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NOTE

Improving the Power of GWAS and Avoiding
Confounding from Population Stratification

with PC-Select
George Tucker,* Alkes L. Price,† and Bonnie Berger*,1

*Department of Mathematics and Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139, and †Department of Epidemiology and Department of Biostatistics, Harvard School of

Public Health, Boston, Massachusetts 02115

ABSTRACT Using a reduced subset of SNPs in a linear mixed model can improve power for genome-wide association studies, yet this
can result in insufficient correction for population stratification. We propose a hybrid approach using principal components that does
not inflate statistics in the presence of population stratification and improves power over standard linear mixed models.

IN recent years, there has been extensive research on linear
mixed models (LMM) to calculate genome-wide associa-

tion study (GWAS) statistics (Kang et al. 2008, 2010; Segura
et al. 2012; Svishcheva et al. 2012; Zhou and Stephens
2012; Yang et al. 2014). While linear mixed models implic-
itly assume that all SNPs have an effect on the phenotype
(an infinitesimal genetic architecture), it is widely believed
that disease phenotypes do not follow an infinitesimal
model and that modeling a genetic architecture where most
SNPs have negligible effect and some have modest effect
(a noninfinitesimal genetic architecture) would increase
power. As a step in that direction, Listgarten et al. (2012;
Lippert et al. 2013) recently developed the state-of-the-art
FaST-LMM Select method, which constructs a genetic rela-
tionship matrix (GRM) from a subset of top associated SNPs
that are more likely to be causal. However, as a recent Per-
spective article (Yang et al. 2014) shows, limiting the GRM to
a subset of SNPs can result in insufficient correction for
population stratification, leading to significantly inflated sta-
tistics and false positive associations (Table 1, Table 2, Sup-
porting Information, Figure S2, Figure S3, Figure S4, and
File S1).

As a solution to this problem, we propose PC-Select,
a novel hybrid approach that includes the principal compo-
nents (PCs) of the genotype matrix as fixed effects in FaST-
LMM Select. PC-Select leverages the advantages of the
FaST-LMM Select framework while correcting for popula-
tion stratification. The two main steps of FaST-LMM Select
are ranking SNPs by linear regression P-values to form the
GRM with the top-ranked SNPs and then calculating associ-
ation statistics in a mixed-model framework, using this
GRM. We used the top five PCs as fixed effects in both of
these steps (see Materials and Methods). [We follow the
recommendations in the literature (Price et al. 2006) and
use a fixed number of PCs. We have found that five PCs are
generally sufficient to correct for stratification in simulated
and real data sets. Alternatively, the number of PCs may be
selected through cross-validation or Tracy–Widom statistics
(Patterson et al. 2006).] As a result, PC-Select yields non-
inflated test statistics in the presence of population stratifi-
cation and maintains high power to detect causal SNPs.

Specifically, to examine inflation and power, we followed
the simulation procedure in Yang et al. (2014) and gener-
ated data sets each containing 10,000 SNPs for 1000 indi-
viduals. To avoid a loss in power for LMM that can occur
when candidate SNPs are included in the GRM (Listgarten
et al. 2012; Yang et al. 2014), we separately simulated a set
of candidate SNPs to compute test statistics. We sampled
individuals from two populations with Fst = 0.05, ances-
tral minor allele frequencies uniform in [0.1, 0.5], and mean
phenotypic difference 0.25 SD. To simulate causal SNPs in
the GRM, we selected a fraction P = 0.05 or 0.005 of the

Copyright © 2014 by the Genetics Society of America
doi: 10.1534/genetics.114.164285
Manuscript received March 18, 2014; accepted for publication April 22, 2014;
published Early Online April 29, 2014.
Available freely online through the author-supported open access option.
Supporting information is available online at http://www.genetics.org/lookup/suppl/
doi:10.1534/genetics.114.164285/-/DC1.
1Corresponding author: Department of Mathematics 2-373, Massachusetts Institute of
Technology, 77 Massachusetts Ave., Cambridge, MA 02139. E-mail: bab@mit.edu

Genetics, Vol. 197, 1045–1049 July 2014 1045

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164285/-/DC1/genetics.114.164285-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164285/-/DC1/genetics.114.164285-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164285/-/DC1/genetics.114.164285-4.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164285/-/DC1/genetics.114.164285-2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164285/-/DC1/genetics.114.164285-6.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164285/-/DC1/genetics.114.164285-7.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164285/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164285/-/DC1
mailto:bab@mit.edu


