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Abstract

In this paper, we tackle machine learning over molecular space by considering three
representations for molecules: (1) a vector of molecular properties that we treat
as predictor variables, (2) a graph that captures the relationship between individ-
ual atoms in a molecule, and (3) a cheminformatic fingerprint that “identifies” a
molecule. We assess the viability of each representation by training a model to pre-
dict energy values. In particular, we look a class of models that use kernel methods,
whereby the prediction algorithm relies on a similarity measure between training
data. On a subset of the Harvard Clean Energy Project (CEP) database, we find a
simple fingerprint similarity kernel to be the fastest and most accurate for predicting
HOMO-LUMO energy gap values.



1 Introduction

Predicting molecular properties has been a long studied problem, particularly in the

field of pharmaceutics and drug discovery. Recently, this interest has expanded to

materials science in the search for next generation solar cells. Specifically of interest

are organic, carbon based photovoltaic materials, which may be easier and cheaper

to manufacture. Unfortunately, current carbon based photocells top out at around

5% percent energy conversion, which is too low for widespread use [1].

The research and development process for solar cells is expensive and time con-

suming, so a computational screening process for candidate materials is desirable.

Current state-of-the-art quantum calculations take days to compute energetic prop-

erties for a single molecule, which is too slow for high throughput screening. Re-

cently, the Harvard Clean Energy Project has taken the initiative to crowd-source

such computations, constructing a database of over 2 million molecules and their

calculated energies [2]. Given this repository of examples, we would like to lever-

age machine learning tools to build fast, accurate predictors for these properties of

interest.

Machine learning over molecules is a unique and challenging problem due to the

inherent nature of the molecular space. Unlike in many domains, here a clear physi-

cal process, the Schrodinger equation, governs the system. While the exact equation

is difficult and computationally expensive to solve, the fact that an underlying model

exists is appealing for machine learning. On the other hand, this problem domain is

difficult from a technical point of view. Most standard regression techniques model

a target variable as a function of some set of input predictor variables, but it is not

immediately obvious how to do so when the input is a molecule. The key question,

then, is how to best represent molecules for machine learning problems.

In this paper, we address this problem by considering three representations: (1)

a vector of molecular properties that we treat as predictor variables, (2) a graph

that captures the relationship between individual atoms in a molecule, and (3) a

cheminformatic fingerprint that “identifies” a molecule. We assess the viability of

each representation by training a model to predict energy values. In particular, we

look a class of models that use kernel methods, whereby the prediction algorithm

relies on a similarity measure between training data. This similarity metric, called a
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kernel function, allows us to compare various representations using the same model

by simply specifying a function that determines how similar two objects are under

a given representation.

2 Related Work

2.1 Quantitative structure-activity relationship

In the fields of computational and medicinal chemistry, molecular properties are

modeled under the quantitative structure-activity relationship (QSAR) framework [3].

Historically, properties of interest, such as biological activity of candidate molecules,

have been modeled as a function of molecular properties. In particular, studies have

focused on the pharmaceutical efficacy or toxicity of candidate molecules, often in

a binary classification manner [4]. These studies have used both parametric models

as well as nonparametric kernel methods, but often suffer from small sample sizes

and noisy, empirical data.

2.2 Neural network predictions

Recently, Montavon et al. [5] have shown Coulomb matrices to be a useful represen-

tation for energetic predictions using neural networks. In particular, they propose

the idea of random sampling of Coulomb matrices over the possible permutations

of atomic indexing. Their best neural network predicted atomization energies sig-

nificantly better than various kernel methods, but neural networks are difficult and

time-consuming to train. Furthermore, they show that kernel methods are less

affected by the specific representation of the Coulomb matrix (eigenspectrum vs.

sorted vs. randomized, see section 3.2). We borrow their notion of a Coulomb

matrix and analyze two possible kernels over them.

