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Introduction 

 Information technology is an area of such broad importance that even small 

enhancements to existing methodologies can be useful.  Most information derived from 

chemistry – and especially from some form of analysis – proceeds by a path in which a sensor 

(e.g., an analytical instrument), using electrical power, generates information, which is then 

encoded and transmitted in a separate step, again using electrical power, to a separate unit 

(which may be local or distant) for processing and interpretation.   We[1,2] and others[3-6] are 

exploring schemes in which information is transmitted directly, without using electrical 

energy.  Such schemes have the potential to be useful where electrical power is not reliably 

available, or where other constraints (e.g., size) argue for other types of solutions. 

 Infofuses are a new system for non-electronic communications that uses the 

multiplexing of frequencies enabled by chemistry.[1,2] This paper describes non-binary 

encoding schemes for infofuses which allow a single pulse of light to encode each of the 

alphanumeric characters.  This work demonstrates a physical implementation of a new, 

information-dense, encoding scheme, and is important to materials scientists and engineers 

interested in research at the interface between information science and chemistry.  We refer 

to this area as infochemistry. 

 We consider an elementary system for transmitting information to have seven steps: 

i) Assembling the message (either by writing it, or by collecting it from a sensor), ii) 

Encoding the information in a form that can be transmitted, iii) Transmitting the information, 

iv) Receiving the information, v) Decoding the information, vi) Interpreting the decoded 

information, vii) Acting on this information. 

 Infochemistry combines the attractive features of chemical systems (high energy 

density, self-powered operation, long storage times for energy, facile coupling with certain 

kinds of chemical sensing) with the encoded storage and transmission of information.  
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Infochemical systems offer the opportunity to implement, in a physical system, encoding 

schemes that are more information-dense than simple binary by transmitting information 

optically using multiple (rather than two) states (e.g., multiple intensities and multiple 

wavelengths).  Multiple-state pulses can give a higher density of information per clock cycle 

(although at increased complexity, with increased error rates, and lower bit rate) than the 

binary systems now almost universally used.[7,8] 

 We have developed two infochemical systems that use chemical interactions and 

reactions (and that do not require electrical power in the transmission step) to transmit 

encoded messages as optical pulses.  One is based on strips of flammable polymer 

(nitrocellulose) with thermally emissive salts (infofuses) patterned onto it.[1,2] The second is a 

microfluidic device that shutters light (a droplet shutter), and capitalizes on the high 

frequency stability of the rate of generating bubbles by a flow-focusing nozzle.[9]  In this 

latter system, the combination of optically transparent droplets and windows serve as optical 

shutters to encode information. 

 Upon ignition of one end of an infofuse, the flame front (at a temperature of ~ 

1000°C) propagates along the fuse at a constant rate (2 – 3 cm/s in the systems we use).  As 

this propagating hot zone reaches each spot of thermally emissive salts, it emits light at 

wavelengths characteristic of the thermal emission of the atoms present in the spot.[10,11]  

The spatial pattern of emissive salts is therefore transduced (in the optical far-field) into a 

sequence of optical pulses at different wavelengths, ordered in time.  With current systems, 

the intensity of isotropic radiation from a spot of ~ 1 mm2 is such that the emission can be 

detected and correctly characterized from any angle at distances as great as ~ 600 m at 

night.[12] 

 The design of infofuses we reported previously used three thermal emitters to encode 

and transmit information: the three alkali metals (Li, Rb, and Cs); we chose these three 
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because we could not detect them as background in burning films of pristine 

nitrocellulose.[1,2,13] In this work, we added Na (NaClO4) at the same concentration to each 

emissive spot to provide an internal standard that allowed normalization of the intensity of 

the pulse.  We designed an encoding scheme that assigned alphanumeric characters to 

combinations of unique optical pulses using three distinct emitters: we could generate seven 

(23 – 1) unique optical pulses. Using two consecutive pulses (giving a total of 49 unique two-

pulse combinations), we encoded each alphanumeric character. 

 Although this encoding scheme for transmitting alphanumeric information with 

infofuses is effective, it has two disadvantages: i) It limits the maximal frequency at which 

the infofuse can transmit alphanumeric information to half the frequency at which we 

generate pulses (which is set by rate of propagation of the flame front and by the spacing 

between emissive metal salts). ii) Consecutive pulses from the same combination of emitters 

is a source of error in decoding the message that an infofuse transmits; if the pulses are close 

together, it can be difficult to determine if they are from the same spot or from consecutive 

spots of the same composition.  With the 2-pulse encoding scheme, there is a 2% (1/49) 

probability of two consecutive pulses having the same combination of emitters. 

