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BLOCK-BASED BAYESIAN EPISTASIS ASSOCIATION MAPPING
WITH APPLICATION TO WTCCC TYPE 1 DIABETES DATA1

BY YU ZHANG2, JING ZHANG3 AND JUN S. LIU3

Pennsylvania State University, Yale University and Harvard University

Interactions among multiple genes across the genome may contribute to
the risks of many complex human diseases. Whole-genome single nucleotide
polymorphisms (SNPs) data collected for many thousands of SNP markers
from thousands of individuals under the case–control design promise to shed
light on our understanding of such interactions. However, nearby SNPs are
highly correlated due to linkage disequilibrium (LD) and the number of pos-
sible interactions is too large for exhaustive evaluation. We propose a novel
Bayesian method for simultaneously partitioning SNPs into LD-blocks and
selecting SNPs within blocks that are associated with the disease, either in-
dividually or interactively with other SNPs. When applied to homogeneous
population data, the method gives posterior probabilities for LD-block bound-
aries, which not only result in accurate block partitions of SNPs, but also
provide measures of partition uncertainty. When applied to case–control data
for association mapping, the method implicitly filters out SNP associations
created merely by LD with disease loci within the same blocks. Simulation
study showed that this approach is more powerful in detecting multi-locus as-
sociations than other methods we tested, including one of ours. When applied
to the WTCCC type 1 diabetes data, the method identified many previously
known T1D associated genes, including PTPN22, CTLA4, MHC, and IL2RA.
The method also revealed some interesting two-way associations that are un-
detected by single SNP methods. Most of the significant associations are lo-
cated within the MHC region. Our analysis showed that the MHC SNPs form
long-distance joint associations over several known recombination hotspots.
By controlling the haplotypes of the MHC class II region, we identified addi-
tional associations in both MHC class I (HLA-A, HLA-B) and class III regions
(BAT1). We also observed significant interactions between genes PRSS16,
ZNF184 in the extended MHC region and the MHC class II genes. The pro-
posed method can be broadly applied to the classification problem with cor-
related discrete covariates.

Received April 2010; revised December 2010.
1This study makes use of data generated by the Wellcome Trust Case–Control Consortium.

A full list of the investigators who contributed to the generation of the data is available from
www.wtccc.org.uk. Funding for the project was provided by the Wellcome Trust under Award
076113. All the chromosomal positions are in NCBI build 35 coordinates.

2Supported by NIH Grant R01-HG004718.
3Supported in part by the NIH Grant R01-HG02518-02 and the NSF Grant DMS-07-06989.
Key words and phrases. Disease association study, epistasis, LD block, Bayesian methods.

2052

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/11-AOAS469
http://www.imstat.org
http://www.wtccc.org.uk


BLOCK-BASED BAYESIAN EPISTASIS ASSOCIATION MAPPING 2053

1. Introduction. A recent genome-wide association (GWA) study of 14,000
cases of seven human genetic diseases and 3,000 shared controls by the Welcome
Trust Case Control Consortium [WTCCC (2007)] represents a thorough validation
of the GWA approach. By testing hundreds of thousands of single nucleotide poly-
morphisms (SNPs) in the human population (Affymetrix 500k SNP), the study has
identified many SNPs associated with seven complex diseases [WTCCC (2007)].
Each SNP consists of two alleles taking values 0 or 1, and there are three possi-
ble combinations of the two alleles: (0,0), (0,1), (1,1), disregarding the order.
Each combination is called a genotype, representing wild homozygote, heterozy-
gote, and mutant homozygote, respectively. In a case–control study, a SNP is said
to be associated with the disease if the genotype (or allele) distribution at the SNP
is different between cases and controls. In addition to testing individual SNPs, it
has also been anticipated that epistatic interactions among SNPs, defined as multi-
ple SNPs jointly associated with the disease, may be responsible for significantly
elevating the risks of some human complex diseases. Due to computational and
methodological limitations, however, efforts on detecting disease-related epistatic
interactions among SNPs in the WTCCC study have been limited.

In the past few years, many approaches have been developed for case–control
studies to detect epistasis associations. Most methods cannot be applied to GWA
studies due to their computational limitations except for some recently developed
methods, such as the stepwise logistic regression method [Marchini, Donnelly and
Cardon (2005)] and the Bayesian epistasis association mapping (BEAM) algo-
rithm [Zhang and Liu (2007)]. It has been demonstrated that BEAM is capable of
detecting high-order interactions in GWA studies and is more powerful than other
existing methods [Zhang and Liu (2007)]. A limitation of BEAM, however, is its
model assumption that a Markov chain can capture the dependence structure of the
SNPs in the data. It is well known that linkage disequilibrium (LD) between adja-
cent SNPs exhibits block-wise structure in the human genome [The International
HapMap Consortium (2005), Reich et al. (2001)]. SNPs within blocks are highly
correlated and the correlation is broken down by recombination events at block
boundaries. A simple Markov model cannot capture this important block structure
when analyzing dense SNPs.

Previous studies have shown that using haplotypes, defined as allele combina-
tions over multiple nearby SNPs inherited from one of the parents, cannot only
reduce the high computation cost in GWA studies, but also improve the detection
power of association mapping [Kuno et al. (2004); Zöllner and Pritchard (2005);
Johnson et al. (2001); Zhang et al. (2002a); de Bakker et al. (2005)]. In particu-
lar, Nielsen et al. (2004) showed that when moderate to high levels of LD exist,
haplotype tests tend to be substantially more powerful. Kuno et al. (2004) demon-
strated in a real disease study that single-SNP tests were not significant even at
SNP loci close to the mutation site (APRT*J), whereas the haplotype block data
yielded sufficient statistical significance.
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Similar to haplotypes, we define diplotypes as genotype combinations over mul-
tiple nearby SNPs. Diplotypes are directly observed in GWA studies, whereas hap-
lotypes have to be inferred using computationally expensive algorithms. Through-
out the paper, we discuss our method and results on diplotype associations with the
disease, although the method is directly applicable to haplotype data. Our focus on
diplotype association is mainly due to the computational concern, where infer-
ring unobserved haplotypes will be extremely time consuming. It is also possible
that testing diplotype associations could be more powerful than testing haplotype
associations, depending on the underlying disease model. On the other hand, if
haplotype associations are of the interests, users can first infer haplotypes using
an available haplotype inference algorithm, and then input the inferred haplotypes
into our method. The degrees of freedom of our model will automatically accom-
modate the different inputs.

In this paper we extend the BEAM model to address the block structures in the
human genome. We refer to SNP block structures as LD-blocks. By partitioning
SNPs into LD-blocks, a naïve extension of BEAM is to treat each LD-block as a
genetic marker, with diplotypes in the block being treated as alleles. This approach,
however, may not be optimal for association mapping. First, criteria utilized in
existing block-partitioning algorithms do not directly aim at optimizing the power
of association mapping. Second, many regions in the human genome demonstrate
vague structural patterns, of which a measure of uncertainty in block structures
should be provided. Simulation studies have shown that LD-block structures can
be affected by marker density [Wang et al. (2002); Pillips et al. (2003); Wall and
Pritchard (2003)], population structure [Wang et al. (2002); Stumpf and Goldstein
(2003); Zhang et al. (2003); Anderson and Slatkin (2004)], and gene conversion
[Przeworski and Wall (2001)].

