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Abstract 
 

In	  many	  everyday	  activities,	  we	  must	  visually	  process	  multiple	  objects	  embedded	  in	  

complex	  real	  world	  scenes.	  Our	  visual	  system	  can	  flexibly	  extract	  behaviorally	  relevant	  

visual	  information	  from	  such	  scenes,	  even	  though	  it	  has	  a	  severely	  limited	  processing	  

capacity.	  This	  dissertation	  proposes	  that	  human	  superior	  intra-‐parietal	  sulcus	  (IPS)	  plays	  a	  

central	  role	  in	  this	  flexible	  visual	  information	  processing.	  In	  Chapter	  1,	  using	  functional	  

magnetic	  resonance	  imaging	  (fMRI)	  with	  univariate	  analysis,	  I	  found	  that	  distractor	  

processing	  in	  superior	  IPS	  was	  attenuated	  when	  target	  locations	  were	  known	  in	  advance.	  

In	  Chapter	  2,	  using	  multi-‐voxel	  pattern	  analysis	  (MVPA),	  I	  showed	  that	  superior	  IPS	  

encoded	  object	  shapes,	  but	  only	  when	  such	  information	  was	  required	  by	  task.	  In	  Chapter	  3,	  

I	  showed	  that,	  given	  a	  set	  of	  perceptually	  distinct,	  but	  semantically	  grouped	  visual	  inputs,	  

superior	  IPS	  could	  represent	  abstract	  object	  identity.	  The	  neural	  similarity	  of	  identities	  in	  

superior	  IPS	  significantly	  correlated	  with	  perceived	  similarity	  between	  identities,	  

confirming	  the	  representation	  in	  this	  region	  indeed	  reflected	  identity.	  Taken	  together,	  

these	  results	  suggest	  that	  human	  superior	  IPS	  encodes	  a	  wide	  range	  of	  visual	  information,	  

from	  simple	  features	  to	  abstract	  identities,	  in	  a	  task-‐dependent	  manner,	  enabling	  flexible	  

goal-‐directed	  visual	  information	  processing	  in	  the	  human	  brain.	  	  
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0  

Introduction 

 
	  

0.1 Capacity limits of the visual system and flexible information processing 

	  

In	  everyday	  life,	  our	  visual	  system	  often	  has	  to	  process	  multiple	  objects	  embedded	  

in	  complex	  visual	  scenes	  and	  extract	  what	  is	  relevant	  for	  the	  current	  goal.	  However,	  the	  

processing	  capacity	  of	  the	  visual	  system	  is	  severely	  limited	  (Marois	  &	  Ivanoff,	  2005).	  For	  

example,	  visual	  short-‐term	  memory	  (VSTM)	  (Baddeley,	  1986;	  Phillips,	  1974)	  can	  only	  

encode	  a	  small	  amount	  of	  information,	  roughly	  about	  four	  objects	  worth,	  at	  a	  time	  (Alvarez	  

&	  Cavanagh,	  2004;	  Cowan,	  2001;	  Luck	  &	  Vogel,	  1997;	  Zhang	  &	  Luck,	  2008).	  To	  overcome	  
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these	  limitations,	  the	  visual	  system	  extracts	  task-‐relevant	  information	  from	  complex	  visual	  

scenes	  while	  ignoring	  task-‐irrelevant	  information.	  The	  selection	  of	  the	  relevant	  information	  

and	  the	  filtering	  of	  the	  distractors	  can	  occur	  early	  on	  during	  information	  processing,	  thus	  

preventing	  the	  processing	  of	  distractors	  all	  together	  (Broadbent,	  1958;	  Moray,	  1959),	  or,	  it	  

can	  occur	  later,	  such	  that	  all	  incoming	  information	  is	  processed	  to	  some	  degree,	  but	  

information	  related	  to	  distractors	  is	  subsequently	  discarded	  (J.	  A.	  Deutsch	  &	  Deutsch,	  1963;	  

Luck,	  Vogel,	  &	  Shapiro,	  1996).	  Our	  visual	  system	  also	  flexibly	  modulates	  task-‐irrelevant	  

information	  processing	  depending	  on	  processing	  load	  (Jeong	  &	  Xu,	  2013;	  Lavie,	  2005;	  Lavie	  

&	  Tsal,	  1994;	  Lavie,	  Hirst,	  de	  Fockert,	  &	  Viding,	  2004;	  Yi,	  Woodman,	  Widders,	  Marois,	  &	  

Chun,	  2004).	  In	  this	  case,	  task-‐irrelevant	  information	  will	  be	  discarded	  at	  the	  early	  stage	  

when	  either	  the	  perceptual	  load	  is	  high	  or	  when	  the	  cognitive	  control	  mechanism	  is	  

available	  to	  reject	  distractors	  (Lavie,	  2005;	  Lavie	  et	  al.,	  2004).	  Additionally,	  the	  selection	  of	  

relevant	  information	  can	  be	  either	  object-‐	  or	  feature-‐based.	  Consider,	  for	  example,	  trying	  to	  

find	  a	  cab	  in	  a	  busy	  street.	  You	  will	  ignore	  all	  the	  distracting	  billboards	  and	  buildings	  next	  

to	  the	  street	  because	  they	  are	  not	  relevant	  to	  your	  current	  goal.	  Instead,	  you	  will	  focus	  only	  

the	  vehicles	  on	  the	  street.	  If	  you	  know	  all	  the	  cabs	  have	  a	  certain	  color	  (e.g.,	  yellow),	  you	  

might	  even	  encode	  only	  the	  color	  of	  the	  vehicles	  without	  processing	  all	  the	  detailed	  

features.	  Supporting	  this,	  previous	  research	  has	  shown	  that	  items	  can	  be	  selected	  for	  

further	  processing	  when	  they	  are	  task-‐relevant	  (Jeong	  &	  Xu,	  2013;	  O'Craven,	  Downing,	  &	  

Kanwisher,	  1999;	  Scholl,	  2001)	  or	  contain	  a	  task-‐relevant	  feature(s)	  (Corbetta,	  Miezin,	  

Dobmeyer,	  Shulman,	  &	  Petersen,	  1990;	  Serences,	  Ester,	  Vogel,	  &	  Awh,	  2009;	  Xu,	  2010;	  Xu	  &	  

Jeong,	  in	  press).	  Researchers	  have	  suggested	  a	  network	  of	  brain	  regions	  including	  frontal	  
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and	  parietal	  cortices	  is	  involved	  in	  such	  flexible	  information	  processing	  (Cole	  et	  al.,	  2013;	  

Dosenbach,	  Fair,	  Cohen,	  Schlaggar,	  &	  Petersen,	  2008;	  Duncan,	  2001;	  2010;	  Miller	  &	  Cohen,	  

2001;	  Vincent,	  Kahn,	  Snyder,	  Raichle,	  &	  Buckner,	  2008),	  but	  relatively	  little	  is	  known	  about	  

the	  role	  of	  	  parietal	  cortex	  in	  this	  network.	  This	  dissertation	  investigated	  the	  neural	  

mechanisms	  in	  human	  parietal	  cortex	  that	  support	  flexible	  visual	  information	  processing.	  	  

