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Cell cycle transition from S-phase to G1 in
Caulobacter is mediated by ancestral virulence
regulators
Coralie Fumeaux1, Sunish Kumar Radhakrishnan1,w, Silvia Ardissone1, Laurence Théraulaz1, Antonio Frandi1,

Daniel Martins1, Jutta Nesper2, Sören Abel2,w, Urs Jenal2 & Patrick H. Viollier1

Zinc-finger domain transcriptional regulators regulate a myriad of functions in eukaryotes.

Interestingly, ancestral versions (MucR) from Alpha-proteobacteria control bacterial

virulence/symbiosis. Whether virulence regulators can also control cell cycle transcription is

unknown. Here we report that MucR proteins implement a hitherto elusive primordial S-G1

transcriptional switch. After charting G1-specific promoters in the cell cycle model Caulobacter

crescentus by comparative ChIP-seq, we use one such promoter as genetic proxy to unearth

two MucR paralogs, MucR1/2, as constituents of a quadripartite and homeostatic regulatory

module directing the S-G1 transcriptional switch. Surprisingly, MucR orthologues that

regulate virulence and symbiosis gene transcription in Brucella, Agrobacterium or Sinorhizobium

support this S-G1 switch in Caulobacter. Pan-genomic ChIP-seq analyses in Sinorhizobium

and Caulobacter show that this module indeed targets orthologous genes. We propose that

MucR proteins and possibly other virulence regulators primarily control bacterial cell cycle

(G1-phase) transcription, rendering expression of target (virulence) genes periodic and in

tune with the cell cycle.
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H
ow S-phase cells instate the G1-phase transcriptional
programme is poorly understood. The synchronizable
Alpha-proteobacterium Caulobacter crescentus (hence-

forth Caulobacter) is the pre-eminent model system commonly
used to dissect cell cycle transcription at the most fundamental
level1,2. Caulobacter divides into a smaller and motile swarmer
cell and a larger and sessile stalked cell, residing in G1- and
S-phase, respectively (Fig. 1a). Such asymmetric division has also
been reported for related Alpha-proteobacterial pathogens/
symbionts3 belonging to the genera Brucella, Agrobacterium or
Sinorhizobium, some of which are also synchronizable4,5. As
Alpha-proteobacteria generally encode most known cell cycle
regulatory proteins originally identified in Caulobacter6, the
underlying mechanisms for the G1-phase transcriptional
programme seem to be conserved and perhaps serve to control
expression of virulence/symbiosis functions as a function of the
cell cycle. Indeed, virulence functions are typically present in non-
replicative dispersal cell types of unrelated pathogens such as
members of the Chlamydiae7, and features of an underlying
cytological and/or molecular asymmetry have also been reported
for the pathogenic Gamma-proteobacteria Pseudomonas
aeruginosa and Klebsiella pneumoniae8 and distantly related
mycobacteria9. This suggests that the implementation of daughter
cell-specific transcriptional programs is pervasive among different
prokaryotic lineages, and that lineage-specific mechanisms direct
this re-programming.

In Caulobacter, the two daughter cell types can be conveniently
discerned based on functional and morphological criteria:
while the G1-phase cell harbours several adhesive pili and a
single flagellar motor at the old pole, the S-phase cell harbours
a stalk with an adhesive holdfast at the corresponding pole.
In addition, these two cell types differ in their buoyancy,
a feature that is exploited for the enrichment of a pure
population of G1 cells on a density gradient10. A hallmark of
the Caulobacter G1-S transition is the loss of the flagellum and
pili, the elaboration of a stalk and holdfast, as well as the switch in
cellular buoyancy. In the ensuing S-phase, cells segregate the
replicated DNA, activate motility genes and assemble the flagellar
motor and pilus secretion apparatus at the pole opposite the
stalk1. As soon as the pre-divisional cell compartmentalizes,
the G1-phase transcriptional programme is instated in the
swarmer chamber, pili are extruded, the flagellum is energized
and the cellular buoyancy is reversed. In the stalked
chamber, DNA replication re-initiates and S-phase transcription
resumes.

How the switch from S-phase to the G1-phase transcriptional
programme (henceforth referred to as S-G1 transcriptional
switch) is induced at compartmentalization is unresolved. PpilA,
the promoter of the gene encoding the structural component of
the pilus filament (pilA), is a target of this regulation and thus
suitable as genetic proxy. PpilA is activated in G1-phase11 by the
conserved and essential cell cycle transcriptional regulator A
(CtrA)12. CtrA can function either as activator or repressor of
transcription and also as an inhibitor of DNA replication by
directly binding the TTAA-N(7)-TTAA target motif (CtrA box)
in promoters and the origin of replication, Cori1. Binding of CtrA
to its targets is enhanced by phosphorylation (CtrABP) of
aspartate 51 (D51) by way of a complex phosphorelay involving
the conserved and essential hybrid histidine kinase CckA13.
CtrA is proteolytically removed during the G1-S transition,
re-synthesized and again proteolysed by the ClpXP protease in the
nascent S-phase chamber upon compartmentalization1 (Fig. 1a).
Thus, CtrA is not a G1-specific regulator as it is already present
and active before compartmentalization (that is, in late S-phase),
for example, at promoters of early (class II) flagellar and
other motility genes1,14. Determinants other than CtrABP

likely promote the switch from S-G1 phase transcription of
CtrA-dependent genes during compartmentalization15,16.

A candidate for such an accessory role is the conserved helix-
turn-helix motif protein SciP that accumulates in G1-phase17,18.
SciP binds CtrA directly and impairs CtrA’s ability to recruit
RNA polymerase (RNAP) holoenzyme to PpilAand other CtrA-
activated promoters in vitro, apparently without establishing
sequence-specific contacts to DNA18,19. An alternative view holds
that SciP does not require CtrA to bind DNA. Instead, SciP was
proposed to bind DNA directly at the 50-TGTCGCG-30 motif in
the ctrA promoter in vitro17. Surprisingly, the occurrence of this
motif (41,460 predicted sites in the 4.01 Mbp GC-rich
Caulobacter genome) vastly exceeds the number of previously
predicted CtrA target promoters with 1–4 CtrA boxes (B50)1.
Also, mutation of the 50-TGTCGCG-30 motif did not affect
binding of CtrA and SciP to PpilA in vitro19. As both models
posit that SciP targets all CtrA-dependent promoters, further
investigations on the S-G1 transcriptional switch and on the
possible role of SciP in this event are warranted.

Here we report a system-level and forward genetic approach
for the dissection of this transcriptional switch. We unearth two
uncharacterized ancestral zinc-finger domain proteins, MucR1
and MucR2, as key determinants of a novel quadripartite and
homeostatic regulatory module that together with CtrA and SciP
turn on G1-phase genes and concomitantly shut off S-phase
genes, respectively. Using pan-genomic ChIP-seq (chromatin
immunoprecipitation coupled to deep-sequencing), we reveal
MucR as a direct regulator of orthologous genes in Sinorhizobium
that can direct cell cycle transcription in Caulobacter. Thus,
a conserved genetic module uses an ancestral transcription
factor fold, extensively researched in the eukaryotic domain of
life20, to integrate virulence, symbiosis and/or cell cycle
transcription in a bacterial lineage from which eukaryotic
organelles descended21.

Results
Target promoters of the S-G1 transcriptional switch.
Before surveying the extent of the S-G1 promoter switch on a
genome-wide scale, we first characterized candidate promoters by
quantitative ChIP (qChIP) following precipitation with poly-
clonal antibodies to CtrA and monoclonal antibodies to the RpoC
(b0) subunit of RNAP from chromatin of wild-type (WT) and
DpleC cells. pleC encodes a histidine kinase/phosphatase that
partitions with the G1-phase progeny (Fig. 1a) and is required for
the accumulation of G1-specific transcripts, including pilA, and
for maximal accumulation of CtrABP15. qChIP confirmed that
CtrA and RNAP occupancy at PpilA are 58 and 48% less abundant
in DpleC cells compared with WT cells (Fig. 1b), consistent with
the reduced PpilA activity (Fig. 1b–d). We also noted a similar
reduction in CtrA occupancy at PtacA,(the promoter of the G1-
phase gene tacA), along with a commensurate reduction in
promoter activity (as determined using the PtacA-lacZ promoter-
probe reporter, Supplementary Fig. 1A). By contrast, CtrA
abundance at PfliL (the promoter of the class II flagellar gene
fliL) was not noticeably affected (Fig. 1e). Knowing that fliL
mRNA peaks in late S-phase (B84 min), that the pilA and tacA
mRNAs surge in G1 (B120 min (ref. 16)) and that PilA
accumulation is PleC-dependent (Fig. 1f), we hypothesized
that PleC-dependent CtrA (PleC:CtrA) target promoters
regulate G1-phase genes.