2.3 Graph kernels

Graph similarity is an active branch of graph theory. Due to the large state space and

relational nature of graphs, efficient computation of graph kernels is an important

issue. One appealing similarity measure is the idea of graph edit distance, which
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is the number of edit operations required to make one graph into another. This

problem is unfortunately NP-hard, though upper and lower bounds can be computed

in polynomial time [6]. Another class of graph kernels involve substructure similarity,

which relates closely to a molecular fingerprinting method we will use [7].

3 Methods

3.1 Data

We use a subset of data provided by The Harvard Clean Energy Project, an initia-

tive at Harvard University to identify organic molecules with promising photovoltaic

properties. The entire data set features over 2 million molecules with energetic prop-

erties calculated through crowd-sourced quantum computations. These molecules

are given in string representation called the Simplified Molecular-Input Line-Entry

System (SMILES). This is one of the industry standards for molecular represen-

tation, and the initial input we must work with(Fig. 1). The response variable

we attempt to predict is the difference in energy between the highest occupied

molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). This

HOMO-LUMO gap energy can be used as a proxy for the photovoltaic efficacy of a

molecule [8].

Figure 1: Example molecule and associated SMILES string.

3.2 Representations

Working with molecular SMILES directly is difficult since regression is usually tai-

lored to a vector of predictor variables, rather than strings. We consider three

representations more amenable to machine learning methods.

4



Cheminformatic features

Since each SMILES string represents a physical molecular compound, one approach

to molecular representation is via chemical-physical properties of the underlying

molecule. Such features may be simple descriptors such as counts of the number of

carbon atoms, or more complex properties such as the pH. Using the cheminformatic

tool suite ChemAxon [12], we can extract a variety of real-valued properties directly

from SMILES strings. We use all 34 available composite molecule properties (we

ignore properties that are given as per-atom), shown below1.

Table 1: 34 Extracted ChemAxon features

Mass Molecular polarizability axxPol
ayyPol azzPol ASA
ASA+ ASA- ASA H
ASA P Dreiding energy fsp3
Harary index Hyper wiener index Max projection area
Max projection radius Length perpendicular to max area Min projection area
Min projection radius Length perpendicular to min area MMFF94 energy
Platt index Van der Waals surface area (2D) Polar surface area
Randic index Van der Waals surface area (3D) Szeged index
Wiener polarity Octanol/water partition coefficient Acceptor count
Donor count Acceptor site count Donor site count
Atom count

It is important to note that some of these features are in fact energetic calcula-

tions. However, these calculations appear to be fast approximations (per-molecule

extraction time is on the order of minutes for all 34 features), so using these features

is still viable for predicting our target energies.

Molecular Graphs

We can also treat a molecule as a graph, using individual atoms as the nodes. In an

adjacency matrix representation, edges represent bonds within the molecule, with

the edge value indicating the type of bond, e.g. 1 – single bond, 2 – double bond,

1.5 – aromatic bond. This method captures important bonding interactions in the

1Descriptions can be found at http://www.chemaxon.com/marvin/help/chemicalterms/

EvaluatorFunctions.html.
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molecule, but loses information since those chemical bonds are simplified constructs

in and of themselves.

Another representation that captures the actual geometry of a molecule is a

Coulomb matrix. Individual atoms are still treated as nodes, and edges weights are

given by the energetic interactions between pairs of nodes:

Cij =

0.5Z2.4
i i = j

ZiZj

|Ri−Rj | i 6= j
(1)

where Zi is the nuclear charge of atom i, and Ri is its Cartesian coordinate in space.

The geometry of an atom can be quickly retrieved from SMILES using energy-

minimization techniques via a cheminformatic Python library called RDKit [9].

In reality, the interactions between atoms is much more complex and more accu-

rately falls somewhere between these two representations. However, to first order,

these graphs provide a suitable approximation to the topology of a molecule.

One important issue with working with molecular graphs is the labeling of nodes.

A single molecule can produce many matrices based on the indexing of individual

atoms, and it is not immediately obvious how to ensure consistency across molecules.