0.2 Visual information processing in the primate brain 

	  
Visual	  information	  processing	  in	  the	  primate	  brain	  is	  commonly	  thought	  to	  involve	  

two	  anatomically	  and	  functionally	  distinct	  pathways	  (Ungerleider	  &	  Mishkin,	  1982).	  In	  this	  

two-‐pathway	  view,	  the	  occipitotemporal,	  or	  ventral,	  pathway	  is	  involved	  in	  object	  

perception	  and	  recognition	  (Kravitz,	  Saleem,	  Baker,	  Ungerleider,	  &	  Mishkin,	  2013;	  

Ungerleider	  &	  Haxby,	  1994;	  Ungerleider	  &	  Mishkin,	  1982).	  The	  occipitoparietal,	  or	  dorsal,	  

pathway	  is	  involved	  in	  spatial	  vision	  as	  well	  as	  motor	  actions	  directed	  to	  objects	  (Goodale	  

&	  Milner,	  1992;	  Kravitz,	  Saleem,	  Baker,	  &	  Mishkin,	  2011;	  Ungerleider	  &	  Haxby,	  1994;	  

Ungerleider	  &	  Mishkin,	  1982).	  	  

However,	  growing	  evidence	  suggests	  that	  other	  aspects	  of	  visual	  information,	  and	  

not	  only	  location	  and	  action,	  can	  be	  represented	  in	  the	  dorsal	  pathway.	  Specifically,	  studies	  

in	  both	  monkeys	  and	  humans	  have	  identified	  a	  sub-‐region	  in	  IPS	  that	  encodes	  visual	  object	  

information	  in	  a	  task-‐dependent	  manner.	  In	  monkeys,	  lateral	  intra-‐parietal	  (LIP)	  neurons	  

have	  been	  found	  to	  show	  selectivity	  for	  non-‐spatial	  information	  such	  as	  shape	  and	  color	  

(Sereno	  &	  Maunsell,	  1998;	  Toth	  &	  Assad,	  2002),	  and	  the	  encoding	  of	  non-‐spatial	  

information	  in	  LIP	  was	  task-‐dependent	  and	  only	  occurred	  when	  such	  information	  was	  
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behaviorally	  relevant	  (Toth	  &	  Assad,	  2002).	  In	  addition	  to	  basic	  visual	  features,	  task-‐

relevant	  information	  encoding	  was	  also	  seen	  for	  higher	  level	  representations	  such	  as	  

category	  membership	  and	  the	  associations	  between	  stimuli	  (Fitzgerald,	  Freedman,	  &	  Assad,	  

2011;	  Fitzgerald	  et	  al.,	  2013;	  Freedman	  &	  Assad,	  2006;	  Swaminathan	  &	  Freedman,	  2012).	  

These	  findings	  suggest	  that	  LIP	  neurons	  do	  not	  just	  simply	  encode	  sensory	  stimuli,	  but	  can	  

represent	  meaningful	  information	  such	  as	  category	  membership	  that	  is	  extracted	  from	  

perceptual	  input.	  	  

The	  IPS	  region	  in	  humans	  shows	  similar	  functional	  properties	  to	  monkey	  LIP.	  For	  

instance,	  using	  fMRI,	  it	  has	  been	  found	  that	  human	  IPS	  shows	  sensitivity	  to	  non-‐spatial	  

information	  such	  as	  object	  shapes	  (Konen	  &	  Kastner,	  2008)	  and	  encodes	  task-‐relevant	  

visual	  information	  such	  as	  VSTM	  representations	  (Xu	  &	  Chun,	  2006;	  Xu	  &	  Jeong,	  in	  press).	  

The	  response	  amplitude	  in	  the	  superior	  part	  of	  IPS	  has	  been	  shown	  to	  correlate	  with	  VSTM	  

capacity,	  suggesting	  this	  region	  encodes	  VSTM	  contents	  (Todd	  &	  Marois,	  2004;	  2005;	  Xu	  &	  

Chun,	  2006).	  The	  encoding	  of	  VSTM	  contents	  in	  superior	  IPS	  was	  also	  reported	  in	  a	  recent	  

multi-‐voxel	  pattern	  analysis	  (MVPA)	  study	  (Xu	  &	  Jeong,	  in	  press).	  These	  findings	  suggest	  

the	  role	  of	  IPS	  in	  the	  dorsal	  pathway	  is	  broader	  than	  the	  two-‐pathway	  view	  suggests.	  	  

	  

0.3 Plan of dissertation 

	  
Based	  on	  previous	  findings	  that	  showed	  the	  encoding	  of	  visual	  object	  information	  in	  

human	  IPS,	  in	  this	  dissertation,	  I	  further	  investigated	  whether	  flexible	  visual	  

representation	  exists	  in	  human	  IPS	  region.	  To	  examine	  flexible	  visual	  information	  
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processing	  in	  IPS,	  it	  is	  important	  to	  localize	  a	  region	  that	  is	  directly	  involved	  in	  visual	  object	  

encoding.	  As	  such,	  superior	  IPS	  is	  a	  logical	  candidate	  region,	  as	  previous	  work	  has	  

demonstrated	  that	  it	  is	  directly	  involved	  in	  the	  encoding	  of	  behaviorally	  relevant	  visual	  

information	  (Todd	  &	  Marois,	  2004;	  2005;	  Xu,	  2010;	  Xu	  &	  Chun,	  2006;	  Xu	  &	  Jeong,	  in	  press).	  	  

In	  the	  current	  work,	  an	  independent	  VSTM	  task	  that	  varied	  set	  size	  was	  used	  to	  

localize	  superior	  IPS.	  A	  multiple	  regression	  analysis	  was	  then	  performed	  with	  coefficients	  

weighted	  by	  the	  VSTM	  capacity,	  as	  measured	  behaviorally,	  for	  each	  set	  size	  to	  identify	  

regions	  with	  activity	  that	  parallels	  behavioral	  performance.	  This	  approach	  has	  consistently	  

identified	  the	  superior	  part	  of	  IPS,	  in	  both	  hemispheres,	  suggesting	  this	  regions	  is	  involved	  

in	  the	  representation	  of	  VSTM	  information	  (Todd	  &	  Marois,	  2004;	  Xu	  &	  Chun,	  2006).	  	  	  

In	  Chapter	  1,	  I	  investigated	  how	  task-‐irrelevant	  object	  shape	  information	  is	  

processed	  in	  superior	  IPS.	  I	  manipulated	  the	  numbers	  of	  target	  to	  be	  encoded	  in	  VSTM	  and	  

distractors,	  and	  measured	  fMRI	  response	  amplitudes	  in	  superior	  IPS.	  I	  found	  increased	  

fMRI	  response	  in	  superior	  IPS	  when	  target	  shapes	  appeared	  with	  distractors,	  but	  only	  

under	  low	  target	  encoding	  load.	  Moreover,	  the	  presence	  of	  distractors	  did	  not	  increase	  

fMRI	  response	  in	  superior	  IPS	  when	  target	  locations	  were	  cued	  in	  advance.	  In	  contrast,	  

when	  I	  examined	  inferior	  IPS,	  a	  region	  along	  IPS	  involved	  in	  object	  individuation,	  and	  the	  

lateral	  occipital	  (LO)	  region,	  which	  is	  involved	  in	  visual	  object	  processing,	  I	  found	  that	  

these	  regions	  also	  encoded	  distractors	  under	  low	  target	  encoding	  load,	  regardless	  of	  

whether	  target	  locations	  were	  cued	  or	  not.	  

