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PIP2-DEPENDENT REARRANGEMENT OF TRPV4
CYTOSOLIC TAILS ENABLES CHANNEL ACTIVATION BY
PHYSIOLOGICAL STIMULI
Anna Garcia-Eliasa,1, Sanela Mrkonjića,1, Carlos Pardo-Pastora, Hitoshi Inadab, Ute A. Hellmichb, Fanny Rubio-Moscardóa,
Cristina Plataa, Rachelle Gaudetb, Rubén Vicentea and Miguel A. Valverdea,2

aLaboratory of Molecular Physiology and Channelopathies,Dept. of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; bDept. of
Molecular and Cellular Biology, Harvard University, Cambridge, USA.

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Most TRP channels are regulated by phosphatidylinositol-4,5-
biphosphate (PIP2), although the structural rearrangements occur-
ring upon PIP2 binding are currently far from being understood.
Here we report that TRPV4 activation by hypotonic and heat
stimuli requires PIP2 binding to and rearranging of the cytosolic
tails. Neutralization of the positive charges within the sequence
121KRWRK125, which resembles a phosphoinositide binding site,
rendered the channel unresponsive to hypotonicity and heat but
responsive to 4α-phorbol 12,13-didecanoate, an agonist that binds
directly to transmembrane domains. Similar channel response was
obtained by depleting PIP2 from the plasma membrane with
translocatable phosphatases in heterologous expression systems
or by activation of phospholipase C in native ciliated epithelial
cells. PIP2 facilitated TRPV4 activation by the osmotransducing
cytosolic messenger 5’-6’-epoxyeicosatrienoic acid and allowed
channel activation by heat in inside-out patches. Protease pro-
tection assays demonstrated a PIP2 binding site within the N-tail.
The proximity of TRPV4 tails, analysed by fluorescence resonance
energy transfer, increased by depleting PIP2, mutations in the PI-
site or by co-expression with PACSIN3, a regulatory molecule that
binds TRPV4 N-tails and abrogates activation by cell swelling and
heat. PACSIN3 lacking the F-BAR domain interacted with TRPV4
without affecting channel activation or tail rearrangement. There-
fore, mutations weakening the TRPV4-PIP2 interacting site and
conditions that deplete PIP2 or restrict TRPV4 access to PIP2 –in the
case of PACSIN3- change tail conformation and negatively affect
channel activation by hypotonicity and heat.

TRP | conformational change | heat | osmotic

INTRODUCTION
TRPV4 is a non-selective cation channel that responds to osmotic
(1-4), mechanical (5-7) and temperature stimulation (8), thereby
contributing to many different physiological functions: cellular
(4, 9) and systemic volume homeostasis (10), vasodilation (11,
12), nociception (13), epithelial hydroelectrolyte transport (14),
bladder voiding (15), ciliary beat frequency regulation (7, 16,
17), chondroprotection (18) and skeletal regulation (19). Os-
motic (20) and mechanical (7, 16) sensitivity of TRPV4 depends
on phospholipase A2 activation and the subsequent production
of the arachidonic acid metabolites, epoxyeicosatrienoic acids
(EET), while the mechanism leading to temperature-mediated
activation (only observed in intact cells) it is not known at present
(21). Reports also exists claiming EET-independent TRPV4 ac-
tivation by membrane stretch in excised-patches from oocytes
(22), in apparent contradiction with early reports claiming lack
of activation by membrane stretch (1). Several studies have char-
acterized TRPV4 domains implicated in channel regulation by
calmodulin (23, 24), PACSIN3 (25), intracellular ATP (24) and
inositol-trisphosphate receptor (16, 26). However, little is known
about the domains relevant for TRPV4 activation by different
stimuli, apart from the interaction between the TRPV4 activator
4α-phorbol 12,13-didecanoate (4α−PDD) and transmembrane

domains 3 and 4 (27). Analysis of disease-causing mutations
modifying channel activity that lay in regions close to the channel
pore or within the ankyrin repeats (28) has also contributed to
our understanding of relevant protein domains.