A simple approach is to let further reduce the representation by using the sorted

eigenvalues of an adjacency/Coulomb matrix. The eigenspectrum is invariant to

row/column permutations so it will not depend on indexing choices. The downside

of this method is that we are potentially throwing out too much information to

recover accurate predictions. To use the actual Coulomb matrix, we can propose an

indexing such that the sum of each row is greater than or equal to all subsequent

rows. This can be computed quickly and provides some semblance of comparability

between individual elements of the matrix.

Finally, we need to deal with the fact that Coulomb matrices will vary in size

based on the number of atoms in a molecule. For kernels that require matching

dimensionality, we can add “dummy atoms” with a nuclear charge of 0 to smaller

molecules. This essentially pads 0s onto the adjacency/Coulomb matrices up to the

largest molecule in the data set.
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Molecular fingerprints

The last representation we use is a fingerprinting method that accounts for substruc-

tures in molecules. Here we use a path-based fingerprint implemented in OpenBa-

bel [10]. This method finds all atomic chains up to length 7 in a molecule, accounting

for bond type, order, and cycles (e.g. N=C–C is equivalent to C–C=N but not N–

C–C or N–C=C). Each canonical fragment is hashed to set 1024 bit vector (Fig. 2).

Thus a molecular fingerprint indicates the presence or absence of substructures

within a molecule. In addition to fixed-size fragments, user-specified substructures

can be used, allowing for input of prior knowledge. Such fingerprinting methods

have been widely used for comparing molecules in medicinal chemistry [11].

Figure 2: Molecular fingerprinting [12].

3.3 Gaussian process model

Given the inherently nonlinear interactions governing molecular systems, we use

a Gaussian process for regression. At a high level, a Gaussian process acts as

a nonlinear interpolater to data, modeling some smooth underlying function [13].

Here we give a brief mathematical overview.
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Suppose we want to infer function f : x → R, e.g. f would map a molecule to

an energy value. A Gaussian process assumes that the realization of f at a finite

but arbitrary number of points is jointly Gaussian, i.e.

(f(x1), f(x2), . . . , f(xN )) ∼ N (µ,Σ) (2)

where the covariance Σij = K(xi, xj) is a kernel function. Essentially, if xi, xj are

similar with respect to the kernel, then we would expect f(xi), f(xj) to be similar.

Fitting a Gaussian process involves inverting the kernel matrix, and is thus O(N3)

in the training set size.

Note that we have never specified a form for x; all we require is a valid (positive

semi-definite) kernel that measures similarity between two x’s. This is appealing

since we can predict energy as a function of a molecule directly, without dealing with

its specific representation. Given this model, the most important consideration is the

choice of a kernel. Different representations lend themselves naturally to different

kernels, and here we consider three kernels.

RBF kernel over feature vectors

Given two feature vectors x1, x2, a standard kernel is the radial basis function

(RBF) kernel, given by

K(x1, x2) = exp(−||x1 − x2||22
2σ2

) (3)

This kernel functions as a similarity measure between the feature vectors since it is

a function of the Euclidean distance between them. The hyper-parameter l = 1
2σ2

controls the scale of “closeness” between feature vectors, and can be tuned via

cross-validation. The RBF kernel is a natural choice for the cheminformatic feature

representation, but can also be used for the sorted Coulomb matrix by flattening

the matrix into a sorted vector.

Graph kernels

Given the physical interpretation of Coulomb matrices as a molecular graph, a more

sophisticated approach might be to come up with a measure of similarity over graphs.
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Here we consider an approach called the random walk graph kernel [14]. The idea

is simple: given two graphs, perform random walks on both, and count the number

of matching walks. This yields a somewhat intuitive measure of similarity between

two graphs. One appealing interpretation of this random walk is of an electron

“diffusing” randomly around the molecule, where the random walk tendencies might

be analogous to an electron obeying the wave equation. First we introduce some

concepts and notation.