In	  Chapter	  2,	  using	  MVPA	  (Cox	  &	  Savoy,	  2003;	  Haxby	  et	  al.,	  2001;	  Norman,	  Polyn,	  

Detre,	  &	  Haxby,	  2006),	  I	  examined	  whether	  superior	  IPS	  can	  extract	  different	  feature	  



	  
	  

	  
	  
6	  

information	  from	  the	  same	  object	  depending	  on	  the	  task	  demands.	  To	  do	  this,	  I	  kept	  the	  

visual	  input	  the	  same	  across	  tasks,	  but	  asked	  participants	  to	  attend	  to	  different	  feature	  

dimension(s)	  of	  the	  objects.	  I	  found	  that	  even	  with	  the	  same	  visual	  input,	  shape	  

information	  was	  only	  decoded	  in	  superior	  IPS	  when	  it	  was	  task-‐relevant.	  In	  inferior	  IPS	  

shape	  could	  be	  decoded	  regardless	  of	  task	  demands,	  but	  decoding	  accuracy	  was	  higher	  

when	  shape	  was	  task	  relevant,	  suggesting	  some	  degree	  of	  task-‐dependent	  modulation.	  LO	  

did	  not	  show	  any	  task-‐dependent	  representations.	  	  

In	  Chapter	  3,	  I	  tested	  whether	  task-‐dependent	  representations	  in	  superior	  IPS	  are	  

limited	  to	  basic-‐level	  visual	  features	  such	  as	  shape	  or	  can	  be	  extended	  to	  abstract	  

information	  such	  as	  viewpoint	  invariant	  object	  identity.	  Across	  three	  experiments,	  I	  found	  

that	  superior	  IPS	  can	  form	  identity	  representations	  that	  are	  extracted	  from	  perceptually	  

distinct	  images	  (e.g.,	  faces	  from	  different	  viewpoints,	  and	  with	  different	  hairstyles	  and	  

facial	  expressions).	  Such	  abstract	  identity	  representation	  was	  not	  found	  in	  other	  ventral	  

visual	  regions	  such	  as	  LO,	  fusiform	  face	  area	  (FFA),	  parahippocampal	  place	  area	  (PPA),	  and	  

visual	  word	  form	  area	  (VWFA).	  Furthermore,	  I	  found	  that	  the	  neural	  representation	  of	  

identity	  in	  superior	  IPS	  significantly	  correlates	  with	  a	  behavioral	  measure	  of	  identity	  

similarity,	  confirming	  that	  the	  neural	  representation	  is	  reflecting	  the	  perceived	  identity	  

information.	  	  

Taken	  together,	  the	  results	  of	  these	  three	  chapters	  show	  that	  human	  superior	  IPS	  

flexibly	  encodes	  a	  variety	  of	  visual	  information,	  from	  simple	  shape	  to	  abstract	  identity.	  

Furthermore,	  the	  current	  findings	  demonstrate	  that	  the	  representation	  in	  superior	  IPS	  is	  
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dynamically	  modulated	  by	  task	  demands.	  These	  findings	  suggest	  that	  superior	  IPS	  plays	  a	  

key	  role	  in	  mediating	  flexible	  visual	  information	  processing	  in	  the	  human	  brain.	  
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1	  

Neural representation of targets and distractors 

during object individuation and identification 

 
1.0 Abstract 

	  
In many everyday activities, we need to attend and encode multiple target objects among 

distractor objects. For example, when driving a car on a busy street, we need to simultaneously 

attend objects such as traffic signs, pedestrians, and other cars, while ignoring colorful and 

flashing objects in display windows. To explain how multiple visual objects are selected and 

encoded in visual short-term memory (VSTM) and in perception in general, the neural object file 

theory argues that whereas object selection and individuation is supported by inferior intra-

parietal sulcus (IPS), the encoding of detailed object features that enables object identification is 
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mediated by superior IPS and higher visual areas such as the lateral occipital complex (LOC). 

Nevertheless, because task-irrelevant distractor objects were never present in previous studies, it 

is unclear how distractor objects would impact neural responses related to target object 

individuation and identification. To address this question, in two fMRI experiments, we asked 

participants to encode target object shapes among distractor object shapes, with targets and 

distractors shown in different spatial locations and in different colors. We found that distractor-

related neural processing only occurred at low, but not at high, target encoding load and 

impacted both target individuation in inferior IPS and target identification in superior IPS and 

LOC. However, such distractor-related neural processing was short-lived as it was only present 

during the VSTM encoding but not the delay period. Moreover, with spatial cuing of target 

locations in advance, distractor processing was attenuated during target encoding in superior IPS. 

These results are consistent with the load-theory of visual information processing. They also 

show that while inferior IPS and LOC were automatically engaged in distractor processing under 

low task load, with the help of precuing, superior IPS was able to only encode the task-relevant 

visual information. 

 

1.1 Introduction 

	  
Encoding, retaining, and retrieving visual information relevant to behavior and thoughts 

are some of the most fundamental human cognitive abilities. Over the past six decades, 

pioneered by human neuropsychological studies on patients such as H.M. (Corkin, 1968; B. 

Milner, Corkin, & Teuber, 1968; Scoville & Milner, 1957) (;see also Corkin, 2002; Corkin, Amaral, 
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González, Johnson, & Hyman, 1997), many insights have been gained regarding the role of the 

medial temporal lobe in mediating information retention in long-term memory. Meanwhile, how 

visual information is first perceived and retained in visual short-term memory (VSTM) has been 

linked to the functions of the prefrontal cortex and the parietal cortex (Goldman-Rakic, 1995; 

Todd & Marois, 2004; Ungerleider, Courtney, & Haxby, 1998; Xu & Chun, 2006).  

In one study using functional magnetic resonance imaging (fMRI), Xu and Chun (2006) 

asked participants to encode multiple object shapes into VSTM. They found that responses in 

inferior intra-parietal sulcus (IPS) increased with increasing object number and plateaued at 

about set size 4 regardless of object complexity. In addition, they found that responses from 

superior IPS and lateral occipital complex (LOC, an object shape area, see Malach et al., 1995) 

increased with set size and plateaued at about the maximal number of objects held in VSTM 

(equal or less than four) as determined by object complexity. Based on these and other related 

findings, Xu and Chun proposed the neural object file theory and argued that, in VSTM as well 

as in perception in general, object individuation is supported by inferior IPS and object 

identification is mediated by superior IPS and higher object processing regions such as LOC (see 

also Xu, 2007; 2008; 2009; Xu & Chun, 2007; 2009). Here, object individuation refers to the 

selection of objects via their spatial locations, whereas object identification refers to the encoding 

of detailed object featural information. These neural findings are in line with previous behavioral 

findings and theories regarding how the visual system selects and encodes multiple objects 

through individuation and identification processes (Kahneman, Treisman, & Gibbs, 1992; 

Pylyshyn, 1989; 1994).  
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Nevertheless, because only targets were included in previous studies (Xu, 2007; 2009; Xu 

& Chun, 2006; 2009), it is unclear how the neural mechanisms mediating object individuation 

and identification would operate in the presence of task-irrelevant distractors. Understanding the 

impact of distractors during object individuation and identification is essential if we want to 

generalize laboratory findings to real world object perception, as irrelevant visual information is 

always present in everyday vision. 

How distractors are filtered out by our visual system has been examined by research 

dated back to the 1950s. The early-selection view argues that the visual system can select targets 

and ignore distractors very early on during visual processing (Broadbent, 1958; Moray, 1959). 

According to this view, the presence of distractors should have minimum impact on the neural 

responses mediating visual object individuation and identification. Alternatively, the late-

selection view argues that our visual system can individuate or even identify distractors (J. A. 

Deutsch & Deutsch, 1963; Luck et al., 1996). According to this view, the presence of distractors 

would significantly impact neural substrates supporting object individuation and identification. 

A third possibility is that the processing of distractors depends on the available resources. 