SNPs at random and sampled Gaussian effect sizes (variance
equal to 0.5 divided by the number of casual SNPs in the
GRM) for these SNPs. We generated 500 candidate test null
SNPs that were not causal, and to measure inflation we
calculated lGC, the median Wald statistic on these SNPs di-
vided by the theoretical median under the null distribution
(Devlin and Roeder 1999). To investigate power, we gener-
ated 50 causal candidate SNPs with normally distributed
effect sizes (variance equal to 0.5 divided by the number
of causal candidate SNPs) and measured mean Wald statis-
tic on these SNPs. We split the variability from causal SNPs
evenly between the GRM and the causal candidate SNPs.
We repeated all simulations 100 times and report the mean
and standard error.

We found that when few SNPs were causal (P = 0.005),
FaST-LMM Select inflated null statistics in the presence of
population stratification (lGC = 1.26 6 0.03), whereas PC-
Select was properly calibrated (lGC = 1.01 6 0.01) (Table
1). Moreover, FaST-LMM Select lost power in the presence
of population stratification (measured by the mean Wald
statistic on causal SNPs: 14.3 6 0.2 with stratification vs.
16.4 6 0.1 without), whereas PC-Select’s power in simula-
tions with and without population stratification was not sig-
nificantly different (16.3 6 0.1 vs. 16.3 6 0.1) (Figure 1).
Thus, even though PC-Select corrected for stratification, this
advantage did not come at the expense of power. This gain is
likely because the PCs reduce noise in selecting subsets of
SNPs for the GRM in the presence of population stratifica-
tion. In addition, PC-Select chose fewer SNPs than FaST-
LMM Select to include in the GRM (over 100 simulations,
mean SNPs chosen: �20 vs. �240, Figure S1), yielding
potential computational savings. When many SNPs were

causal (P = 0.05), both methods used nearly all SNPs in
the GRM (over 100 simulations, mean SNPs chosen: �9400
and �8800 of 10,000, respectively), achieving similar perfor-
mance to standard LMM.

We also investigated a recent extension of FaST-LMM
Select, the genard method (Hoffman 2013) that fits a data-
adaptive low-rank GRM; however, we found that it did not
have increased power over LMM in our simulations (Figure
S5), which is consistent with previous simulations in a sim-
ilar context (Hoffman 2013).

Next, we evaluated inflation and power on real genotypes
with simulated phenotypes in a similar manner. We analy-
zed 5000 individuals randomly subsampled from a multiple-
sclerosis (MS) study genotyped on Illumina arrays (Sawcer
et al. 2011) made available via Wellcome Trust Case Control
Consortium 2 (WTCCC2) (see Materials and Methods). As
before, we separated GRM SNPs and candidate SNPs to
avoid proximal contamination and provide a fair comparison
of methods. We randomly sampled 50,000 SNPs for the
GRM from chromosomes 3 to 22, 250 causal SNPs from
chromosome 1, and 500 null SNPs from chromosome 2.
To simulate environmental variance aligned with population
structure, we added 0.25 times the first PC (after the PC
had been normalized to variance 1) to each individual’s
phenotype. Otherwise, we generated phenotypes as be-
fore and report simulations over 200 randomly generated
phenotypes.

We again found that when few SNPs were causal (P =
0.005), FaST-LMM Select inflated null statistics in the pres-
ence of population stratification (lGC = 1.06 6 0.01),
whereas PC-Select was properly calibrated (lGC = 1.01 6
0.01) (Table 2). Moreover, FaST-LMM Select lost power in

Table 1 Extent of null statistic inflation as measured by lGC [median Wald statistic on test null SNPs divided by the theoretical median
under the null distribution (Devlin and Roeder 1999)]

Mean lGC (SE) Pop. strat., P = 0.05 Pop. strat., P = 0.005 P = 0.05 P = 0.005

Linear regression 3.8 (0.4) 4.5 (0.5) 1.01 (0.01) 1.01 (0.01)
Linear regression with PCs 1.02 (0.01) 1.03 (0.01) 1.01 (0.01) 1.02 (0.01)
LMM 1.01 (0.01) 1.02 (0.01) 1.01 (0.01) 1.01 (0.01)
FaST-LMM Select 1.04 (0.01) 1.26 (0.03) 1.01 (0.01) 0.99 (0.01)
PC-Select 1.01 (0.01) 1.01 (0.01) 1.01 (0.01) 0.99 (0.01)

We tabulate lGC for linear regression, linear regression with PCs, standard LMM, FaST-LMM Select, and PC-Select on simulated genotypes and phenotypes with and without
population stratification as the fraction of causal SNPs (P = 0.05, 0.005) varies. Values shown are mean lGC over 100 simulations with standard errors (SE) in parentheses.
FaST-LMM Select inflates statistics in the presence of population stratification when few SNPs are causal (P = 0.005), which may result in false positives. Pop. strat., population
stratification.