Most TRP channels are regulated by phosphatidylinositol
phosphates, particularly by phosphatidylinositol-4,5-biphosphate
(PIP2), which is the most abundant phosphoinositide in the inner
leaflet of the plasma membrane (29, 30). In general terms, it
is proposed that PIP2 modulates TRP channel gating and/or
the sensitivity to activating stimuli (29, 30). The interaction of
PIP2 with TRPs involves protein regions characterised by the
presence of several positively charged residues. Mutations of
these positive residues (31-33) and manipulation of the PIP2
levels in intact cells (34) or in excised patches (33) have been the
main tools to evaluate PIP2-mediated channel regulation.

The recent report of the crystal structure of K+ channels
with bound PIP2 provides the first atomistic description of a
molecular mechanism by which PIP2 regulates channel activity
(35, 36). PIP2 binding induces a large conformation change in the
protein, expanding and bringing the cytosolic domains closer to
the transmembrane domains (35). Whether PIP2 modulation of
TRP channels involves similar conformational changes is still an
open question.

We now show that TRPV4 requires the interaction of PIP2
with a stretch of positive charges at theN-tail, prior to the proline-
rich domain (PRD, residues 132-144), in order to be activated by
hypotonicity and heat. Moreover, we have also demonstrated that
the reported lack of channel response to heat in excised patches
is fully recovered in the presence of PIP2, thereby suggesting that
TRPV4 is bona fide thermosensitive channel. Finally, reduction
of PIP2 levels or disruption of the PIP2 interaction with the chan-
nel increased FRET signal between fluorescent probes on the
TRPV4 cytosolic tails, consistent with a more compact cytosolic
region. This is the first piece of evidence suggesting that, similar
to PIP2-regulated K+ channels, PIP2 interaction with the TRPV4
channel rearranges cytosolic domains.

RESULTS AND DISCUSSION
A possible phosphoinositide interacting site in the TRPV4 N-tail
is required for channel activation by hypotonicity and heat. We
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Fig. 1. Functional analysis of N-terminal truncations and mutations of
TRPV4. (A)Mean current density measured at +100 and -100 mV in response
to a 30% hypotonic shock in HEK-293 cells overexpressing TRPV4-WT, TRPV4-
Δ1-30, TRPV4-Δ1-130, TRPV4-Δ100-130 and GFP.Number of cells recorded
is shown for each condition.(B)Ramp current-voltage relations of cationic
currents recorded from HEK-293 cells transfected with TRPV4-WT or TRPV4-
121AAWAA and exposed to 30% hypotonic shocks. (C) Mean current re-
sponses to isotonic and hypotonic stimuli in cells transfected with TRPV4-WT
or TRPV4-121AAWAA. (D) Mean current responses to 4α-PDD stimulation in
TRPV4-WT or TRPV4-121AAWAA expressing cells. (E) Calcium signals (Fura-
2 ratio) obtained in HeLa cells transfected with GFP (n=47), TRPV4-WT
(n=25) or TRPV4-121AAWAA (n=59) and sequentially stimulated with 30%
hypotonic solutions and 10 μM 4αPDD. (F) Calcium signals obtained in HeLa
cells transfected with TRPV4-WT (n=335), TRPV4-121AAWAA (n=318) or GFP
(n=254) and stimulated with warm solutions (38ºC). * P<0.05.

screened TRPV4 for domains that may participate in the channel
response to hypotonicity-induced cell swelling. A schematic view
of the channel molecule and all deletions/mutations generated
is shown in Supporting Information Fig. S1. We focused on the
N-terminus tail because a TRPV4 SNP associated with hypona-
tremia, P19S, generates a channel with reduced response to hypo-
tonic cell swelling (37). We generated three deletions of different
length: TRPV4-Δ1-30, TRPV4-Δ1-130 and TRPV4-Δ100-130.