Accordingly, irrelevant information is processed only when the main task is relatively easy and 

does not consume all the available resources (Lavie, 2005; Lavie & Tsal, 1994; see also Yi et al., 

2004). This view would predict that distractors will only be processed and impact neural 

responses when the demand for object individuation and identification is low. Indeed, when Xu 

(2010) examined the encoding of two features from the same object, with one being task-relevant 

and the other task-irrelevant, she found that object-based encoding of task-irrelevant object 

features only occurred when the demand to encode task- relevant object features was low. 
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Moreover, such object-based processing was short-lived and was not sustained over a long delay 

period. 

In the present study, we investigated the impact of task-irrelevant distractors on the 

neural mechanisms supporting object individuation and identification when targets and 

distractors appeared in different spatial locations. In Experiment 1, we asked participants to 

encode target shapes among distractor shapes in a VSTM task. A long delay period was used to 

allow us to separately examine encoding-, delay-, and retrieval-associated neural responses. In 

Experiment 2, we asked whether top-down attention could modulate distractor processing 

during object individuation and identification. By using either neutral or valid location cues, we 

tested whether distractor processing could be excluded when participants knew target locations 

in advance. 

	  

1.2 Experiment 1 

	  
In this experiment, we examined the impact of distractors on object individuation and 

identification during both the VSTM encoding and delay periods. We varied the target load by 

presenting either 1 or 4 target shapes in one color, and varied the distractor load by presenting 

either 0 or 3 distractor shapes in a different color. We measured neural responses in 

independently defined inferior IPS, superior IPS, and LOC regions of interest (ROIs). The early 

selection theory would predict that distractors would be processed regardless of the encoding 

demand. The late selection theory, on the other hand, would predict that distractors would be 

filtered out during the encoding period. Lastly, the load theory would predict that processing of 
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distractors would depend on the target encoding load. 

 

1.2.1 Methods 
 

Participants 

Twelve paid participants (7 females) were recruited from the Harvard University 

community (mean age 23.83, SD = 4.87) with informed consent, which was approved by the 

Institutional Review Board of Harvard University. All of them were right-handed and had 

normal or corrected to normal visual acuity. One additional participant was tested but was 

excluded from further analysis due to excessive head motion (more than 5 mm).  

 

Main Experimental Design 

The participants were asked to remember target shapes among distractor shapes 

presented briefly around the central fixation. After an extended delay, they judged whether a 

probed shape matched one of the remembered target shapes by pressing either the “match” or 

the “no-match” key (see Figure 1 for an illustration of the trial sequence). A match occurred in 

half of the trials. Targets and distractors were shown in different colors to facilitate target 

selection, with half the participants having red targets and green distractors and the other half 

having the reverse color assignment. 
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Figure 1. An example trial of Experiment 1. Participants were asked to remember target shapes (in red) 
among distractor shapes (in green). After an extended delay, they judged whether the probed shape 
matched one of the remembered target shapes by pressing the appropriate response button. A match 
occurred in half of the trials. Target and distractor color assignment was balanced across different 
participants. To discourage grouping, eight dark grey squares were also present as placeholders and 
marked all possible locations that targets and distractors could appear. To prevent verbal encoding of the 
shapes, in addition to the VSTM shape task, 4 digits were shown sequentially at the beginning of each 
trial. Participants were asked to remember and rehearse these digits and then judge whether the same 4 
digits were shown at the end of the trial. 

 

There were 4 conditions: 1 target with 0 distractors (1T), 1 target with 3 distractors 

(1T+3D), 4 targets with 0 distractors (4T), and 4 targets with 3 distractors (4T+3D). All stimuli 

appeared on a light grey background. To prevent grouping, eight dark grey squares were also 

presented as placeholders and marked all the possible locations for which targets and distractors 

could appear (see Figure 1, see also, Xu, 2009). Eight different target and distractor shapes were 

used (see Xu & Chun, 2006), each subtended approximately 2.74° x 2.74°. The size of the entire 
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display was 11.8° x 11.8°.  

To prevent participants from verbally encoding the shapes, in addition to the VSTM 

shape task, they were required to remember and rehearse four digits throughout each VSTM trial 

by comparing whether four digits presented sequentially at the beginning of each trial matched 

those presented simultaneously at the end of each trial. Inferior IPS has been shown to track the 

number of objects presented at different spatial locations (up to 4 locations, see Xu, 2009; Xu & 

Chun, 2006). As such, given the 6 sec lag in hemodynamic response, simultaneous presentation 

of the four digits at different spatial locations may saturate inferior IPS response before the 

presentation of the target and distractor stimuli (which occurred 2.5 sec after the digit 

presentation). For this reason, digits were presented sequentially, rather than simultaneously, at 

the beginning of each trial. Each trial lasted 18 sec and contained the followings: a fixation period 

(1000 ms), a sequential presentation of four digits (250 ms each), a fixation period (2500 ms), a 

sample shape display (200 ms), a delay period (8300 ms), a test shape display (2000 ms), a shape 

response feedback (500 ms), a test digit display (2000 ms), and a digit response feedback (500 ms) 

(Figure 1). The participants were instructed to maintain fixation during the trial. With a 

counterbalanced trial history design (see Todd & Marois, 2004; Xu & Chun, 2006), each run 

contained a total of 27 trials, including 5 trials for each stimulus condition, 5 fixation trials, and 2 

filler trials. Fixation trials contained the digit task without the VSTM shape task (the shape task 

was replaced by a fixation dot). Filler trials were included to balance trial history, with one 

appearing at the beginning and one at the end of the run. Filler trials were excluded during data 

analysis. Each participant completed 4 or 5 runs, with each run lasting 8 min and 15 sec.  

Localizer Design 
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To ensure that the ROIs we localized were involved in processing the specific visual 

stimuli used in the main experiment, the shapes from the main experiment appeared in the same 

size and eccentricity in all the ROI localizers described below as they did in the main experiment. 

To localize the superior IPS region that closely tracks the amount of visual information 

retained in VSTM, we conducted an independent shape VSTM experiment similar to that of Xu 

and Chun (2006). Specifically, participants were asked to remember 1, 2, 3, 4, or 6 black object 

shapes presented briefly around the central fixation. After a short delay, a probe shape appeared 

at fixation and required participants to make a probe match/no-match judgment. The probe 

matched one of the remembered shapes in half of the trials. Each trial lasted 6 sec and contained 

the followings: a fixation period (1000 ms), a sample display (200 ms), a delay period (1000 ms), a 

test shape display/response period (2500 ms), and a feedback (1300 ms). The sizes of the 

individual object shape and the whole display were identical to those used in the main VSTM 

experiment. With a counterbalanced trial history design, there were 12 stimulus trials for each set 

size condition as well as 12 fixation trials in which only a fixation dot appeared during the 6-sec 

trial period. Three filler trials were added to the beginning and one filler trial was added to the 

end of each run for practice and trial history balancing purposes. These filler trials were excluded 

during data analysis. Each participant was tested with 3 runs, each lasting 7 min 42 sec.  

To define the LOC and the inferior IPS ROIs, the same localizer experiment used in Xu 

and Chun (2006) was conducted here. Participants viewed blocks of object and noise images 

(both subtended 11.8° x 11.8°). The object images were the set size 6 displays used in the superior 

IPS localizer experiment. Each block lasted 16 sec and contained 20 images, with each image 

appearing for 500 ms and followed by a 300 ms blank delay. To engage participants’ attention to 
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the displays, they were asked to detect a slight spatial jitter which occurred randomly once in 

every ten images. Each run contained 8 object blocks and 8 noise image blocks. Each participant 

was tested with 2 runs, each lasting 4 min and 40 sec.  

