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ABSTRACT 

 

This manuscript describes a new class of locomotive robot: a “soft” robot—one composed 

exclusively of soft materials (elastomeric polymers)—which is inspired by animals (e.g., squid, 

starfish, worms) that do not have hard internal skeletons. Soft lithography was used to fabricate a 

pneumatically actuated robot capable of sophisticated locomotion (e.g., fluid movement of limbs, 

and multiple gaits). This robot is quadrupedal; it uses no sensors, only five actuators, and a 

simple pneumatic valving system that operates at low pressures (<10 psi). A combination of 

crawling and undulation gaits allowed this robot to navigate a difficult obstacle. This 

demonstration illustrates an advantage of soft robotics: They are systems in which simple types 

of actuation produce complex motion. 
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Introduction 

 Robotics developed to increase the range of motions and functions open to machines, and 

to build into them some of the characteristics (including autonomous motion (1-3), adaptability 

to the environment (4-7), and capability of decision making (8,9)) of animals, particularly 

animals with skeletons. Most mobile robots are built with hard materials (“hard” robots), either 

by adding treads or wheels (10,11) to conventional machines to increase their mobility, or by 

starting with conceptual models based on animals (e.g., “Big Dog” (12) and many others (13-

15)), and replicating some of their features in hard structures. Although robotics has made 

enormous progress in the last 50 years, hard robots still have many limitations. Some of these 

limitations are mechanical, and include instability when moving in difficult terrain; some have to 

do with the ranges of motions afforded by actuators and structures (e.g., metal rods, mechanical 

joints, and electric motors); some stem from the complexity in control (especially when handling 

materials and structures that are soft, delicate, and complex in shape). Hard robots fabricated 

from metals are also often heavy and expensive, and thus are not suitable for some applications. 

 New classes of robots may thus find uses in applications where conventional hard robots 

are unsuitable. We are interested in a new class of robots: that is, soft robots fabricated in 

materials (predominantly elastomeric polymers) that do not use a rigid skeleton to provide 

mechanical strength. The objective of this work is to demonstrate a soft robot that requires only 

simple design and control to generate mobility. In this demonstration, we begin to address some 

of the issues that have limited the development of soft robots. Instead of basing this and other 

designs on highly evolved animals as models, we are using simpler organisms (e.g., worms (16) 

and starfish (17)) for inspiration. These organisms—ones without internal skeletons—suggest 
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designs that are simpler to make and are less expensive than conventional hard robots, and that 

may, in some respects, be more capable of complex motions and functions. Simple, inexpensive 

systems will probably not replace more complex and expensive ones, but may have different 

uses.  

 Many of the capabilities of soft robots will ultimately be defined, we believe, by the 

materials used in their fabrication, and the use of soft materials may simplify the more complex 

mechanical structures used in hard robots.  A simple elastomeric structure of appropriate design, 

for example, can provide the function of a hinge or joint, without the complexity of a multi-

component mechanical structure (18-20). Soft robotics may, thus, initially be a field more closely 

related to materials science and to chemistry than to mechanical engineering.   

 Soft organisms—ones without endo- or exo-skeletons—are ubiquitous. Many of the most 

interesting and versatile of these organisms (e.g., squid) live in water. The buoyancy of water 

obviates the need for a mechanically strong and rigid skeleton: the structural features developed 

by land animals to retain form and to move in a gravitational field are unnecessary (21). The 

mechanical characteristics of the tissues of soft-bodied marine organisms that limit them to a 

neutrally buoyant medium are easily circumvented by using synthetic elastomers that are 

structurally tougher than these tissues. Soft robots based on appropriate elastomers can move, 

without difficulty, in a gravitational field, without fluid support.  

The most prevalent mechanisms of actuation of soft organisms (e.g., muscular hydrostats  

(22)) cannot currently be replicated in synthetic materials (there are still no synthetic equivalents 

of muscle (23)), and might not, in any event, be the most useful ones. Our work on soft robots is 
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intended to mimic some of the motions and capabilities of soft organisms, but is not constrained 

to mimic the mechanisms by which these motions are achieved in vivo.          