Next, we charted other PleC:CtrA target promoters on a
genome-wide scale by comparative ChIP-seq of CtrA occupancy
in WT and DpleC cells. Bioinformatic analyses predicted 4100
CtrA target sites that, akin to PpilA, are bound substantially less
efficiently by CtrA (that is, with log2 difference of o� 0.8) in

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5081

2 NATURE COMMUNICATIONS | 5:4081 | DOI: 10.1038/ncomms5081 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


DpleC versus WT cells (Figs 1g and 2a; and Supplementary
Data 1). To confirm that these sites indeed harbour PleC:CtrA
target promoters, we constructed promoter-probe reporters of the
top 18 PleC:CtrA target sites and measured promoter activities
in WT and DpleC cells (Supplementary Figs 1B and 2A,B).

All reporters were less active in DpleC cells, showing that they
indeed harbour PleC:CtrA target promoters. Since the transcripts
produced from these promoters are restricted to G1-phase15,22,
we conclude that these sites define a new class of G1-phase
promoters that are activated by CtrA in a PleC-dependent
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Figure 1 | CtrA-bound promoters that are affected in DpleC cells. (a) Schematic of the regulatory interactions between ctrA, sciP and mucR1 and mucR2

(mucR1/2) during the C. crescentus cell cycle. Phosphorylated CtrA (CtrABP) activates transcription of S- and G1-phase genes. In S-phase, MucR1/2

represses G1-genes such as sciP. The sciP gene is activated in G1 and the newly synthesized SciP translation product represses S-phase promoters. The

antagonistic kinase/phosphatase pair, DivJ (yellow dot) and PleC (green dot) indirectly influence CtrABP and partition with the stalked (ST) cell chamber

or swarmer (SW) cell chamber, respectively. PleC promotes CtrABP accumulation in the SW cell. The dashed arrow indicates that MucR1/2 promote

expression of CtrA, but not necessarily its phosphorylation. The star denotes the holdfast. Blue colouring denotes G1-phase transcription, whereas pink is

for the late S-phase programme. Light grey labels indicate the cell cycle stages. (b–e) Occupancy of CtrA and RNA polymerase (RNAP) at the pilA (PpilA)

and fliL promoter (PfliL)) in WT (NA1000), DpleC and DpleC mucR1::Tn5 mutant cells as determined by quantitative chromatin immunoprecipitation assays

(qChIP) using antibodies to CtrA or RpoC, as well as pilA transcription measurements conducted using a PpilA-lacZ promoter-probe reporter. Data are from

three biological replicates. Error is shown as s.d. (f) Immunoblots showing PilA (lower band, approximately 6 kDa) and CtrA (upper band, approximately

26 kDa) steady-state levels in WTand pleC::Tn5 mutant cells harbouring WT ctrA or phosphomimetic ctrA(D51E) expressed from a plasmid in the absence of

chromosomally encoded CtrA (DctrA::O). Molecular size standards are indicated on the left as blue lines with the corresponding values (blue) in kDa. (g)

Comparative ChIP-seq performed with antibodies to CtrA on chromatin from WT and DpleC cells. Boxed in grey are PleC:CtrA promoters that were verified

as being PleC dependent (Supplementary Fig. 1B). Blue labels indicate PleC:CtrA promoters that are bound by MucR1/2 as determined by the ChIP-seq

experiments (Fig. 2). Blue arrowheads point to promoters for which the ChIP-seq traces are shown in Fig. 5. The colour key at the bottom indicates the

degree by which the occupancy of CtrA is altered by the DpleC mutation, expressed as log2 ratio (Supplementary Data 1).
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manner. Importantly, the promoter of the G1-phase gene sciP
(PsciP) also falls into this class (Supplementary Fig. 1B; see below).

SciP preferentially binds S-phase target promoters of CtrA.
ChIP-seq experiments (Fig. 2b) with a polyclonal antibody to SciP
revealed that SciP does not associate with all CtrA target sites

(Fig. 2a) in vivo. In fact, we observed a clear promoter preference
for SciP, targeting the S-phase promoters, but not G1-phase
promoters activated by CtrA. Bioinformatic analyses predicted
76 SciP-binding sites in vivo (see Methods section and
Supplementary Data 2) upstream of CtrA-activated genes whose
transcripts all peak in late S-phase16, such as flagellar genes
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Figure 2 | Genome-wide occupancy of CtrA, SciP, FlbD, MucR1 and MucR2. (a–e). Genome-wide occupancies of CtrA (a), SciP (b), FlbD (c), MucR1

(d) and MucR2 (e) on the C. crescentus genome as determined by ChIP-seq. Note that owing to the ability of the anti-MucR2 antibody to precipitate MucR1,

some of the peaks in e could also derive from MucR1, but this is also expected as we show in Fig. 4a that MucR1 can interact with MucR2. The x axis

represents the nucleotide position on the genome, whereas the y axis denotes the relative abundance of reads for each probe (see Supplementary Methods

for detailed description). Candidate peaks reported in each profile are shown as red bars (‘ANNO probes’; Supplementary Data 1–5), whereas a horizontal

blue line in each profile denotes the cutoff applied to separate peaks and background. The middle panel in c depicts the minimal overlap between the

targets of SciP, CtrA and FlbD, whereas the right panel illustrates the regulatory relationship between SciP, CtrA and S-phase promoters. The pink arrow in

d denotes the 26-kb mobile genetic element (MGE) enlarged in f. (f) ChIP-seq trace of MucR1 (light blue) and MucR2 (dark blue) on the 26-kb MGE.

Genes encoded from right to left are shown in grey bars, whereas the black bars indicate genes on the reverse strand. The numbers above refer to the

CCNA gene annotation. The himar1 (Tn) insertions in CCNA_04006 are shown as vertical red bars. (g) Buoyancy of WT (grey) and mutant (blue

or red) cells harbouring a himar1 (Tn) insertion or an in-frame deletion (D) in CCNA_04006 (4006). The schematic shows the sedimentation of cells

after Percoll density gradient centrifugation in a test tube. Although WT cells show the typical upper and lower buoyancy conferred by S and G1 cells,

respectively, DmucR1/2 cells only show the former. CCNA_04006 is epistatic over mucR1/2, as inactivation CCNA_04006 confers the latter buoyancy.
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(for example, flmG, pleA, fliQ, fliX, flgB, fliL, fliI and fljJ), pilus
secretion genes (for example, cpaB and others, see below) and
chemotaxis gene orthologues (for example, CC_2317, CC_2281
and CC_1655). If SciP binds DNA only through a direct
association with CtrA, then all CtrA targets, including Cori and
CtrA-repressed promoters, should be efficiently precipitated with
the SciP antibody. These CtrA target sites as well as those of
PleC:CtrA (G1) promoters such as PpilA were not enriched in the
ChIP sample, indicating that they are not preferred targets of
SciP in vivo (Supplementary Discussion). A MEME-based
motif search using 50 of the top SciP target sites predicted
50-(G/A)TTAACCAT(A/G)-30 as possible SciP consensus motif
(Supplementary Data 2), a motif having half a CtrA box
(underlined, see above) and often overlapping with the CtrA
target site in promoters (Supplementary Data 2). These results
suggest that CtrA and SciP compete for binding to these
promoters, or that repression by SciP involves a cooperative
binding mode between SciP and CtrA at this site, perhaps
through an ‘extended’ CtrA box that includes a CtrA half site
harbouring a SciP consensus motif. Interestingly, combinatorial
promoter control by two regulators has been described during
sporulation in the unrelated Delta-proteobacterium Myxococcus
xanthus23.