 

fMRI methods 

fMRI data were acquired from a Siemens Tim Trio 3T scanner at the Harvard Center for 

Brain Science in Cambridge, MA. Participants viewed images back projected onto a screen at the 

rear of the scanner bore through an angled mirror mounted on the head-coil. All experiments 

were controlled by an Apple MacBook Pro running Matlab with Psychtoolbox extensions 

(Brainard, 1997). Anatomical images were acquired using standard protocols. For both the 

localizer runs and the main experimental runs, 24 5-mm-thick (3 mm x 3 mm in plane, 0 mm 

skip) slices parallel to the AC-PC line were acquired using a gradient echo pulse sequence (TE 

25ms, flip angle 90°, matrix 64 x 64). In the main VSTM experiment and the superior IPS 

localizer runs, TR of 1.5 sec was used; and in the inferior IPS localizer runs, TR of 2.0 sec was 

used.  

 

Data analysis 

Behavioral VSTM capacity for each set size was measured using Cowan’s K formula 

which estimates the number of items retained in VSTM while controlling for correct guesses (K 

= (hit rate + correct rejection rate – 1) x N, where K is the number of items encoded in VSTM 

and N is the set size, see Cowan, 2001 for details). 

fMRI data were analyzed with BrainVoyager QX 2.1 (www.brainvoyager.com). 3D 
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motion correction, slice acquisition time correction, linear trend removal, and Talairach space 

transformation were conducted during data pre-processing (Talairach & Tournoux, 1988).  

To define the superior IPS ROI in each participant, as was done previously (Todd & 

Marois, 2004; Xu & Chun, 2006), fMRI data from the superior IPS localizer experiment were 

analyzed using multiple regressions with the regression coefficient for each VSTM set size 

weighted by that participant’s behavioral VSTM capacity for that set size. The superior IPS was 

defined as voxels showing a significant activation in the regression analysis (false discovery rate q 

< .05, corrected for serial correlation) and whose Talairach coordinates matched those reported 

in Todd and Marois (2004). The LOC and inferior IPS ROIs were defined as voxels showing 

higher activations to the shape than to the noise displays (false discovery rate q < .05, corrected 

for serial correlation) in lateral occipital cortex and IPS respectively. Example superior IPS, 

inferior IPS, and LOC ROIs are shown in Figure 2. 

 

 

Figure 2. The superior IPS (green), the inferior IPS (yellow), and the LOC (red) ROIs from one example 
participant.  
 

 

To examine responses from the main experiment, time courses from each participant in 

the main experiment were extracted from the three ROIs defined above. These time courses were 
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converted to percent signal change for each stimulus condition by subtracting the corresponding 

value for the fixation trials and then dividing by that value (see Kourtzi & Kanwisher, 2000; Todd 

& Marois, 2004; Xu & Chun, 2006). To capture VSTM encoding-related peak responses in each 

participant and to account for temporal variability of fMRI peak responses among the different 

participants, VSTM encoding-related peak responses from all participants were aligned to the 9th 

sec (6th TR) from the start of the trial. This anchor point was chosen based on responses from the 

majority of the participants. Time course data either remained the same, or was shifted forward 

or backward by 1.5 sec (1 TR) during this alignment process. To ensure that baseline fMRI 

response differences before the onset of the VSTM shape display would not contribute to peak 

fMRI response amplitude estimates, we calculated baseline response drift by averaging the 

responses from the first 6 seconds of each trial and then subtracted this drift from each point of 

the time course. This was done separately for each participant for each stimulus condition of 

each ROI.  

 

1.2.2 Results  
	  
	  
Behavioral results 

The capacity of VSTM was estimated using Cowan’s K formula (Cowan, 2001). The mean 

K values for the four stimulus conditions were 0.89±0.04 (1T), 0.90±0.04 (1T+3D), 1.90±0.35 

(4T), and 1.79±0.3 (4T+3D). A two-way repeated measures ANOVA with target number (1 vs 4) 

and distractor number (0 vs 3) revealed a main effect of target number, F(1,11) = 11.063, p = .007, 

showing that more information could be retained in VSTM from 4 than from 1 target. No other 
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main effects or interactions reached significance (Fs < 1, ps > .57).  

Response times for the four stimulus conditions were 823±49 ms (1T), 828±36 ms 

(1T+3D), 1003±47 ms (4T), and 965±45 ms (4T+3D) respectively. Similar to the K measures, a 

two-way repeated measures ANOVA with target number and distractor number revealed a main 

effect of target number, F(1,11) = 37.31, p < .001, and a marginally significant interaction 

between target number and distractor number, F(1,11) = 3.4, p = .092. No other main effect 

reached significance (F < 1, p > .37).  

 

fMRI results 

fMRI responses from the main VSTM task were extracted from independently localized 

LOC, inferior IPS, and superior IPS ROIs. Percent signal change compared to fixation was 

calculated for each time point and the final time courses were plotted in Figure 3. These time 

courses showed two peaks, corresponding to the encoding of the initial shape display and the 

shape probe, respectively.  
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Figure 3. fMRI responses from LOC (top), inferior IPS (middle), and superior IPS (bottom) in Experiment 
1. All three brain regions showed a similar response pattern. The presence of distractors only increased 
fMRI responses during the encoding period when the target encoding load was low. No distractor effect 
was present during the delay period. Blue line – one target; light blue line – one target and three 
distractors; orange line – four targets; and light orange line – four targets and three distractors. Error bars 
indicate within-subjects standard errors.  
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 VSTM encoding-related activities 

To examine VSTM encoding related activities, we analyzed the first fMRI peak responses 

at the 9th sec (6th TR) in the three ROIs. The effect of target number was present in superior IPS 

and LOC (Fs > 25.47, ps < .001), but not in inferior IPS (F < 1.93, p > .19). The effect of distractor 

number was present in superior IPS (F(1,11) = 10.001, p = .009), but not in the other two brain 

regions (Fs < 2.41, ps > .148). Importantly, all three brain regions showed a significant 

interaction between target number and distractor number (Fs > 13.27, ps < 0.004), indicating that 

distractor encoding was greater when one target than when four targets had to be encoded. 

Confirming this last result, in pairwise comparisons, in all three ROIs, significant differences 

were observed between 1T and 1T+3D conditions (Fs > 3, ps < 0.05), but not between 4T and 

4T+3D conditions (Fs < 1, ps > 0.58). These results showed that distractor processing in inferior 

and superior IPS depended on target encoding load and only occurred at the low task load. Given 

that inferior and superior IPS have been proposed to be involved in object individuation and 

identification respectively (Xu, 2007, 2009; Xu & Chun, 2006, 2009), these results suggest that 

distractor processing impacts both stages of object processing and is load dependent. 

We also compared the difference between the 1T+3D and 4T conditions in which the 

same total number of items were presented but target number differed. Interestingly, the 

difference between these two conditions was not significant in inferior IPS (F < 1, p = 0.37), but 

reached significance in both superior IPS and LOC (Fs > 4.67, ps < .01). In fact, the difference 

between these two conditions was greater in superior IPS than in inferior IPS (F = 2.33, p = .039). 

This may explain why we failed to obtain a main effect of target number in inferior IPS.  

These results indicate that, when distractors were encoded under low target load, they 
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were not differentiated from targets in inferior IPS that supports object individuation; the 

difference between targets and distractors only emerged in superior IPS and LOC that support 

object identification. This is consistent with the predictions of the neural object file theory 

proposed by Xu and Chun (2009). They argued that only object location information is 

predominantly encoded during object individuation and that detailed object feature information 

becomes available later during object identification-related processing (see also, Xu, 2009).  