We propose a Bayesian model to simultaneously infer LD-blocks and select
SNPs within blocks for disease association mapping. The model partitions the
genome into discrete blocks, within which the diversity of diplotypes is limited.
Block structures are iteratively updated such that disease associations are detected
and summarized from a variety of likely block partitions. This approach takes into
account the uncertainty in block structures and optimizes the detection power by
searching for the best partitions around disease-associated SNPs. Our method de-
tects combinations of SNPs within and between blocks for marginal and epistatic
associations to the disease status. Using LD-blocks, our method also automatically
filters out artificial associations created merely by LD with nearby authentically as-
sociated SNPs. We show that the new method, BEAM2, is more powerful than the
original BEAM (renamed BEAM1 henceforth).

By applying BEAM2 to the type 1 diabetes (T1D) data from WTCCC (2007),
we obtained all the previously identified single SNP associations in the WTCCC
T1D data. We further observed some interesting two-way joint associations not
detectable by single-SNP methods. The strongest T1D associations occur in the
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well-known Major Histocompatibility Complex (MHC) region, in which we ob-
served long-distance joint association patterns over several millions of base pairs
(Mb). Since this pattern may be partially caused by the extended LD from the
MHC class II region, we further controlled the structure of MHC class II using a
logistic regression model, and tested additional effects of SNPs over the extended
MHC region as well as the MHC class I and class III regions. We observed strong
associations in the MHC class I and class III regions, and found significant inter-
action associations between genes PRSS16, ZNF184 in the extended MHC region
and the MHC class II genes.

The article is organized as follows. In Section 2 we first introduce a LD-block
model for the genotype distribution among multiple SNPs. We model the genotype
distribution within a block of SNPs by multinomial distributions and assume that
the joint distribution of all SNPs is the product of the distributions of individual
blocks (i.e., assuming block independence). In Section 3 we extend the LD-block
model to incorporate disease associated SNPs and epistasis and describe Monte
Carlo Markov chain (MCMC) algorithms to make inference from the joint model
for both LD-blocks and disease associations. In Section 4 we briefly review our
previously developed Bayes factor-based test statistic, which is used to further
evaluate the statistical significance of candidate epistasis detected by BEAM2, and
discuss extensions of BEAM and BEAM2 for general classification problems. In
Section 5 we demonstrate the superior performance of BEAM2 by simulation stud-
ies and real data applications. In Section 6 we report our results from applying
BEAM2 to the T2D data from WTCCC (2007). We conclude the article with a
short discussion in Section 7. More implementation details can be found in Sup-
plemental Material [Zhang, Zhang and Liu (2011)].

2. A Bayesian model for LD-block inference. The data of interest consist of
genotypes at a total of L SNP markers (or L covariates, each taking on 3 possible
values) observed in Nd case and Nu control individuals. Let D = (D1, . . . ,DL) de-
note a Nd × L matrix of case genotypes, and U = (U1, . . . ,UL) denote a Nu × L

matrix of control genotypes, where Di and Ui denote vectors of genotypes ob-
served at SNP i across individuals.

2.1. Bayesian LD-block model. Here we introduce a Bayesian LD-block par-
tition model without considering disease association. Hence, we treat cases (D)

and controls (U) as coming from the same population and use the combined data
(D,U ) to describe the model. A diplotype for an LD-block of SNPs is defined as
a particular genotype combination of all the SNPs in that block. We seek to par-
tition the L markers into B consecutive blocks, so that the number of observed
diplotypes within each block is small (strong correlation), and correlation between
SNPs in different blocks is weak. Block partitions can be quite ambiguous in many
genomic regions and can vary across samples in details. Diplotype block structures
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obtained from available software are often based on ad hoc criteria that neither re-
sult in a proper uncertainty measure nor optimize the association mapping power.

The block variable B in our model consists of L binary indicators corresponding
to the L SNPs in the data. An indicator is equal to 1 if the corresponding SNP is
the start position of a block, and 0 otherwise. As a result, B uniquely defines a
partition of SNPs into consecutive blocks. For a diplotype block [a, b) consisting
of SNPs a, . . . , b − 1, we let (nh,mh) denote the counts of a particular diplotype
h in cases and controls, respectively. There are 3b−a possible diplotypes in the
block. We assume that the diplotype of each individual follows independently from
a multinomial distribution with frequency parameters {ph}, and {ph} follows a
Dirichlet prior distribution, Dir({αh}), where {αh} denotes a hyper-parameter (i.e.,
pseudo-counts). More precisely, letting {nh + mh} denote the combined counts of
diplotype h observed in cases and controls, we have

Pr({nh + mh}|{ph}) =
3b−a∏
h=1

p
nh+mh

h and Pr({ph}) = �(α•)∏3b−a

h=1 �(αh)

3b−a∏
h=1

p
ah−1
h ,

where the subscript ‘•’ denotes the sum of values over all subscripts. We can inte-
grate out {ph} by∫

Pr({nh + mh}|{ph})Pr({ph})d({ph})

= �(α•)∏d−1
h=1 �(αh)

∫ 3b−a∏
h=1

p
nh+mh+αh−1
h d({ph}).

Noting that the integrant on the right-hand side is proportional to the density func-
tion of Dir(nh + mh + αh) up to its normalizing constant, we obtain the marginal
probability of the combined data of block [a, b) as

P
(
D[a,b),U[a,b)|[a, b) forms a block

)
(1)

=
(3b−a∏

h=1

�(nh + mh + αh)

�(αh)

)
�(α•)

�(n• + m• + α•)
.

We set αh = ρ/3b−a for diplotype h, and by default, we let ρ = 1.5. Based on the
likelihood equivalence principle [Heckerman, Geiger and Chickering (1995)], {αh}
is chosen to be inversely proportional to the total number of possible diplotypes in
a block, and, hence, the sum α• remains a constant over different block sizes. Note
that formula (1) can also be used to model case data (D) or control data (U) only,
which is simply done by letting mh = 0, or nh = 0, respectively, for all h. Further
assuming independence between blocks (which is not entirely true, but serves as
a good approximation), the probability function P(D,U |B) of genotypes of all
blocks can be expressed as the product of individual block probabilities defined in
formula (1).
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2.2. Bayesian inference of SNP association based on blocks. A saturated test
of disease association for a diplotype block of Mz consecutive SNPs involves
3M − 1 free parameters. When M is moderately large (M > 3), the power of the
test becomes exceedingly low. We propose a Bayesian model of disease associ-
ations using only a subset of markers in the block. Here, we only discuss joint
associations for SNPs within a diplotype block, and we will address epistatic in-
teractions in the next section. It therefore suffices to describe our model for only
one block.