Direct product graphs. Performing simultaneous random walks on two graphs

is equivalent to performing one random walk on the direct product graph G× =

G1 ⊗G2, where

V× = {(vi, v′r) : vi ∈ V1, v′r ∈ V2} (4)

E× = {((vi, v′r), (vj , v′s)) : (vi, vj) ∈ E1 ∧ (v′r, v
′
s) ∈ E2} (5)

For our unlabeled molecular graphs, the weight matrix is the Kronecker product of

the two individual weight matrices W× = W1 ⊗W2.

Starting and stopping probabilities. To perform such random walks, valid

starting and stopping distributions p, q must be assigned over the graph. For our

purposes, we stick with uniform distributions over each molecule. Then we can let

p× = p1⊗ p2, q× = q1⊗ q2 be the starting and stopping distributions over the direct

product graph that we will work with.

Kernel definition. From the direct product graph of dimension n′, the (i −
1)n′+ r, (j−1)n′+ s) entry of W k

× represents the probability of simultaneous length

k random walks from vj to vi on G1 and from v′s to v′r on G2. Then we can formally

define a random walk kernel on G1, G2 to be

K(G1, G2) =
∞∑
k=0

µ(k)qT×W
k
×p× (6)

where µ(k) is a coefficient that weights random walks of length k. Here we use a

geometric coefficient µ(k) = λk, which ensures that the above sum converges for

proper choice of µ. This guarantees a positive semi-definite Gram matrix which is

necessary for kernel methods.

In addition, using the fact that our molecular graphs are unlabeled, we can make
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use of a spectral decomposition method to efficiently compute this sum:

K(G1, G2) =
∞∑
k=0

µ(k)qT×(P×D×P
−1
× )kp× = qT×P×(

∞∑
k=0

µ(k)Dk
×)P−1× p× (7)

where W× = P×D×P
−1
× . Since D× is a diagonal matrix, we can quickly compute

the infinite sum, e.g. for geometric µ:

K(G1, G2) = qT×P×(I − λD×)−1P−1× p× (8)

where inverting the diagonal matrix is trivial. Such a calculation would take O(n6)

time per kernel element, due to the cubic complexity of matrix inversion, and the n2

size of the direct product graph. However, this can be sped up to O(n3) per kernel

element by pre-decomposing the individual matrices:

K(G1, G2) = (qT1 P1 ⊗ qT2 P2)(
∞∑
k=0

µ(k)(D1 ⊗D2)
k)(P−11 p1 ⊗ P−12 p2) (9)

Finally, we must deal with choosing the parameter λ. It must be small enough

for the sum to converge, but not so small as to completely discount longer walks.

This turns out to be quite difficult for the molecular graph matrices we are working

with, as we will see in the results.

Fingerprint similarity

The last kernel we use is the Tanimoto similarity metric. This is a straightforward

and natural similarity measurement for molecular fingerprints, defined as

K(f1, f2) =
N12

N1 +N1 −N12
(10)

where N1, N2 are the number of bits set in f1, f2 respectively, and N12 are the

number of set bits common to both. This kernel has the advantage of already being

in the range [0, 1], and does not require additional parameter tuning.
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3.4 Experimental setup

We use a subset of 1000 molecules from the Clean Energy Project data set, split

into a 800 for training and 200 for testing. Coulomb matrices and cheminformatic

features are pre-processed so kernels can be calculated from their respective repre-

sentations directly. Hyper-parameters are selected via cross-validation, and mean-

squared errors are recorded.

4 Results

First we present the test accuracy of the representations and kernels used (Table 2)

as well as a mean predictor reference. Despite the richness of the Coulomb matrix

representation, it performs poorly on this subset of data. Molecular fingerprinting

results in the smallest error, while random walk kernels are the worst.