 

VSTM delay-related activities 

To examine VSTM maintenance related activities, we analyzed fMRI responses at the 

13.5th sec (9th TR) when responses reached a minimum before they started to rise again with the 

presentation of the probe display. During this delay period, a main effect of target number was 

observed in all three ROIs (Fs > 10.24, ps < 0.01), showing that four target conditions elicited 

higher responses than one target conditions. A main effect of distractor number was observed in 

LOC (F(1,11) = 6.796, p = .024), showing a lower response for distractor present than for 

distractor absent conditions. Critically, there was no interaction between target number and 

distractor number in all three ROIs (Fs < 1, ps > .5). These results indicated that distractors either 

had no impact on target processing, or they were completely suppressed during the delay period. 

Either way, distractor processing did not depend on target processing load. 

 

1.2.3 Discussion 
	  
	  

By examining the impact of distractors on object individuation and identification during 
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VSTM encoding and delay periods, here we observed neural encoding of distractors during both 

object individuation and identification when the target encoding load was low. The encoding of 

distractors under low load is consistent with the predictions of the load theory (Lavie, 2005; Lavie 

& Tsal, 1994).  

Such load-dependent distractor response in inferior and superior IPS and LOC 

distinguishes them from pure stimulus-driven retinotopic visual regions. This is because, while 

almost twice the area was stimulated when four targets were presented with three distractors than 

when they were presented alone, we failed to observe any increase in response amplitude in these 

three brain regions. 

When Xu (2010) examined the encoding to two features from the same object, she found 

that object-based encoding of task-irrelevant distractor features only occurred when the demand 

to encode the task-relevant target features was low. Because target and distractor features 

appeared on the same object and at the same location in Xu (2010), it might have been difficult to 

suppress the processing of distractor features. However, the present experiment showed that, 

even when targets and distractors appeared in different spatial locations and in different colors, 

distractor processing still could not be suppressed at low task encoding load. This indicates that 

the encoding of distractors at low task load may be automatic and obligatory. 

Meanwhile, the present experiment showed that the neural response for distractors was 

short lasting and quickly decayed when no attempt was made to sustain it during the subsequent 

delay period. This is consistent with Xu (2010) which showed a similar response pattern for task-

irrelevant features during object-based feature encoding. Thus, although the neural encoding of 

distractors at low target load may be initially automatic and obligatory, participants can exert 
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control over what is retained for a prolonged period of time. 

1.3 Experiment 2 

	  
In the Posner cueing paradigm (Posner, 1980), participants can better detect targets 

present at the cued than at the uncued spatial locations. This shows that the deployment of 

spatial attention can prioritize the processing of visual information at specific locations. Can such 

top-down attentional control suppress the processing of task-irrelevant distractors during target 

object individuation and identification? It is possible that with spatial cuing, neural encoding of 

distractors at low task load can be completely suppressed. It is equally likely, however, that while 

the processing of distractors is attenuated, it cannot be completely suppressed, and that different 

amount of suppression may occur during target object individuation and identification. In this 

experiment, to understand how automatic and obligatory it is to encode task-irrelevant 

distractors under low load, we precued the locations of the targets before target onset and tested 

whether distractor encoding could be suppressed by top-down attention. Given that Experiment 

1 showed that the presence of distractors had no impact on VSTM maintenance and retrieval 

related activities (see Figure 3), to streamline our design, instead of using a 8.3 sec delay period, 

here we used a 1 sec delay period. 

 

1.3.1 Methods 
	  
	  
Participants 

Nine new participants (seven females) were recruited from the Harvard University 
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community (mean age 28.33, SD = 4.52) with informed consent, which was approved by the 

Institutional Review Board of Harvard University. All of them were right-handed and had 

normal or corrected to normal visual acuity. One additional participant was tested but excluded 

from further analyses due to excessive amount of head motion. 

 

Design 

 The main VSTM experiment was identical to Experiment 1 except for the followings. We 

shortened the delay period to 1000 ms, as the focus of this experiment was on distractor encoding. 

We also removed the verbal rehearsal load, as VSTM task performance with a short delay period 

has been shown to be unaffected whether verbal rehearsal is imposed or not (Luck & Vogel, 

1997). In the valid-cue trials, we cued target locations by rapidly flashing small dots twice at the 

target location prior to target onset. The neutral-cue trials were similar to the valid-cue trials, 

except that all 8 locations where targets and distractors could possibly appear were cued by the 

flashing dots. To maximize the effect of cuing, valid- and neutral-cue trials were shown in 

different runs, with half of the participants tested with the valid-cue trials before the neutral-cue 

trials and the other half had the reverse order of testing. The exact timing of a trial was as follows: 

first precue (125 ms), a fixation period (125 ms), second precue (125 ms), a fixation period (625 

ms), a sample display (200 ms), a delay period (1000 ms), a test shape display (1800 ms), and a 

feedback (2000 ms). Note that the 1000 ms interval between the initial onset of the cue and the 

onset of the stimulus display was the same as that used in Posner (1980). The participants were 

instructed to maintain fixation at the center fixation dot and covertly pay attention to the cued 

locations. Other aspects of this experiment were identical to those of Experiment 1. 
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Data analyses 

 Because each trial lasted 6 sec with a 1 sec delay period, only one fMRI response peak was 

observed, reflecting the summed fMRI responses from VSTM encoding, maintenance and 

retrieval. As such, instead of presenting data from each time point as we did in Experiment 1, 

only peak responses were extracted and included in further statistical analyses. All other aspects 

of data analyses were identical to that of Experiment 1. 

 

1.3.2 Results  
	  
	  
Behavioral results 

K values were 0.97±0.015 (1T), 0.98±0.01 (1T+3D), 3.2±0.16 (4T), and 2.71±0.27 

(4T+3D) for neutral-cue trials, and 0.97±0.015 (1T), 0.97+0.015 (1T+3D), 2.9±0.15 (4T), and 

2.93±0.17 (4T+3D) for valid-cue trials. A three-way repeated measures ANOVA with cue type 

(neutral vs valid), target number (1 vs 4), and distractor number (0 vs 3) was conducted. Main 

effect of target number was significant, F(1,8) = 220.44, p < .001, showing that more information 

was stored in VSTM when target number was 4 than 1. No other main effects or interactions 

reached significance (ps > .16). 

Response times were 496.6±31.8 ms (1T), 481.4±28.4 ms (1T+3D), 753.6±48.2 ms (4T), 

and 760.5±44.2 ms (4T+3D) for neutral-cue trials, and 520.7 ms±26.7 (1T), 501.6±24.9 ms 

(1T+3D), 763±48.4 ms (4T), and 776.1±44.1 ms (4T+3D) for valid-cue trials. A three-way 

ANOVA with cue type, target number, and distractor number revealed a main effect of target 
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number (F(1,8) = 131.08, p < .001), showing that response time was slower when more targets 

had to be encoded and retrieved for comparison. There was also an interaction between target 

number and distractor number (F(1,8) = 5.521, p = .047), indicating that response time 

difference between 1 and 4 target trials were larger when there were 3 than 0 distractor. This is 

likely associated with the greater effort needed to filter out distractors at high than at low target 

encoding load. No other main effects or interactions reached significance (ps > .36). 

 

fMRI results  

Although the peak fMRI responses examined here reflected the summed fMRI responses 

from VSTM encoding, maintenance and retrieval periods, given that Experiment 1 showed that 

the presence of distractors had no impact on maintenance and retrieval related activities (see 

Figure 3), any distractor effect we obtained here could only come from encoding related activities. 

