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ABSTRACT. Turning is crucial for animals, particularly during predator-prey 

interactions and to avoid obstacles.  For flying animals, turning consists of changes in 1) 

flight trajectory, or path of travel, and 2) body orientation, or 3D angular position.  

Changes in flight trajectory can only be achieved by modulating aerodynamic forces 

relative to gravity. How birds coordinate aerodynamic force production relative to 

changes in body orientation during turns is key to understanding the control strategies 

used in avian maneuvering flight. We hypothesized that pigeons produce aerodynamic 

forces in a uniform direction relative to their body, requiring changes in body orientation 

to redirect those forces to turn. Using detailed 3D kinematics and body mass 

distributions, we examined net aerodynamic forces and body orientations in slowly flying 

pigeons (Columba livia) executing level 90º turns. The net aerodynamic force averaged 

over the downstroke was maintained in a fixed direction relative to the body throughout 

the turn, even though the body orientation of the birds varied substantially. Early in the 

turn, changes in body orientation primarily redirected the downstroke aerodynamic force, 

affecting the bird’s flight trajectory. Subsequently, the pigeons mainly reacquired the 

body orientation used in forward flight without affecting their flight trajectory. 

Surprisingly, the pigeon’s upstroke generated aerodynamic forces that were 

approximately 50% of those generated during the downstroke, nearly matching the 

relative upstroke forces produced by hummingbirds. Thus, pigeons achieve low speed 

turns much like helicopters, by using whole-body rotations to alter the direction of 

aerodynamic force production to change their flight trajectory. 
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INTRODUCTION. Maneuverability is critical to the movement of animals in their 

natural environment. Turning represents a basic maneuver that is particularly relevant to 

predator-prey interactions and obstacle avoidance. To begin to understand the 

mechanisms by which birds achieve and control aerial turns, we examine the role of body 

rotations in relation to aerodynamic force production to alter the flight trajectory, or path 

of travel, during turns. More specifically, we ask whether body rotations serve to redirect 

aerodynamic forces during low speed 90° level turns in pigeons. 

 The three dimensional (3D) nature of flight requires analyses of aerodynamic 

force production in relation to body motions not only in a global reference frame, but also 

in a local, body reference frame (Fig. 1). The global frame allows for application of 

Newton’s laws of motion, which for a flying bird means that the resultant of aerodynamic 

and gravitational forces can be estimated from accelerations of the whole body center of 

mass (CM). However, the bird’s torso moves relative to the CM, primarily due to the 

time-varying wing configurations during the wingbeat cycle. Therefore, localization of 

the CM cannot rely solely on the torso, but requires detailed assessment of the motions of 

the head and wings as well. The body frame corrects for the displacements and rotations 

of the torso, allowing for analyses of head and wing motions and forces relative to the 

body, which subsequently can be related to underlying musculoskeletal and sensory-

motor function. The combination of global and local frames therefore can reveal how 

aerodynamic force production is coordinated with a bird’s 3D body orientation, or body 

angular position, during aerial turns. 
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 There are two major reasons for animals to change their body orientations during 

turns: 1) to reacquire their preferred body orientation for forward movement, and 2) to 

alter the direction of propulsive force needed to change their movement trajectory. 

Bilaterally symmetric animals have body plans that are best suited for forward 

locomotion with a particular 3D body orientation (1). Consequently, this preferred body 

orientation must be reacquired during a turn to move along the new movement trajectory.  

Additionally, body rotations must also occur to redirect the animal’s propulsive turning 

forces, if these forces are directionally constrained within the animal’s body frame. 

Redirecting resultant forces in the global frame due to changes in body orientation is 

referred to as force vectoring (Figure 1). In fact, flying insects have been argued to turn 

primarily by force vectoring, meaning that the majority of the redirection of aerodynamic 

forces is based on changes in body orientation, and not on changes in the direction of 

aerodynamic forces relative to the insect’s body (2). 