Our results also reveal that SciP binds neither PfliF (the
promoter of the class II flagellar gene fliF that is activated by CtrA
in S-phase16) nor PpilA efficiently in vivo. We therefore suggest
that the ability of SciP to interfere with the recruitment of RNAP
to CtrABP-activated promoters such as PfliF and PpilA

in vitro18,19 likely reflects a secondary, later-acting mechanism
to silence CtrA-dependent transcription. It is conceivable that this
mechanism comes into play later in G1-phase once CtrA
activated transcription of sciP and other genes (that is, after
compartmentalization) has led to a build-up of a threshold in
SciP. Since our ChIP-seq experiments failed to reveal SciP at all
CtrA-activated promoters, it seems that SciP binds the bipartite
CtrA target complex weakly and/or only very transiently in vivo.
The simplest interpretation of our ChIP-seq data is that SciP
stably associates with promoters that CtrA activates in S-phase,
while promoters that CtrA activates in G1-phase or represses
(such as the podJ or ftsZ promoter) are not preferred targets of
SciP in vivo. SciP also does not target the CtrA-bound Cori site or
the CtrA-activated promoter PfliF efficiently in vivo.

PfliF is repressed by FlbD, the s54-dependent transcriptional
activator of class III/IV and repressor of class II flagellar
promoters14. Our ChIP-seq experiments showed that FlbD
binds PfliF and several other class III/IV flagellar promoters
(Fig. 2c and Supplementary Fig. 3). FlbD also targets, in a
mutually exclusive fashion with SciP, class II flagellar promoters
(Fig. 2c and Supplementary Discussion), but neither PpilA nor
other PleC:CtrA target promoters.

MucR1/2 binds promoters of G1-phase genes. Our observation
that phosphomimetic variants of CtrA cannot elevate PpilA

activity in DpleC cells (Supplementary Fig. 1C) and PilA protein
accumulation, regardless of whether WT CtrA is present or not
(Fig. 1f), predicted an unknown repressor(s) that prevents CtrA-
mediated activation at PpilA, PsciP and other G1-promoters in
DpleC cells. To identify this repressor, we mutagenized DpleC
cells harbouring a PpilA-nptII transcriptional reporter (integrated
at the chromosomal pilA locus; pilA::PpilA-nptII) with a mini-Tn5-
GmR (encoding gentamycin resistance, GmR). Selecting for
kanamycin-resistant transposon mutants in which PpilA-nptII
expression had been restored (Fig. 3a), we isolated one such
mutant (mucR1::Tn5) and determined the Tn5 insertion to be in
the middle (codon 74) of the mucR-like gene CC_0933

(CCNA_00982, henceforth mucR1; Supplementary Fig. 1D).
MucR1 belongs to the conserved MucR/Ros family of transcrip-
tional regulators that harbour a zinc-finger-type fold24 and
control virulence, symbiosis and/or motility in the human
pathogen Brucella suis25, the plant pathogen Agrobacterium
tumefaciens26 and the plant symbiont Sinorhizobium fredii
NGR234 (ref. 24).

Unexpectedly, and in contrast to the mucR1::Tn5 allele, an
in-frame deletion of mucR1 (DmucR1) did not mitigate the
defect in PsciP-lacZ and PpilA-lacZ transcription (Fig. 1c and
Supplementary Fig. 2A,B) and PilA expression (Fig. 3b) of DpleC
cells. However, when an in-frame deletion of mucR1 was
introduced along with a deletion in the gene encoding the
MucR2-paralog CC_0949 (CCNA_00998, henceforth mucR2,),
the PsciP-lacZ and PpilA-lacZ activity in the DpleC DmucR1/2 triple
mutant even exceeded that of the DpleC mucR1::Tn5 cells
(Supplementary Fig. 2A,B). By contrast, reporter activity was
hardly altered after deletion of either mucR1 or mucR2 from
DpleC cells (Supplementary Fig. 2A,B and Table 1).

Trans-dominance of mucR1::Tn5 on mucR2. The results above
suggest that the mucR1::Tn5 insertion not only disrupts mucR1
but also causes trans-dominance on mucR2. Several findings
support this conclusion. First, a multi-copy plasmid carrying the
coding sequence of truncated MucR1 from mucR1::Tn5
(pMT335-mucR1Tn5, see Methods section) alleviates the PilA
(Fig. 3b) and PpilA-lacZ (Supplementary Fig. 2C) expression
defect of DpleC DmucR1 double-mutant cells, while an analogous
plasmid with WT mucR1 (pMT335-mucR1) does not. Second,
MucR1 and MucR2 directly associate with PpilA and PsciP in vitro
(as determined by electrophoretic mobility shift assays (EMSA);
Supplementary Fig. 2D,E) and in vivo (qChIP experiments con-
ducted using polyclonal antibodies to MucR1 or to MucR2;
Fig. 3c,d). Third, mucR1::Tn5 impairs binding of MucR2 at PpilA

in vivo (Fig. 3d) and antibodies to MucR1 no longer precipitate
PpilA from chromatin of mucR1::Tn5 cells (Fig. 3c). As immu-
noblotting revealed that mucR1::Tn5 encodes a C-terminally
truncated form of MucR1 (Fig. 3e) that does not affect MucR2
steady-state levels (Fig. 3f), we conclude that the mucR1::Tn5
mutation not only removes codons required for DNA binding but
also interferes with MucR2 binding to its targets. Finally, and
most importantly, pull-down experiments using extracts of
DmucR1 cells expressing a MucR1 derivative carrying C-terminal
tandem affinity purification (TAP) tag revealed that MucR2
interacts with MucR1-TAP and MucR1Tn5-TAP (Fig. 4a).

These findings along with the facts that MucR proteins can
dimerize24,27 and that eukaryotic zinc-finger transcriptional
regulators form heterodimers20,28 suggest that the trans-
dominance of truncated MucR1 on MucR2 is due to the
formation of inactive heterodimers. To map the residues in
MucR1 that promote such trans-dominance on MucR2, we
conducted random mutagenesis of mucR1 to isolate missense
mutants that restore kanamycin resistance to DpleC pilA::PpilA-
nptII cells, akin to the mucR1::Tn5 mutation. We isolated four
mucR1 alleles encoding different single amino-acid substitutions
(R85C, L87P, Y97C or Y97H; Supplementary Fig. 1D; see
Methods section) that disrupt one or both of the two conserved
a-helices (residues 82-89 and 94-101) in the C-terminal DNA-
binding domain of A. tumefaciens MucR/Ros determined by
nuclear magnetic resonance spectroscopy (NMR)24. The residue
corresponding to R85 of MucR1 is situated within the DNA
recognition helix (helix 1) that along with basic residues in the
N-terminal globular domain forms a surface-exposed patch that
wraps around DNA and establishes specific base contacts24,
suggesting that loss of this basic residue in MucR1 disturbs DNA
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binding. As pull-down assays showed that MucR1(Y97C)-TAP
still interacts with MucR2 (Fig. 4a), we suggest that a
MucR1(Y97C) homo-dimer and a MucR1(Y97C)-MucR2
heterodimer are non-functional, and that the other mutations
are also loss-of-function mutations that can still interact with
MucR2 and thus exert trans-dominance.

Developmental control by MucR1 and MucR2. ChIP-seq
analyses with antibodies to MucR1 and to MucR2 predicted 162
and 227 target sites for MucR1 and MucR2 (Fig 2d,e; and
Supplementary Data 4 and 5), respectively. Cluster analyses of
MucR1/2-, SciP- and CtrA target sites revealed a large overlap

between CtrA, MucR1 and MucR2 targets (red set ‘a–c’, Fig. 3g).
Importantly, MucR1 and/or MucR2 bind G1-phase (PleC:CtrA)
target promoters in vivo, but not SciP targets (Supplementary
Data 1, as summarized in Fig. 3h). The occupancy of CtrA and
MucR1/2 over four selected promoter regions (including PpilA

and PsciP; Fig. 5a–d) revealed overlapping or proximal peaks.
Promoter-probe experiments with several of these target
promoters confirmed their dependency on MucR1/2 in vivo
(Table 1).

