. (mmk� � �), that satisfies a certain
property, e.g. has energy below a certain threshold, can be difficult
even when checking the property for each configuration is easy.
Computations designed to decide properties of this sort are often in
the complexity class NP. If, additionally, that particular property can
embed instances of any other NP properties, then that property
corresponds to an NP-complete computational problem. A cano-
nical example is the following spin problem:

ISING. The inputs are N classical spins with possible values
�1, trial energy, ET, and Ising Hamiltonian

Hising ¼ �
Xneighbors

hiji
JijSiSj ð7Þ

having Jij either 0 or �1. The task is to decide if there is a
configuration of spins c = (s1,s2,. . .,sN) such that the energy of
the Ising Hamiltonian is less that ET or if all configurations
have energy above ET.

Unlike the other Hamiltonian problems discussed in this
review, Ising does not require a promise on the precision

Fig. 2 An example of the non-deterministic complexity class QMA. Non-deterministic problems can be thought of as games. In the Merlin–Arthur games, the proof
verifying the validity of input x is magically (hence non-deterministically) given by a wizard Merlin who is prone to deception. The verifier, called Arthur, is trying to
decide if he should accept or reject input x. When Merlin gives Arthur a valid proof that verifies x should be accepted, Arthur should accept with high probability
(completeness) and when Merlin gives him an proof of something incorrect, he should be able to spot the inaccuracy (soundness). In the drawing since Arthur has
access to quantum bits (qubits), the complexity class depicted is QMA. Figure composed from images found on Wikipedia under the Creative Commons License.
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because the energy values of the Hamiltonian are integer-
valued instead of continuous.

Although some instances of the Ising lattice can be solved
analytically, e.g. one-dimensional Ising lattices or the solution by
Onsager42 for two-dimensional Ising lattices with uniform couplings,
Barahona39 showed that problem ISING is NP-hard when interactions
are restricted to nearest neighbors on a 2 � L � L lattice. Since this
model is only of tangential interest to electronic structure, details of
this proof are omitted. Since the ‘‘accept’’ instances can be verified
in polynomial time given a configuration c with energy less than ET,
this problem is in the complexity class NP and hence, is
NP-complete. Further results show that all non-planar lattices, even
in two-dimensions, are NP-complete.40

To provide examples of Hamiltonian problems that are com-
plete for the quantum analogue of NP, we turn to the quantum
analogues of the Ising Hamiltonian: quantum spin Hamiltonians.
To define similar quantum Hamiltonians with QMA-complete
properties, it turns out that one only needs spins with angular
momentum of 1

2 which are often called qubits. The interactions are
now expressed using tensor products of the Pauli sigma matrices
with matrix representations

sx ¼ 0 1
1 0

� �
; sy ¼ 0 �i

i 0

� �
; sz ¼ 1 0

0 �1

� �
: ð8Þ

Additionally, s0 is the identity matrix.
A widely studied class of qubit Hamiltonian problems whose

computational complexity was first investigated by Kitaev et al.41 is
the problem of computing, to polynomial accuracy, the ground
state energy of k-spin local Hamiltonians. This set of problems is
referred to as k-LOCAL HAMILTONIAN in the computational complexity
literature following ref. 41 but we use the name k-LOCAL-SPIN

HAMILTONIAN to emphasize the nature of the Hamiltonian. That is,
k-LOCAL-SPIN HAMILTONIAN. Given k-spin-local Hamiltonian

acting on N spins,

HkQMA ¼ �
Xm

D¼ðd1;...;dkÞ
C¼ðc1 ;...;ckÞ

JC;Dsd1c1 � sd2c2 � � � � s
dk
ck

ð9Þ

where di A {x, y, z, 0}, ci labels a spin, there are m = poly(N)
terms, and |JC,D| r 1, decide if the ground state energy is less
that E0 � d or if the ground state energy is greater than E0 + d
with d o 1/poly(N) promised that is not between E0 � d.

Note that the problem is defined so that the error scales relative
to the number of non-zero terms m in eqn (9). To understand this,
consider the following set of instances with error tolerance d = 0.5.
Consider Hamiltonian, H, with ground state energy 17.7 and
Hamiltonian, H0, with energy 17.6. As it stands, the two Hamilto-
nians cannot be distinguished. However, by including each term
in H and H0 ten additional times, the ground state energies are
now 177 and 176, which can be resolved at error tolerance d. By
considering m as a polynomial in N, one cannot indefinitely rescale
the energy to effectively shrink the error tolerance.

The first demonstration of a QMA-complete problem41

required k = 5. Subsequently k was reduced43 to 2. Finally, the
problem was shown44 to remain QMA-complete even when JC,D is
non-zero only if two spins are spatially adjacent on a 2D lattice.