 Even though quantifying the time-varying aerodynamic forces produced during 

flapping flight is challenging, estimates of aerodynamic force production during flight 

maneuvers have been made in insects (4-7). Turning calliphorid, muscid and drosopholid 

flies support the use of force vectoring as a means to redirect aerodynamic force, as the 

aerodynamic forces produced by their wings operate within a limited range relative to 

their bodies. Most of the redirection of aerodynamic force within the body frame occurs 

within the animal’s mid-sagittal plane, varying over a range of merely 20°; although fruit 

flies also generate moderate lateral forces with respect to their body. Notable exceptions 

are hover flies (Syrphidae), which seem to achieve a wider variation in aerodynamic 
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force orientation relative to their body (8, 9), though these findings have been questioned 

(7). 

 Vertebrate fliers also appear to have a limited ability to redirect aerodynamic 

force relative to their body. Horseshoe bats, fruit bats, pigeons and rose-breasted 

cockatoos roll during aerial turns (10-13), indicating that they likely rely on force 

vectoring to turn. Fruit bats rotate their bodies in the direction of the turn in addition to 

rolling, increasing their centripetal acceleration (13). Finally, pigeons appear to redirect 

aerodynamic forces to accelerate after flight take-off and brake prior to landing by 

pitching movements of their bodies (14). 

 Here, we ask whether pigeons redirect aerodynamic forces (in the global frame) 

by redirecting aerodynamic forces relative to their body (Fig. 1A), or by rotating the body 

itself (Fig. 1B). Given the constrained musculoskeletal and stereotypical kinematic 

features of the avian wingstroke (15-18), we hypothesize that pigeons generate 

aerodynamic forces in a uniform direction relative to their body (i.e. in the body frame), 

necessitating the use of force vectoring to turn (Fig. 1B). To test this hypothesis, we used 

high-speed videography to obtain 3D positions of body markers of pigeons performing 

low speed, 90º level turns within a netted, 10m long, square-corner corridor (Fig. 2).  

Detailed analysis of the pigeons’ whole-body mass distributions enabled their non-body-

fixed CM to be accurately tracked, from which time-varying, whole-body, or net, 

aerodynamic forces were assessed (Fig. 2-5). To interpret the functional significance of 

changes in body orientation made throughout the turn, body rotations of the pigeons were 

quantified relative to the redirection of aerodynamic force averaged over successive 

downstrokes. Specifically, for each downstroke in the turn the component of the body 
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rotation that redirected the average aerodynamic force was mathematically separated 

from the component of the 3D body rotation that had no effect on the direction of the 

average downstroke force. This approach allowed any 3D body rotation to be 

decomposed into two complementary body rotation fractions, one that redirected and one 

that rotated about the downstroke average aerodynamic force (Fig. 6). 

 

RESULTS. Three pigeons with a mean body mass of 319 + 33 g (all results are 

expressed as mean +

114 

 SD) negotiated the 90° level turn at a CM speed of 3.3 + 0.2 ms-1, 

with mean flight trajectory slopes relative to the global horizontal plane of 2.5 +

115 

 0.2o, and 

a wingbeat frequency of 8.3 +

116 

 0.3 Hz. Combined wing mass distal to the shoulder 

comprised 12.5 +

117 

 1.4% of total body mass. 118 
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 Aerodynamic forces are reaction forces resulting from the interactions of the 

animal’s body, wings and tail with the surrounding air. In mid-air, an animal’s flight 

trajectory can only be changed by gravity or the aerodynamic forces produced by the 

animal. Since the external force on an object equals the product of its mass and 

acceleration, the instantaneous aerodynamic force acting on the pigeon’s center of mass 

(CM) can be estimated after factoring out gravity (see methods for details). However, the 

time-varying configurations of the bird’s wings and head relative to its torso cause the 

whole-body, or net, CM to vary in position with respect to the torso through time. This 

non-body-fixed CM therefore requires estimates based on detailed 3D kinematics and 

body mass distributions (Fig. 3). Using a mass-distribution model then provides estimates 

of instantaneous net aerodynamic forces (F) throughout the turns. The aerodynamic 
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origin of these forces and any force components that cancel out internally, however, 

cannot be identified by this method. 

 Pigeons turn with an aerodynamically active upstroke. Throughout the 90o 

turn the pigeons produced aerodynamic forces during the upstroke as well as the 

downstroke (Fig. 2, 4).  In the global frame, aerodynamic forces were directed vertically 

to support the pigeon’s body weight and horizontally to change its flight trajectory during 

the turn (Fig. 2). 