Table 2 Extent of null statistic inflation measured by lGC

Mean lGC (SE) Pop. strat., P = 0.05 Pop. strat., P = 0.005 P = 0.05 P = 0.005

Linear regression 1.58 (0.02) 1.55 (0.02) 1.03 (0.01) 1.04 (0.01)
Linear regression with PCs 1.01 (0.01) 1.00 (0.01) 1.01 (0.01) 1.02 (0.01)
LMM 1.02 (0.01) 1.01 (0.01) 1.00 (0.01) 1.02 (0.01)
FaST-LMM Select 1.02 (0.01) 1.06 (0.01) 1.00 (0.01) 1.02 (0.01)
PC-Select 1.01 (0.01) 1.01 (0.01) 1.00 (0.01) 1.01 (0.01)

We tabulate lGC for linear regression, linear regression with PCs, standard LMM, FaST-LMM Select, and PC-Select on real genotypes and simulated phenotypes with and
without population stratification as the fraction of causal SNPs (P = 0.05, 0.005) varies. Values shown are mean lGC over 200 simulations with standard errors (SE) in
parentheses. FaST-LMM Select inflates statistics in the presence of population stratification when few SNPs are causal (P = 0.005), which may result in false positives.
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the presence of population stratification (measured by the
mean Wald statistic on causal SNPs: 14.64 6 0.05 with
stratification vs. 16.02 6 0.05 without); in contrast, PC-
Select’s power in simulations with and without population
stratification was not significantly different (16.02 6 0.05
vs. 16.08 6 0.05) (Figure 1). In all of our simulations, PC-
Select produced noninflated statistics and high power.

Finally, we analyzed data from 10,204 MS cases and
5429 controls genotyped on Illumina arrays (Sawcer et al.
2011) made available via WTCCC2 (see Materials and Meth-
ods). The cases and controls were not matched for ancestry
and thus exhibited substantial population stratification.
Evaluated over all SNPs, PC-Select had lGC = 1.24 and
FaST-LMM Select had lGC = 1.20. Due to polygenicity, we
expect lGC on all markers to be .1. On the same data, Yang
et al. (2014) report lGC = 1.23 and 1.20 for linear regres-
sion with PCs and LMM, respectively, which they show is
consistent with polygenicity. To evaluate power, we consid-
ered Wald statistics at 75 known associated SNPs (see Ma-
terials and Methods and Table S1 for Wald statistics).
PC-Select consistently gave larger Wald statistics than
FaST-LMM Select (63 of 75 markers; P = 2 3 1029, mean
Wald statistic 12.07 vs. 11.30). Based on cross-validation,

both PC-Select and FaST-LMM Select chose to use all
markers. This may indicate that the disease is not caused
by a small number of loci with large effects or that our
sample size is too small to capture this effect. Although
PC-Select and FaST-LMM Select chose to use all SNPs and
thus neither method inflated statistics, we emphasize that
without a priori knowledge about the genetic architecture,
PC-Select automatically tunes the number of SNPs to in-
clude in the GRM to optimize power and simultaneously
protects against population stratification at no cost to power.

Janss et al. (2012) caution against using PCs as fixed
effects in combination with a random effect derived from
the GRM when estimating heritability. This may result in
an ill-posed model because the PCs enter both as fixed
effects and implicitly through the random effect. We avoid
this issue when estimating variance components by using
the PCs as fixed effects in a restricted maximum-likelihood
(REML) approach, which projects the genotype matrix into
a subspace orthogonal to the PCs, effectively removing them
from the random effect. We also note that population struc-
ture and PCs have previously been used successfully as fixed
effects (or separate random effects) in mixed-model settings
to address confounding from population structure and from
unusually differentiated markers (Yu et al. 2006; Zhao et al.
2007; Price et al. 2010, 2013; Sul and Eskin 2013).