TRPV4 sensitivity to hypotonic conditions was assayed using
whole-cell patch clamp recordings and intracellular calcium imag-
ing with fura-2. Addition of a 30% hypotonic solution yielded
large currents in cells transiently transfected with TRPV4-WT
but not in GFP-transfected cells (Fig. S2A). TRPV4-Δ1-130 and
TRPV4-Δ100-130 responses to 30%hypotonicity were reduced to
the levels recorded in GFP-transfected cells while TRPV4-Δ1-30
displayed a normal response (Fig. 1A and Fig. S2B). Deletion of
the first 30 residues did greatly reduce currents generated by 15%
hypotonic solutions (Fig. S2D), mimicking the changes induced
by the P19S polymorphism (37). Consistent with the electro-
physiological experiments, expression of TRPV4-WT increased
intracellular [Ca2+] in response to 30% hypotonicity while the

Fig. 2. . Effect of PIP2 depletion on TRPV4-mediated Ca2+ signals. HeLa
cells were transfected with TRPV4-WT, TRPV4-WT plus FRB and FKBP-5-
phosphatase (PIP2-ptase) or the inactive phosphatase (D281A). (A-C) Aver-
age calcium signals (fura-2 ratio) measured in the presence of the phos-
phatase translocation inducing agent rapamycin (1 μM) for cells exposed
to (A) 30% hypotonicity (TRPV4, n=302; V4+PIP2-Ptase, n=229; V4+PIP2-
PtaseD281A, n=192), (B) heat (TRPV4, n=150; V4+PIP2-Ptase, n=146; V4+PIP2-
PtaseD281A, n=89) and (C) 4α-PDD (TRPV4, n=278; V4+PIP2-Ptase, n=233;
V4+PIP2-PtaseD281A, n=89). (D-G) Representative intracellular Ca

2+ signals
obtained from mouse tracheal ciliated cells exposed to a hypotonic solution
in the absence (D) or the presence (E) of 20 μMATP, or exposed to heat (38ºC)
in the absence (F) or the presence (G) of 20 μM ATP. Percentage of ciliated
cells responding to hypotonicity and heat was >90%. In the presence of ATP
the percentages were <5% (hypotonicity) and >90% (heat).

response of TRPV4-Δ100-130 was indistinguishable from that
obtained inGFP-transfected cells (Fig. S2C). To evaluate if differ-
ences in plasma membrane expression between WT and mutant
TRPV4 proteins could explain the reduced responses of trun-
cated TRPV4 proteins we determined surface labeling of HEK-
293 cells expressing TRPV4-WT and TRPV4-Δ1-130 proteins
tagged with a V5 epitope in the first extracellular loop. Confocal
microscopy images and quantification by ELISA revealed no
apparent differences in membrane expression between TRPV4-
WT and the protein presenting the longest truncation, TRPV4-
Δ1-130 (Fig. S3).

To pin down the region within residues 100-130 required for
the channel response to hypotonic cell swelling we neutralized
four positive charges within a sequence (121KRWRK125) that has
been proposed to be a possible phosphoinositide binding site (PI-
site) (29). Cells transfected with TRPV4-121AAWAA displayed
greatly reduced swelling-induced whole-cell cationic currents
(Fig. 1B-C). TRPV4-121AAWAA generated currents in response
to the synthetic agonist 4α−PDD (0.01-10 μM) were undistin-
guishable from TRPV4-WT currents (Fig. 1D). Sequential ad-
dition of a hypotonic solution and 10 μM 4α−PDD generated
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Fig. 3. Effect of PIP2 on TRPV4 channel activity in inside-out patches. (A) Two
TRPV4 single-channel openings, which disappeared within seconds, were
observed at +80 mV immediately after excision of a HeLa cell membrane
patch (top). Addition of diC8-PIP2 (50 μM) after complete channel rundown
did not reactivate TRPV4 (middle) while addition of 5,6-EET (1 μM) in the
presence of PIP2 activated TRPV4 (bottom). (B) Recordings obtained at +80
mV in a patch sequentially exposed to EET (1 μM) and 4α-PDD (10 μM). (C),
Mean open probability (NPo) calculated from control patches (2 min after
excision) and in response to PIP2, EET, EET+PIP2 and 4α-PDD (number of
patches given in the figure). Percentages patches presenting TRPV4 activity:
PIP2 20%, EET 20%, EET+PIP2 71% and 4α-PDD 88%. (D-E) Single channel
recordings obtained from the same excised patch in response to 24ºC and
warm solutions (38ºC) in the presence (D) or in the absence (E) of 50 μMdiC8-
PIP2. (F), NPo calculated from consecutive 5 sec recordings following exposure
to warm solutions and plotted versus time (+PIP2, n=11; -PIP2, n=7; +PIP2 +1
μM HC-067047 (in pipette solution), n=4; TRPV4-121AAWAA + PIP2, n=5). *
P<0.05.