In support of the notion that MucR1/2 regulates G1-phase
promoters, simultaneous deletion of mucR1 and mucR2 from
WT cells (DmucR1/2) imparts multiple developmental defects,
disturbing the acquisition of motility, the buoyancy switch and
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Figure 3 | Identification of mucR1/2 as negative regulator of PleC:CtrA promoters. (a) Growth of WT (a) DpleC (b) and derivatives (c,d) carrying

the pilA::PpilA–nptII transcriptional reporter on PYE plates containing kanamycin (20mg ml� 1). (b) Immunoblot showing PilA steady-state levels in WT and

DpleC DmucR1 double-mutant cells harbouring the empty vector (1 and 2, respectively), and DpleC DmucR1 cells harbouring either the mucR1- (3) or

mucR1Tn5-plasmid (4). Molecular size standards are indicated on the left as blue lines with the corresponding values (blue) in kDa. (c,d) Occupancy

of MucR1 (c) and MucR2 (d) at PpilA in WT, DpleC mucR1::Tn5 double-mutant and mucR1::Tn5 single-mutant cells as determined by qChIP using antibodies to

MucR1 or MucR2. Data are from three biological replicates. Error is shown as s.d. (e) Immunoblots showing MucR1 and PilA steady-state levels in WT (a),

DpleC (b), DpleC mucR1::Tn5 double-mutant (c,d) and DpleC DmucR1 DmucR2 (e) triple-mutant cells. The mucR1::Tn5 allele encodes a truncated derivative

of MucR1. Molecular size standards are indicated on the left as blue lines with the corresponding values (blue) in kDa. (f) Immunoblots showing MucR2

and MreB (loading control) steady-state levels in WT (1), DmucR2 (2), mucR1::Tn5 (3) and DpleC mucR1::Tn5 double-mutant (4) cells. Molecular size

standards are indicated on the left as blue lines with the corresponding values (blue) in kDa. (g) Regulatory network showing putative promoters (dots)

bound by CtrA, MucR1, MucR2 and SciP as inferred from ChIP-seq results in WT cells (Fig. 2). Common targets between MucR1 and MucR2 are shown

in purple, between CtrA and SciP are shown in turquoise and between MucR and CtrA in red. This last group is subdivided into those bound by

MucR1/MucR2/CtrA (a), MucR1/CtrA (b) and MucR2/CtrA (c). Note that MucR1/2 and SciP have few common targets. See also Supplementary Data 8

for a prediction of specific and common MucR1 and MucR2 targets. (h). Scheme showing the predicted direct regulatory interactions at G1 or late

S-phase promoters inferred from g.
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holdfast gene expression (see below). These deficiencies are
corrected when DmucR1/2 cells are complemented with a
pMT335-derived plasmid harbouring mucR1 or mucR2, but
neither by a derivative harbouring mucR1Tn5 (Fig. 6a,b) nor by
the distantly related mucR-paralog CC_1356 (CCNA_01418).
Moreover, the developmental defects are attenuated by mutations
in ctrA or sciP that suppress the DmucR1/2 motility defect (see
motile flare in Fig. 6b and Supplementary Fig. 3A,B; see below).

The mucR1/2-sciP-ctrA regulatory module. Promoter-probe and
immunoblotting experiments revealed that the activity of flagellar
promoters (Supplementary Fig. 3E) and the abundance of class III
and class IV flagellar proteins are diminished in DmucR1/2 cells
relative to WT (Fig 6c,d). Since class II flagellar promoters are
bound by SciP (but not MucR1/2, see above) in vivo and required
for expression of class III and IV flagellar genes14 and since
transcription of sciP is negatively regulated by MucR1/2
(Supplementary Fig. 2B), we hypothesized that SciP represses
S-phase promoters ectopically in DmucR1/2 cells (Fig. 6e). Four
lines of evidence support this conclusion. First, the promoters
that are most efficiently bound by SciP in vivo (Supplementary
Data 2, including PpleA, PflgB, PCC_3676 and PCC_3439) are the most
downregulated in DmucR1/2 cells (Supplementary Figs 3E and
4A). Second, as predicted, CtrA also targets these four promoters
(Supplementary Fig. 4) and induces a peak in transcript
accumulation in S-phase16. Third, suppressor mutations in
either sciP or ctrA augment the activity of these promoters in
DmucR1/2 cells (Supplementary Fig. 4A). Fourth, comparative
ChIP-seq of WT and DmucR1/2 cells revealed an increase in
abundance of SciP at its preferred target sites in DmucR1/2 versus
WT cells (for example, with a log2 difference of o� 0.6 for
PCC_3676, PCC_3439, PfliQ, PpleA, and PfliX; Supplementary Data 6).
Thus, while the mucR1/2-sciP-ctrA module maintains the correct
balance in motility gene expression, deletion of mucR1/2
introduces an imbalance in regulation through SciP.

The eleven suppressor mutations in sciP that we isolated are
scattered throughout the entire (93-residue) coding region
(Supplementary Fig. 3B), suggesting that reduced SciP function
(or abundance) can be beneficial in the absence of MucR1/2.
Importantly, the T65A mutation lies in a residue previously
implicated in SciP function17, and we observed that derivatives of
pMT335 harbouring either sciP(T24I) or sciP(T65A) are less
efficient than the WT sciP version in inhibiting motility (of WT
cells; Supplementary Fig. 3F). The three suppressor mutations
that we found in ctrA (encoding T168A, T170A and T170P;
Supplementary Fig. 3A) all map to the predicted DNA-binding
domain. Interestingly, a related mutation (T170I) encoded by the
ctrA401ts allele12 impairs motility and prevents growth at 37 �C,
while allowing growth at 28 �C. By contrast, WT strains
harbouring ctrA(T170A) in place of WT ctrA exhibited no such
temperature sensitivity. Thus, unlike the hypomorphic ctrA401ts
allele, ctrA(T170A) acts as a hypermorphic allele. In support
of this conclusion, motility is not inhibited upon mild
overexpression of SciP from pMT335 in ctrA(T170A) cells. By
contrast, ctrAþ cells harbouring pMT335-sciP are non-motile
(Fig. 6f; and Supplementary Fig. 3C,D). These findings support
the conclusion that transcription of sciP in G1-phase prevents
activation of motility and other S-phase genes by CtrA (Fig. 6e),
and that inappropriate expression of sciP from a multi-copy
plasmid or by the DmucR1/2 mutation prevents activation
of these promoters in S-phase. Hypomorphic mutations in
SciP (for example, T65A) or hypermorphic mutations in the
CtrA DNA-binding domain (for example, T170A) mitigate
these effects, presumably because the T170A substitution
enhances CtrA’s ability to compete against repression by SciP
in vivo.

The DmucR1/2 mutation also results in a diminished promoter
activity (67% reduction versus WT) of the hfsJ holdfast gene
(CC_0095)29 and a buoyancy defect (Fig. 6e). Although the
genetic basis of the Caulobacter buoyancy has not yet been
determined, we found that the DmucR1/2 buoyancy defect is
reversed by the suppressor mutations in sciP and ctrA (Fig. 6e).
Thus, the mucR1/2-sciP-ctrA module appears to act on an
unknown buoyancy gene(s). Intriguingly, our ChIP-seq
experiments revealed that the 26-kb genomic island that is
located circa 480-kb clockwise from Cori and encodes at least one
unknown buoyancy determinant30 harbours the preferred
binding sites of MucR1 and target sites of MucR2 (Figs 2d–f;
and Supplementary Data 4,5 and 7). To explore this defect
further, we conducted a himar1 transposon (Tn) mutagenesis
experiment in mucR1/2 mutant cells and uncovered five
buoyancy pseudo-reversion mutants, each harbouring a Tn
insertions in the same gene (CCNA_04006, encoded on the
aforementioned 26-kb genomic island, Fig. 2f) whose predicted
translation product resembles the putative N-acetyl-L-fucosamine
transferase WbuB from Escherichia coli31. An in-frame deletion in
CCNA_04006 (DCCNA_04006) recapitulates the buoyancy
pattern of the Tn mutation in either DmucR1/2 or WT cells
(Fig. 2g) and is corrected when CCNA_04006 is expressed from a
plasmid (pMT335-CCNA_04006), indicating that deletion of
mucR1/2 affects CCNA_04006-dependent buoyancy switch.

Direct and positive auto-regulation of mucR1/2 and ctrA.
Above we reported the functional and regulatory interactions
between mucR1/2-sciP and between mucR1/2-ctrA. Interestingly,
MucR1/2 bind PsciP and the ChIP-seq data traces in Fig. 4b
indicate that MucR1 also binds the ctrA promoter. This notion
was confirmed by EMSAs showing that His6-SUMO-MucR1, but
not His6-SUMO-MucR2 or His6-SUMO, binds a ctrA promoter
probe (Fig. 4d), albeit with somewhat lower affinity than the

Table 1 | Activity of MucR1/2-bound C. crescentus promoters
in C. crescentus.