In all three ROIs, as can be seen in Figure 4, there were a main effect of targets, a main 

effect of distractors, and an interaction between the two (all Fs > 9.24, ps < 0.05). This replicated 

our findings from Experiment 1 and showed that the presence of distractors significantly 

impacted target processing in a load-dependent manner. 
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Figure 4. fMRI responses from LOC (top), inferior IPS (middle), and superior IPS (bottom) in Experiment 
2. As in Experiment 1, the presence of distractors only increased fMRI responses when the target 
encoding load was low. Critically, although spatial cuing did not completely remove distractor processing, 
it did significantly attenuate distractor processing during target object processing in superior IPS. Blue bar 
– one target; light blue bar – one target and three distractors; orange bar – four targets; and light orange 
bar – four targets and three distractors. Error bars indicate within-subjects standard errors. 
 

 

Of main interest was the effect of spatial cuing. Out of the three ROIs, only the superior 
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IPS showed a significant 3-way interaction of cue type, target number and distractor number 

(F(1,8) = 5.827, p = .042; for inferior IPS and LOC, Fs < 1, ps > .6). Detailed comparisons 

revealed that, in superior IPS, under low target encoding load, although the effect of distractor 

was still present in both the valid cue and the neutral cue conditions (F = 2.74, p = .025; and F = 

5.77, p < .001, respectively), distractor processing was significantly attenuated with spatial cuing, 

resulting in a significant interaction between cue type and distractor number in the 1 target 

conditions (F(1,7) = 18.167, p = .003). Such an interaction, however, was absent in the 4 target 

conditions (F < 1, p > .63). This pattern of response was found in every single one of our 

participants. Comparing directly across the three ROIs, there was a marginally significant 

interaction between the effect of cuing under low load and brain region (F(2, 16) = 3.27, p = .064), 

showing that the effect of cuing under low load was stronger in superior IPS than in the other 

two brain regions. 

In inferior IPS and LOC, there was an interaction between cue type and target number 

(Fs > 16.8, ps < .01), showing that the difference between 1 and 4 target conditions was greater in 

the valid than in the neutral cue conditions. This could be due to differences in cue-related 

encoding, as in the valid-cue trials, 1 cue and 4 cues were shown for the 1 and 4 target conditions, 

respectively; whereas in the neutral-cue trials, 8 cues were always shown regardless of the target 

encoding load. It is also possible that this interaction between cue type and target number was 

the result of more efficient allocation of resources with target cuing, such that less resources were 

allocated to the 1 target conditions in the valid than in the neutral cue conditions, and more 

resources were allocated to the 4 target conditions in the valid than in the neutral cue conditions.   
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1.3.3 Discussion 
	  
	  
 This experiment replicated the main findings of Experiment 1 and showed that distractor 

processing only occurred under low target encoding load. Importantly, this experiment indicated 

that although spatial cuing could not completely remove distractor processing, it could 

significantly attenuate distractor processing in superior IPS. This is consistent with a previous 

finding showing that superior IPS is mainly involved in processing what is most task-relevant 

(Xu, 2010). 

 Unlike Posner (1980), here we did not observe any behavioral cuing benefit. This is likely 

due to the fact that our VSTM paradigm is not configured to produce the behavioral cuing 

benefit. In Posner’s study, participants made speeded detection for the appearance of the cued 

target. In the present experiment, this was not measured. Rather, behavioral accuracy and RT 

mainly reflected responses to the shape probe one second after the presentation of the target 

shapes. Nevertheless, the effect of cuing did impact distractor processing in superior IPS, 

showing that in this case fMRI measures could be more sensitive and informative than behavioral 

measures. 

 In our experiment, we used a fixed time interval between the initial onset of the cue and 

the onset of the stimulus display. It would be worth manipulating this interval in future studies to 

see whether distractor processing is modulated by this interval during target object individuation 

and identification. In any event, the 1000 ms cuing interval used in this experiment, which was 
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the same as that used in Posner (1980), clearly illustrates the feasibility of using spatial cuing to 

prioritize the processing of targets among distractors. 

 

1.4 General Discussion 

	  
In this study, we investigated the processing of task-irrelevant information during visual 

object individuation and identification by examining the neural substrates mediating these 

processes. We asked participants to encode in VSTM target object shapes among distractor 

object shapes appearing at different spatial locations and in different colors and examined fMRI 

responses from parietal and occipital regions. In Experiment 1, we found that distractor 

processing depended on the availability of processing resources. Specifically, only when the 

demand to encode target shapes was low, did the presence of distractors increase neural 

responses in inferior IPS, LOC, and superior IPS. Given the involvement of these brain regions in 

object individuation and identification (e.g., Xu & Chun, 2009), these results suggest that, under 

low target encoding load, distractors were individuated and encoded. However, neural responses 

for distractors were short-lived as they were only present during the VSTM encoding period but 

not during the subsequent VSTM delay period. In Experiment 2, we examined whether distractor 

encoding under low task load could be suppressed if spatial attention was deployed ahead of the 

time to the target locations. Precuing target locations decreased distractor processing under low 

task load in superior IPS but not in inferior IPS or LOC. Thus, although distractor processing 

under low task load is obligatory and automatic during object individuation in inferior IPS and 

object encoding in LOC, it can be attenuated during object encoding in superior IPS with 
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precuing.  

Consistent with this result, Xu (2010) reported that superior IPS encoded only task-

relevant features regardless of the target encoding load whereas LOC encoded task-irrelevant 

information at low load. Likewise, task-dependent encoding in parietal regions has also been 

reported in neurophysiology studies (Freedman & Assad, 2006; Toth & Assad, 2002). Thus, 

although distractor processing was not suppressed in superior IPS in Experiment 1, with the help 

of precuing, this brain region can exhibit some degrees of task-dependent responses in 

Experiment 2.  

Results of this study, together with previous studies showing the impact of perceptual and 

working memory load on distractor processing in other visual tasks, support the perceptual load 

theory which argues that the processing of distractors depends on the available resources and 

only occurs when the main task is relatively easy and does not consume all the available resources 

(Lavie, 2005; Lavie et al., 2004; Lavie & Tsal, 1994; Pinsk, Doniger, & Kastner, 2004; Torralbo & 

Beck, 2008; Xu, 2010; Yi et al., 2004). Meanwhile, the present study also identifies situations in 

which distractor processing under low task load may be suppressed (i.e., during the VSTM delay 

period) or substantially attenuated (i.e., with spatial cuing during object encoding in superior 

IPS).  

Because distractor suppression related neuronal activities could also increase fMRI 

responses, one may argue that an increased fMRI response at low task load could reflect 

distractor suppression, rather than encoding. This, however, is unlikely the case due to the 

following two reasons. First, although distractor suppression was more critical at high task load 

when participants needed to dedicate all their encoding resources to targets, we did not see an 
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increased fMRI response to distractor processing at high task load in both Experiment 1 and 2. 

Second, with spatial cuing in Experiment 2, more suppression would be applied to distractors, 

and yet we observed an attenuated fMRI response to distractor processing at low task load in 

superior IPS and no response to distractor processing at high task load in all three ROIs. Thus, 

the distractor-related fMRI responses reported here reflect distractor encoding and not 

suppression. 

Although the present study showed that distractors could be individuated and encoded 

when the target encoding load was low, it is unknown whether target and distractor shapes were 

encoded with the same precision. When they are task-relevant, shapes need to be encoded in 

sufficient resolution to support later memory recognition; when they are task-irrelevant, however, 

shapes may not be encoded in such fine resolution. Recent studies using multi-voxel pattern 

analysis (MVPA) have been able to decode visual information representation in a brain region by 

examining fMRI voxel response patterns (Cox & Savoy, 2003; Haxby et al., 2001; Norman et al., 

2006). Further research using the MVPA approach may inform us of the exact nature of 

distractor shape representation during visual object individuation and identification.  