significant increases in intracellular Ca2+ levels in cells express-
ing TRPV4-WT while cells expressing TRPV4-121AAWAA only
responded to 4α−PDD (Fig. 1E).

TRPV4 is also activated by moderate heat (above 25ºC)
(8, 21), although the mechanism of its temperature sensitivity
is not fully understood (8). Ca2+ imaging on cells exposed to
warm temperatures (38ºC) revealed a typical transient response
in cells transfected with TRPV4-WT channels. Neutralization of
the positive charges in the TRPV4-121AAWAA decreased the
Ca2+ response to the levels obtained in GFP-transfected cells
(Fig. 1F).

We hypothesized that the sequence 121KRWRK125 may form a
PI-site required for phosphatidylinositol-4,5-biphosphate (PIP2)
interaction with TRPV4 to respond to hypotonic and heat stim-
ulation. Different TRP protein sequences containing several
positively charged amino acids have been proposed to interact
with phosphoinositides, particularly PIP2 (29, 38). To examine
how specific was the neutralization of the 121KRWRK125 positive
charges, we neutralized three positive charges of a nearby re-

Fig. 4. PIP2 binding to the TRPV4 N-tail. (A), Coomassie-stained SDS-
PAGE showing protection from limited papain digestion by PIP2 but not PI.
Purified protein corresponding to residues 1-397 of human TRPV4 (150 μM)
was digested with papain (38 nM) in the absence or presence of lipid (PI
and PIP2 at 10 μM). The cleavage positions corresponding to each isolated
band, determined by N-terminal sequencing, are indicated. (B-E) The four
indicated bands were scanned, quantified and plotted versus digestion time.
Significant changes were observed in the presence of PIP2 for bands 1 and
3 at all times while band 4 showed significant differences at time 45 and 60
min. Mean±S.D. (n=3). * P<0.05 control vs PIP2 ; ** P<0.01 control and PI vs
PIP2.

gion (114RHH116). Expression of TRPV4-114AAA produced hy-
potonicity and heat-induced Ca2+ increases similar to those ob-
tained with TRPV4-WT (Fig S4A). Together, these experiments
suggested that residues 121KRWRK125 are critical for TRPV4
activation by hypotonicity and heat, but not necessary for channel
activation by 4α−PDD.