Representation Kernel Mean squared error

mean predictor – 0.089

cheminformatic features RBF 0.022

adjacency eigenvalues RBF 0.019

sorted adjacency matrix RBF 0.023

Coulomb eigenvalues RBF 0.054

sorted Coulomb matrix RBF 0.039

adjacency matrix random walk 0.051

Coulomb matrix random walk 0.065

molecular fingerprint Tanimoto coefficient 0.015

Table 2: Predictive accuracy of various representations and kernels

In addition, kernel matrix computation times are shown below. RBF kernels

over feature vectors and molecule fingerprints can be calculated very quickly, but

random walk kernels are much slower.

RBF kernel Random walk kernel Fingerprint similarity

Computation time 10–15 s 2 hr 12 s

Table 3: Time to compute 800× 800 kernel matrix on training data.
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5 Discussion

The convergence of random walk sums appear to be responsible for the poor per-

formance of random walk kernels. To ensure that the sums converge, we use λ on

the order of 1 × 10−8 for Coulomb matrices and 1 × 10−2 for adjacency matrices.

However, such a small λ decreases the weight of longer walks, causing kernel values

to not vary enough across different pairs of graphs. Fig. 3 shows a scatter of kernel

values against target energy differences. The distribution of kernel values for the

random walk kernel is very narrowly clumped around 1, and shows no correlation

between kernel values and target variable differences; fingerprint kernel values, on

the other hand, are well distributed from 0 to 1, and the correlation between kernel

value and target distance is negative as we would hope (i.e. K(xi, xj) ≈ 1 would

imply that |f(xi)−f(xj)| ≈ 0). Smaller values of λ cause even more tightly clumped

kernels, but increasing λ eventually yields a divergent sum that results in singular

kernel matrices. Given both the poor performance and slow computation time, ran-

dom walk kernels as we have formulated them seem to be a poor choice for this

learning problem.

Figure 3: Kernel value vs. energy difference for fingerprint similarity (left) and
Coulomb random walk (right).

Though Coulomb matrices performed poorly on this small data set, their utility

in [5] suggest that as a representation, they are still worth studying. From Fig. 4, it

appears that increasing the training set size may yield better performance for RBF

kernels over both matrix representations, so graph based methods representations
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may be relatively better at larger scale. It may also be that an RBF kernel is not

ideal for sorted matrices where some rows/columns might be artificially padded 0s.

Figure 4: Performance vs. training set size.

It is interesting that the fingerprint kernel had the smallest error on our data

set. On one hand, this somewhat unsatisfying due to the artificial hash construction

of such fingerprints. On the other hand, it does highlight the importance of sub-

structures in a molecule, which makes physical sense: chemical fragments such as

rings or functional groups often impart specific properties onto molecules, so their

impact on HOMO-LUMO energies is not unreasonable. Furthermore, this suggests

that we could consider tuning the fingerprinting representation by choosing spe-

cific substructures of importance. Identifying useful substructures and tuning the

fingerprinting process is a promising direction for future work.
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6 Conclusions

In this paper we have examined representations and kernels for machine learning

over molecules. We considered cheminformatic feature vectors, graph based ma-

trix representations, and molecular fingerprints. Along with these representations,

we considered a simple RBF kernel, a random walk graph kernel, and a finger-

print similarity index. On a subset of CEP data, molecular fingerprinting predicted

HOMO-LUMO gaps with the lowest error. The fast computation and flexibility of

this representation/kernel is promising, and further study is warranted. Though

the random walk kernel formulation we used did not prove successful, graph-based

representations such as the Coulomb matrix may still be of interest. The primary

goal of this study was exploratory, and we have established a foundation for further

work.
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approximation potentials: The accuracy of quantum mechanics, without the

electrons. Phys. Rev. Lett., 104:136403, Apr 2010.

[14] Karsten Borgwardt, Risi Kondor, Nicol Schraudolph, and SVN Vishwanathan.

Graph kernels. Journal of Machine Learning Research, 11:1201–1242, 2010.

16