Let {M} denote the set of M SNPs in the block. We assume that only a subset
{x} of SNPs of size x (often is 0 or 1) are truly associated with the disease, and
the SNPs in {M}\{x} are not associated with the disease given {x}. Thus, the
diplotypes of SNPs in {x} are distributed differently and hence are modeled by
two different distributions for cases and controls, respectively. Conditional on the
diplotypes of SNPs in {x}, the diplotypes of SNPs in {M}\{x}, however, follow
a common distribution between cases and controls. The joint probability of the
block data can therefore be expressed as

P
(
D{M},U{M}

) = P
(
D{x}

)
P

(
U{x}

)
P

(
D{M}\{x},U{M}\{x}|D{x},U{x}

)
.(2)

Here, P(D{x}) and P(U{x}) are modeled by two independent multinomial-
Dirichlet distributions specified in formula (1), treating all SNPs in {x} jointly as a
block. To model P(D{M}\{x},U{M}\{x}|D{x},U{x}), we combine the diplotypes of
SNPs in {M}\{x} in cases and controls together. These diplotypes are not directly
associated with the disease given {x}, and thus have the same conditional distri-
butions between cases and controls. Conditional on each possible diplotype h of
SNPs in {x}, we model the conditional diplotype distribution of SNPs in {M}\{x}
again by a multinomial-Dirichlet distribution. It is straightforward to derive the
expression

P
(
D{M}\{x},U{M}\{x}|D{x},U{x}

) = P
(
D{M},U{M}

)
/P

(
D{x},U{x}

)
,

where P(D{M},U{M}) and P(D{x},U{x}) are specified in formula (1), treating
{M} and {x} as blocks, respectively. We note, however, that the marker set {x}
is unknown a priori, and needs to be inferred jointly with other parameters in our
Bayesian model.

3. Joint inference of diplotype blocks and disease association.

3.1. The joint model. To further incorporate epistatic interactions in formula
(2), and to identify which SNPs are associated with the disease (response), we par-
tition all SNPs (not blocks) into three groups as in BEAM [Zhang and Liu (2007)].
We introduce a latent L-dimensional indicator variable (I ) to represent the group
memberships of the L markers. For each marker i, Ii = 0,1,2 denotes three pos-
sible group memberships. SNPs belonging to group-2 are assumed to be jointly
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associated with the disease, that is, epistasis, which are modeled by two joint multi-
nomial distributions on the diplotypes over all group-2 SNPs—one for cases and
one controls. SNPs belonging to group-1 are assumed to be marginally associated
with the disease if they belong to different blocks, and are modeled by mutually
independent multinomial distributions conditional on the case–control status and
the block structure. If multiple group-1 SNPs fall into one block, we model their
diplotypes jointly, that is, group-1 SNPs within blocks become dependent of each
other. If there are both group-1 and group-2 SNPs within one block, we model
the diplotypes of group-1 SNPs within the block conditional on the diplotypes of
the group-2 SNPs within the block. SNPs belonging to group-0 are the remaining
SNPs unrelated to the disease status. We again model the distribution of group-0
SNPs within a block by multinomial distributions, with common parameters for
cases and controls. We further assume conditional independence of group-0 SNPs
between blocks, conditional on the group-1 and group-2 SNPs. More precisely,
within each block, we let {x2} denote the set of group-2 SNPs, let {x} denote the
union of the group-1 and group-2 SNPs, and let {M} denote all SNPs. We revise
formula (2) to take the form of a conditional probability function:

P
(
D{M}\{x2},U{M}\{x2}|D{x2},U{x2}

)
(3)

= P(D{x})P (U{x})P (D{M}\{x},U{M}\{x}|D{x},U{x})
P (D{x2})P (U{x2})

.

Thus, group-0 and group-1 SNPs are no longer mutually independent as in
BEAM1, but are related to each other via the block structure. With epistasis consid-
ered, the mutual independence between blocks in model (2) becomes conditional
independence given group-2 SNPs. For notational simplicity, we omit variable I

in (3), but both {x} and {x2} are determined by I .
Given a particular block partition B and SNP group memberships I , we express

the joint probability function of the entire case–control data as

P(D,U |B, I) = P(D2|B, I)P (U2|B, I)
(4)

× ∏
{M}=[a,b)∈B

P
(
D{M}\{x2},U{M}\{x2}|D{x2},U{x2},B, I

)
,

where D2 and U2 denote the case and control genotypes of group-2 SNPs, respec-
tively, and the product term is defined in formula (3).

3.2. Choice of prior distributions. We set the prior distribution of the block
variable B as the product of independent Bernoulli probabilities P(B) = p|B|(1 −
p)L−|B|, where |B| denotes the sum of indicators in B . According to the block
distributions estimated in European and Asian populations by Gabriel et al. (2002),
we assume that there are 50,000 blocks in the human genome a priori, and thus we
set p = min(0.5,50,000R/(3 × 109L)). Here, R denotes the length of the region
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spanned by the L SNPs, and 3×109 is the length of the human genome. A smaller
value of p will help the method identify larger blocks, and a larger p will tend
to identify smaller blocks. As the sample size (number of individuals) increases,
however, the impact of the prior choices diminishes quickly. To avoid overfitting
the blocks, we further impose a restriction that the maximum number of observed
distinct diplotypes in a block must be smaller than (Nd + Nu)/10.

We set the prior distribution of the SNP membership variable I as a prod-

uct of independent multinomial distributions, P(I) = ∏2
i=0 p

|{j :Ij=i}|
i , where

{p0,p1,p2} denote the prior probability of each SNP belonging to group 0,
1, and 2, respectively. By default, we set p1 = p2 = min(0.1,5/L), and p0 =
1 − p1 − p2. That is, we assume there are 10 SNPs associated with the disease
a priori, where 5 are marginally associated with the disease, and 5 are associated
through epistasis. Our choice of the prior reflects that there are just a few SNPs
truly associated with the disease in a GWA study (where many other significant
SNPs are due to LD effects). Increasing this prior (and also increasing the signif-
icance level) in the BEAM2 program may help identify additional SNPs of mod-
erate to low effects. To avoid overfitting in interaction mapping, we further set an
upper bound to the order of interactions by ln3((Nd +Nu)/10). For example, when
the sample size is 1,000, our method can detect up to 4-way interactions. Overall,
changing the values of p1,p2 may affect the posterior distribution of SNPs in
groups 1 and 2, but the effects will diminish as the sample size increases.

Finally, the joint model of the observed genotype data in cases (D) and controls
(U), the block variable (B), and the SNP membership (I ), is written as

P(D,U,B, I) = P(D,U |B, I)P (B)P (I),(5)

where the conditional distribution of (D,U) given (B, I) is specified in for-
mula (4).

3.3. MCMC updates. The parameters of interest in our model are the block
partition B and SNP membership I . We develop Metropolis–Hastings (MH) algo-
rithms [Liu (2001)] to update B , and, simultaneously, we develop a mix of a Gibbs
sampler and Metropolis–Hastings algorithm to update I . The posterior distribution
of (B, I) is then output for further analysis.

To explore all possible block partitions, we propose the following MH-moves:
given a current block configuration B , we randomly select a block and

(1) divide the block into two new blocks at a random position;
(2) merge two adjacent blocks into one block; and
(3) randomly shift a block boundary to either left or right by k SNPs, where the

shifting amount is constrained by other block boundaries.

The proposed move produces a new block partition B ′, and the move is accepted
with probability r = min{1,

P (D,U,I,B ′)q(B ′→B)
P (D,U,I,B)q(B→B ′) }, where q(B → B ′) denotes the
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probability of updating from B to B ′, and P(D,U,B, I) is calculated from the
full model (5). In our implementation, we chose the three types of MH moves with
probabilities 0.1, 0.1, and 0.8, respectively, and we require a block to contain at
least one SNP.

To update the SNP membership variable I , we updated the membership Ii of
SNP i by calculating the posterior distribution of Ii = 0,1,2 given all other model
parameters and the data. We also propose a MH-move to switch the group member-
ships of two SNPs and accept the move based on MH-ratios. Per MCMC iteration,
we first run the Gibbs sampler to update the memberships of all SNPs once, and
then we run the MH-sampler to switch each SNP in group-1 and group-2 once with
SNPs in other groups.