 Substantial body rotations occur about all three anatomical axes. The 3D 

body rotations of the turning pigeons consisted of substantial roll, pitch and yaw 

components, defined as rotations about the antero-posterior (along the spine), the medio-

lateral and dorso-ventral body frame axes, respectively (19) (Table 1; Fig. 1). During the 

turn, body rotations oscillated back and forth within wingbeats, but led to net changes in 

body orientation between successive wingbeats. The pigeons’ 3D body rotations 

predominantly consisted of roll, both continuously and on a net wingbeat basis; although 

pitch and yaw components were also substantial (Table 1). Over the course of a turn, 

early wingbeats rolled the pigeons into the turn, with subsequent wingbeats producing net 

roll rotations out of the turn. In contrast, net wingbeat rotations about the pitch and yaw 

axes were directed upwards and into the turn, respectively, throughout turning. 

Oscillations of body rotations within wingbeats were larger in pitch and roll (16 + 5 and 

13 +

148 

 6 °/wingbeat, respectively), and smallest in yaw (4 + 3 °/wingbeat), indicating yaw 

angular velocities were most uniform 
149 

150 

151 

152 

 Pigeons produce consistent patterns of aerodynamic force. The directions and 

magnitudes of instantaneous net aerodynamic force (F) exhibited stereotypic patterns 
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within the body frame during both downstroke and upstroke. (Fig. 2D, 4, 5). During 

downtroke F was directed mainly in the midsagittal plane of the birds, whereas during 

upstroke F was more variably directed.  Net aerodynamic force magnitude (|F|) 

approximated zero at the upstroke-downstroke transition, before peaking near mid-

downstroke (4.5 +

153 
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 0.4 body weights (BW) at 53% of the downstroke period; Fig. 4). At 

the downstroke-upstroke transition, F momentarily opposed the stroke average. 

Throughout the remainder of the upstroke, however, the pigeons produced aerodynamic 

force in support of body weight, in line with the stroke average. |F| reached a maximum 

at mid-upstroke (2.3 +

157 

158 

159 

160 

 0.3 BW, Fig. 4), coinciding with tip-reversal (Fig. 4B, left 

silhouette). Although upstroke peak |F| averaged about half the downstroke peak |F|, the 

aerodynamic impulse generated during upstroke averaged 27 +

161 

162 

 4% of the impulse 

generated during downstroke. Aerodynamic forces averaged 1.33 +

163 

 0.07 BW over the full 

wingbeat cycle, consistent with the pigeons’ need for centripetal forces in addition to 

weight support to fly through the turn. A sensitivity analysis consisting of a decrease and 

an increase of the wing masses by 10% resulted in an increase and a decrease of upstroke 

peak force estimate by approximately 5%, respectively, indicating the robustness of our 

findings for upstroke aerodynamic force based on a full body and wing mass distribution 

model of the birds. 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

 As the pigeon rotated its body and changed its flight trajectory, downstroke-

averaged aerodynamic forces (Fd) were produced in a uniform direction with respect to 

the pigeon’s body during the five sequential wingbeats of the turn (Fig. 5). Fd were 

oriented in the mid-sagittal plane of the bird’s body and directed anterior to the dorso-

ventral body axis by 38 + 7° (Fig. 5), consistent with the ‘pitched-up’ body orientation of 
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pigeons during slow steady flight (~ 32° at a flight speed of 5-6 ms-1 (20)). During slow 

flight aerodynamic drag is small and, by approximation, only gravity needs to be 

countered by near vertical aerodynamic forces. 
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 Turning pigeons prioritize changes in trajectory over angular positioning of 

the body.  By comparing rotations of the pigeon’s torso with respect to redirection of Fd 

over the course of a wingbeat in the global frame, we evaluated the extent to which 

pigeons relied on body rotations to redirect Fd versus to what extent body rotations 

occurred about the direction of Fd (see methods for details). Body rotations that redirect 