 By encoding each character with a single optical pulse, we can increase the maximal 

frequency that information is transferred by a factor of two over the two-pulse scheme, and 

also reduce errors in the detected signal.  The frequency we achieved in the demonstration 

system we describe in this paper is ~12 characters/sec, detected at a distance of ~ 1 m from 

the transmitter. 

 In this paper, we designed and demonstrated two different encoding schemes for 

infofuses that transmit each alphanumeric character with a single optical pulse (Figure 1): 
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i) a scheme that is binary (0,1) in the intensities of light emitted from six (Li, K, Rb, Cs, Sr, 

Ca) thermal emitters; ii) a scheme that is binary and ternary (0, 1, 2) in the intensities of light 

emitted from four (Li, K, Rb, Cs) thermal emitters. 

 

Results and Discussion 

 Simultaneous Binary Emission Using Six Thermal Emitters Can Encode All 

Alphanumeric Characters.  To encode alphanumeric characters with a single optical pulse, 

we developed a new encoding scheme that uses six thermally emissive metal perchlorate 

salts: in addition to lithium, rubidium, and cesium, (the combination we used previously),[1,2] 

we included strontium, calcium, and potassium.[14] 

 The amount of light that reaches the detector depends on the position of the flame 

front of the fuse and the quantity of emissive salts deposited on the fuse.  To correct for 

observed differences in intensity between pulses from these errors due to variations in these 

parameters, each emissive spot also contained 0.2% (w/v) of sodium perchlorate as an 

internal standard.  We used the sodium emission (which was ~3 times greater than the 

background sodium intensity in the nitrocellulose fuse) to correct the intensities for dividing 

the intensity of light each encoding metal (IX) emitted by the intensity of emission from 

sodium (INa). 

 Formally, six independent emitters that are binary (0,1) in their intensity yield 63 (26-

1, assuming there should always be at least one element emitting during a pulse) unique 

combinations of emission spectra.  In practice, overlaps between the emission spectra of 

some of the emitters exclude some combinations from use in the infofuse.  In particular, the 

emission from strontium (Figure 2) is broad: it stretches between ~600 nm and ~700 nm and 

overlaps with the emission from calcium at 620 nm and lithium at 670 nm.  We therefore 

excluded calcium and lithium from any encoding pulse that contained strontium; this 
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encoding scheme has 39 unique combinations of emitters that are useful for transmitting 

information.  31 (25-1) of these combinations do not use Sr, while 8 of these combinations 

(23) are those that are possible (i.e., those that do not use Ca or Li) when Sr is present.  This 

scheme can therefore encode 26 letters (A-Z), 10 digits (0-9) and three other characters, each 

with a single optical pulse (Figure 3).  

 The presence of potassium in this encoding scheme poses another challenge: 

emission from potassium (as well as sodium) is present when nitrocellulose burns.  When 

we did not intentionally add K to the emissive spot, the ratio of the height of the emission 

peak from potassium to that from sodium (IK/INa) was ~0.2 ± 0.1, whereas when we did 

intentionally add K to the emissive spot, IK/INa = ~2.0 ± 0.1 (Figure 4).[15] Therefore, the 

mean values of IK/INa of the two states are substantially separated with each other. 

 We designed the encoding scheme (Figure 3) such that the clearest signals encoded 

the most common letters used in the English language, according to the following guidelines: 

i) single-emitter signals encoded the six most common letters: (E, T, A, O, I, N).  ii) 

combinations that only use the alkali metals not found in nitrocellulose (Li, Rb, Cs), encoded 

the next four letters (S, H, R, D).  iii) remaining combinations used one or more of the “non-

ideal” emitters (K, Sr, Ca).  

 Using this encoding scheme, we transmitted the message “A QUICK BROWN FOX 

JUMPS OVER THE LAZY DOG” (Figure 4).  This sentence is a useful test message 

because it contains each letter of the English alphabet at least once.  The asterisks in Figure 

4 highlight emitted peaks due to emission from Sr that are also detected at the wavelengths 

where Ca and Li emit (620 nm and 670 nm). 