Depletion of PIP2 levels prevents channel activation by phys-
iological stimuli. We assessed whether deletion or mutation
of residues 121KRWRK125 may be related to a PIP2-dependent
mode of TRPV4 gating. For that purpose, we evaluated the
impact of reducing PIP2 levels on channel activation. We used
a rapamycin-induced translocatable 5-phosphatase to deplete
PIP2 (39). The membrane-localized rapamycin-binding protein
FRB and the cytoplasmic enzyme construct FKBP-5-phosphatase
were co-transfected with TRPV4-WT in HeLa cells. Addition of
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Submission PDFFig. 5. PIP2-dependent rearrangment of TRPV4 cytosolic tails. (A-B), Mean
current density of hypotonicity-activated (A) or 4α-PDD-activated (B) currents
recorded fromHEK-293 cells transfectedwith GFP, TRPV4, TRPV4+PACSIN3 or
TRPV4+PACSIN3-ΔF-BAR. (C) FRET efficiency was determined at the plasma
membrane of HEK-293 coexpressing soluble YFP and CFP-fused TRPV4, CFP-
and YFP-fused TRPV4-WT, CFP- and YFP-fused TRPV4-121AAWAA, CFP- and
YFP-fused TRPV4-Δ1-130, or CFP- and YFP-fused TRPV4-WT coexpressed with
either PACSIN3 or PACSIN3-ΔF-BAR. (D) FRET efficiencies between CFP- and
YFP-fused TRPV4-WT determined at the plasma membrane in the absence
or presence of tetracyclin. TRPV4 constructs were transiently cotransfected
in HEK-293 cells expressing a tetracyclin-inducible 5-phosphatase. Number
of cells recorded is shown for each condition. Mean±S.E.M. * P<0.05 versus
TRPV4-WT, one way ANOVA and Bonferroni post hoc (A-C) or Student’s t test
(D).

rapamycin to translocate the phosphatase to the plasma mem-
brane, locally depleted membrane PIP2 (Fig. S5A-C) and pre-
vented the increase of the Ca2+ signal following hypotonic cell
swelling (Fig. 2A) and heat stimulation (Fig. 2B) without affecting
the response to 0.1-10 μM 4α-PDD (Fig. 2C; and Fig. S4B).
Application of rapamycin to cells cotransfected with TRPV4 and
a phosphatase-dead mutant (D281A) (39) did not affect the Ca2+

response to any of the stimuli tested (Fig. 2A-C).
We also analyzed whether phospholipase C (PLC)-induced

depletion of PIP2 decreased TRPV4 channel activity in native
cells. For that purpose we used primary cultures of ciliated ep-
ithelial cells obtained from trachea and oviduct, which express
functional TRPV4 channels (7, 16, 17). Figure 2D shows typ-
ical oscillatory Ca2+ signals generated by hypotonic solutions
in tracheal ciliated epithelial cells. However, Ca2+ response to
hypotonicity was abrogated following the activation of PLC with
ATP, which leads to the hydrolysis of PIP2 and the generation
of an IP3-mediated Ca2+ signal (Fig. 2E). The heat response of
epithelial cells was also reduced following the addition of ATP
(Fig. 2F-G). The reduction in hypotonicity- and heat-induced
Ca2+ signal were not due toCa2+-dependent inhibition of TRPV4
as two consecutive stimuli elicited similar responses (Fig. S6A-B).
Similarly, mouse ciliated oviductal cells responses to hypotonicity
were reduced following addition of ATP (Fig. S6C-D). Although
we could not asses directly whether PIP2 remained depleted at
the time cells were challenged with TRPV4 activating stimuli, the
fact that there was no Ca2+ response to a second ATP stimulation
within minutes of the first ATP application (Fig. S6E) may reflect
a condition of PIP2 depletion.

Activity of PIP2-regulated channels typically decreases in ex-
cised inside-out patches and recovers upon addition of exogenous
PIP2 (40). In those excised patches in which TRPV4 channel
activity was present immediately after excision, channel activity
decreased with time and addition of the water soluble diC8-PIP2
(50-200 μM) or long acyl chain PIP2 (10 μM) did not recover
initial channel activity (Fig. 3A and C). The fact that PIP2 was
not able to activate TRPV4 in excised patches may indicate that
following patch excision another, yet unidentified, modulator
required for channel activity is lost. Hypotonicity-mediated ac-
tivation of TRPV4 in excised patches can not be directly eval-
uated. Instead, the osmotransducing cytosolic messenger 5’-6’-
epoxyeicosatrienoic acid (EET) has been used (20, 41). Addition
of EET (1 μM) in the presence of PIP2 activated TRPV4 in 71%
of patches (Fig. 3A and C). However, addition of EET in the
absence of PIP2 only activated 20 % of patches (Fig. 3B and C),
even though TRPV4 channel activity in the same patches was
demonstrated using 4α−PDD (Fig. 3B).