Fd alter flight trajectory, but body rotations about Fd leave the direction of Fd in the 

global frame unaffected, and therefore do not change flight trajectory. This analysis 

revealed that for each sequential wingbeat of the turn, the pigeon’s body progressively 

rotated about an axis that was increasingly aligned with the direction of Fd (Fig. 6). Body 

rotations produced over the course of the first two wingbeats of the turn predominantly 

redirected Fd (70.1 + 4.1 % and 64.4 + 17.8 %, respectively), whereas body rotations 

during the last two wingbeats occurred predominantly about F

189 

d (60.2 + 5.6 % and 69.4 + 

2.3 %) (Fig. 6C). 
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 In summary, during turning flights the pigeon’s torso oscillated vigorously due to 

the combined effect of the flapping wings (resulting from inertial forces) and 

aerodynamic forces in relation to gravity. Aerodynamic forces accelerating the bird’s 

center of mass peaked during downstroke, but also peaked during upstroke and were 

roughly half the downstroke magnitude. These aerodynamic forces serve to offset gravity 

and change the bird’s flight trajectory to achieve level 90° turns. Even though the 

pigeon’s orientation changed significantly about all three body-axes, downstroke-
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averaged aerodynamic forces were produced in a uniform anatomical direction. 

Decomposition of successive wingbeat 3D body rotations revealed that early in the turn 

body rotations of the pigeon mainly redirected downstroke-averaged aerodynamic forces, 

reflecting anatomical constraints on the direction of aerodynamic force production. 

However, later in the turn body rotations mainly served to reorient the bird’s body for 

straight flight, and had little effect on the direction of aerodynamic force production. 

 

DISCUSSION. Using an analytical approach based on high-speed 3D kinematics and 

detailed body mass distributions, we determined the time-varying net aerodynamic forces 

produced by slowly flying pigeons as they negotiated 90o level turns (Fig. 2).  We 

identified the tip-reversal upstroke as aerodynamically active (Fig. 2, 4B), indicating its 

role for increased power production and control of body position. Net aerodynamic forces 

were produced in a uniform direction within the pigeon’s body frame, requiring that 

changes in flight trajectory be mediated by body rotations that redirect aerodynamic force 

in the global frame (Fig. 5). Consistent with our hypothesis, the overall turning strategy 

consisted of force vectoring to change the pigeon’s flight trajectory, followed by re-

acquisition of the bird’s preferred body orientation for forward flight (Fig. 6). 

 Substantial rotations occurred about all three anatomical axes indicating that 1) 

pigeons are not restricted to a particular anatomical axis to change their body orientation, 

and 2) body rotations function to redirect net aerodynamic forces as needed to negotiate 

the turn (Table 1). That body rotations occurred mainly about the birds’ roll axis does not 

necessarily reflect a preference for this axis, but may simply reflect the birds’ body 
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orientation upon entering the turn and the reliance on force vectoring to negotiate the 

turn. 

 Net Aerodynamic force magnitude (|F|) varied consistently, with minima and 

maxima occurring at wingbeat phases as predicted by aerodynamic theory (21), across all 

individuals and trials. The average net aerodynamic force per wingbeat was greater than 

one BW because turning birds need to accelerate themselves to redirect their flight 

trajectory, as well as offset their weight due to gravity. The small negative peak in |F|, 

opposing the stroke-averaged aerodynamic force, may well reflect an aerodynamic 

consequence of strong supination of the wings near the downstroke-upstroke transition 

(22). 

 Positive aerodynamic force during the upstroke coincided with wing tip-reversal 

(Fig. 4B, left silhouette). During an upstroke with tip-reversal, the elbow and wrist are 

flexed, and the hand-wing is supinated, causing it to be inverted. Elbow and wrist flexion 

effectively moves the point of wing rotation from the shoulder during the downstroke 

towards the wrist during the upstroke, facilitating the upward ‘back flick’ of the hand-

wing. This tip-reversal mechanism is found in the slow to intermediate flight of birds 

with relatively pointed wings, as well as some birds with rounded wings (22-24), and bats 

(10, 25-26). The functional significance of wing tip-reversal has been the subject of 

debate since the pioneering work of Brown (27), and has been proposed by others in prior 

studies of avian flight to be aerodynamically active (10, 24-34). Until now, however, 

aerodynamic force production of the tip-reversal upstroke had not been convincingly 

demonstrated during vertebrate flight. 
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 The consistent force patterns observed here across wingbeats of all three pigeons 

provide the first definitive evidence for upstroke aerodynamic force production during 

slow flight in birds larger than hummingbirds (Fig. 2, 4).  Useful contributions of an 

active tip-reversal upstroke to weight support can therefore be expected during other 

modes of flight where tip-reversal is present, such as hovering, landing and steady slow 

flight. This is reinforced by the fact that we observed no significant differences in 

upstroke force patterns across the five wingbeats during which birds entered, executed 

and left the 90° turn. Aerodynamic force generation by the tip-reversal mechanism also 

agrees with recent force measurements of pigeon wings spun like a propeller, while 

positioned in an upstroke configuration (35). 