 Alkali metals can encode alphanumeric information with the wavelengths and 

intensities of optical pulses.  Infochemical systems have the characteristic that they can 

encode and transmit information in different parameters simultaneously.  In this section, we 
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describe infofuses that transmit each alphanumeric character with a single pulse using both 

the wavelength of emitted light, and its intensity relative to an internal standard (Na). 

 We chose the alkali metals (as opposed to the alkaline earth metals in the previous 

section) for this demonstration since the linewidths of their emission spectra are narrow (< 2 

nm); this feature increases signal-to-noise relative to emissions of other possible elements. 

 Four emitters (Li, K, Rb, Cs), each emitting with one of three intensities (0, 1, 2), 

yield 80 (34-1) unique optical pulses.  To ensure high signal-to-noise of the peak intensity, 

however, we restrict which of these combinations encode information: i) The background 

emission from potassium from burning nitrocellulose film limits the signal-to-noise of 

potassium to about 10:1.  We therefore treated potassium as a binary (0, 1), not a ternary, 

encoding element.   ii) We adjusted the emitted intensity of the metals by changing their 

concentration in the solution (Table 1) that we deposited on the infofuse, relative to 

intentionally added sodium perchlorate (at a constant value of 0.5% w/v). 

 This restriction leaves 53 [(2 x 33)-1] unique optical pulses that can encode 

alphanumeric characters.  From these remaining combinations, we designed an encoding 

scheme (Figure 5) for 40 alphanumeric characters with the following guidelines: i) Single-

emitter signals at high concentration (2 for Li, Rb, or Cs, and 1 for K) encoded E, T, A, and O. 

ii) Two-wavelength pulses with at least one emitter at high concentration encoded I, N, S, H, 

R. D, L, C, U, M, and W.  iii) Three-wavelength pulses that did not include potassium, and 

with at least 1 emitter at high concentration encoded F, G, Y, P, and B.  iv) Two-wavelength 

pulses with both emitters at low concentration encoded V, K, J, X, Q, and Z.  v) Three-

wavelength pulses that included potassium encoded numbers.  vi) One- or three-wavelength 

pulses, with all emitters at low concentration, encoded the four special characters. 

 Using this encoding scheme based on both wavelength and intensity, we encoded and 

transmitted the message “A NEW DEVICE TO TRANSMIT DATA” (Figure 6).  The 
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standard deviation in intensities relative to the internal standard at the peak of each optical 

pulse was approximately 10% of the mean, while the means of the two emitting populations 

(“2” and “1”) for each of the emitters are separated by at least two times the sum of the 

standard deviations for the two intensities. 

 In conclusion, we have two described approaches that improve a previously 

described system of “infofuses”.  By employing a system that is binary in intensity using six 

different thermally emissive salts, or a system that can be binary and ternary in intensity 

using four different thermally emissive salts, we encoded and transmitted alphanumeric 

information with individual optical pulses.  New encoding schemes allowed us to improve 

the density of the information, and to lower the error rate, relative to a previously described 

system.  

 The improved functionality and potential of infofuses described in this work to 

encode and transmit information without electrical power, could ultimately allow new 

protocols for sensing and manipulating data from sensors. 

 

Experimental  

Nitrocellulose was obtained from Scientific Polymer Products (powder) or Whatman 

(membrane filter).  All metallic salts were obtained from either Alfa Aesar or Sigma-Aldrich 

in the highest available purity.  All aqueous solutions were prepared with water purified and 

deionized by a Millipore system.  

Sheets of nitrocellulose were prepared by pouring ~ 50 mL of a 5% (w/v) solution of 

nitrocellulose (in acetone) into a 5 cm × 30 cm polyethylene box, closing the lid, and 

allowing the solvent to evaporate over a few days at room temperature.  The resulting sheets 

of nitrocellulose were either optically clear or slightly translucent.  The sheets were then cut 

into strips with width of ~1 mm using a desktop rotary paper trimmer. 
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 We patterned strips of nitrocellulose with emissive salts via manual spotting.  A 

solution for each of the combinations of unique emitters (Li, Rb, Cs, K, Sr, and Ca) of 

emissive salts for manual spotting were prepared by dissolving 1.0% (w/v) (Li), 0.1% (w/v) 

(Rb), 0.2% (w/v) (Cs), 0.5% (w/v) (K), 2.5% (w/v) (Sr), and 1.0% (w/v) (Ca) of alkali 

perchlorate in a stock solution of 0.2% sodium perchlorate in water.  Each spot of emitters 

(~100 nL) was deposited onto the strip of nitrocellulose with a micropipettor (VWR).  After 

all the desired spots were deposited onto the fuse, it was dried in ambient and in an oven at ~ 

50°C for 30 minutes until the water from the deposition of emitters had evaporated. 