4. Follow-up tests and generalization of the method.

4.1. A test of significance based on the Bayes factor. Although inference can
be directly made from the posterior probabilities output by BEAM2, the users may
want to further evaluate the statistical significance of the results in a frequentist
way. In BEAM [Zhang and Liu (2007)], we developed a novel Bayes factor, called
B-stat, to evaluate whether a SNP or a set of SNPs are significantly associated with
the disease, where the SNP set is selected by BEAM2 in our case.

For a set of M SNPs to be tested, the null hypothesis is that all M SNPs are not
associated with the disease. Here, M = 1,2,3, . . . represents single-SNP, 2-way,
and 3-way interactions, etc. B-stat for the set of M SNPs is defined as

BM = ln
PA(DM,UM)

P0(DM,UM)
= ln

P(DM)[P(UM) + ∏
j∈M P(Uj )]

P(DM,UM) + ∏
j∈M P(Dj ,Uj )

.(6)

Here, P0(DM,UM) denotes the null genotype distribution (i.e., no disease associ-
ation) at the M SNPs in cases and controls, and PA(DM,UM) denotes the alterna-
tive genotype distribution (disease association). Under the null model, we assume
that the genotypes in both cases and controls follow the same distribution, whereas
under the alternative model, they follow different distributions. We choose both
P0(DM,UM) and PA(DM,UM) as an equal mixture of two distributions: one that
assumes independence among the M SNPs in controls (and also in cases under the
null model), which yields the product terms in formula (6), and the other that as-
sumes a saturated joint distribution of all the M SNPs. Note that the form of each
term in formula (6) is defined in formula (1).

An interesting feature of B-stat is that it uses a mixture model to accommodate
the possibility that the M SNPs may or may not be in linkage equilibrium (inde-
pendence). As a result, using B-stat will be more powerful than using a standard
likelihood ratio test or a chi-square test of associations when the M SNPs under
testing are in LD in controls.

We have previously shown that, under the null hypothesis of no disease associ-
ation, B-stat follows asymptotically a shifted chi-square distribution with 3k − 1
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degrees of freedom [Zhang and Liu (2007)]. The shifting parameter can be com-
puted explicitly, which is determined by the sample size (Nd,Nu), the interaction
size M , and the Dirichlet hyper-parameter {αh}. Briefly speaking, the shifting pa-
rameter is proportional to −(3M − 1) ln(NdNu/(Nd + Nu)), and, thus, the larger
the number of individuals collected, or the more SNPs involved in an interaction,
the smaller the shifting parameter will be. In addition, if large hyper-parameters
{αh} for the diplotype frequency parameters are used, the shifting parameter will
be large too. Note that we want the B-stat to be small (e.g., <0) when the M SNPs
are not associated with the disease, and, hence, the users should use small values
for {αh}, such as the default values we used in our model.

4.2. Generalization to classification problems with discrete covariates. Let Y
be the n× 1 binary response vector, and let X = (X1, . . . ,Xp) be the n×p covari-
ates matrix, with each covariate Xj taking on kj discrete (ordinal or categorical)
values. The standard case–control genetic study setting can be viewed as using
response variables Y (i.e., case–control status) to fish out relevant predictors Xj

(i.e., SNPs). The epistasis mapping methods BEAM attempt to find those X’s that
interactively affect Y. Both BEAM and the block-based method BEAM2 can be
easily extended to infer a classification model.

The idea of both BEAM [Zhang and Liu (2007)] and BEAM2 is to partition
the p covariates in X into three nonoverlapping groups, such that one group con-
tains covariates unrelated with Y, and the other groups contain covariates either
independently or jointly related with Y. The partition of the covariates is an unob-
served latent structure. Given a particular group partition of the covariates I , we
can compute P(X|Y, I ) as in Zhang and Liu (2007), which is analogous to that
in a naïve Bayes model. BEAM2 further segments the covariates X into “blocks”
of highly correlated variables, and treats blocks as mutually independent. This is
achieved by introducing a block indicator variable B , which is updated iteratively
together with the variable selection indicator I .

To predict the classification of a new observation with covariates xnew based on
the training data (X,Y), we compute P(X,xnew|Y,ynew = 1) and P(X,xnew|Y,

ynew = 0), respectively, using the BEAM (or BEAM2) algorithm, and obtain the
odds ratio

P(xnew|X,Y,ynew = 1)/P (xnew|X,Y,ynew = 0).

The prior P(ynew = 1) can be estimated from the prior knowledge of class distri-
bution, such as the prevalence of a particular disease in the population, which then
leads to the posterior predictive probability for ynew = 1. A computationally more
attractive way to do the computation is to output the latent variable partition and
block partition structures (I and B in our case) from their joint posterior distribu-
tion inferred by the MCMC procedure of BEAM, and then average the conditional
odds over all the sampled I and B:

P(xnew|X,Y, I,B,ynew = 1)/P (xnew|X,Y, I,B,ynew = 0).
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We tested this latter approach in a preliminary study and found the results quite
satisfactory.

The effect of BEAM2 is somewhat analogous to that of elastic net [Zou and
Hastie (2005)] and group lasso [Yuan and Lin (2006)]. All methods attempt to
address the phenomena that groups of covariates tend to demonstrate associations
with the response together, and within groups the covariates are highly correlated.
Different from elastic net and group lasso, BEAM2 infers the covariate groups
and also the informative covariates within groups jointly in a coherent probability
framework. As a consequence, BEAM2 allows sparse variable selection at both
the group level and the individual variable level within groups, whereas elastic net
and group lasso do sparse selection only at the group level. In a recent technical
report, Friedman, Hastie and Tibshirani (2010) attempt to achieve a similar sparse
selection effect as BEAM2 (sparse selection at both group and individual levels)
by introducing an additional penalty term.

Other important distinctions between BEAM2 (or BEAM) and those lasso-
based methods are the following: (a) the use of the naïve Bayes framework to
model X given Y to greatly alleviate the overfitting problem; (b) the ability to in-
corporate interaction terms without incurring a huge computational burden (with
MCMC iterations); and (c) the adoption of the Bayesian variable selection prin-
ciple, which is equivalent to using a more desirable L0 penalty. The cost of these
advantages is that both BEAM and BEAM2 have to compute via MCMC with-
out a guarantee of always finding the optimal solution. Empirically, however, the
computational speed of BEAM and BEAM2 is no worse than that required by
lasso-type algorithms when the number of covariates is large.