 Although maximum F during the upstroke reached 50% of maximum F during the 

downstroke (Fig. 4), the upstroke generated only 27 + 4% of the downstroke impulse. 

The smaller impulse of the upstroke reflects its shorter period (42% of the wingbeat 

duration), as well as the opposing aerodynamic force production relative to weight 

support early in the upstroke (Fig. 4B).  

254 
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 In a comparative context, the relative contribution of upstroke aerodynamic force 

to total impulse in pigeons is nevertheless surprisingly high. Hummingbirds operate at 

temporal and spatial scales similar to insects (2), and, until recently, were thought to 

share weight support between the two halves of the wingbeat (36). However, hovering 

rufous hummingbirds generate only 33% of the downstroke impulse during upstroke 

((37), based on wake measurements).  With an upstroke that generates 27% of their 

downstroke impulse, pigeons achieve a similar impulse distribution to that found in 
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287 

rufous hummingbirds, which is remarkable since hummingbirds are thought to have 

evolved a highly derived upstroke (38). 

 Our hypothesis that pigeons produce aerodynamic forces in a uniform anatomical 

direction is also clearly supported (Fig. 5). Fd was oriented within the mid-sagittal body 

plane and directed antero-dorsally, with little variation across successive turning 

wingbeats. Thus, during low speed flight, pigeons exhibit a consistent direction of net 

aerodynamic force production with respect to their body, reflecting the fundamental 

anatomical features that underlie powered avian flapping flight. 

 The constrained direction of force production in the body frame indicates that 

pigeons turn much like insects and helicopters. Helicopters redirect aerodynamic forces 

relative to their fuselage (in the body frame) within relatively narrow ranges (roughly 

20°; (39)), meaning that maneuvers with more substantial redirections of resultant forces 

in the global frame require force vectoring, as we found for pigeons. Airplanes, with 

decoupled wing lift and engine thrust, can redirect resultant forces to a larger degree 

within the body frame, particularly in the fore-aft direction (for modern fighter planes this 

can be > 90° (40)), reducing their reliance on force vectoring to maneuver. 

 The turning strategy of pigeons appears to prioritize trajectory changes over 

readjustments of body orientation. Body rotations of the pigeons early in the turn mainly 

contribute to changes in flight trajectory, whereas body rotations progressively later in 

the turn predominantly serve to realign the body for subsequent forward flight, having a 

smaller effect on redirecting aerodynamic force (Fig. 6C). This turning strategy likely 

arises from constraint of Fd direction with respect to the bird’s body, which requires 

force vectoring to redirect Fd. However, body rotations that redirect Fd during the first 
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part of the turn result in a body orientation that is not well suited for the bird’s new

trajectory. Therefore, once the bird achieves its new target flight trajectory, its preferred 

body orientation for forward flight must be reacquired by rotating its body about F

 flight 288 
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ring, to 300 
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 302 
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 305 
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307 

308 

309 

310 

d. 

Only body rotations that occur about Fd leave the newly acquired flight trajectory 

unaffected, which explains why these body rotations predominantly occur later 

tu

 To the extent that aerodynamic force production may be anatomically co

in avian flapping flight, it seems likely that the pattern of early flight trajectory 

adjustment followed by reacquisition of a preferred forward flight body orientation 

observed here for slow turning flight may also apply for fast turning flight.  At higher 

flight speeds, however, changes in wings and/or tail configurations are likely to prod

more substantial changes in aerodynamic force with respect to the bird’s body (41), 

allowing for changes in aerodynamic force direction, independent of force vecto

achieve a turn. Additionally, given that flight power requirements are lowest at 

intermediate speeds (42), birds may be able to redirect aerodynamic force within the body

frame by differentially activating flight muscles between their inside and outside wing

This could enable an alternative turning strategy to that observed here.  For instance, 

during flight versus when flap-running, chukars produced aerodynamic forces roughly in

the same global direction, yet body pitch orientation differs by about 30° between these 

behaviors (43). These findings indicate that birds may be able to re-direct aerodynamic 

forces more variably with respect to the body depending on behavior or power output. 