 For spectroscopic detection, a system of four lenses collected and focused the light 

emitted from a burning infofuse.  Two 1-inch diameter fisheye lenses collected light from 

the entire area occupied by the infofuse; a focusing lens directed the collected light into a 1 

mm-diameter multimode optical fiber (Ocean Optics) that was equipped with a collimating 

lens.  Light from this fiber was coupled to a HR2000+ high resolution CCD spectrometer 

(Ocean Optics), which was connected to a PC with a USB cable and controlled by software 

(SpectraSuite) supplied by Ocean Optics.  All emission spectra from infofuses were 

collected with an integration time of 10 ms, at a rate of 100 spectra/s.  The distance between 

the detector and the burning infofuse was typically 1 m. 
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Figure 1. Schematic diagram of infofuses that can encode and transmit alphanumeric 

information with individual optical pulses. Top: A schematic description of a binary system 

in intensity that uses six different thermally emissive salts.  Bottom: A schematic description 

that is binary and ternary system in intensity, and that uses four different thermally emissive 

salts. 
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Figure 2. Normalized thermal emission spectra (between 550 and 950 nm) of sodium, 

calcium, strontium, lithium, rubidium, cesium, and potassium perchlorate deposited on a 

burning infofuse.  The boxes with gray dashed borders show the areas of the emission 

spectrum that we integrated to determine the intensity of emission from each metal salt.  We 

avoided overlaps between Sr, Ca, and Li by excluding combinations of Ca and Sr, and Li and 

Sr, as in Figure 3. 
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Figure 3 Single-pulse encoding scheme for 39 characters that uses six thermally emissive 

salts to encode and transmit information.  Spectral overlap between Sr and Ca or Li 

precluded those two emitters from being used with Sr. 
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Figure 4 Transmission of the message “A QUICK BROWN FOX JUMPS OVER THE 

LAZY DOG” using the single-pulse encoding scheme from Figure 3.  a) Normalized 

intensity of each of six encoding emitters (IX) and the internal standard (INa).  Note that when 

Sr emits, it emits at the wavelengths at which Li and Ca emit (asterisks).  b) IK/INa at each of 

the peaks.  The grey dashed line indicates the threshold for potassium emitting as an 

encoding atom. The stability of the ratios IK/INa  demonstrates the value of using Na 

emission as a internal standard. 

 

a) 

 
b) 
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Figure 5. Single-pulse encoding scheme for 40 characters that uses the intensities of four 

thermally emissive alkali metal perchlorates relative to an internal standard (Na) to encode 

and transmit information.  In this scheme, the intensities of Li, Rb, and Cs are ternary (0,1,2), 

while the intensity of K is binary (0,1). 
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Figure 6. Transmission of the message “A NEW DEVICE TO TRANSMIT DATA” using 

the encoding scheme from Figure 5.  a) Normalized output of the encoded burning infofuse 

at the emission wavelengths of each of the alkali metals.  b) Relative intensities of each 

normalized pulse processed by comparing to the intensity of emission from the internal 

standard (sodium perchlorate).  The horizontal grey dashed lines show the boundary between 

intensity levels of “2” and “1”, and between intensity levels of “1” and “0” for Li, Rb, and Cs. 

a)  

 
b) 
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Table 1.  Percentage (w/v, g/100 mL of H2O) of the five alkali perchlorate salts in the 

aqueous solutions we used to pattern infofuses, that when burned transmitted an intensity of 

“0”, “1”, or “2”.  Sodium is an internal standard at the same concentration (0.5% w/v) in all 

solutions.  a Not used: we restricted potassium to transmit in binary only (“0” or “1”).  

Alkali Perchlorate 
Intensity Value 
0 1 2 

Lithium 0.0 0.4 1.2 
Sodium 0.5 0.5 0.5 
Potassium 0.0 1.0 a 
Rubidium 0.0 0.2 0.8 
Cesium 0.0 0.2 0.8 
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ToC 

Single-Pulse Encoding for “Infofuse”: Non-binary encoding schemes for “Infofuses” − 

chemically based systems for non-electronic communication – allow a single pulse of light to 

encode and transmit each of the alphanumeric characters.  
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