Results 

 We fabricated the robots using soft lithography (24); its simplicity allowed us to iterate 

designs rapidly. We used pneumatic actuation, with low-pressure air, in initial designs for four 

reasons: i) compressed air is easily generated, ii) it is environmentally benign, iii) it is 

lightweight, and iv) it is essentially inviscid and thus allows rapid motion. Our pneumatic 

channel design is based on the pneu-net (PN) architecture described previously (18), because it is 

simple and compatible with soft lithography (24,25). Pneu-nets are a series of chambers 

embedded in a layer of extensible elastomer and bonded to an inextensible layer; these chambers 

inflate like balloons during actuation. The difference in strain between the extensible top layer 

and inextensible bottom layer causes the pneu-net to bend when pressurized. We tuned the pneu-

net’s bending motion via the orientation, size, and number of its chambers. For example, if the 

chambers of the pneu-net are oriented orthogonally to a single axis (Fig. S1b), the additive effect 

of the inflation of each chamber is to curl the pneu-net along this axis (Fig. 1b,c). Ecoflex
TM

 

(Ecoflex 00-30 or Ecoflex 00-50; Smooth-On Inc.) was our choice for the actuating layer 

because it is highly extensible under low stresses, and PDMS (Sylgard 184; Dow Corning) was 

our choice of strain-limiting layer as it is relatively inextensible at the stress developed on 

pressurization of the pneu-nets. 

 To demonstrate mobility with a soft robot, we constructed a tetrapod (Fig. 1; Fig. S1 

shows dimensions). This robot can lift any one of its four legs off the ground and leave the other 

three legs planted to provide stability (three is the minimum number of legs necessary to provide 

stability for a passive load). We control each leg independently by using a network of pneumatic 



6 

 

channels (PN 1, 2, 4, 5; Fig. 1) for each limb. In addition, we placed a fifth independent pneu-net 

in the “spine” of the robot (PN 3; Fig. 1) to lift the main body of the robot from the ground when 

necessary.  

 Each of the five pneu-nets could be pressurized from an external source (compressed air, 

7 psi; 0.5 atm) that was connected to the robot via flexible tubing, at a central “hub” located at 

one end (arbitrarily called the rear) of the robot.  We connected each of the pneu-nets to a 

separate, computer-controlled, solenoid valve (Fig. S2A). The spine of the robot (PN 3) was at a 

higher pressure (P1 = 7 psi) for undulation, or a lower pressure (P2 = 4 psi) for crawling. The 

gait sequences were empirically determined and manually written into a spreadsheet and 

imported into a LabVIEW
TM

 script that controlled the solenoid valves. 

 We actuated the robot by pressurizing the pneu-nets in sequence. Upon pressurization, 

each pneu-net curled to a final actuated structure at a rate that increased with applied pressure 

(Fig. 1B, C) (18). To actuate the robot at convenient rates (~1 s actuation time per limb; Fig. S3), 

we applied pressures of 7 psi. By actuating the pneu-nets with different sequences, we 

demonstrated two fundamentally different gaits: “undulation” and “crawling.”  

 Undulation involved five steps, starting from the rest state (Fig. 2A). i) Pressurization of 

PN 1 and PN 2 pulled the two hindlimbs of the robot forward (Fig. 2B); this motion anchored the 

robot from sliding backward. ii) Pressurization of PN 3 lifted its spine from the surface (Fig. 2C). 

iii) Pressurization of PNs 4 and 5, and sequential depressurization of PNs 1 and 2 and then PN 3 

pulled the robot forward with its two forelimbs (Fig. 2D, E). At this point, the rear two-thirds of 

the robot were in frictional contact with the surface; this anisotropy in frictional contact between 

the front and the rear half resulted in forward movement when we depressurized PNs 4 and 5 

(the forelimbs; Fig. 2F). Fig. 2 shows the actuation sequence for the pneu-nets that generates this 
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locomotion. The complexity and fluidity of the motion that this simple sequence of binary 

opening and closing of valves achieves is remarkable, and reflects the non-linearity of the 

transduction of pressure into shape by the two types of elastomers used in this robot (Video S1; 

motion tracking data for this sequence shown in Figure S4A). We drove the robot, in this gait, at 

13  0.6 m/hr (~93 body lengths/hr; 11% of body length/cycle).  