 At the low flight speeds examined here, pigeons operate much like helicopters, 

which have limited capacity to redirect aerodynamic forces relative to their body, relying 
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on whole-body force vectoring to change flight trajectory, similar to fruit flies, blow flies 

and house flies (5, 7, 44, 45). The moderate redirection of F

311 

eon’s 312 

313 
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 to 318 

y simplify the problem of controlling turns 319 

om six to four degrees of freedom (46). 320 

321 

322 

323 

ield 324 

325 

326 

327 

al, 328 

sh nylon deer netting 329 

330 

 were 331 

332 

 333 

d with respect to the pig

body that does occur, may contribute to body torques required to produce the body 

rotations needed for turning (11,12). Understanding flight control will therefore require 

insight into the specific mechanisms used by pigeons to generate the torques that produce 

the observed body rotations. However, torques cannot be inferred from Newton’s second 

law of motion because the distribution of applied forces remains unknown. Nevertheless, 

by limiting the direction of aerodynamic force production to a single main axis relative

the body, our results indicate that birds ma

fr

 

METHODS. Three rock doves (Columba livia) were selected from ten wild-caught 

individuals, based on subjective assessment of their initial turning flight performance 

during training. These pigeons were housed, trained and studied at the Concord F

Station (Bedford, MA, USA) in accordance with protocols approved by Harvard 

University’s Institutional Animal Care and Use Committee. The pigeons were trained to 

fly back and forth between two perches situated at either end of two 5m long by 1m wide 

by 2m high netted sections, connected by a 90º turn midway (Fig. 2B). The symmetric

square-corner corridor was constructed of lightweight, 2-cm me

supported by a PVC frame consisting of 4-cm diameter piping. 

 Using nine synchronized, high-speed cameras, 3D positions of body markers

collected within a calibrated 1.8 m3 cubic volume that encompassed the turn. Trials 

accepted for analysis were those in which the birds 1) did not contact the netting, and 2)
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maintained a turning flight trajectory relative to global horizontal of < 5°. The pigeons 

were marked at 16 anatomical locations (Fig. 3): Dorsum at the second thoracic vertebra 

(dm); Left and right rump (4-cm lateral to the vertebral column over the synsacrum) (ru); 

Center of head (hd); Left and right wing roots (sh); Left and right wrists (wr); Tip of left 

and right 5

334 

335 

336 

337 

338 

 the 339 

340 

s and 341 

342 

343 

344 

to-345 

346 

347 

348 

d 349 

350 

cy 351 

wingbeat frequency. Cutoff frequency was determined by residual 352 

353 

354 

355 

net wingbeat body rotations, respectively, about each of the body axes. For each turn, five 356 

th primary feathers (5p); 67% of the length of left and right 9th primary feathers 

(9p); 67% along the length of left and right outer tail feathers (tl); Left and right tip of

innermost secondary feathers (1s). Elbow position was determined trigonometrically 

based on two lengths and three positions: brachial and ante- brachial segment length

wing root, wrist and tip of the innermost secondary feather positions. Flights were 

recorded with two camera systems: A high-speed light video system recording at 250 Hz 

with 0.001 sec exposure time, consisting of one FastCam-X 1280 PCI and two FastCam 

1024 PCI cameras (Photron USA Inc., San Diego, CA, USA), and an infrared-based au

tracking system recording at 240 Hz with 0.0004 sec exposure time, consisting of six 

ProReflex MCU240 cameras (Qualisys AB, Gothenburg, Sweden), was used to track 

flight kinematics. The two camera systems were synchronized using a start trigger signal. 

The visible-light videos were digitized using DLTdv3 (47). Calculations were performe

in Matlab (Mathworks Inc., Natick, MA) using custom-written scripts. Positional data 

were filtered with a fourth-order Butterworth filter using a low-pass cutoff frequen

three times the 

analysis (48).  