Using PCs in a linear model does not correct for family
relatedness and cryptic relatedness (Price et al. 2010). As
suggested by Yang et al. (2014), due to the large length of
segments shared identical-by-descent, using a subset of
SNPs may correct for cryptic relatedness. Listgarten et al.
(2012) show that using a subset of SNPs in the GRM does
not inflate statistics on the WTCCC data, where inflation is
likely primarily due to cryptic relatedness. We expect that
PC-Select will not be inflated by cryptic relatedness for the
same reasons. In most human data sets with unrelated indi-
viduals, family relatedness is not an issue; however, for data
sets with strong family relatedness, we suspect there may be
cases where both PC-Select and FaST-LMM Select inflate
statistics.

PC-Select has the same asymptotic runtime as FaST-LMM
Select, quadratic in the number of individuals and linear in
the number of markers. In practice, the runtime for the
additional step of computing the PCs for the genotype
matrix is minimal because both methods require several
spectral decompositions of matrices of nearly the same size
for the cross-validation step. It should be noted that while
the asymptotic runtime of PC-Select and FaST-LMM Select is
the same as that of previously published exact LMM
methods (Lippert et al. 2011; Zhou and Stephens 2012),
the actual runtime of both methods is ostensibly longer by
a factor of 10 due to the cross-validation step. The cross-
validation step is parallelizable, so in practice this is not
a significant limitation.

Including PCs as fixed effects allows PC-Select to infer
ancestry from all SNPs simultaneously, while at the same
time maintaining the benefits of using a statistically chosen

Figure 1 (A and B) Comparison of power for linear regression, linear
regression with PCs, standard LMM, FaST-LMM Select, and PC-Select
on simulated genotypes and phenotypes (A) and real genotypes and
simulated phenotypes (B) with and without population stratification as
the fraction of casual SNPs (P = 0.05, 0.005) varies. To measure power,
we plot the mean Wald statistic on test causal SNPs. In all cases, PC-Select
has the highest power of the methods that do not inflate statistics.
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subset of the SNPs to estimate the GRM (Listgarten et al.
2012; Lippert et al. 2013). As we have shown, using a com-
bination of PCs and a subset of SNPs in the GRM gives the
best of both worlds.

Materials and Methods

MS data set

We analyzed data from 10,204 MS cases and 5429 controls
[the National Blood Service (NBS) and the 1958 Birth
Cohort (1958BC)] genotyped on Illumina arrays made
available to researchers via WTCCC2 (http://wtccc.org.uk/
ccc2/). We follow the quality-control standards in Yang
et al. (2014). Although Sawcer et al. (2011) analyzed United
Kingdom (UK) and non-UK samples separately followed by
meta-analysis in most of their analyses, the data made avail-
able to researchers include both UK and non-UK cases but
only UK controls. We retained all samples to maximize sam-
ple size. We considered markers that were present in each of
MS, NBS, and 1958BC data sets and removed markers with
.0.5% missing data, P , 0.01 for allele-frequency differ-
ence between NBS and 1958BC, P, 0.05 for deviation from
Hardy–Weinberg equilibrium, P , 0.05 for differential miss-
ingness between cases and controls, or minor allele fre-
quency ,0.1% in any data set, leaving 360,557 markers.
The 75 known associated markers were defined by includ-
ing, for each MS-associated marker listed in the National
Human Genome Research Institute (NHGRI) GWAS catalog
(http://genome.gov/gwastudies/), a single best tag at r2 .
0.4 from the set of 360,557 markers if available.

Statistical methods

PC-Select follows a similar framework to that of FaST-LMM
Select (Lippert et al. 2011, 2013; Listgarten et al. 2012). For
completeness, we list the steps and equations we used.

First, we describe a method for computing association
statistics, and then in subsequent sections we describe the
steps of PC-Select.

Association statistics: The phenotype y, covariates X, and
genotypes W are mean centered. Additionally, each ge-
notype is divided by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p̂ð12 p̂Þp

; where p̂ is the esti-
mated minor allele frequency. Then the phenotype is
modeled as

y ¼ Xaþ uþ e;

where u � Nð0;s2
gKÞ;  e � Nð0;s2

e IÞ; a is a vector of weights
for the covariates, and K is the GRM. This model naturally
leads to an association statistic based on the Wald statistic.