5. Simulation studies and algorithm comparisons.

5.1. Block partition of HLA data. We first used the HLA region on human
chromosome 6 to evaluate the block partitions inferred by our method. The HLA
region is one of the few regions in the human genome in which recombination
hotspots have been experimentally verified [Jeffreys, Ritchie and Neumann (2000);
Jeffreys, Kauppi and Neumann (2001)]. We downloaded the genotype data of 50
unrelated UK Caucasian semen donors from Jeffreys AJ’s website. The data covers
a 216 kb region with 296 genotyped biallelic markers spanning from the upstream
of gene HLA-DNA to gene TAP2 in the MHC Class II region. It is known that this
region contains several prominent recombination hotspots [Jeffreys, Ritchie and
Neumann (2000); Jeffreys, Kauppi and Neumann (2001)]. We therefore exam-
ined the relationship between the experimentally verified recombination hotspots
and the SNP-block boundaries inferred by BEAM2. We used both haplotypes and
genotypes to evaluate our method, where the HLA haplotypes were first inferred
by CHB [Zhang, Niu and Liu (2006)] from the genotype data. We also simu-
lated 1,000 individuals from the inferred HLA haplotypes using HAPGEN [Mar-
chini et al. (2007)] to evaluate the performance of BEAM2 with a larger sample
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FIG. 1. Block partition results on the HLA data. The top panel shows the pairwise SNP LD cal-
culated from 100 HLA haplotypes by Haploview. The second, third, and forth panels show the block
partition results by BEAM2 (BM) and HapBlock (HB1, HB2, HB3) on three HLA data sets, respec-
tively. HB1 uses rule 1: common haplotypes; HB2 uses rule 2: pairwise D′; and HB3 uses rule 3:
four-gamete test. Experimentally verified recombination rates are shown as dashed red lines (the unit
cM/Mb in the natural logarithm scale is shown on the right).

size. As a comparison, we applied HapBlock [Zhang et al. (2002b)], a dynamic
programming-based algorithm of block partitioning, to the same sets of data.

With 100 haplotypes inferred from the 50 individuals, BEAM2 produced ac-
curate block partitions that correspond well to the visual blocks displayed by
Haploview [Barrett et al. (2005)]. The block boundaries also coincide with the
known recombination hotspots within the HLA region (Figure 1). It is further ob-
served that, for the haplotype data, the blocks inferred by BEAM2 are very sim-
ilar to those obtained by HapBlock. Unlike our model-based method, HapBlock
requires the user to specify ad hoc block partition rules, which can result in un-
desirable partitions. We used three different rules to define blocks: (1) common
haplotypes, defined as a haplotype >5% in the sample, cover 80% of samples in a
block; (2) at least 80% SNP pairs with D′ > 0.5 in a block; or (3) four-gamete test
on common haplotypes (>5%) in a block. The blocks partitioned by HapBlock
using each rule are also shown in Figure 1.

Using the genotype data of the 50 individuals, we obtained very different re-
sults between BEAM2 and HapBlock, and between the three different rules of
block partitions. Except for the first rule of HapBlock, all other methods produced
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TABLE 1
Number of blocks inferred in HLA data sets

Data BEAM2 BEAM2-10p HapBlock-1 HapBlock-2 HapBlock-3

100 haplotypes 32 39 20 30 34
50 genotypes 81 87 46 147 106
1,000 genotypes 35 36 56 184 268

“BEAM2-10p” denotes BEAM2 applying a 10 times larger prior probability than the default prior
on the block boundary variable. HapBlock-1, 2, 3 denotes HapBlock applying three different block
partition rules.

a large number of small blocks. Small blocks generated by BEAM2 are due to the
small sample size of 50 individuals, based on which the correlation between SNPs
is hard to detect using our likelihood model. The posterior probabilities of block
boundaries output by BEAM2, however, can be used as a measure of uncertainty
in block partitions. In comparison, HapBlock and many other block partitioning
methods only provide a single partition solution without measuring block uncer-
tainty.

Using the simulated genotypes of 1,000 individuals, we again observed very
different results shown in Figure 1. BEAM2 produced the cleanest block partitions
that corresponded well to the visual block boundaries and to the known recom-
bination hotspots. The D′ rule and the four-gamete test rule via HapBlock again
failed to produce reasonable partitions, of which most blocks were singletons.

We further show in Table 1 the number of blocks inferred by each method in the
three data sets. We observed that BEAM2 performed well (by which we roughly
mean that the number of estimated blocks is small, as is true in the HLA region) in
both the haplotype data and the 1,000 individuals’ genotype data. Because model-
ing genotypes (diplotypes) requires a much larger set of parameters than modeling
haplotypes, BEAM2 is expected to perform worse in the 50 individuals’ genotype
data. As the number of individuals increased to 1,000, however, our model-based
approach produced very similar partitions as that obtained in the haplotype data.
In comparison, HapBlock only preformed reasonably well in the haplotype data,
but produced many small blocks and singletons in the other two data sets for all
three block partition rules applied. HapBlock performed the worst in the 1,000 in-
dividuals’ genotype data, indicating that the ad hoc rules applied by HapBlock do
not produce consistent block partitions as sample size increases. We further show
in Table 1 additional results by BEAM2 using a 10 times larger prior on the block
boundary variable, that is, we expect 10 times more blocks a priori. We observed
that the estimated posterior number of blocks did not increase much, particularly
in the 1,000 individuals’ genotype data, indicating that BEAM2 is insensitive to
the prior choice of block boundary variables. We also ran multiple MCMC chains
to ensure proper convergence.
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5.2. Simulation study using HapMap data. To mimic real genetic data ob-
served in human populations, we first randomly select a region in the human
genome that contains 1,000 Illumina HapMap 300k tagSNPs. The region also con-
tains about the same number of additional SNPs from HapMap PhaseII tagged by
these tagSNPs, which we refer to as nontagging SNPs. Two nontagging SNPs in
the region are randomly selected as disease SNPs. Given a disease model, we set
the marginal effect size (log odds ratio minus 1) per disease SNP at 0.5 and choose
a disease minor allele frequency (MAF) per locus from (0.05,0.10,0.20,0.50).
Given a marginal effect size and a choice of MAF, we then calculate the diplotype
frequencies over the disease SNPs in cases and controls, respectively [this is sim-
ilarly done as presented in Zhang and Liu (2007)]. According to the case–control
diplotype frequencies over the disease SNPs, we randomly sample 1,000 cases and
1,000 controls from a pool of individuals without replacement. The pool consists
of 10,000 control individuals generated by HAPGEN [Marchini et al. (2007)] us-
ing HapMap European sample (parents only) at odds ratio = 1, that is, no disease
association. Our simulation procedure is more economical than a direct approach
that generates one individual at a time and determines its disease status condi-
tional on the disease genotypes and penetrance, because the direct approach may
generate many more controls before obtaining enough cases. Finally, we remove
all nontagging SNPs from the data including the two disease SNPs (which are typ-
ically unobserved in a GWA study), and obtain a case–control data set containing
1,000 Illumina HapMap tagSNPs.

To evaluate the association mapping performance of our method, we simulated
case–control data sets based on the HapMap sample under three disease models
shown in Table 2. Each disease model assumes 2 loci in the genome contribut-
ing to the disease risk. While the first model assumes no interactions, the other
two models assume different types of interactions. Using the simulated data sets,
we compared the performance of BEAM2 to BEAM1. We also implemented a
third method that maps associations and interactions based on predetermined block
structures. This third method serves as an intermediate method between BEAM1,
which is not block-based, and BEAM2, which infers block structures and maps
associations simultaneously. We used three different levels of parameters (from
stringent to liberal) to define blocks using existing software, and we treated the
diplotypes within each inferred block as genetic alleles. The third method using
three different block definitions are hereafter referred to as Block1, Block2, and
Block3, respectively [more details of the third method can be found in the Supple-
mentary Material, Zhang, Zhang and Liu (2011)]. To compare the performance of
all methods, we ranked SNPs according to the association posterior probabilities
output by each method estimated for each data set. We then calculated how often a
method ranked the disease related SNPs among the top SNPs. A SNP is regarded
as being correctly identified as disease related if it is within 5 SNPs on either side
of a true disease locus.
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TABLE 2
Disease models used in simulation study

Risk A/A A/a a/a

Model 1
B/B 1 1 + θ (1 + θ)2

B/b 1 + θ (1 + θ)2 (1 + θ)3

b/b (1 + θ)2 (1 + θ)3 (1 + θ)4

Model 2
B/B 1 1 1
B/b 1 (1 + θ)2 (1 + θ)3

b/b 1 (1 + θ)3 (1 + θ)4

Model 3
B/B 1 1 1
B/b 1 1 + θ 1 + θ

b/b 1 1 + θ 1 + θ

Each table cell lists the relative risk of the corresponding genotype combination.
Genotypes with risks equal to 1 have no effects to the disease. The parameter θ

is computed according to the specified marginal effects (0.5 in our simulation)
and disease MAFs (0.05,0.1,0.2,0.5).