 Rotations. The sum of absolute back and forth rotations within a wingbeat and 

the net change in body orientation over a wingbeat period were defined as continuous and 
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sequential wingbeats were analyzed, during which continuous and net wingbeat body 

rotations about each axis were accumulated. 
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ngbeat. 378 

 Aerodynamic Forces. The position of the net CM was approximated throughout 

the turn using a mass-distribution model of the body and tail, head, and wings (Fig. 3). 

The torso and tail were represented by a single point-mass, because the effect of tail 

movements on net CM were assumed to be minor and are difficult to model. The head 

and 14 chord-wise strips per wing were modeled as point-masses, with time-varying 

positions based on segment kinematics (Fig. 3). The two wings together constitute 

approximately 1/8th of a pigeon’s body mass. The motion of the flapping wings causes the 

net CM to move substantially relative to a pigeon’s torso CM, necessitating the time-

dependent, non-body-fixed CM calculations.  

 Wingbeats were partitioned into upstroke and downstroke phases, based on 

reversal of the major bending direction of the primary feathers. This bending-reversal of 

the primary feathers coincided with the instant the primary feather markers moved 

laterally relative to the body, in both ventral (start of upstroke) and dorsal (start of 

downstroke) positions.  

 Instantaneous net aerodynamic forces (F) were determined throughout the turn 

based on net CM accelerations relative to gravity, because the CM of a freely flying bird 

can only be accelerated by external gravitational and aerodynamic forces. F vectors were 

normalized to wingbeat phase and expressed in the body frame. The net aerodynamic 

forces averaged over the duration of the downstroke (Fd) act in line with the main 

impulse vector, the time integral of force, produced during each wi
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 Redirection of aerodynamic forces versus rotation about aerodynamic forces. 

Identification of F

379 

380 

381 

382 

383 

384 

385 

386 

387 

388 

389 

390 

391 

392 

393 

394 

395 

396 

d allowed for decomposition of body rotations relative to this direction 

of main aerodynamic impulse imparted during each downstroke. Body rotations of the 

bird were analyzed with respect to Fd over the five wingbeats of the turn. Two 3D 

rotations were calculated between successive mid-downstroke instants of each wingbeat: 

a 3D body rotation and a 3D redirection of Fd. Body rotations identical to the redirection 

of Fd were designated as representing 100% redirection of Fd. Conversely, if body 

rotations did not redirect Fd, body rotations were designated as representing 100% 

rotation about Fd. Mathematically, this approach is identical to expressing the 3D body 

rotation as a vector in the body frame and determining the relative magnitudes of two 

perpendicular projections of this vector: 1) The projection of the 3D body rotation vector 

on the plane normal to Fd represents the component of the body rotation that redirects Fd 

(force vectoring), and 2) The projection of the 3D body rotation vector on Fd represents 

the component of the body rotation about Fd.  This approach allowed any 3D body 

rotation to be decomposed into two complementary body rotation fractions, one that 

redirected Fd and one that rotated about Fd (Fig. 6A,B). 

 Statistics. All results were are based on five complete wingbeats nearest the 

center of each of two left and two right turns for each individual (20 wingbeats per bird, 

N=3) expressed as mean + SD. Paired t-tests (JMP, SAS Institute, Cary, NC) were used 

to compare group means for the three individuals.  Differences were considered 

significant when p<0.05. 
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Fig. 1. Schematic representation of the experimental hypotheses. The global frame (thin 

grey lines) with z (vertical) defined in line with gravity, and x and y defined along the 

two perpendicular horizontal axes of the flight corridor (Fig. 2). Upper right inset: The 

bird’s body frame with antero-posterior (along the spine), medio-lateral and dorso-ventral 

axes in red, green and blue, respectively. Rotations about these anatomical axes are 

defined as roll, pitch and yaw (red, green and blue circular arrows). (A, B) Hypothetical 

aerodynamic forces (solid light blue vectors) in the global frame (thin solid grey lines) 

during a level, 90° aerial turn to the right. Horizontal and vertical global projections 

(dashed blue vectors) of the aerodynamic forces early, during and upon completion of the 

turn provide braking, centripetal and accelerating forces, respectively, as well as vertical 

forces. (A) H
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0: Birds produce aerodynamic forces in variable directions in the body 

frame, requiring only realignment of the antero-posterior body axis with the flight 

trajectory. (B) Force-vectoring Hypothesis: Birds produce aerodynamic forces in a 

uniform direction in the body frame, requiring body rotations to redirect aerodynamic 

forces in the global frame to change flight trajectory (grey curved line). NB: the grey 

triangles shown between the antero-posterior body axis and resultant aerodynamic force 

vector are of identical dimensions in each of the four represented positions of the turn, 

emphasizing the anatomically fixed direction of aerodynamic force. 