To calculate the association statistic for SNP w, we add w
as a fixed-effect covariate to the previous model and test
whether its coefficient is significantly different from 0. Spe-
cifically, consider the model

y ¼ wbþ Xaþ uþ e;

where b is the coefficient for the test SNP. We estimate s2
g

and s2
e by REML. The fixed-effect coefficients (b, a) are

estimated by maximum likelihood.
It is straightforward to construct the Wald statistic to test

whether b 6¼ 0. Let V ¼ s2
gK þ s2

e I and Q= [w; X]. Then b̂ is
equal to the first entry of (QT V21Q)21QT V21y and varðb̂Þ
is equal to the first entry of (QT V21Q)21. The test statistic is

b̂
2

var
�
b̂
�;

which is asymptotically x2 distributed with 1 d.f.

PC-Select:
Now we describe the PC-Select method:

Step 1: Extracting PCs: We extract the top five PCs from
a GRM formed using all of the genotype data,
WWT, to use as fixed-effect covariates. We use X
to denote the matrix of user-specified covariates
and the top five PCs.

Step 2: Ranking SNPs by linear regression: Second, we rank
the SNPs by a linear regression test statistic. Linear
regression test statistics are calculated by fixing s2

g
to 0 and using the procedure described above to
calculate Wald statistics.

Step 3: Determining the GRM: As in FaST-LMM Select, PC-
Select uses a subset of the SNPs that are likely to be
causal. In this step, we determine k, the number of
top SNPs (as ranked in Step 2) to include in the
GRM. We use 10-fold cross-validation on predictive
log-likelihood to choose the number of top SNPs.
We choose k from a list of user-defined possibilities
(e.g., k 2 {100, 1000, 3000, 10,000, 30,000, . . .}).
First, we randomly divide individuals into 10 equal
groups or folds. For each fold i, we form a test set
from the individuals in fold i and use the rest of the
individuals as a training set. For each choice of k, we
consider a subset of the genotype matrix consisting
only of the top k SNPs (the ranking of the SNPs is
recomputed per fold, using the training data). For
notational simplicity, we also refer to the reduced
genotype matrix by W, and it will be clear from
context if this refers to the full genotype matrix or
a subset. Let Wi denote the genotypes from fold i
and W2i represent the genotypes from the rest of
the folds (similarly for y and X). We wish to evaluate
the predictive log-likelihood of yi given the training
information ( y2i, X2i, Xi) to assess the predictive
power of using only the top k SNPs in the GRM.
Specifically, to evaluate the predictive log-likelihood,
we start by forming a GRM from the training set
W2iWT

2i: Then we estimate s2
g and s2

e from the
training set by REML. We estimate a by ML with
these variance parameters fixed. Then under the
model
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y ¼ Xaþ uþ e;

where u � Nð0;s2
gWWTÞ and e � Nð0;s2

e IÞ; the pre-
dictive distribution of the phenotypes given the
training parameters, yijy2i;W;a;s2

g ;s
2
e ; is normally

distributed with mean

s2
gWiWT

2i

�
W2iWT

2is
2
g þ s2

e I
�21ðy2i 2X2iaÞ þ Xia

and covariance

WiWT
i s

2
g þ s2

e I2s2
gWiWT

2i

3
�
W2iWT

2is
2
g þ s2

e I
�
21 W2iWT

i s
2
g :

This can be evaluated efficiently, using the spectral
decompositions computed in the REML step (Lippert
et al. 2011; Listgarten et al. 2012). We average the
predictive log-likelihood over each of the 10 folds
and choose the k that gives the highest average
log-likelihood.

Step 4: Calculating association statistics: Finally, with the num-
ber of top SNPs to use in the GRM fixed, we calculate
association statistics for each SNP. Let W be the geno-
type matrix using the top k SNPs chosen in the previous
step. To avoid proximal contamination (Listgarten et al.
2012), we use a leave-one-chromosome-out procedure
(Yang et al. 2014). For each test SNP w (which is not
necessarily in W), we exclude the chromosome includ-
ing that SNP from the GRM and calculate the Wald
statistic for w with this GRM. We do this efficiently
by precomputing and storing the GRM, excluding each
chromosome in turn.
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Model performance as the number of top SNPs to include in the GRM is varied We investi-

gated model performance as the number of top SNPs, k, to include in the GRM is varied. In the

following simulations, we compared using the top k SNPs in the GRM to a model using PCs with

the top k SNPs. The following analysis explores the intermediate choice that the FaST-LMM Select

and PC-Select methods have to make. Both methods use cross-validation predictive log-likelihood

to choose k.