Strains WT DR1/R2 mucR1::Tn5

Promoters
perP 100.0±0.0 144.7±17.6 129.8±6.2
CC_0420 102.7±3.5 156.0±14.6 224.6±21.9
CC_0430 107.0±8.3 155.1±4.9 ND±ND
CC_2810 100.7±3.7 222.1±31.8 206.2±7.0
CC_3001 94.0±7.0 312.2±23.7 186.6±12.2
fljM 93.5±8.0 52.5±4.0 85.8±1.7
CC_2819 100.0±0.7 47.0±2.0 75.8±6.1
flaF 95.6±7.8 86.5±3.1 75.4±3.7
pilA 100.0±0.7 118.7±7.9 119.5±8.9
pilA (synUTR) 100.6±2.7 131.7±2.8 129.2±7.8

Strains DmucR1 DmucR2

Promoters
CC_0420 120.8±4.1 116.3±2.1
CC_2810 97.3±2.6 129.0±2.9
CC_3001 105.5±3.8 161.5±11.8
CC_2819 94.6±5.1 90.8±4.4
flaF 101.1±1.1 95.9±0.8

ND, not determined; UTR, untranslated region; WT, wild-type.
b-Galactosidase activity measurements of extracts from WT, mucR1::Tn5, DmucR1 and DmucR2
single- and double-mutant cells (DR1/R2) harbouring various lacZ-based promoter-probe
plasmids. The pilA(synUTR)-reporter is a modified version of pilA in which the 74 nt UTR has
been replaced by a synthetic UTR from E. coli (see Supplementary Note 1 for sequence). Error is
shown as s.d.
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PpilA or PsciP probes (Supplementary Fig. 2D,E). Moreover, tran-
scription from a ctrA promoter reporter plasmid (PctrA-lacZ) is
reduced by 60% in DmucR1/2 cells (Fig. 4c). Thus, MucR can also
act positively on its target promoters as observed for other MucR
proteins25,32, and a direct regulatory and functional relationship
exists between mucR and ctrA.

ChIP-seq also indicated a direct auto- and cross-regulatory
relationship between MucR1 and MucR2 (Supplementary Data 4
and 5). PmucR1-lacZ and PmucR2-lacZ promoter-probe reporters
are reduced by 62% and 72%, respectively, in DmucR1/2 cells
relative to WT (Fig. 4c). Although the steady-state levels of
MucR1 and MucR2 remain fairly constant during the cell cycle
(Supplementary Fig. 5A) and MucR1 occupancy at PpilA in DpleC
cells is near the occupancy seen in WT cells, we found that a Tn5
insertion in the cell cycle kinase genes divJ or divL (that act in the
PleC-signaling pathway13) increases the occupancy of MucR1
at PpilA in DpleC cells (Supplementary Fig. 5B). This divJ- or

divL-dependent increase of MucR binding is not because of
diminished CtrA occupancy at PpilA, PtacA or PfliL (Supplementary
Fig. 6A–C). Moreover, the recruitment of RNAP to PpilA

(Supplementary Fig. 6D) and the production of PilA is restored
(Supplementary Fig. 1D in ref. 33). Finally, the abundance of
CtrABP is not reduced by these mutations in divJ and divL
(Supplementary Fig. 6E). Thus, components of the cell cycle
regulatory circuitry such as DivJ and DivL can modulate the
occupancy of MucR1 on its targets. Conversely, MucR1 directly
regulates expression of the master cell cycle regulator CtrA.

Taken together, we conclude that mucR1/2 is a critical
component of an integrated and homeostatic (auto)regulatory
module, mucR1/2-ctrA-sciP, in which MucR not only engages in a
double-negative regulation (MucR and SciP), but also in a
double-positive one (MucR and CtrA) that likely helps reinforce
and/or synchronize the molecular events underlying the S-G1
transcriptional switch.
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the ctrA promoter based on ChIP-seq data. (c) b-Galactosidase measurements in extracts of WT (dark blue) and DR1/2 (light blue) cells harbouring a PctrA-,
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Pan-genomic ChIP-seq reveals conserved target regulation. To
investigate whether the link of MucR with the cell cycle circuitry
has been maintained during evolution, we first assessed the extent
of the functional conservation in the symbiont S. fredii NGR234
(henceforth S. fredii) that also contains two mucR-like genes:
a00320 on the symbiotic plasmid pNGR234a and c07580 on
the chromosome. Both a00320 and c07580 can substitute for
Caulobacter mucR1/2 in motility control (Fig. 7a), as is also the
case for the unique mucR homologues encoded in the genomes
of the animal pathogen B. suis and the plant pathogen
A. tumefaciens (Fig. 7a), indicating that expression of sciP and the
downstream motility target genes are sufficiently controlled by
the heterologous MucR proteins to support motility. Because
of this functional conservation, we asked if direct regulatory
interactions were also maintained. To this end, we conducted
pan-genomic ChIP-seq analyses using the antibodies to
Caulobacter MucR1 and MucR2 to identify promoters bound by
MucR-like proteins in S. fredii (Fig. 7b; Supplementary Fig. 7A;
and Supplementary Data 4 and 5). We then used these promoters
to show the converse genetic dependency, that is, that these
MucR-bound S. fredii promoters are regulated by Caulobacter
mucR1/2. Indeed, promoter-probe experiments with Caulobacter
WT and DmucR1/2 cells revealed that six S. fredii promoters are
regulated negatively and two positively by MucR1/2 (out of
10 promoters tested; Table 2).

Next, we attempted to compute pan-genomic consensus motif
for MucR from the top 50 MucR1 target sites of Caulobacter and

S. fredii (Fig. 7c) using the MEME algorithm (see Methods
section). As proof-of-principle, we also computed a pan-genomic
consensus motif of the top 50 CtrA-bound sites in the
Caulobacter and S. fredii genomes determined by ChIP-seq using
antibodies to Caulobacter CtrA (Supplementary Data 7). The
deduced motif is remarkably similar to the CtrA target sequence
determined biochemically for Caulobacter (TTAA-N7-TTAA;
Fig. 7c), showing that this strategy can accurately predict
consensus motifs. The pan-genomic consensus motif that was
deduced for MucR1 is fairly degenerate, revealing a preference for
AT-rich DNA substrates in GC-rich genomes (65% for
Caulobacter and 61% for S. fredii). Indeed, synthetic reporters
(T5_mucR1b-lacZ and two attenuated derivatives; Supplementary
Note 1) in which two MucR1 motifs were placed in tandem,
downstream of a heterologous strong promoter from E. coli
T5 phage driving lacZ expression are MucR-dependent in
Caulobacter (Supplementary Fig. 8A,B), thereby validating our
predicted pan-genomic MucR1-consensus sequence as a MucR1
target.

Finally, we compared the target sites of CtrA and MucR in
S. fredii using the consensus sequences. This revealed a suite of
overlapping (or proximal) targets as for Caulobacter, albeit fewer
in number (Fig. 7b). Importantly, several of these target sites in
S. fredii are linked to orthologous genes that we determined to
be under MucR and CtrA control in Caulobacter (including
flaF- and sciP-like genes that are cell cycle-regulated and perform
developmental functions in Caulobacter; Fig. 7d)4,34. Thus, the
functional and direct regulatory relationships between MucR
proteins and the cell cycle are (at least partly) conserved during
evolution.

Discussion
Through forward genetics and (pan)genomic promoter
occupancy of key cell cycle transcriptional regulators, we
unearthed a conserved regulatory module, mucR1/2-sciP-ctrA,
that implements the S-G1 switch in Caulobacter. The ancestral
zinc-finger transcription factor paralogs MucR1/2 repress
G1-phase promoters that are activated by the essential master
regulator CtrA including that controlling the negative regulator
SciP that turns off S-phase promoters activated by CtrA. Through
this double-negative wiring, the induction of G1-promoters
occurs concomitantly with the repression of S-phase promoters.
Superimposed on this double-negative regulatory wiring is a
double-positive circuit in which MucR1/2 promotes expression of
CtrA. Thus, MucR has both negative and positive roles in
reinforcing the S-G1 transcriptional switch in Caulobacter.