The problem can be further restricted by including only a limited
set of two-spin interactions and still remain QMA-complete.45

Complexity results concerning qubit Hamiltonians as well as
other variants with higher dimensional spins and more restrictive
lattices were recently reviewed by Osborne.19

3.3 Relationships between spin systems and electronic
systems

Since chemists are not necessarily interested in qubit or
quantum spin systems, we now discuss connections to systems
of indistinguishable electrons. In this subsection, we will
examine how to embed a system of spins into an electronic
Hamiltonian and how to embed electronic systems into
spin Hamiltonians. Lastly, we use these connections to give
an example of a fermionic system (although not ELECTRONIC

STRUCTURE) that is QMA-complete.
Given an electronic Hamiltonian, there is a orbital pair pseudo-

spin mapping46,47 that is used to embed qubit models to the
ground state of the electronic systems. To embed N spins, there
must be M = 2N orbitals and N electrons, i.e. half-filling, and each
quantum spin is identified with a pair of fermionic modes. The
embedding requires translating each spin |qii = a|mii + b|kii to
fermionic operators: aa†

im + ba†
ik. The Pauli operators appearing in

the spin Hamiltonian, then become single fermion terms, e.g. hija
†
i

aj. As important examples consider,

sx
i = |kii hmi| + |mii hki| 2 a†

ikaim + a†
imaik (10a)

sy
i = i(|kii hmi| � |mii hki|) 2 i(a†

ikaim � a†
imaik) (10b)

sz
i = |mii hmi| � |kii hki| 2 a†

imaim � a†
ikaik (10c)

Taking tensor products of the Pauli matrices leads to two-fermion
terms, e.g. hijkla

†
i a†

j akal. The final concern is preventing double
occupancy within a pair of sites which would invalidate the
pseudo-spin interpretation. This is handled47–49 by including an
additional term which penalizes invalid electronic configurations.
For each pair of electronic modes, the two-fermion penalty

Pi = Ca†
imaima†

ikaik (11)

is added to the electronic Hamiltonian. Because penalty P ¼
P

i Pi

commutes with the fermionic Pauli matrices, the ground state
still corresponds to the solution of the spin Hamiltonian. The
constant C can be selected as a low order polynomial in the
system size to ensure that the ground state remains in a valid
pseudo-spin state.‡ Note that we have not explicitly relied on the
anti-commutation properties and a nearly identical construction
exists for bosonic systems.50

A second connection is given using well established techniques
developed to translate certain spin systems to simpler non-inter-
acting fermionic systems that can be exactly solved.51–53 The
Jordan–Wigner transform51 provides this connection by mapping
fermions to spin operators such that the canonical anti-

‡ More precisely, the norm of the Hamiltonian JHJ is upper bounded by the sum
of the individual terms. Since there are, at most, O(N)4 terms the norm of the
total Hamiltonian must scale less than a fourth order polynomial in the system
size.
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commutation relations are preserved. The Jordan–Wigner trans-
form between N fermionic creation and annihilation operators
and the Pauli matrices acting on N spins is given by

aj 3 1#j�1 # s+ # sz#N�j (12a)

a†
j 3 1#j�1 # s� # sz#N�j (12b)

where sþ ¼ sxþisy
2
¼ j #ih" j and s� ¼ sx�isy

2
¼ j "ih# j. The qubit

state |m� � �mi corresponds to the vacuum state and the string of
sz operators, preserve the commutation relations in eqn (1)
since sz and s� anti-commute. More sophisticated general-
izations of the Jordan–Wigner transform, reduce the number
and the spatial extent of the spin–spin interactions.54–56

The orbital pair pseudo-spin mapping and the
Jordan–Wigner transformation complement each other and
will be used repeatedly throughout the remainder of the article.
The orbital pair pseudo-spin mapping requires carefully engi-
neered penalties and fixes the total number of orbitals. Thus, it
is primarily useful when translating spin systems to electronic
systems. By contrast, the Jordan–Wigner transformation is
primarily useful in the other direction, that is, when translating
an arbitrary electronic system to a quantum spin system. The
next subsection gives a concrete example of how these con-
nections are employed when studying the computational
complexity of electronic systems.

3.4 Generic local fermionic problems are QMA-complete

The orbital pair construction allows one to immediately ascer-
tain that the ground state energy decision problem for Hamil-
tonians containing two-fermion interactions,

H2f =
P

hija
†
i aj + hijkla

†
i a†

j akal, (13)

is QMA-hard.48 This follows via a Karp reduction using the
orbital pair pseudo-spins as in eqn (10). Since only two-spin
interactions in eqn (9) are required for QMA-completeness,43

each spin–spin interaction term translates to two-fermion
terms under the pseudo-spin mapping. Since the pseudo-spin
construction can be extended to bosonic systems, the two-
boson ground state energy decision problem is also QMA-
hard.50