In the presence of population stratification and without causal SNPs, we found that no choice

of top k SNPs is sufficient to correct for population stratification, except when all SNPs are used

in the GRM (Figure S2). This illustrates the tension between using a subset of SNPs in the GRM

to increase power and the need to use all SNPs to correct for population stratification. On the other

hand, when using PCs, statistics were not inflated for any choices of k.

In the absence of population stratification, including PCs does not compromise power. The

power when using PCs with the top k SNPs is not significantly different than when using the top k

SNPs (Figure S3).

In the presence of population stratification and casual SNPs, we find that when few SNPs

are causal (p = 0.005), using a subset of SNPs increases power over standard LMM as previously

reported (LIPPERT et al. 2013). However, in this regime, using the top k SNPs inflates null statistics

(Figure S4). With PCs, there were choices of k that improved power over standard LMM, while at

the same time avoiding inflating null statistics.

Implementation We suggest implementing PC-Select by extracting PCs from the genotype data

using EIGENSOFT (PRICE et al. 2006) and then running FaST-LMM Select (LIPPERT et al. 2011;

LISTGARTEN et al. 2012; LIPPERT et al. 2013) with REML using the PCs as fixed effects.

For large datasets, we found that FaST-LMM Select exhausted our 170-GB memory limit, so

we provide a memory efficient MATLAB implementation of the cross-validation step to select k.

2S G. Tucker et al.



Then using GCTA (YANG et al. 2011), the SNPs can be sorted by linear regression p-value, a

truncated GRM using the top k SNPs can be formed, and association statistics can be computed

using GCTA mlma-loco with a GRM consisting only of the top k SNPs. In all steps, the PCs are

included as fixed effects as well as any additional covariates.

EIGENSOFT is available at: http://www.hsph.harvard.edu/alkes-price/software/

FaST-LMM Select is available at: http://research.microsoft.com/en-us/um/redmond/

projects/mscompbio/fastlmm/

MATLAB data simulators, analysis pipeline, and cross-validation implementation are available at:

http://groups.csail.mit.edu/cb/pc-select/

GCTA is available at: http://www.complextraitgenomics.com/software/gcta/

download.html
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Figure S1. Comparison of number of SNPs chosen by Fast-LMM Select and PC-Select. The histogram

shows the choices made by each method over 100 simulations with population stratification and p = 0.005.

On average PC-Select chooses fewer SNPs to include in the GRM.
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Figure S2. Comparison of inflation when using the top k SNPs in the GRM and when using PCs with the

top k SNPs in the GRM. Two populations are simulated with Fst = 0.05 and no SNPs are causal. Without

PCs, the only choice of k that is not significantly inflated is using all SNPs. With PCs, no choice of k is

inflated.
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Figure S3. Comparison of power when using the top k SNPs in the GRM and when using PCs with the

top k SNPs in the GRM. A fraction p = 0.05, 0.005 of the SNPs were randomly chosen as causal and

population stratification was not present. The last unlabeled points result from using only truly causal SNPs

to construct the GRM. It represents the highest achievable score. In all cases, the power is not significantly

different between the two methods.
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Figure S4. Comparison of power and λGC when using the top k SNPs in the GRM and when using PCs

with the top k SNPs in the GRM. Two populations were simulated with Fst = 0.05 and a randomly chosen

fraction p = 0.005 of SNPs were chosen as causal. The top subplot measures power by mean Wald statistic

on test causal SNPs and the bottom subplot measures inflation by λGC on an independent set of null test

SNPs. Whenever using the top k SNPs without PCs has higher power than using PCs, it also exhibits

significant inflation of λGC .
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Figure S5. Comparison of λGC and power for the genard method (HOFFMAN 2013) and standard LMM

on simulations with and without population stratification (abbreviated p.s.) as the fraction of casual SNPs

(no causal, p = 0.05, 0.005) varies. As recommended by the author of the genard method, model

complexity is selected by BIC and PCs are ordered by squared correlation to the phenotype (covSq),

squared correlation to the phenotype multiplied by the eigenvalue (covSq*ev), and effective degrees of

freedom (DF). In these simulations, genard does not provide a benefit over standard LMM.
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Table S1   Wald statistics for 75 published associated markers in the MS data set. 

Available for download as an Excel file at http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164285/‐/DC1 