As shown in Figure 2, under all parameter settings, BEAM2 performed the best
among all tested methods, where Block1, Block2, Block3, and BEAM1 all per-
formed similarly. When disease allele frequency was low (f = 0.05), the power
curves of all methods looked similar, but a closer inspection of the top 5 ranked
SNPs showed that BEAM1 only had ∼50% chance to capture disease related
SNPs relative to BEAM2. When disease alleles were common in the popula-
tion (f = 0.10,0.20,0.50), the advantage of the BEAM2 model becomes obvi-
ous. Comparing the power curves for Model 2 and Model 3, we observed that the
power of BEAM2 increased much faster than that of BEAM1 among the top 2 or
3 SNPs. We did not observe this behavior in Model 1, which has no interactions.
It thus indicates that using SNP-blocks can increase the power of mapping both
single SNP and multi-SNP interaction associations. All methods compared here
are Bayesian methods that output posterior probabilities of disease associations. It
therefore indicates that our treatment of LD in BEAM2 is more appropriate than
using either predetermined blocks or a Markov chain model (as in BEAM1).

To further declare statistical significance, existing significance estimation meth-
ods adjusting for multiple comparisons should be used, such as the Bonferroni
correction applied to B-stat introduced in BEAM1 [Zhang and Liu (2007)]. We
compared BEAM2 with single SNP chi-square tests using the above disease mod-
els [Supplementary Table S1, Zhang, Zhang and Liu (2011)], and observed that
BEAM2 performed better than the chi-square test for interaction Model 2 and
Model 3, but performed the same for the noninteractive Model 1.
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FIG. 2. Power comparison for BEAM1, BEAM2, Block1, Block2, and Block3 using simulated data
from the HapMap data. Under each simulation setting and from 50 data sets, power (y-axis) is
calculated as the proportion of disease-associated SNPs (within 5 SNPs of true disease loci) among
top m SNPs (x-axis), ranked by the posterior probability of association. Each data set contains
1,000 candidate SNPs in 1,000 cases and 1,000 controls. The disease allele frequency is 0.05, 0.10,
0.20, and 0.50, respectively. The marginal effect size of each disease SNP (unobserved) is 0.5. Pink:
BEAM1; Red: BEAM2; Blue: Block1; Green: Block2; Black: Block3.

We also checked the performance of our MCMC sampling algorithm. As shown
in Figure 3, using a simulated data set from disease Model 2, the lag of autocor-
relation of our Markov chain is short, indicating fast convergence of the Markov
chain. We further compared the posterior distribution of SNP associations from 4
independent runs of BEAM2, and we observed close agreement between runs. In
practice, the Markov chain could converge to local modes, particularly if the data
contain many SNPs with complicated block structures. If block structures are of
primary interest, we suggest running BEAM2 in several runs to check if the block
partition results obtained in different runs are consistent. More advanced MCMC
algorithms, such as parallel tempering [Liu (2001)], could further alleviate the lo-
cal mode problems in MCMC sampling.

Using BEAM2, we can estimate the number of disease associated SNPs around
a disease locus by the sum of posterior probabilities of associations over all SNPs
within a neighborhood of a candidate locus. Given our block-based association
model, the number of associated SNPs does not include SNPs whose disease as-
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(a)

(b)

FIG. 3. Performance of MCMC. (a) Autocorrelation plot obtained by running BEAM2 on a sim-
ulated data set of 1,000 cases, 1,000 controls, and 1,000 SNPs under disease Model 2. A total of
1,000 iterations after burn-in are used to calculate the plot. (b) Posterior probabilities (in logarithm
scale) of disease association (marginal and epistatic) per SNP compared across 4 independent runs
of BEAM2.

sociation is merely created by LD, and, hence, our estimates are more appropriate
than a naïve count of significant SNPs within the neighborhood. As shown in Fig-
ure 4, around a 100-kb neighborhood of every simulated disease locus in disease
Model 1, the estimated number of disease associated SNPs by BEAM2 is around
1 when the association signal is sufficiently strong, even if there are many signif-
icant SNPs in the neighborhood. The extra significant SNPs created by LD make
the localization of disease locus difficult. This result highlights the importance of
BEAM2 that performs automatic variable selection within blocks. Rather than re-
porting diluted small posterior probability of association over many neighboring
SNPs in LD, BEAM2 was able to select the strongest contributing SNP within
blocks (with large posterior probabilities of association) in our simulation study.
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(a) (b)

FIG. 4. Estimated number of disease associated SNPs (y-axis) plotted against (a) the number of
significant SNPs (>0.05 family-wise) and (b) the maximum single SNP chi-square statistics (x-axis)
within a 100 kb neighborhood per disease locus. In (a), the number of loci in each box plot is further
shown on the top. The plots are computed from 200 simulated data sets of disease Model 1.

6. Application to WTCCC type 1 diabetes data. We applied BEAM2 to an-
alyze the T1D data set from the WTCCC project [WTCCC (2007)]. The data set
contains 2,000 T1D patients, 1,504 controls from 1958 Birth Cohort (58C), and
1,500 additional controls from the National Blood Service (NBS). Given our lim-
ited computation resources (computation time, which would require several days
to analyze half a million SNPs in this data set; and memory usage, which would
require >4 Gb for half million SNPs), we applied BEAM2 to the top 10% SNPs
ranked by marginal associations with T1D on all autosomes. We further filtered out
SNPs with bad clustering, SNPs violating Hardy–Weinberg equilibrium in controls
at 10−5 significance, and “almost nonpolymorphic” SNPs of which >95% samples
have the same genotypes. The final data set contained 42,470 SNPs in 5,004 indi-
viduals. We ran BEAM2 with 5 independent MCMC chains. Figure 5 shows the
averaged posterior probabilities of T1D associations. Note that selecting top 10%
SNPs does not imply sparse and less correlated SNPs, because SNPs in LD tend to
be in or out of the top 10% list together. Two alternative ways to reduce the number
of SNPs are to run BEAM2 on each individual chromosome for chromosome-wise
epistasis, or on previously detected disease associated regions.