The ground state energy of the electronic state can be verified
to be above or below ET � d by a BQP quantum computer given
the proof state. This implies that the problem is QMA-complete.
We sketch the idea relying on well known results about BQP
quantum simulation of chemical systems.6,7,9 The Jordan–Wigner
transformation is used to translate the two-electron Hamiltonian
into a qubit Hamiltonian. If Merlin provides the fermionic ground
state,§ the energy of corresponding qubit state can be determined
through simulation8,57,58 of the evolution under the qubit version
of the two-electron Hamiltonian. This quantum evolution can be
simulated efficiently on a quantum computer.59,60 The resulting
evolution in the time-domain is Fourier transformed to extract the
energy of the ground state,5,8,11,61 allowing the verifier to

determine whether to accept or reject the instance. This argument
carries through for the bosonic case as well using the bosonic
equivalent of the Jordan–Wigner transform.50

4 Hartree–Fock

Hartree–Fock is one of the most important quantum chemistry
techniques as it typically recovers about 99% of the total
electronic energy. Hartree–Fock is known to be a weak approxi-
mation in many instances, but it is the basis for more sophis-
ticated (post-Hartree–Fock) methods which improve upon the
Hartree–Fock wave function. Furthermore, Hartree–Fock pro-
vides the mathematical framework for the widely adopted
notion of molecular orbitals used throughout chemistry.

The implementation of the Hartree–Fock algorithm requires
diagonalizing the M by M Fock matrix at O(M3) cost. When this
dominates the runtime, the algorithm then scales as a third-
order polynomial in the size of the basis. However, since
Hartree–Fock solves a nonlinear eigenvalue equation through
an iterative method,1 the convergence of self consistent imple-
mentations is the key obstacle that prevents the worst-case
scaling from being polynomial. While many rank and file
computational packages are routinely employed for self con-
sistent field calculations, there are well documented molecular
instances involving actinides or transition metals where con-
vergence is known to be a problem. The following complexity
result highlights the fact that convergence problems are intrin-
sic to the difficulty of the problem being solved. The computa-
tional complexity result proving that the worst-case scaling
cannot be polynomial unless PQNP was provided in an unpub-
lished appendix of Schuch and Verstraete49 available on the
arXiv preprint server.

For the purposes of this article, the Hartree–Fock procedure
can be succinctly explained as the minimization of the energy
of an N-electron system given M basis functions with the
restriction that in the expansion found in eqn (2), all CK are
zero except one. Explicitly,

EHF ¼ min
C¼
Q

i
ðby

i
Þki jvaci;P

ki¼N

hCjHelecjCi ð14Þ

Here, the single Fock state corresponding to the minimal value
of EHF is called the Hartree–Fock state: CHF. The optimized set
of creation operators,

b
y
i ¼

X
j

Cija
y
j ð15Þ

place electrons into the set of molecular orbitals, cjðxÞ ¼PM
j CijfjðxÞ. The formal computational problem HARTREE–

FOCK will be defined analogous to the other Hamiltonian
problems with a promise given to account for precision.
Specifically,

HARTREE–FOCK. The inputs are the number of electrons, N,
a set of M orbitals, a trial energy, ET, an error tolerance, d o
1/poly(N), and a two-electron Hamiltonian, cf. eqn (13). The
sum of the absolute values of the coefficients is required to

§ The verifier requires multiple copies of the state to ensure that the state has
exactly N electrons.

PCCP Perspective

D
ow

nl
oa

de
d 

by
 H

ar
va

rd
 U

ni
ve

rs
ity

 o
n 

14
 J

an
ua

ry
 2

01
3

Pu
bl

is
he

d 
on

 1
2 

N
ov

em
be

r 
20

12
 o

n 
ht

tp
://

pu
bs

.r
sc

.o
rg

 | 
do

i:1
0.

10
39

/C
2C

P4
26

95
A

View Article Online

http://dx.doi.org/10.1039/c2cp42695a


406 Phys. Chem. Chem. Phys., 2013, 15, 397--411 This journal is c the Owner Societies 2013

scale less than a polynomial in N. The task is to decide if the
Hartree–Fock energy EHF = hCHF|H|CHFi is less than ET � d or
greater than ET + d promised that EHF is not between ET � d.

4.1 HARTREE–FOCK is NP-complete

To prove that any other NP problem can be mapped to the HF
problem (NP-hardness), we can use a Karp reduction to embed
instances of ISING into instances of HF.49 Using the fermionic
version of sz given in eqn (10), Hising only requires two-electron
interactions,

SiSj = sz
is

z
j = (a†

imaim � a†
ikaik)(a†

jmajm � a†
jkajk) (16)

The satisfying assignment of the ISING instance is some spin
configuration |s1s2� � �sN i for N = 2L2 with si as either m or k. The
correct and exact Hartree–Fock solution for the N-electron wave
function should assign b†

i = a†
im when si = m and b†

i =a†
ik when

si = k. Thus, ISING r HARTREE–FOCK under a Karp reduction.
The promise on the error tolerance, d, given in the specifica-

tion of the problem is necessary because of the pseudo-spin
representation used in eqn (16). Corrections to the energy due
to the pseudo-spin representation can be computed using
perturbation theory with the unperturbed Hamiltonian given
by eqn (11) and the converted Ising Hamiltonian, cf. eqn (16),
as, the perturbation. The first order corrections in small para-
meter C�1 are the Ising energies and the errors due to the
pseudo-spin mapping arise at second order in C�1. A coarse
estimate for C is obtained by multiplying the number of non-
zero terms by the maximum absolute value of a coefficient
occurring in eqn (13). Since we map the problem to ISING, there
are O(N2) terms in the summation and the maximum absolute
value of each term is unity. Hence, C is estimated as O(N2). So
long as d o O(N�2), the first order corrections occurring at
order C�1 can be distinguished and the ground state Ising
energies can be recovered.