  

Fig. 2. Instantaneous net aerodynamic forces (F) visualized on corresponding center of 

mass (CM) positions throughout a representative right 90o turn. Downstroke forces in 

blue and upstroke forces in red, plotted at 4 ms intervals. (A-C) F in the global frame 

with axes x, y and z.  (A) Top view. (B) Schematic of the flight corridor with viewpoints 
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for (A) and (C). (C) Level view. (D) Caudo-lateral view of F for a single wingbeat in the 

body frame with antero-posterior (ap, red), medio-lateral (ml, green) and dorso-ventral 

(dv, blue) axes. Arrows connecting vector tips indicate temporal sequence. (A,C,D) Axes 

lengths represent two body weights of force. 
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Fig. 3. Pigeon marker locations and mass-distribution model. Silhouette at mid 

downstroke with sixteen marker locations (solid black circles) and calculated elbow 

locations (open circles). The approximate wingstrip edges (dashed lines) and marker 

descriptors are provided for the bird’s right side (dm: dorsal midshaft; ru: rump; sh: 

shoulder, 5p: fifth primary; 9p: ninth primary; tl: tail; 1s: innermost secondary; see 

methods for details). Modeled point masses (blue spheres), with size representing relative 

mass. Note that the tail is considered part of the torso mass (largest blue sphere). 

 

Fig. 4. Net aerodynamic force magnitude (|F|) in line with the stroke averaged 

aerodynamic force for turning pigeons. The force magnitude is normalized to body 

weight (BW) and wingbeat duration. Grey shading indicates downstroke. (A)  Mean |F| + 

SD (N=20) for each of 3 individual pigeons. (B) Pooled mean +

597 

 SD of the mean |F| 

across the three pigeons. Representative silhouette at both phases of upstroke and 

downstroke peak force (black arrows) illustrates timing with respect to wing 

configuration. Note that the discontinuity between upstroke and downstroke traces results 

from normalization to the half-stroke phases, necessitated by variations in stroke 

durations. 
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 28

605 Fig. 5. Mean net downstroke aerodynamic forces (Fd) for three turning pigeons expressed 

in the body frame and superimposed on a pigeon outline. The mean + SD vector cone is 

depicted by a different color for each individual averaged for all analyzed wingbeats of 

the turns. For clarity, three views are provided. (A) rear view, (B) side view and (C) 

oblique view. 
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Fig. 6. Decomposition of sequential body rotations of a turning pigeon. (A,B) Outline of 

a pigeon, with superimposed Fd and SD vector cone, as well as the plane to which Fd is 

normal, and an exemplary axis of body rotation (thick black line), all in the body frame. 

(A) The component of the body rotation that redirects Fd (blue circular arrow). Note that 

the axis describing this rotation fraction lies within the circular blue plane. (B) The 

component of the body rotation about Fd (orange circular arrow). (C) Fractions of body 

rotation for four sequential, complete wingbeats of the turn, showing the orthogonal 

components of body rotations that redirect Fd (blue fraction) versus which occur about Fd 

(orange fraction). Pooled mean + SD of means of three individuals. Mid-downstroke 

outlines of five sequential wingbeats, as seen from a single elevated viewpoint from 

inside the turn. Grey arrows and dotted lines link colored bars to positions in the turn. 

Asterisks indicate significant differences between body rotation fractions. 
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Table Legend. 

Table 1. Body rotations accumulated throughout the turn. Mean + SD of means of three 

individuals for both continuous and net wingbeat effects in terms of roll, pitch and yaw. 
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Body 
rotations 

Continuous 
effects (deg) 

Net wingbeat 
effects (deg) 

Roll 143  +  16 77  +  14 
Pitch 125  +  24 43  +    2 
Yaw   81  +  10 58  +    4 
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