Next, we tested channel activation by heat in excised inside-
out patches obtained from HeLa cells overexpressing TRPV4. In
the presence of PIP2 TRPV4-WT channel activity was detected
within seconds after application of warm solutions (Fig. 3D) while
in the presence of PIP2 and the TRPV4 blocker HC-067047 (42)
or with the TRPV4-121AAWAAno channel activity was elicited by
heat (Fig. 3F).We discarded a shear-stress dependent component
under our experimental conditions for heat activation of TRPV4
(Fig. S7A). In the absence of PIP2, and consistent with previous
reports (8, 21, 43), no significant change in channel activity was
elicited by heat (Fig. 3E). Fig. 3F shows mean channel activity
in response to heat and plotted versus time after addition of
warm solutions in the presence or absence of PIP2. The TRPV4
Q10 obtained from excised patches containing TRPV4-WT in the
presence of PIP2 was 21±5 (n=3) (Fig. S7B), consistent with
previous values obtained from TRPV4 whole-cell recordings (21,
43). Together these experiments confirm that PIP2 is required
for TRPV4 activation by physiological stimuli, probably acting
as an allosteric modulator. However, at present we do not have
a comprehensive model to incorporate all factors involved in
TRPV4 gating, i.e., why TRPV4 gating by 4α−PDD is not affected
by PIP2 depletion or why PIP2 is unable to activate TRPV4 on its
own.

PIP2 interacts with the TRPV4 N-tail. To further charac-
terize PIP2 interaction with the TRPV4 N-tail, we carried out
limited proteolysis assays on the purified TRPV4 N-terminal re-
gion (residues 1-397), which includes the N-terminal tail and the
ankyrin repeats. Papain digestion led to cleavage at four positions
within the N-tail (Fig. 4A). Quantification of the bands obtained
(Fig. 4B-E) showed that proteolysis of TRPV4 N-terminus is
reduced in the presence of PIP2 but not PI. PIP2-dependent
proteolysis protection was not observed with the isolated TRPV4
ankyrin repeats (residues 136-397), the TRPV1 ankyrin repeats
or the TRPV4-121AAWAA N-terminal region (Fig. S8), ruling
out non-specific inhibition of papain by PIP2. These biochemical
data therefore support a direct interaction of PIP2 with the N-tail
region of TRPV4-WT.

PACSIN3 F-BAR domain is required for TRPV4 channel reg-
ulation. The effect of neutralizing the positively charged residues,
or depleting PIP2 levels, on channel activity resembled the re-
sponse of TRPV4 when coexpressed with PACSIN3, i.e., reduced
channel response to hypotonicity and heat but normal response
to 4α-PDD (25, 44). PACSIN3 belongs to a family of proteins
that contain a Bin-Amphiphysin-Rvs (BAR) domain required to
penetrate and remodel the plasma membrane (45, 46). PACSIN3
binds through its SRC homology 3 (SH3) domain to the PRD of
TRPV4 (44), in the close proximity of the PI-site. Two competing
hypotheses are that membrane-bound PACSIN3 binding to the
PRD may either promote or physically block the interaction
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of the PI-site with membrane PIP2. To test these hypotheses,
we generated a PACSIN3 lacking the F-BAR domain. Similar
deletion in PACSIN1 renders the protein unable to interact with
the lipids of the plasma membrane (47). The F-BAR domain
of PACSIN3 is not required for interaction with TRPV4 (44).
Accordingly, we detected interaction of PACSIN3-ΔF-BAR with
TRPV4 (Fig. S9). Coexpression of TRPV4 with PACSIN3-ΔF-
BAR, unlike coexpression with PACSIN3, did not reduce the
whole-cell currents generated by hypotonic challenges (Fig. 5A).
The channel response to 4α-PDD was not affected under any of
the experimental conditions tested (Fig. 5B). These results were
therefore consistent with the hypothesis that PACSIN3 interferes
with the interaction of TRPV4 with PIP2, an effect that was lost
when a membrane-unbound PACSIN3-ΔF-BAR was used.