To prove inclusion of HF in the complexity class NP, an
algorithm for verifying the energy in polynomial time must be
given. If the coefficient matrix C describing the correct orbital
rotation is given, then the energy is calculated easily using
Slater–Condon rules.62 Thus, given the answer, the accept/
reject conditions are quickly verified. Since the problem can
also be quickly verified, HARTREE–FOCK is NP-complete.

5 2-RDM methods

Many computational chemistry algorithms seek to minimize
the energy or other properties by manipulating the wave
function but to quote Coulson,63 ‘‘wave functions tell us more
than we need to know. . . All the necessary information required
for energy and calculating properties of molecules is embodied
in the first and second order density matrices’’. Extensive
work has been done to transform this remark into a host of
computational methods in quantum chemistry.64,65 In this
section and the following, we review the prominent computational
complexity results related to this body of work.

With respect to the 2-RDMs, it is easy to evaluate properties
of the electronic system since the Hamiltonian only contains

two-electron terms. However, difficulties arise when determin-
ing if the 2-RDM is valid or invalid. Unconstrained optimization
of the energy using 2-RDM can lead to ground state energies of
negative infinity if the validity of each 2-RDM cannot be
determined. While the criteria for validity have recently been
developed,66,67 deciding the validity of each 2-RDM using such
criteria is known as the N-representability problem. Mazziotti66

also provides a proof that the following problem, N-REP, is at
least NP-hard. In the next subsection, we follow Liu et al.48 to
demonstrate the stronger conclusion that N-REP is QMA-
complete.

N-REP. The inputs are the number of electrons, N, an error
tolerance b Z 1/poly(N), and a 2-RDM, m(2). The task is to
decide (i) if m(2) is consistent with some N-electron mixed state,
r(N), or (ii) if m(2) is bounded away from all 2-RDMs that are
consistent with an N-electron state by at least b ¶ promised that
either (i) or (ii) is true.

5.1 N-REP is QMA-complete

To show QMA-hardness, a Turing reduction is used to show
2-LOCAL-SPIN HAMILTONIAN r N-REP. Before proceeding to the
Turing reduction, note, since N-REP only considers a fixed number
of electrons, the one-electron operators are not needed as

a
y
i aj ¼ a

y
i

PM
k a

y
kak

� �
aj=ðN � 1Þ. Each valid 2-RDM can be repre-

sented by an
M
2

� �
� M

2

� �
dimensional matrix with

M
2

� �2

�1

independent parameters.8 A complete set of observables, such as
the projection onto each matrix element,** is then used to
characterize the space of 2-RDMs.

The space of valid 2-RDMs is convex; that is if m(2)
1 ,m(2)

2 ,. . .,m(2)
L

are valid 2-RDMs, then the convex sum
P

jnjm
(2)
j with

PL
j nj = 1 is

also a valid 2-RDM. This follows directly from the convexity
properties of sets of density matrices and probability
distributions.

With access to an oracle for N-REP, the boundaries of the
convex set of valid 2-RDMs can be characterized. Because the
oracle is used multiple times throughout the verification pro-
cedure, this is a Turing reduction. Since convex minimization
problems can be solved efficiently and reliably, see e.g.,68 the
QMA-hardness is nearly demonstrated. The last point of
concern addressed by Liu et al.,48 are the errors introduced by
the promise given on the oracle. To demonstrate that the
algorithm remains robust in spite of such errors, the authors
use a tailored version of the shallow-cut ellipsoid convex
optimization technique.69

¶ The appropriate metric is the trace distance,

dtrðA;BÞ ¼ k A� B ktr¼ 1
2
Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� BÞyðA� BÞ

q� �
, which generalizes the distance

metric from standard probability theory.
8 Since each 2-RDM is hermitian, the complex off-diagonal elements occur in
pairs and the diagonal elements must be real. Since the trace is normalized to

unity, there a reduction of one degree of freedom, leaving
M
2

� �2

�1
independent parameters.
** Liu et al.48 used a different set observables inspired by the Pauli matrices with
more convenient mathematical properties.
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Let us remark that the required error tolerance follows since
the reduction relies on the QMA-completeness of 2-LOCAL-SPIN

HAMILTONIAN which includes a promise on allowed the error
tolerance.