Remarkably, G1-phase-specific transcripts were recently also
detected in synchronized S. meliloti5, raising the intriguing
possibility that the underlying regulatory mechanisms that direct
G1-phase transcription in Caulobacter also operate in symbiotic
or virulent relatives, and that the mucR-sciP-ctrA regulatory
module coordinates virulence/symbiosis and cell cycle
transcription. Several findings are consistent with this notion.
First, MucR proteins were previously described as regulators of
virulence and symbiosis gene expression in Brucella, Sinorhizobia
and Agrobacteria that also divide asymmetrically3,25,35. Second,
we showed that MucR1/2 are required for proper implementation
of the cell cycle transcriptional programs in dividing Caulobacter
cells. Third, we found that MucR from Brucella, Sinorhizobia and
Agrobacteria can confer motility to Caulobacter DmucR1/2
mutants, a function that is dependent on proper cell cycle-
dependent expression of SciP in G1-phase, while mis-expression
of SciP impairs motility gene expression and leads to non-motile
cells in soft agar (Fig 6b,f). Fourth, MucR-bound promoters of
S. fredii NGR234 are also under MucR1/2 control in Caulobacter
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Figure 5 | PleC:CtrA target promoters that are bound and regulated
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(orange) and CtrA (green) in WT cells and CtrA in DpleC (red) cells as

determined by ChIP-seq data. Note that in panel c, the MucR1 binding
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(Table 2). Finally, our pan-genomic-binding site studies in
Caulobacter and in the symbiont S. fredii revealed that many
orthologous genes carry binding sites for MucR and CtrA in both
species (Fig. 7d). With this close interplay of cell cycle
transcription and virulence/symbiotic functions in mind, it is
tempting to propose that certain transcriptional regulators
previously thought to function exclusively as regulators of
virulence/symbiosis should be re-classified as regulators of cell
cycle transcription that restrict virulence gene expression to a
specific cell cycle stage. For example, MucR proteins could endow
a G1-phase-arrested daughter cell in Brucella, Sinorhizobia,
Agrobacteria and likely other Alpha-proteobacteria with the
necessary transcripts to establish virulence or symbiosis
in the host. Indeed, motility and cell envelope-associated
polysaccharides (responsible for the mucoid colony
morphology) are both critical for virulence and known to be
MucR controlled in Sinorhizobia and Brucella3,25,35.

Interestingly, the fact that heterologous MucR proteins control
cell cycle transcription indicates that they are properly regulated

in Caulobacter, implying that MucR control is conserved in the
Alpha-proteobacteria6. MucR1/2 protein levels remain relatively
constant during the Caulobacter cell cycle, suggesting that
MucR is regulated post-translationally. Indeed, the ability of
heterologous MucR proteins to support function in another host
is easier to reconcile with regulation by a small molecule that is
produced by most Alpha-proteobacteria, rather than by a very
promiscuous factor that must recognize the different MucR
proteins.

Several Alpha-proteobacteria including Caulobacter and
S. fredii encode multiple MucR paralogs, and we show that
the Caulobacter MucR paralogs can heterodimerize akin to
eukaryotic zinc-finger transcription factors28. Although a single
endogenous or a heterologous MucR paralog can support cell
cycle transcription in Caulobacter, it is conceivable that
heterodimerization serves to fine-tune MucR activity and cell
cycle transcription. With the eukaryotic mitochondrion having
descended from an Alpha-proteobacterium21 and ancestral zinc-
finger transcription factors being primarily represented in the
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Alpha-proteobacterial lineages, it is conceivable that these
transcription factors originated in an Alpha-proteobacterium
that had undergone a duplication of the mucR gene.

Methods
Strains and growth conditions. Caulobacter NA1000 (ref. 10) and derivatives
were grown at 30 �C in PYE (peptone–yeast extract) or M2G (minimal glucose).
S. fredii NGR234 (ref. 36) was grown at 30 �C in tryptone–yeast extract. E. coli
S17-1 lpir37 and EC100D (Epicentre Technologies, Madison, WI) were
grown at 37 �C in Luria broth. The E. coli mutator strain XL1 Red (Agilent
Technologies Inc., Cedar Creek, TX) was grown at 30 �C in Luria broth.
Motility assays, swarmer cell isolation, electroporations, biparental matings and
bacteriophage FCr-30-mediated generalized transductions were performed as
described33,38–40.

Identification of mucR1. The mucR1::Tn5 insertion was identified using a
modification of the kanamycin resistance suppressor screen33. In brief, we screened
for mini-Tn5 insertions that restore PpilA firing to DpleC cells bearing PpilA-nptII
transcriptional reporter that confers kanamycin resistance to 20 mg ml� 1 when
PpilA is fully active. In contrast to previous screens that were done using a
mini-Tn5 conferring resistance to tetracycline, in this screen a version was used
that confers resistance to gentamycin. The delivery plasmids pSS88 and pSS87
(ref. 41) were used to mutagenize DpleC pilA:: PpilA-nptII cells by biparental mating
with the mini-Tn5, screening for colonies that were resistant to gentamycin
(1 mg ml� 1), kanamycin (20 mg ml� 1) and nalidixic acid (20mg ml� 1, nalidixic
acid is used to counter-select against the E. coli donor in biparental matings). This
mutagenesis screen gave rise to one isolate (NR513) with the desired resistance
profile. The Tn5 insertion in NR513 was mapped to the uncharacterized CC_0933
gene at nucleotide (nt) position 1061847 of the C. crescentus NA1000 genome
sequence (Supplementary Fig. 1C) using arbitrarily primed PCR33.
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Table 2 | Activity of MucR-bound S. fredii promoters in
C. crescentus.

Strains WT DR1/2

Promoters
NGRa00570 96.0±7.0 151.1±9.4
NGRa00610 100.0±1.2 205.6±16.7
NGRa02310 101.4±3.0 150.9±4.9
NGRa03530 100.1±1.8 462.4±27.4
NGRc06240 99.8±2.6 387.5±34.8
NGRc28620 98.1±3.4 238.1±24.5
NGRc35630 100.1±3.0 63.5±4.0
NGRc11500 100.0±0.3 23.5±1.3

b-Galactosidase activity measurements of extracts from WT and DmucR1 DmucR2 double-
mutant cells (DR1/R2) harbouring various lacZ-based promoter-probe plasmids with S. fredii
promoters thought to be bound by S. fredii MucR based on the ChIP-seq data shown in
Supplementary Data 4 and 5. Error is shown as s.d.
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Strain constructions. The DmucR1 and DmucR2 marker-less single and double
deletions were introduced into WT (NA1000) and DpleC42cells using the standard
two-step recombination sucrose counter-selection procedure induced by the
pNPTS138 derivatives. The resulting strains are the DmucR1 and DmucR2 single
mutants, the DpleC DmucR1, DpleC DmucR2 and DmucR1 DmucR2 double
mutants, and the DpleC DmucR1 DmucR2 triple mutant. Deletions were confirmed
by PCR using outside primers that do not hybridize within the mucR deletion
alleles carried on pNPTS138.

The mucR1::Tn5 mutation (conferring gentamycin resistance and encoding a
truncated MucR1 derivative that is dominant negative on MucR2) was transduced
from strain NR513 (see below) into the WT (NA1000) and DpleC strains by
fCr30-mediated generalized transduction, yielding strains in which endogenous
mucR1 is replaced by mucR1::Tn5.

The P-lacZ transcriptional reporter strains were made by electroporation of the
different plac290-based transcriptional reporter plasmids into WT (NA1000),
DpleC, DmucR1 DmucR2, DpleC DmucR1 DmucR2, and the motile DmucR1
DmucR2 second-site suppressor mutants UG1277 (DmucR1 DmucR2 sciPT24I) and
UG1280 (DmucR1 DmucR2 ctrAT170A).

The pleC::Tn5 derivatives shown in Fig. 1f were made by generalized
transduction of from SC1035 (ref. 43) into NA1000 or DctrA:: O cells harbouring
pSAL14 or pCTD14 (ref. 44).