FIG. 5. SNP-wise posterior probabilities (y-axis) of T1D associations in 22 autosomal chromo-
somes (x-axis, chromosomes are separated by grey dashed lines). Previously reported T1D associ-
ated genes are highlighted in green, and candidate T1D associated genes, as defined at T1Dbase,
are highlighted in red.
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6.1. Result summary and highlights. We first compared our results with the
SNPs reported in the original WTCCC paper (2007). As expected, we found that
the SNPs reported by BEAM2 and by the original WTCCC analysis are highly
consistent. All strongly associated SNPs reported in WTCCC are significant in our
analysis, and all strongly and moderately associated SNPs reported in WTCCC
have posterior probability > 0.1 by BEAM2 [Supplementary Table S2, Zhang,
Zhang and Liu (2011)]. We further compared our results with known T1D as-
sociations obtained from T1Dbase (www.t1dbase.org). Among the 55 SNPs (or
cluster of SNPs) output by BEAM2 with posterior probabilities greater than 0.1,
17 (31%) overlapped with known T1D associated regions, including some well-
known genes such as PTPN22 (1p13), CTLA4 (2q33), MHC (6p21), and IL2RA
(10p15).

In addition to the previously reported T1D genes, BEAM2 reported some
novel T1D associated loci. A list of likely T1D associations detected by BEAM2,
for both single SNPs (if p-value < 5e−7) and two-way joint associations (if
p-value < 5e−10), is shown in Tables 3 and 4, respectively. For example, we
detected 7 loci, among which two SNPs in short distance form strong joint as-
sociations with T1D (p-value < 5e−10). These loci are not identifiable using
single SNP tests, but captured by BEAM2 as multi-SNP associations. We also
found some likely long-distance and cross-chromosomal interaction associations
with T1D (p-value < 5e−11). One example is the joint association between SNP
rs3132676 in the classic MHC region on chromosome 6 and SNP rs9376523,
which is 111 Mb away on the same chromosome. This SNP pair is likely inter-
acting because their genotypes are strongly correlated in cases (nominal p-value

TABLE 3
Strong single SNP associations with T1D

SNP Position p-value T1Dbase Gene

rs6679677∗ chr1: 113.8–114.2 Mb 0 Yes PTPN22
rs9405484 chr6: 1.4 Mb 1.33e−8 No FOXC1
MHC∗ chr6: 25–35 Mb 0 Yes MHC
rs6592988 chr7: 52.1 Mb 2.87e−7 Yes COBL
rs11984645 chr8: 55.2 Mb 7.06e−11 No MRPL15
rs11782342 chr8: 73.9 Mb 5.70e−12 No KCNB2
rs11052552 chr12: 9.7 Mb 2.61e−7 Yes CLEC2D
rs11171739∗ chr12: 54.8 Mb 2.35e−11 Yes ERBB3
rs17696736∗ chr12: 109.8–110.9 Mb 0 Yes CCDC63, NAP1
rs12924729∗ chr16: 11.1 Mb 1.01e−7 Yes CLEC16A

SNPs showing strong associations (p-value < 5e−7) with T1D by single SNP test. p-value: nominal
p-value of associations. T1Dbase: whether the locus is documented in T1Dbase. Gene: nearest gene.
∗Additional SNPs in its neighborhood also show strong marginal associations.

http://www.t1dbase.org
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TABLE 4
Strong two-SNP associations with T1D

SNP1 Pos1 Pval1 Gene SNP2 Pos2 Pval2 Gene JointP

rs7525703 chr1: 143 2e−2 PRKAB2 rs2077749 chr1: 143 3e−6 PRKAB2 2e−12
rs6809441 chr3: 41 4e−2 ULK4 N/A chr3: 41 7e−2 ULK4 5e−11
rs330483 chr4: 176 4e−6 ADAM29 rs330504 chr4: 176 1e−1 ADAM29 2e−11
rs6906469 chr6: 10 1e−3 DFCC1 rs659964∗ chr12: 111 2e−6 ACAD10 4e−11
rs3132676∗ chr6: 30 1e−5 TRIM40 rs9376523 chr6: 141 6e−4 TXLNB 3e−11
rs9296661 chr6: 52 4e−4 PKHD1 rs1265566∗ chr12: 110 1e−6 CUTL2 5e−11
rs13340508 chr7: 75 9e−3 CCL24 rs17361077 chr7: 75 4e−5 CCL24 6e−12
rs4838140 chr9: 124 2e−5 NEK6 rs7860360 chr9: 125 6e−4 SCAI 4e−10
rs11104868 chr12: 87 1e−4 KITLG rs7961663∗ chr12: 110 3e−6 CUTL2 1e−11
rs1958305 chr14: 23 5e−5 DHRS2 rs12100601 chr14: 23 2e−2 DHRS2 0
rs7262414 chr20: 40 2e−5 PTPRT rs2867064 chr20: 40 7e−2 PTPRT 0

Pairs of SNPs showing strong joint T1D associations (p-value < 5e−10) by B-stat. If multiple SNP
pairs are located around the same loci, only one pair is shown. Pval1, Pval2, JointP represent nominal
p-values of SNP1, SNP2, and their joint associations, respectively.
∗SNP lies in known regions in T1Dbase.

8e−6 by test of independence), but not in controls (nominal p-value 0.91). Al-
though most two-way associations did not pass the Bonferroni adjusted signifi-
cance level in the genome scale, the short-distance two-way associations are sig-
nificant if only considering local joint associations.

We further examined possible confounding effects of population structures
in the T1D data using a logistic regression model. The regional information of
WTCCC individuals is included as dummy covariates. We observed that the test
statistics of the detected SNP associations remained almost unchanged before and
after the adjustment of population origins. We further randomly selected 10,000
SNPs genome-wide and compared the distribution of their association statistics
with a chi-square distribution. The two distributions agreed well [see Supplemen-
tary Figure S1, Zhang, Zhang and Liu (2011)]. We therefore believe that popula-
tion structure does not incur false positive associations in the WTCCC T1D data.

We finally checked the block partition results of BEAM2 on the T1D data.
Given the large number of SNPs, we cannot visually inspect the blocks as we did
for the HLA data. Alternatively, we computed the genetic distance between adja-
cent SNP pairs in the T1D data, using a genetic map constructed from the HapMap
CEU sample. Then, we checked how frequent a block boundary is inferred be-
tween SNP pairs in certain genetic distance. Intuitively, the more distant two SNPs
are located, the more likely a block boundary occurs. As shown in Figure 6, our
method inferred almost 100% block boundaries between SNP pairs with genetic
distance >1 cM, and the frequency of block boundary decreases as the SNP pairs
get closer. The block partitions between the 5 runs of BEAM2 are consistent, with
an average correlation coefficient of 0.96.
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FIG. 6. Frequency (y-axis) of block boundaries between adjacent SNP pairs of certain genetic
distance (x-axis), calculated from the T1D data. The genetic distance is obtained from the HapMap
CEU sample.

6.2. Joint association patterns in the MHC region. T1D is an autoimmune dis-
ease and genes in the MHC region play an important role in the immune system and
autoimmunity [Nejentsev et al. (2007); Steenkiste et al. (2007)]. BEAM2 found a
large number of SNPs within the MHC region showing extremely strong asso-
ciation signals with T1D. Several multi-locus joint associations within the MHC
region are also detected. We therefore examined more closely a 10-Mb MHC re-
gion, including the extended MHC region (25–32 Mb) and the classic MHC region
(32–35 Mb).