To demonstrate that N-REP is QMA-complete, what remains
is demonstrating that N-REP is in the complexity class QMA. If
m(2) is a valid 2-RDM, then, relying on the Jordan–Wigner
transform introduced earlier, Merlin can send polynomial
copies of the correct N-electron state, m(N). The verifier, Arthur,
first checks that the number of electrons in the given state is N

by evaluating Tr mðNÞ
P

a
y
kak

h i
. Then Arthur randomly picks

observables from the complete set described earlier and tests
that the expectation value of the state m(N) and m(2) match until
convinced. Merlin might try to cheat by sending entangled
copies of m(N) but it can be proven that Arthur cannot be fooled
based on the Markov inequality.†† See Aharonov and Regev70

for a proof of this fact.

5.2 Restriction to pure states

The pure state restriction of N-REP has interesting
consequences. Consider, PURE N-REP, where the question is
now: ‘‘Did the 2-RDM come from a N-electron pure state
(up to error b)?’’ This contrasts with the original problem where
the consistency questions refers to an N-electron mixed
state.

This problem is no longer in QMA since the verifier, Arthur,
cannot easily check that the state is pure if the prover, Merlin,
cheats by sending entangled copies of |C(N)i. If instead, two
independent unentangled provers send the proof state, the
state from the first prover can be used to verify the purity.
The purity is checked using the pairwise swap test,71 a quantum
algorithmic version of the Hong–Ou–Mandel effect in quantum
optics,72 on each of the supposedly unentangled states.
When the given state is not a product state (or nearly so),
Arthur will detect it. If the set of states from the first prover pass
the test, the second set can be used to verify that randomly
selected expectation values of |C(N)i and m(2) match. The
complexity class where two provers are used instead of one
is QMA(2).

6 Density functional theory

In this section, a further reduced description is examined:
density functional theory. Density functional theory (DFT)
methods are of profound importance in computational chemistry
due to their speed and reasonable accuracy.3,65,73 In this section,
the complexity of the difficult aspects of DFT is shown to be
QMA-complete. This was first conjectured by Rassolov and
Garashchuk20 and rigorously proven by Schuch and Verstraete.49

In DFT, the wave function is replaced by the one-electron
probability density, n(x) = r(1)(x,x). The use of an object in three

spatial dimensions to replace an object in 3N spatial dimen-
sions without losing any information seems almost absurd, but
the theoretical foundations of DFT are well established.65,74

The Hohenberg–Kohn theorem73,74 proves that the probability
density obtained from the ground state wave function of elec-
trons in a molecular system is in one-to-one correspondence
with the external potential usually arising from the static nuclear
charges. Therefore, all properties of the system are determined
by the one-electron probability density.

In the proof of the Hohenberg–Kohn theorem, one of the
most important, and, elusive, functionals of the one-electron
density is encountered: the universal functional. In all electronic
Hamiltonians, the electrons possess kinetic energy and the
electrons interact via the Coulomb interaction; only VeN due to
the nuclear configuration changes from system to system.
Separating these parts allows one to define the universal
functional of DFT as

F ½nðxÞ� ¼ min
rðNÞ!nðxÞ

Tr½ðTe þ VeeÞrðNÞ�; ð17Þ

which takes as input the probability density and returns the
lowest possible energy of Te + Vee consistent with the probability
density. The nuclear potential energy can be directly determined
efficiently using

R
dx n(x)VeN(x) using Gaussian quadratures or

Monte Carlo sampling. Regardless of the method used to evaluate
the integral, the domain does not (explicitly) increase with the
number of electrons. As a decision problem, we have the following
computational problem:

UNIVERSAL FUNCTIONAL. The inputs are the number of electrons,
N, a probability density n(x), a trial energy ET and an error
tolerance do 1/poly(N). The task is to decide if F[n(x)] is greater
than ET + d or less than ET � d promised that F[n(x)] is not
between ET � d. It is required that the summation over the
Hamiltonian coefficients

P
|Vee

ijkl| + |Te
ij| + |VeN

ij | + |Vmag
ij | scale

less than poly(N).

6.1 UNIVERSAL FUNCTIONAL is QMA-complete

The demonstration that UNIVERSAL FUNCTIONAL is QMA-hard
proceeds via a series of reductions. Specifically, Schuch and
Verstraete49 show that H2QMA r Hheisenberg r Hhubbard r Helec

where H1 r H2 means that instances of the ground state
decision problem for Hamiltonian H1 can be embedded (Karp
reduced) into ground state problem instances of Hamiltonian
H2. In their proof, the authors utilize the magnetic field to
encode the problem instances causing Helec as defined in
eqn (6) to include an additional local magnetic field, Vmag.
Note that the local field only affects the spin of the electron and
does not require spin-dependent density functionals since the
charge and spin do not couple. The Hamiltonian, H2QMA, was
listed earlier in eqn (9). Again since the reduction relies on
the QMA-completeness of the 2-LOCAL-SPIN HAMILTONIAN problem,
the promised error tolerance and the upper-bound of the
coefficients of the Hamiltonian are required for QMA-
completeness.