Isolation of phosphomimetic variants of ctrA, ctrAgof. We identified ctrAgof

alleles (gain of function, gof) by virtue of their ability to allow growth as sole
copy of ctrA in a strain lacking the gene encoding the hybrid histidine kinase/
phosphatase CckA (cckA) gene. To this end, the pMT464-ctrA plasmid was pas-
saged through the E. coli mutator strain XL1 Red. The mutant library was sub-
sequently electroporated into the DcckA::Gent; ctrA::Spc double-mutant strain
carrying pCTD14 (pJS14-ctrAD51E conferring resistance to chloramphenicol)45

and colonies that grew in the presence of kanamycin (20 mg ml� 1) and 0.3% xylose
were selected, as they were candidates in which pCTD14 had been displaced by a
mutant pMT464-ctrA plasmid that can support growth in the absence of CckA
(note that pCTD14 and pMT464 have the same origin of replication). The new
ctrAgof alleles were sequenced, excised by cleavage with NdeI and EcoRI and cloned
into pMT335 for further analysis in strains carrying the plac290-based PpilA-lacZ
reporter plasmid. The mutant variants identified code for D8G, D8N, D51E, N53D
or M99I. Note that the isolation of D51E, a known phosphomimetic allele44,
validates the screen.

Isolation of missense mutations in mucR1. To isolate missense mutations in
mucR1 that phenocopy the mucR1::Tn5 mutation, plasmid pMT375-mucR1 was
mutated by passage through E. coli XL1 Red mutator strain (Agilent Technologies)
on ampicillin. The mutagenized plasmid library was then electroporated into DpleC
DmucR1; PpilA-nptII cells, selecting for resistance to tetracycline (1 mg ml� 1) and
kanamycin (20mg ml� 1). The new loss-of-function mutations that phenocopy the
effect of mucR1::Tn5 were excised by restriction with NdeI and EcoRI and cloned
on pMT335 to assess their effects in strains carrying the plac290-based PpilA-lacZ
promoter-probe plasmid.

Motility suppressors of DmucR1 DmucR2 double-mutant cells. Spontaneous
mutations that suppress the motility defect of the DmucR1 DmucR2 double mutant
appeared as ‘flares’ that emanated from the non-motile colony after approximately
4–5 days of incubation. After isolating 14 motile DmucR1/2 suppressor mutants,
two isolates (UG1277 and UG1278) were subjected to whole-genome sequencing
and mutations in the sciP gene (sciPT24I and sciPT65A, respectively) were found.
In UG1277, the threonine codon (ACT) at position 24 in sciP is changed to one
encoding isoleucine (ATT). In UG1278, the threonine codon (ACG) at position 65
in sciP is changed to one encoding alanine (GCG). Since SciP has been implicated
in the regulation of CtrA, we sequenced sciP and ctrA in other suppressor mutants
and found a mutation in strain UG1280 (ctrAT170A) in which the codon of
threonine (ACC) at residue 170 was exchanged for one encoding alanine (GCC).
To confirm that the mutations sciPT24I and ctrAT170A were responsible for the
suppression of motility defect of the DmucR1 DmucR2 double mutant, we back-
crossed each of the mutations into the DmucR1 DmucR2 strain. To this end, a
pNPTS138 derivative (pNPTS138-hook, conferring kanamycin resistance) was
integrated by homologous recombination nearby the sciP locus in UG1277.
Next, FCr-30-mediated generalized transduction was used to transfer the mutant
sciP allele from UG1277 into the DmucR1 DmucR2 mutant. Finally, the sucrose
counter-selection procedure (see above) was used to select for stains that had lost
pNPTS138-hook by homologous recombination. To backcross ctrAT170A from
UG1280 into DmucR1 DmucR2 strain and the WT (NA1000) parent, the
pNPTS138 derivative (pNPTS138-ctrA-ds) was integrated nearby the ctrA locus of
UG1280 by homologous recombination. FCr-30-mediated generalized transduc-
tion was used to transfer the mutant ctrA allele from UG1280 into the recipients by
selecting for kanamycin resistance. Clones that have lost pNPTS138-ctrA-ds by
homologous recombination were probed for kanamycin resistance (on PYE plates
supplemented with kanamycin) and motility (on swarm agar plates) following
sucrose counter-selection. PCR and sequencing was used to verify the integrity of
the three mutants in each backcrossing experiment.

Isolation of transposon insertions in CCNA_04006. Transposon (himar1)
mutagenesis of the DmucR1 DmucR2 strain was done using an E. coli lpir donor
harbouring pHPV414 as described46. The mutant library was grown in PYE and
then subjected to Percoll density gradient centrifugation, followed by enrichment
for cells where the dense swarmer cells band is normally found. After repeated
cycles of enrichment (growth in PYE followed by Percoll density gradient
centrifugation), the band containing dense cells was extracted and single colonies
were isolated on PYE plates. The transposon insertion sites in five clones were
mapped as described46 to nt 475241, 475633, 475659, 475789 and 476186 of the
NA1000 genome sequence.

Protein purification and antibody production. For antibody production,
His6-MucR1 or His6-SUMO-SciP(T24I) was expressed from pCWR350 and
pUG97 in E. coli Rosetta (DE3)/pLysS (EMD Millipore, Billerica, MA), respectively,
and purified the recombinant proteins purified under standard native conditions
using Ni2þ chelate chromatography. They were used to immunize New Zealand
white rabbits (Josman LLC, Napa, CA). His6-SUMO-MucR2 was expressed from
pUG12 in E. coli Rosetta (DE3)/pLysS and purified using Ni2þ chelate chroma-
tography in phosphate-buffered 8 M urea (Qiagen, Hilden, Germany). The protein
was excised from a 15 % SDS polyacrylamide gel and used to immunize rabbits.

For EMSAs, soluble His6-SUMO-MucR1, His6-SUMO-MucR2 or His6-SUMO
was purified from E. coli Rosetta (DE3)/pLysS containing pUG30, pUG41 or
pET28a-His6-SUMO, respectively, under native conditions using Ni2þ chelate
chromatography. In brief, cells were pelleted, resuspended in lysis buffer (20 mM
Tris, 500 mM NaCl, 2 mM MgCl2, 50 mM L-glutamic acid, 50 mM L-arginine and
10 mM imidazole; pH 8.8) and lysed by three passages through a French pressure
cell at 20,000 PSI. After centrifugation at 100,000g the supernatant was loaded onto
a 1 ml HisTrap column (GE Healthcare, Fairfield, CT) and eluted with a linear
gradient using the same buffer containing 500 mM imidazole.

Electrophoretic mobility shift assays. His6-SUMO-MucR1, His6-SUMO-MucR2
or His6-SUMO were always freshly diluted into the binding buffer (25 mM Tris,
100 mM KCl, 5 mM MgCl2, 5 % glycerol and 0.05 % dodecyl maltoside, pH 7.5) to
test the binding to the different Cy3-labelled DNA fragments. They were mixed
with BSA (0.5 mg ml� 1 BSA), sonicated salmon sperm DNA (0.05 mg ml� 1,
Invitrogen Carlsbad, CA) and the Cy3-labelled DNA fragments (25 nM) in a total
volume of 15 ml. The samples were incubated at room temperature for 10 min, then
5 ml 4� loading dye (4� binding buffer in 40% glycerol) was added, the samples
separated on a 4% TBE polyacrylamide gel and the gel was scanned with a
Typhoon FLA 7000 imager (GE Healthcare). Gel-purified 50 Cy3-labelled PCR
fragments (Macherey-Nagel, Bethlehem, PA) were used as probes.

qChIP assays. Mid-log phase cells were cross-linked in 10 mM sodium phosphate
(pH 7.6) and 1% formaldehyde at room temperature for 10 min and on ice for
30 min thereafter, washed three times in phosphate-buffered saline (PBS) and lysed
in a Ready-Lyse lysozyme solution (Epicentre Technologies) according to the
manufacturer’s instructions. Lysates were sonicated (Sonifier Cell Disruptor B-30,
Branson Sonic Power Co., Danbury, CT) on ice using 10 bursts of 20 s at output
level 4.5 to shear DNA fragments to an average length of 0.3–0.5 kbp and cleared
by centrifugation at 14,000 r.p.m. for 2 min at 4 �C. Lysates were normalized by
protein content, diluted to 1 ml using ChIP buffer (0.01% SDS, 1.1% Triton X-100,
1.2 mM EDTA, 16.7 mM Tris-HCl (pH 8.1), 167 mM NaCl plus protease inhibitors
(Roche, Switzerland) and pre-cleared with 80 ml of protein-A agarose (Roche) and
100 mg BSA. Ten percent of the supernatant was removed and used as total
chromatin input DNA as described before47.