Within this 10 Mb region, we observed that the SNP pairs associated with T1D
are more often strongly correlated in cases than in controls [see Supplementary
Figure S2, Zhang, Zhang and Liu (2011)]. The joint associations spanned from the
classic MHC region to the extended MHC region over a distance as long as 6.5 Mb.
It has been previously reported that haplotype blocks containing the most suscepti-
ble alleles HLA-DRB1*03 and HLA-DRB1*04 within the HLA-DR-DQ region may
extend as long as 2 Mb [Nejentsev et al. (2007)] into the extended MHC region.
It is thus arguable that the joint associations observed between the MHC class II
region and the extended MHC region are due to extensive LD. We used a more
traditional approach, logistic regression, to test two-way interactions among SNPs
within MHC conditioning on the HLA-DR-DQ haplotypes. We first used CHB
[Zhang, Niu and Liu (2006)] to infer haplotypes over HLA-DR-DQ genes (32.6–
32.8 Mb). After collapsing rare haplotypes with frequencies lower than 0.1% into
one group and obtaining 91 groups of haplotypes, we regressed the T1D status on
the 91 haplotype groups using 90 dummy variables, which resulted in 78 signifi-
cant haplotype groups over the HLA-DR-DQ genes explaining most of the MHC
class II associations with T1D (the 13 insignificant haplotype groups removed from
the model only changed the model deviance by 9.7).

Conditioning on the 78 haplotype groups, we tested both main and interaction
effects between pairs of SNPs, one in the nonclass II region (class I, class III, and
the extended MHC region) and one in the class II region. In particular, we regressed
the T1D status on every pair of SNPs and the 78 haplotype groups. The association
statistic is the change of deviance before and after including the two SNPs in the
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FIG. 7. Log10 p-values (y-axis) of joint association test between SNPs in the nonclass II MHC
region (x-axis) and SNPs in the MHC class II region (32.5–32.8 Mb), with main effects of the MHC
class II SNPs subtracted and conditioned on 78 T1D associated haplotypes in HLA-DR-DQ. Each
SNP has multiple p-values, shown as grey dots, corresponding to interactions with different MHC
class II SNPs. The black line for the SNP indicates the − log 10 p-value of the nonclass II SNP’s
main effect. A cutoff of 10−5 for the p-values, shown as the dashed line, corresponds to roughly one
false positive among all tests.

model. We further subtracted the main effect of the class II SNPs. As shown in Fig-
ure 7, we observed several peaks of p-values demonstrating significant main and
interaction effects within the nonclass II MHC region. For example, we observed
significant main effects of gene HIST1H2BD at 26.3 Mb (peak of black lines), in-
teraction effects of gene PRSS16 at 27.3 Mb and ZNF184 at 27.5 Mb (peaks of
grey dots), strong marginal effects of region 30–31.4 Mb including class I genes
HLA-A and HLA-B (peaks of black lines), and strong interaction effects of gene
BAT1 at 31.6 Mb (peaks of grey dots). The associations of PRSS16, ZNF184, and
BAT1 have been previously reported [Nejentsev et al. (2007); Viken et al. (2009)],
and our analysis further suggested that these genes are associated with T1D mainly
through interactive effects with MHC class II genes, controlling the MHC class II
haplotypes.

7. Discussion. In this article we proposed a model-based Bayesian method
for simultaneous LD-block partitioning and multi-locus epistasis association map-
ping. Different from many block-based methods, we combined block partitioning
and association mapping into a unified Bayesian model, where both block struc-
tures and SNP associations are iteratively learned through MCMC sampling. For
block partitioning, our simulation study and real data analysis showed that BEAM2
produces accurate and consistent partitions of SNPs that compared favorably with
other genetic knowledge than some existing methods. The posterior probabilities
of block boundaries output by BEAM2 not only report the most likely block parti-
tions but also measure the uncertainty of blocks. Compared to some existing meth-
ods using ad hoc partition rules, BEAM2 has two main advantages: (1) it provides
soft partitions rather than hard partitions, that is, it provides a posterior distribu-
tion of block partitions given the data, rather than a single block partition result;
soft partitions are necessary in regions with no dominant recombination hotspots



2074 Y. ZHANG, J. ZHANG AND J. S. LIU

and block structures; and (2) it scales up well to large sample sizes and produces
consistent results. In particular, we showed that our model-based method produces
consistent block partitions as the number of individuals increases, whereas the
other methods we tested produced drastically different results when more individ-
uals from the same population are included. For association mapping, BEAM2 is
more powerful than both the original BEAM algorithm, which accounts for LD
using a Markov chain, and the methods using pre-estimated blocks. BEAM2 tests
disease associations over uncertain block structures, where most SNPs around dis-
ease loci are filtered out, as their associations are created by LD with nearby dis-
ease SNPs.

The output of BEAM2 is a list of SNP-wise posterior probabilities of marginal
and interaction associations. From a frequentist point of view, the identified SNPs
can be further tested for genome-wide statistical significance. We previously in-
troduced a Bayes factor-based statistics, B-stat [Zhang and Liu (2007)], for testing
the significance of SNP associations. B-stat performs similarly to a 2-df chi-square
test for single SNPs, but is more powerful for testing interactions of multiple SNPs.
The same B-stat can be used to test the statistical significance of SNPs selected by
the BEAM2 model, as we demonstrated in this paper.

When applied to the WTCCC T1D data, BEAM2 found all 5 statistically sig-
nificant loci previously reported in Table 3 of WTCCC (2007), and captured 7
moderately (insignificant) associated loci listed in Table 4 of WTCCC (2007) with
nontrivial posterior probabilities (>0.1). BEAM2 further reported some novel two-
way joint associations, including 7 SNP pairs (p-value < 5e−10) in short-distance
and 4 SNP pairs (p-value < 5e−11) in long-distance. The local two-way associa-
tions indicate main effects of the related genes, which are, however, not detectable
using single SNP tests alone. The long-distance two-way associations did not pass
the genome-wide Bonferroni multiple testing control, but they may be justifiable as
real interaction associations if a better multiple testing method is used and a repli-
cation study is performed. We further analyzed the well-known MHC region, and
our analysis conditioning on the MHC class II haplotypes suggested the existence
of interaction associations rather than MHC extended linkage alone. Given the
complex nature and the important biological role of MHC in the human genome,
our analysis is rather limited. Sophisticated analysis is in dire need to further reveal
the genetic mechanisms underlying MHC and immune diseases.

The current BEAM model can be further improved in several ways. First, miss-
ing genotypes and unobserved SNPs in the case–control sample can be treated via
imputation [Zhang (2011)]. Previous studies have shown that imputing untyped
SNPs and missing genotypes from a reference panel can improve the power of
disease association mapping [Marchini et al. (2007)]. Second, the current model
only reports SNP-wise posterior probabilities of associations to the disease with-
out providing a detailed analysis of association structures of the detected SNPs
interactions. We have observed in the MHC region a bulk of SNPs exhibiting com-
plex association structures with T1D. A post-analysis of the MHC region is thus
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needed to delineate fine structures of the selected SNPs and interactions with re-
spect to their disease effects and inter-relationships. Third, from a statistical point
of view, it is critical to control the false-discovery rate. This is particularly impor-
tant for multi-locus tests, which often involve a much larger number of simultane-
ous comparisons than single SNP tests. We are developing new statistical methods
for evaluating genome-wide statistical significance of associations.

SUPPLEMENTARY MATERIAL

Additional Supporting Information and Results (DOI: 10.1214/11-
AOAS469SUPP; .doc). The file includes a naïve SNP-block model used in our
comparison, verification of population structure in the sample, LD analysis of the
MHC region, Chi-square results of our simulation study, and comparison of our
results with previous results in the T1D WTCCC1 data.
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