The Hhubbard and Hheisenberg Hamiltonians are commonly
encountered models in condensed matter physics and are of

†† Given any random variable X, the Markov inequality states h|X|i Z aPr(|X| Z a)
with hXi defining the expectation value of random variable X and |X| defining the
absolute value of X.
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the form

Hhubbard ¼
XM=2

hiji

X
s2f";#g

ta
y
i;saj;s þ

XM=2

i

Ua
y
i"a
y
i#ai#ai"

�
XM=2

i

X
d2fx;y;zg

Bd
i s

d
i

ð18Þ

Hheisenberg ¼
X

d2fx;y;zg

XM
ij

Jsdi s
d
j þ

XM
i

Bd
i s

d
i ð19Þ

The first Hamiltonian describes an electronic system where the
Pauli matrices, sd, are expressed using orbital pairs as in
eqn (10), while the second Hamiltonian describes a system of
quantum spin. In both Hamiltonians, different problem
instances are embedded using the local magnetic field. The
embedding of Hheisenberg instances into Hhubbard follows directly
from the orbital pair mapping described earlier in Section 3.3.
The remaining two Karp reductions are more involved.

First, let us consider the reduction H2QMA r Hheisenberg. This
Karp reduction follows along the same lines used in reducing
kQMA from k = 5 to k = 2 based on perturbative gadgets43,44

widely used in quantum complexity proofs. A mediator spin
splits the state space of the system into a low energy and a high
energy sectors. In the low energy sector, the perturbative
coupling to the high energy states ‘‘mediates’’ new interactions
in the low energy sector. For example, with Hm = Bm|jmi hjm|
acting on the mediator spin and a perturbation V = sX

i s
X
ms

0
j +

s0
i s

Y
ms

Y
j , in the low energy space of spin m, there is, at the

second order correction, an effective interaction: sX
i s

Y
j . Since

the Hamiltonian problems refer to the ground state energy, the
high energy sector is not important.

The reduction H2QMA o Hheisenberg requires:
1. converting arbitrary strength couplings to constant

strength couplings: J12sA1 s
B
2 7!JðsA1 sMm þ sNms

B
2 Þ;

2. converting inequivalent couplings to equivalent cou-
plings: sA1 s

B
2 7!sA1 s

A
m þ sBms

B
2 ;

3. and finally converting equivalent couplings to Heisenberg

interactions: sA1 s
A
2 7!

P
d s

d
1s

d
mþ
P

d s
d
ms

d
1 .

The full transformation requires 15 mediator spins where
the local field on each of the mediator spins splits the system
into low and high energy sectors. The specific local field
depends on the interaction desired. The strength of the local
field applied to the mediator spin |Bm| is usually very large to
ensure that perturbation theory applies. So far this has limited
the practical relevance of these constructions; for instance,
field strengths required on the final set of mediator spins
scales at nearly the 100th power of the system size.

The remaining reduction, Hhubbard r Helec, was heuristically
known since the Hubbard model phenomenologically
describes electrons in solid state systems. Schuch and
Verstraete49 rigorously demonstrate this reduction by careful
accounting for error terms. They begin with a simple model
used for studying solids where non-interacting (spin-less) elec-
trons are subjected to a periodic delta function potential with

M/2 such sites. The orbitals of this system can be solved exactly.
The resulting second quantized Hamiltonian has uniform

kinetic hopping terms:
P
hiji ta

y
i aj . After incorporating the

electron spin, electron–electron interactions are introduced.
The strength of this interaction is rescaled by changing the
spatial distance between neighboring sites until only the elec-
trons at the same site can interact. Since each of the M/2
identical sites can only support one bound state, the exchange
integral must vanish and the Coulomb integral is the same for

each interaction yielding
P

i Ua
y
i"a
y
i#ai#ai".

Since the Hubbard model and the Heisenberg model require
magnetic fields to define problem instances, the electronic
Hamiltonian which they consider is not precisely the same as
eqn (6); this also requires that the functional takes into account
the separate spin components of the probability density when
performing the minimization in eqn (17).

Regardless, a polynomial time solution of UNIVERSAL FUNCTIONAL

would also solve the QMA-hard electronic Hamiltonian
with local magnetic fields. This follows as the functional
is convex

F
X

pjnj

h i
¼ min

rðNÞ!
P

pjnj

Tr½ðTe þ VeeÞrðNÞ�

�
X
j

pj min
rðNÞ
j
!nj

Tr½ðTe þ VeeÞrðNÞj �
ð20Þ

and the one-electron probability densities are also convex
allowing one to perform convex optimization to find the mini-
mum energy of the QMA-hard electronic Hamiltonian with the
local magnetic fields. Since the conditions for consistency are
simple to check for one-electron probability densities,65 the
complications encountered in 2-RDM convex optimization
from the approximate consistency conditions are not present.