We also developed several “crawl” gaits for the tetrapod. One crawling sequence 

comprised five steps. i) Pressurizing PN 3—the spine—lifted the core of the robot from the 

ground (Fig. 3A).  ii) Pressurizing PN 4 pulled the right-rear hindlimb forward (Fig. 3B). iii) 

Simultaneous pressurization of PN 2 and depressurization of PN 4 then propelled the body of the 

tetrapod forward (Fig. 3C). iv) Pressurizing PN 5 while depressurizing PN 2 (Fig. 3D) pulled the 

left-rear hindlimb forward. v) Simultaneous pressurization of PN 1 and depressurization of PN 5 

propelled, again, the body of the robot forward (Fig. 3E). Fig. 3F shows the sequence begin to 

repeat. Fig. 3 shows the actuation sequence for the pneu-nets that generates this locomotion; this 

gait propelled the robot at 24  3 m/hr (~192 body lengths/hr; 12% of body length/cycle). A 

video of this gait is available as Video S2 (motion tracking data for this sequence is shown in 

Figure S4B). By using a slightly stiffer elastomer (Ecoflex 00-50; Smooth-On Inc.), we were 

able to drive the robot at 92  4.3 m/hr (Video S3). 

 To demonstrate the potential of a gait-changing soft robot to accomplish tasks that would 

be difficult or impossible with a hard robot, we drove the tetrapod underneath an obstacle: a 

glass plate elevated 2.0 cm above the ground. The robot itself was ~5.0 cm high when PN 3 (the 

spine) was activated for the crawling gait locomotion and each segment was ~2.0 cm high when 

actuated in the undulating gait. The thickness of the soft robot itself, however, was only 0.9 cm 

and therefore did not physically limit its passing underneath the 2.0 cm gap. 
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 To drive the soft robot underneath the obstacle, we used manual control to pressurize the 

pneu-nets (Fig. S2B); manual control simplified motion planning. Using a simplified crawl gait, 

we drove the robot to the obstacle, caused it to undulate under the 2 cm gap, and then resumed 

the crawl gait on the other side. From rest (Fig. 4A), this sequence involved four basic steps. i) 

Pressurizing the spine (PN 3; Fig. 4B) and applying pressure to the hindlimbs and forelimbs for 

<0.5 s elevated the robot from the surface. ii) After pressurizing the spine, alternately actuating 

the left and right forelimbs caused the robot to crawl to the gap (Fig. 4C). iii) Upon reaching the 

gap below the obstacle, depressurizing the spine reduced the robot’s height and allowed it to 

undulate under the glass plate (Fig. 4E-G). iv) Repressurizing the spine, again, lifted the body 

from the ground and prepared it for crawling on the other side of the gap (Fig. 4H). Fig. 4 shows 

the actuation sequence for the pneu-nets that generates this locomotion. We drove the robot 

under the gap more than 15 times (without failure of the robot), with most attempts requiring less 

than 60 seconds to navigate under the obstacle; a significant portion of this time was due to 

manual control issues and disconnecting/reconnecting valves. A video of obstacle navigation is 

available as Video S4. 

Discussion 

 A combination of techniques developed for the preparation of microfluidic systems with 

elastomeric materials (25) allows the convenient design and fabrication of soft robotic structures 

with large ranges of motions; these robots use no conventional mechanical joints or bearings. 

Simple soft robots, pneumatically actuated using low-pressure air (<10 psi; 0.7 atm), are capable 

of locomotion in a gravitational field (unsupported by water), without an internal or external hard 

skeleton. Complex types of locomotion, including change in gait, emerge straightforwardly from 

simple pneu-nets.  
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 Soft robots based on elastomers and pneu-nets have a number of attractive features. i) 

Their design, and fabrication (as prototypes, and in large numbers) can be accomplished easily 

and inexpensively using the methods of soft lithography already highly developed for fabrication 

of microfluidic systems (18). ii) The non-linearity in their motion produces complex actuation, 

but requires only simple controls. iii) They can be light, and are potentially inexpensive. iv) The 

principles of design and actuation they use will scale over a range of sizes. v) The extent to 

which they deform under stress can be tuned by increasing or decreasing the pressure used to 

actuate the pneu-net. The structural stiffness of a pneu-net (effectively, a balloon) drastically 

changes depending on its internal pressure; this capability allows the robot to change gait and/or 

change shape (Supplemental Information gives the bending stiffness of a pneu-net on 

pressurization). vi) The large strain to failure of the silicone elastomers used to fabricate the soft 

robots makes them resistant to damage from many of the high-force, low strain sources that can 

damage the hard materials of current robot design (e.g., falling on rocks, torque from being 

caught in rubble, or bumps and scrapes).  