PIP2 rearranges TRPV4 cytosolic tails. Together, our find-
ings underscore the involvement of PIP2 in TRPV4 gating by
physiological stimuli. However, an important question remained
that has not been resolved for any PIP2-modulated TRP channel
yet. Does PIP2 binding affect the structural conformation of
TRPV4? We approached this question studying the impact of
TRPV4 deletions and mutations on the conformation of cytoso-
lic tails. For that purpose we evaluated the proximity of the
intracellular C-tails of CFP- and YFP-tagged TRPV4 proteins,
which we assumed formed a random population of heteromeric
channels, by fluorescence resonance energy transfer (FRET). We
tagged C-tails, which remained unmodified in all the TRPV4
deletions/mutations generated, to avoid possible FRET artifacts
generated by the different lengths of the N-tails. The relative
CFP and YFP fluorescence intensities in the plasma membrane
were determined for every single cell and used to calculate FRET
efficiencies in transiently transfected HEK-293 cells (Fig. 5C).
TRPV4-WT generated a FRET ratio similar to that previously re-
ported (48) while TRPV4-Δ1-130 and TRPV4-121AAWAA dou-
bled the FRET ratio, indicating a more compacted tail confor-
mation. Similarly, coexpression of TRPV4-WT with PACSIN3
markedly increased the FRET signal, an effect that was lost
when coexpressed with PACSIN3-ΔF-BAR.We reasoned that the
increased FRET observed with mutant TRPV4 proteins or when
coexpressed with PACSIN3 was due to the inability of TRPV4 to
interact with membrane PIP2. To test this hypothesis, we studied
how the reduction in PIP2 levels affected FRET efficiency of
TRPV4-WT. We overexpressed CFP- and YFP-tagged TRPV4-
WT channels in HEK293 cells engineered with tetracycline-
inducible expression of 5-phosphatase IV (33). Induction of this
enzyme depleted PIP2 from the plasmamembrane (Fig. S5D) and
significantly increased FRET ratio (Fig. 5D). This observation
further supported the hypothesis that conditions that prevented
the N-tail access to membrane PIP2 (by deletion/mutation of the
PI-site or by overexpression of PACSIN3) or depleted PIP2 from
the plasma membrane rearranged the cytosolic TRPV4 tails into
a more compacted conformation (increased FRET ratio). Thus,
in the presence of PIP2 and an intact PI-site the intracellular tails
appeared in an expanded conformation.

Conclusions. Together, our data provide several new findings.
First, we have demonstrated that TRPV4, as many other TRP
channels, is regulated by PIP2, a process that involves PIP2 binding
to a PI-site (121KRWRK125) in the N-tail. Second, we have showed
that PIP2 regulates channel activity in a stimulus-dependent man-
ner. Third, TRPV4 is bona fide thermosensitive channel, provid-
ing there is PIP2 to interact with theN-tail. Fourth, the interaction
of the TRPV4 PI-site with plasma membrane PIP2 favors an
expanded conformation of the intracellular tails and channel
activation by hypotonicity and heat. Conditions that reduced
PIP2 levels (inducible phosphatase) or interfere the interaction
of TRPV4 with PIP2 (mutations in the PI-site or coexpression
with PACSIN3) promote a compacted tail conformation and
prevent channel activation by hypotonicity and heat. Our study

provides the first piece of evidence suggesting that, similar to PIP2
regulated K+ channels, PIP2 interaction with TRPV4 channel
rearranges the cytosolic domains. Whether the intracellular tail
rearrangement occurring upon PIP2 binding to TRPV4 facilitates
the access of stimuli-generated messengers (e.g., EET) to their
binding sites or favors the stimulus-dependent opening of the
gates themselves it is not known at present.