The inclusion of UNIVERSAL FUNCTIONAL in complexity class
QMA follows along the same lines of the generic two-fermion
problem discussed in Section 3.4. However, in this case, Arthur
must subtract the energy of the local field from the total energy
to decide if the energy of F is above or below ET � d.

6.2 Restriction to pure states

The pure state restriction of DFT affects the complexity of
computing F. Consider evaluating F[n] where the input density
arises from optimization over pure states |Ci instead of mixed
states as in eqn (17). In this case, the universal functional is no
longer convex.X

i

pi min
Ci!ni

hCijðTe þ VeeÞjCiia min
C!
P

pini

hCjðTe þ VeeÞjCi:

The optimization problem would then be NP and an oracle for
PURE UNIVERSAL FUNCTIONAL would allow a Turing reduction from
QMA to NP. Stated differently, an NP machine with access to an
oracle for PURE UNIVERSAL FUNCTIONAL, could solve any problem in
QMA. Similar to the 2-RDM case, the restriction to pure states
complicates the verification such that two Merlins are required
to show that the state is pure and that the proposed solution is
correct.
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7 Related methods and other results

In this article, we have focused on three pillars of quantum
chemistry but there are other results and more methods worth
mentioning. First, we will discuss some consequences of the
problems that have already been shown to be computationally
difficult and then discuss methods that were thus far omitted.

In quantum chemistry, multi-determinant wave functions
are useful for capturing static correlations which are important
in many situations such as bond breaking. Common techni-
ques used for such analysis are multi-configuration, complete
active space, or restricted active space self-consistent field
methods. As a consequence of Hartree–Fock being NP-com-
plete, these methods are also at least NP-hard since they all
include the single determinant Hartree–Fock calculation as a
sub-case.

Perturbation theory also plays a prominent role in quantum
chemistry when dynamical correlations need to be captured. At
the forefront of these methods is Møller–Plesset (MP) perturba-
tion theory and coupled cluster calculations. The MPn series is
based on perturbing the Hartree–Fock solution using the
difference between the exact Hamiltonian and the effective
Fock matrix which includes the self-consistent mean-field.
Including perturbative corrections thus requires that one could
solve Hartree–Fock, but again the NP-completeness of this
problems implies the NP-hardness of the MPn series. The same
arguments hold for coupled-cluster calculations predicated on
access to the Hartree–Fock state. In principle, the coupled-
cluster expansion could start from any initial state so this
argument does not fully suffice as the basis for a proof about
the complexity of coupled-cluster techniques. It does indicate
that, at the very least, the standard approaches would be
limited by the Hartree–Fock computation in the first place.

Now we turn to the discussion of other notable methods
omitted earlier. First, Troyer and Wiese76 have shown that the
sign problem of quantum Monte Carlo, when properly defined,
is NP-hard. They showed that the stochastic evaluation of the
partition function of quantum systems is at least NP-hard. This,
in turn, suggests that after performing a Wick rotation: it - t,
the propagation in imaginary time, as is done in diffusion
quantum Monte Carlo can only be done to polynomial accuracy
if one can solve NP-complete problems. Second, in their brief
review article, Rassolov and Garashchuk20 speculated on the
complexity of de Broglie–Bohm formulation of quantum
mechanics by pointing out that Monte Carlo techniques can
be employed to efficiently sample the propagated Hamiltonian–
Jacobi equations without the quantum potential. They then put
forward that the singularities of the quantum potential will
ultimately be the source of difficulties in the quantum propaga-
tion. Third, the extension of DFT can be used in the time
dependent domain in what is termed time-dependent density
functional theory (TDDFT). Tempel and Aspuru-Guzik77

demonstrated that one can construct TDDFT functionals for
use in quantum computation. Finally, in a slight tangent to this
article’s focus on ground states, Brown et al.75 showed that
calculating the density of states for quantum systems is in the

same complexity class as computing the classical partition
function. The complexity class of these problems is #P where
the problem instances request the number of solutions to
problem in complexity class P.

8 Remarks on approximability of quantum
systems

Before closing the paper, we make a few remarks on scaling of
the error tolerances. In the computational problems investi-
gated, the error tolerance was upper bounded by an inverse
polynomial 1/q(N) in the system size. In HARTREE–FOCK, it was the
pseudo-spin mapping that necessitated the promise, but, in
UNIVERSAL FUNCTIONAL and N-REP, the promise is inherited from
the 2-LOCAL-SPIN HAMILTONIAN problem. At first glance, it would
appear that the error tolerance becomes more restrictive as the
system size increases, however this is not necessarily the case.

We focus on the problem k-LOCAL-SPIN HAMILTONIAN since it is
at the heart of the reductions for both UNIVERSAL FUNCTIONAL and
N-REP. In this problem, the error tolerance, d, is normalized by
the number of terms in the Hamiltonian,‡‡ m. Therefore, the
error tolerance only shrinks with system size if the number of
non-zero terms in the Hamiltonian is constant or grows slower
than q(N). In many cases, the number of terms in the Hamilto-
nian increase with system size. Thus, even if asking for fixed
error, e.g. 1 kcal mol�1, as the system size increases the promise
is still fulfilled and the problem of deciding instances of
k-LOCAL-SPIN HAMILTONIAN is QMA-complete.