 Soft robots fabricated using siloxanes—relatively soft elastomers with low toughness—

are more susceptible to cuts and punctures from sharp objects, such as glass or thorns, than hard 

robots. They also have a limited load-carrying capacity due to the low pressures that can be 

applied to them (given our current choice in materials and designs) before they rupture. 

Incorporation of other classes of materials and structures will extend their capabilities. Highly 

extensible materials, and structures that combine high yield stresses, Young’s moduli, and 

toughness (26) would make possible the application of high force (using high pressures), make 

these robots more resistant to puncture, and also enable them to perform tasks requiring 

application of higher forces than is possible with these siloxane elastomer-based systems.  



10 

 

 The response to actuation of elastomeric structures having embedded pneu-nets is highly 

non-linear and thus predictive modeling of their actuation is currently empirical. The 

development of motion control systems for these robots will require the use of non-linear models 

(27-29) and may require neural-net like learning methods (30,31).    

Materials and Methods 

 Details for the fabrication and control of the quadrupedal soft robot are provided in SI 

text. In brief, we fabricated the robot using soft lithography. We used a 3D printer to print the 

mold from which the quadruped was replicated and a computer controlled valving system to 

actuate the pneu-nets. We quantified the effect of applied pressure on speed of actuation using 

high-speed video and we quantified the robot’s locomotion by tracking its center of mass during 

actuation. Additionally, the theoretical basis for pneu-net actuation as well as a qualitative 

description of the structural stiffness of a pneu-net vs. applied pressure is also provided in SI 

text. 
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Figure Legends 

Fig. 1. A Schematic representation of the soft pneu-net channels, formed by bonding an 

elastomeric layer (layer 1) to the strain-limiting layer (layer 2). The independent pneu-

nets are labeled PN 1,2,3,4, and 5; black arrows indicate the location at which we insert 

tubing, and the dashed arrow indicates the bonding of layer 2 to layer 1. B A cross-

section of a portion of PN 2 is schematically illustrated at atmospheric pressure (P0; left) 

and actuated at pneu-net pressure (P1 > P0; right). The inset (left) shows a top view of the 

robot and the section removed from PN 2. C An optical micrograph with PN 2 at 

atmospheric pressure (left) and at 7.0 psi (0.5 atm; right). The rest states (left) of PNs 1 

and 2 are curved away from the surface. The scale bar is 3 cm. 
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Fig. 2. (A-G) Cycle of pressurization and depressurization of pneu-nets that results in 

undulation. The particular pneu-net(s) pressurized in each step are shown (insets) as 

green, and inactive pneu-net(s) are shown (insets) as red. The scale bar in A is 4 cm. 
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Fig. 3. (A-F) Cycle of pressurization and depressurization of pneu-nets that results in 

crawling. The particular pneu-net(s) pressurized in each step are shown (insets) as green, 

and inactive pneu-net(s) are shown (insets) as red. The scale bar in A is 4 cm. 
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Fig. 4. Pneu-net actuation sequence (left) and snapshots (right) of a soft robot crawling to 

a short gap, undulating underneath it, then crawling again on the other side. A The robot 

starts unpressurized and B we pressurize the central channel and C actuate the legs to 

crawl towards the gap. D The central channel is depressurized and (E-G) we undulated 

the robot under the gap. H Finally, we repressurized the central channel and crawled on 

the other side of the gap. Pneu-net(s) actuated in each step are shown (insets) as green, 

inactive pneu-net(s) are shown (insets) as red, and partially pressurized pneu-nets are 

shown (insets) as orange. The height of the gap is indicated by an overlaid dashed white 

line. The scale bar in A is 4 cm. 
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