MATERIALS AND METHODS
Cells and transfection

For electrophysiological or calcium imaging experiments HeLa or HEK-
293 cells were transiently transfected as previously described (16, 48). Primary
cultures of tracheal and oviductal ciliated cells were obtained as previously
described (7, 17). Animals weremaintained and experiments were performed
according to the guidelines issued by the Institutional Ethics Committee of
the Universitat Pompeu Fabra.

Solutions
Isotonic bath solutions used for imaging experiments contained (inmM):

140 NaCl, 2.5 KCl, 1.2 CaCl2, 0.5 MgCl2, 5 glucose and 10 HEPES, pH 7.3 with
Tris. Bath solutions for whole cell recordings contained (in mM): 100 NaCl,
1 MgCl2, 6 CsCl, 10 HEPES, 1 EGTA and 5 glucose, pH 7.3 with Tris. Osmo-
larity was adjusted to 310 mOsm using mannitol. 30% and 15% hypotonic
solutions (255 and 220 mOsm) were obtained by removing mannitol. Whole-
cell pipette solution contained (in mM): 20 CsCl2, 100 CsAcetate, 1 MgCl2,
0.1EGTA, 10 HEPES, 4 Na2ATP and 0.1 NaGTP; 300 mOsm, pH 7.25. Bath and
pipette solutions for excised inside-out single channel recordings contained
(in mM): 130 CsCl, 1 MgCl2, 1 Na2ATP, 0.034 CaCl2, 5 EGTA, 10 HEPES
(310 mosmol/liter, pH 7.25). When required, solutions were warmed using a
water jacket device (Warner Instruments). All chemicals were obtained from
Sigma-Aldrich except diC8-PI and diC8-PI(4,5)P2 (Echelon Biosciences Inc.),
HC-067047 (Tocris Biosciences) and Fura-2 (Invitrogen).

Electrophysiological and Ratiometric Ca2+ recordings
Patch-clamp whole-cell and single single-channel currents were

recorded at room temperature (∼24ºC, unless otherwise indicated) as
previously described (16, 48). Cells/excised patches were perfused at 0.8
ml/min. Cytosolic Ca2+ signals, relative to the ratio (340/380) measured prior
to cell stimulation, were obtained from cells loaded with 4.5 μM fura-2 AM
as previously described (4).

FRET measurements
FRET measurements were carried out in a Leica TCS SP2 confocal micro-

scope (Leica) attached to an inverted microscope. FRET efficiencies expressed
as the increase of the FRET donor CFP after bleaching the FRET acceptor YFP
(48).

Lipid protection assay
Human TRPV4 ankyrin repeats (136-397) and N-tail (1-397) were cloned

using NdeI and NotI into pET21-C6H (49). Recombinant proteins were pro-
duced and purified as described (50), except the size exclusion chromatog-
raphy buffer was 10 mM Tris-HCl pH 7.0, 300 mM NaCl, 10 % glycerol, and
1 mM DTT for TRPV4 N-tail, and 10 mM Tris-HCl pH 7.0, 150 mM NaCl and 1
mM DTT for TRPV4 ankyrin repeats.

Lipid protection assay by limited proteolysis was performed at 4°C (on
ice) in reaction buffer containing (in mM): 180 NaCl, 20 Tris-HCl pH 7.0, 1
% glycerol and 1 DTT (for TRPV4-1-397) or 150 NaCl, 20 Tris-HCl pH 7.0 and
1 DTT (for TRPV4-136-397 and TRPV1-ARD). Proteins were pre-incubated in
the absence or presence of PI or PIP2 at 4°C for 60 min and then digested
with papain. Final concentrations of protein, lipid, and papain were 10 μM,
150 μM and 38 nM, respectively. Digestion was stopped at 15, 30, 45 and 60
min by adding SDS sample buffer, and samples separated by SDS-PAGE and
visualized by Coomassie staining. The gels were scanned and signals were
quantified with ImageJ.

Statistical analysis
Data are expressed as mean±SEM (or mean±S.D. in Fig. 4) of n experi-

ments. Statistical analysis was assessed with Student’s unpaired test or one-
way analysis of variance (ANOVA) using Sigma-Plot software.
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