When the error tolerance is independent of the system size
or grows slowly, it is not clear if the problem remains QMA-
complete. This is related to the on-going research into possible
quantum generalizations of the PCP theorem.§§ The PCP
theorem shows that the task of approximating some NP-com-
plete problems is also NP-complete.78,79 A quantum general-
ization, if it exists, would allow one to show that k-LOCAL-SPIN

HAMILTONIAN remains QMA-complete even when the normalized
error tolerance is bounded by a constant instead of an inverse
polynomial of N. This remains a prominent open question in
modern computer science and is discussed more thoroughly by
Osborne.19

9 Outlook

With respect to complexity in quantum chemistry, we have
examined, in detail, the computational complexity of three
different quantum chemistry algorithms: HARTREE–FOCK,
N-REP, and UNIVERSAL FUNCTIONAL. The difficulty of these compu-
tational chemistry problems relative to problems found in

‡‡ One may ask why not use the norm of the Hamiltonian? For a Hamiltonian, H,
the operator norm is the maximum eigenvalue and computing the maximum
eigenvalue is just as hard as computing the ground state of –H, thus also a
difficult problem.
§§ The term PCP refers to probabilistically checkable proof systems where the
verifier is only allowed to randomly access parts of a non-deterministically
generated proof. Using only polynomial time and a fixed amount of random bits,
the verifier is to validate or invalidate the proof.
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other fields gives insights into why computational chemistry is
difficult. The difficulty of these problems imply that even
a quantum computer will be unable to solve all instances since
it is believed that BQP does not contain NP. However, even
if quantum computers are never constructed, the study of
quantum computational complexity gives new insight into the
relative difficulty of problems. For instance, characterizing
valid two-electron reduced density matrices or evaluating
the universal functional of DFT is arguably more difficult
than evaluating the Hartree–Fock energy based on the probable
separation of complexity classes QMA and NP.

This article aims to facilitate cross-fertilization of ideas
between numerical chemical physics and quantum computa-
tional complexity by providing an interdisciplinary perspective.
While the picture is far from complete, it does provide a new
purview of computational quantum chemistry. For developers
and users of software packages, these results should not change
their ambitions, only challenge them. Just as advances in
numerical simulations have assisted experimental chemistry
by informing, interpreting and complementing physical data,
we expect in the future, an expanded understanding of compu-
tational complexity can provide added value to numerical data
from computational simulations.

Despite the new results presented, there are many remain-
ing questions essential to the expansion of applications of
theoretical computer science to chemistry.
	 What is the computational complexity of other molecular

properties besides energy? The computational difficulty of prop-
erties such as excited states or derivatives of the energy have not
been systematically investigated yet. The examination of other
properties of molecular systems will provide fertile ground for
future research into the difficulty of quantum chemistry.
	 Can studying open system dynamics simplify the complex-

ity? That is, if one is only interested in the electronic properties of
a fragment of a system, e.g. a solute molecule or a molecule in
heat or phonon bath, does the computational complexity change?
	 Although problems (i.e. Hartree–Fock) are difficult in the

worst case, what precise restrictions or well defined classes of
molecules admit tractable computations? The answer to this
questions is known intuitively by many researchers who have
performed thousands of electronic structure calculations. Is the
restriction to the first three-rows of the periodic table enough to
ensure all calculations converge reasonably quickly? What are
the most general restrictions that allow such a promise to be
fulfilled?
	 Do QMA-hard scalar electronic potentials exist? In other

words, what is the computational complexity of Coulombic
Hamiltonians without magnetic fields? The proof by Schuch
and Verstraete,49 encodes problem instances into magnetic
fields, not the external electric field.

The results to date, have severe limitations on them such
that they do not always line up with the application areas in
chemical physics. In many of the results, methods of quantum
chemistry have been reduced to their essence before being
approached with tools from the emerging subfield of Hamilto-
nian complexity. Instead of viewing such caricatures as a

inconsequential, one can view them as an opportunity for
improvement. This parallels the evolution of numerical approx-
imations in quantum chemistry where oversimplified models
gradually become more sophisticated as a result of further
research.

Hopefully, the techniques, results, and open questions
presented in this perspective article paves a path for future
advancements in computer science and quantum chemistry.
Just as experimental quantum chemists were once skeptical of
the insights that numerical methods could bring, we expect
that many numerical quantum chemists may question insights
that computational complexity can bring. We share the same
view expressed by Coulson63 in 1960, in defense of numerical
methods in chemistry:

‘‘The questions that we are really asking concern the very
nature of quantum chemistry; what relation it has to experi-
ment, what function we expect it to fulfill, what kind of
questions we would like it to answer.’’
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