Two microliters of polyclonal antibodies to CtrA44, SciP17,18 (note that for ChIP
experiments reported in Supplementary Data 6, we used antibodies that we raised
against His6-SUMO-SciP), FlbD48, RpoC (Neoclone, Madison, WI), MucR1 or
MucR2 were added to the remains of the supernatant, incubated overnight at 4 �C
with 80ml of protein-A agarose beads pre-saturated with BSA, washed once with
low salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl
(pH 8.1) and 150 mM NaCl), high salt buffer (0.1% SDS, 1% Triton X-100, 2 mM
EDTA, 20 mM Tris-HCl (pH 8.1) and 500 mM NaCl) and LiCl buffer (0.25 M LiCl,
1% NP-40, 1% sodium deoxycholate, 1 mM EDTA and 10 mM Tris-HCl (pH 8.1)),
and twice with TE buffer (10 mM Tris-HCl (pH 8.1) and 1 mM EDTA). The
protein DNA complexes were eluted in 500 ml freshly prepared elution buffer
(1% SDS and 0.1 M NaHCO3), supplemented with NaCl to a final concentration of
300 mM and incubated overnight at 65 �C to reverse the crosslinks. The samples
were treated with 2 mg of Proteinase K for 2 h at 45 �C in 40 mM EDTA and 40 mM
Tris-HCl (pH 6.5). DNA was extracted using phenol:chloroform:isoamyl alcohol
(25:24:1), ethanol precipitated using 20 mg of glycogen as carrier and resuspended
in 100 ml of water. For deep sequencing (ChIP-seq), total chromatin input DNA
was not saved. To determine the specificity of MucR antibodies, samples were
prepared and treated as for the ChIP, but after the washing steps the beads were
resuspended in SDS loading buffer and boiled. Data are from three biological
replicates.

Pull-down of MucR2 with MucR1-TAP. Overnight cultures were used to inoculate
80 ml of PYE (containing 50 mM vanillate to induce expression of MucR1-TAP
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proteins) and cells were grown to an OD600 of 0.5–0.6. Sodium phosphate (pH 7.6)
and formaldehyde were added to the cultures to a final
concentration of 10 mM and 1%, respectively, and the cells were incubated for
10 min at room temperature followed by 30 min on ice. Cells were harvested by
centrifugation (6500 rpm, 10 min at 4 �C) and washed twice in PBS. Cell pellets
were resuspended in 900 ml of resuspension buffer (50 mM sodium phosphate,
pH 7.4, 1 mM EDTA, 50 mM NaCl, 10 mM MgCl2, 0.5% n-Dodecyl-b-D-
maltoside, 1� protease inhibitors (Completet EDTA-free, Roche)) and lysed at
room temperature for 15 min with a Ready-Lyse lysozyme solution (Epicentre
Technologies). Cell lysates were sonicated (Bioruptor Pico, Diagenode) at 4 �C
using 10 cycles of 30 s and cleared by centrifugation at a relative centrifugal force
(r.c.f.) of 18,188g for 2 min at 4 �C. The supernatant was incubated with IgG
Sepharose beads (GE Healthcare Bio-Sciences, Sweden) for 2 h 30 min at 4 �C,
washed six times with IPP150 buffer (10 mM Tris-HCl pH 8, 150 mM NaCl and
0.1% NP-40) and four times with TEV buffer (IPP150 buffer plus 0.5 mM EDTA
and 1 mM DTT), and incubated overnight at 4 �C with TEV buffer containing
100 U ProTEV Plus protease (Promega) to release the tagged complex. The eluate
was used for SDS-PAGE and immunoblotting.

Real-time PCR. Real-time PCR was performed using a Step-One Real-Time PCR
system (Applied Biosystems, Foster City, CA) using 5% of each ChIP sample (5 ml),
12.5 ml of SYBR green PCR master mix (Quanta Biosciences, Gaithersburg, MD),
0.5 ml of primers (10 mM) and 6.5 ml of water per reaction. Standard curve generated
from the cycle threshold (Ct) value of the serially diluted chromatin input was used
to calculate the percentage input value of each sample. Average values are from
triplicate measurements done per culture. The final data was generated from three
independent cultures. The DNA regions analysed by real-time PCR were from
nucleotide � 287 to � 91 relative to the start codon of pilA, � 313 to þ 32 of
fliL, � 226 to þ 30 of tacA and � 191 to þ 14 of sciP.

EMSA probe preparation. The different promoter regions were amplified in a
PCR using plasmids pJS70 (plac290-based PpilA-lacZ transcriptional fusion),
pCC_0903-lac290 (sciP) or chromosomal DNA of NA1000 (ctrA) as templates and
with 50-Cy3-labelled oligonucleotides pilACy3fw and pilACy3rev, sciPCy3fw
and sciPCy3rev, ctrACy3fwshort and ctrACy3revshort, or CtrACy3fwlong and
CtrACy3revlong (see Supplementary Table 1 for sequences of oligonucleotides).
The 50-Cy3-labelled PCR fragments were gel purified (Macherey-Nagel).

b-Galactosidase assays. b-Galactosidase assays were performed at 30 �C as
described earlier40. Fifty microlitres of cells at OD660nm ¼ 0.1–0.6 were lysed with
chloroform and mixed with 750 ml of Z buffer (60 mM Na2HPO4, 40 mM
NaH2PO4, 10 mM KCl and 1 mM MgSO4 heptahydrate). A quantity of 200 ml of
ONPG (4 mg ml� 1 o-nitrophenyl-b-D-galactopyranoside in 0.1 M KPO4 pH 7.0)
were added and the reaction timed. When a medium-yellow colour was developed,
the reaction was stopped with 400ml of 1 M Na2CO3. The OD420nm of the
supernatant was determined and the units were calculated with the equation:
U¼ (OD420nm � 1,000)/(OD660nm � time (in min) � volume of culture (in ml).
The assays were done in triplicates and normalization was done by conversion of
the Miller Units (absolute values) of one arbitrarily chosen WT construct or WT
background as reference, set to 100%. All absolute values were then converted to
relative values, averaged and the error was determined by calculation of the s.d.
Data are from three biological replicates.

Antibodies used for immunoblotting and ChIP. Polyvinylidenfluoride
membranes (Merck Millipore Headquarters, Billerica, MA) were blocked with PBS,
0.05% Tween 20 and 5% dry milk for 1 h and then incubated for 1 h with the
primary antibodies diluted in PBS, 0.05% Tween 20 and 5% dry milk. The different
antisera were used at the following dilutions: anti-MucR1 (1:10,000), anti-MucR2
(1:10,000), anti-CtrA (1:10,000)44, anti-PilA (1:5,000)49, anti-FlgH (1:10,000)50,
anti-MreB (1:10,000)51, anti-FljK (1:50,000)52. The membranes were washed four
times for 5 min in PBS and incubated 1 h with the secondary antibody diluted in
PBS, 0.05% Tween 20 and 5% dry milk. The membranes were finally washed again
four times for 5 min in PBS and revealed with Immobilon Western Blotting
Chemoluminescence HRP substrate (Merck Millipore Headquarters). Antibodies
used for ChIP are to CtrA44, SciP17,18, FlbD48, RpoC (Neoclone) and MucR1 or
MucR2.

In vivo phosphorylation measurements. In vivo P32 labelling followed by
immunoprecipitations (see Supplementary Fig. 1D in ref. 33) were done from
cultures of a single colony of cells picked from a PYE agarose plate that was washed
with M5G medium lacking phosphate and was grown overnight in M5G with
0.05 mM phosphate to an optical density of 0.3 at 660 nm (ref. 47). The strains
used were as in Radhakrishnan et al.33 One millilitre of culture was labelled for
4 min at 28 �C using 30mCi of g-[32P]ATP. Following lysis, proteins were
immunoprecipitated with 3 ml of antiserum to CtrA. The precipitates were resolved
by SDS-PAGE, and [32P]-labelled CtrA was quantified using a Storm 820
PhosphorImager and ImageQuant software version 4.0 (Molecular Dynamics) and

were normalized to the relative cellular content as determined by immunoblotting
of lysates. Data are from three biological replicates.

Plasmid constructions, ChIP-seq and bioinformatics analyses. Details are
described in the Supplementary Methods.
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