In summary, the current study showed that, under low target encoding load, distractors 

elicited significant neural responses across a number of brain regions previously shown to be 

involved in visual object individuation and identification. This suggests that distractors are 

individuated and encoded at load target encoding load. However, such neural responses for 

distractors were short-lived as they were only present during the VSTM encoding but not the 

delay period. Although distractor processing was obligatory and automatic at low task load, with 

spatial cuing, it could be attenuated during object encoding in superior IPS. 
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2 

Flexible visual information representation in 

human intra-parietal sulcus 

 
2.0 Abstract  

 
Even with identical visual input, our conscious mind can selectively encode what is most relevant 

to the current behavioral goals or thoughts of the observer. This mental ability requires the 

support of a neural mechanism that can flexibly encode a variety of visual information. In 

Macaque monkey electrophysiology studies, neurons in lateral intra-parietal sulcus (LIP) have 

been shown to exhibit such task-dependent encoding flexibility (Fitzgerald et al., 2011; Freedman 

& Assad, 2006; Toth & Assad, 2002). Here, we show that a similar neural mechanism exists in 
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human parietal cortex. Using functional magnetic resonance imaging (fMRI) and multi-voxel 

pattern analysis (MVPA), we found that, with identical visual input under different task 

conditions, neural response pattern in human superior intra-parietal sulcus (IPS) could decode 

object shape information only when it was required by the task. Inferior IPS (an adjacent region 

along IPS) carried object shape representation regardless of task demands, but the representation 

was modulated by task demands. However, other visual object area, such as lateral occipital area 

(LO), did not show task-dependent modulation of shape. These results show that human parietal 

regions are directly involved in object shape representation in a flexible manner. This capability 

likely places IPS as a key neural mechanism mediating the moment-to-moment visual 

information processing in the human brain. 

 

2.1 Introduction 

 
In everyday life, we often encounter multiple complex objects at the same time. To 

process such a huge amount of incoming visual information efficiently, it is important for our 

visual system to select behaviorally relevant information. Neurophysiological research has 

provided strong evidence of such flexible visual information processing in lateral intra-parietal 

(LIP) neurons and showed that these neurons encode behaviorally relevant visual stimuli 

(Gottlieb, Kusunoki, & Goldberg, 1998; Toth & Assad, 2002). Neuroimaging studies suggest 

similar task-relevant visual information processing occurs in human parietal cortex. For example, 

visual short-term memory (VSTM) (Baddeley, 1986; Luck & Vogel, 1997; Phillips, 1974), which 

stores task-relevant information, involves the recruitment of posterior parietal cortex. ERP 
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studies found that neural signal from posterior parietal region tracked the number of items held 

in VSTM (Vogel & Machizawa, 2004; Vogel, McCollough, & Machizawa, 2005). fMRI studies 

further identified intra-parietal sulcus (IPS), a sub region in parietal cortex, closely tracked 

VSTM capacity (Todd & Marois, 2004; 2005; Xu & Chun, 2006). Moreover, recent multi-voxel 

pattern analysis (MVPA) studies also support that posterior parietal region including IPS directly 

represent VSTM contents (Christophel & Haynes, 2014; Christophel, Hebart, & Haynes, 2012; 

but see Riggall & Postle, 2012). These findings suggest that IPS region encodes task-relevant 

visual information.  

Nevertheless, it is not yet clear whether or not task-relevant visual information is flexibly 

represented in IPS. Specifically, it is still not known whether IPS region encodes all the features of 

task-relevant objects or extracts only task-relevant feature(s) from objects. To answer this 

question, in the current study, we investigated the neural representation of visual objects in IPS 

under four different task demands.  

We examined three brain regions that are involved in visual object processing. Superior 

and inferior IPS are sub-regions along IPS previously shown to be involved in visual object 

identification and individuation, respectively (Xu & Chun, 2006; 2009). Superior IPS is 

previously shown to participate in object information encoding and storage in VSTM tasks 

(Todd & Marois, 2004; Xu & Chun, 2006; 2009). Therefore, it is a region where task-relevant 

visual information may be represented. Inferior IPS is anatomically close to superior IPS, but its 

functional role differs from superior IPS. Inferior IPS has previously been shown to participate in 

object selection and individuation via location and may contain coarse object information 

necessary for carrying out these operations (Jeong & Xu, 2013; Xu & Chun, 2006; 2009). In 
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addition, as a control region, we examined LO, which has been shown to be involved in visual 

object perception and recognition (Grill-Spector, Kushnir, Hendler, & Malach, 2000; Kourtzi & 

Kanwisher, 2000; Malach et al., 1995; A. D. Milner et al., 1991). 

 

 

Figure 5. Illustration of the task. Participants saw the sequential presentation of images of one object 
category (e.g., shoe). In the shape, location, and conjunction 1-back tasks, participants monitored an 
immediate repetition of shape, location, or shape and location conjunction of the stimuli, respectively. In 
the motion detection task, they detected occasional vertical or horizontal movement of the stimuli 
(depicted as black arrows in the figure). The displays in the bottom depicted trials in which a repetition (in 
the 1-back tasks) or a motion (in the motion detection task) occurred. 

 

While undergoing an fMRI scan, participants viewed the sequential presentation of 

images. They performed 4 different tasks in different runs within the same scan session: three 1-
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back tasks requiring participants to detect an immediate repetition in either object shape, 

location or the conjunction of the two features, and a motion detection task. In each block of 

trials, ten object images from the same category that shared a general shape contour (e.g., 10 side-

view shoe images, see Figure 5) were presented. The object images appeared randomly in one of 

four possible positions either all above or all below the central fixation dot. This allowed us to 

manipulate image location repetition between successively presented trials (see Methods).  

Each task had identical visual input, but required different feature(s) to be task-relevant. 

In the shape 1-back task, participants viewed the images and detected an immediate repetition of 

the same exemplar while ignoring location changes, making only object shape task-relevant. In 

the location and conjunction 1-back tasks, they detected an immediate repetition of position of 

the exemplar and both position and identity of the exemplar, respectively. Thus, location but not 

shape was task-relevant in the location 1-back task, and both location and shape were task-

relevant in the conjunction 1-back task. In the motion detection task, participants passively 

viewed the images and detected the direction of an occasional image jitter (either horizontal or 

vertical), making neither object shape nor location task-relevant. 

 

2.2 Results 

	  
Participants’ behavioral performance was fairly accurate across the four tasks (Mean±SD: 

90.03±5.56%, 88.76±6.99%, 89.4±5.51%, and 93.15±5.35%, respectively, for the shape, location, 

conjunction 1-back tasks, and the motion task). There was a main effect of task, F(3, 39) = 3.33, p 
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= .029, but differences between tasks did not reach significance in post-hoc pairwise comparisons 

(ps > .149, Bonferroni corrected).  

 

Task-dependent encoding 

To examine whether visual representation is modulated by task demands, we evaluated 

the decoding of task-relevant and –irrelevant feature dimensions in superior IPS, inferior IPS, 

and LO using a linear support vector machine (Cox & Savoy, 2003; Kamitani & Tong, 2005). For 

task-relevant decoding, we combined decoding accuracies for shape in the shape and conjunction 

1-back tasks, and those for location in the location and conjunction 1-back tasks. For task-

irrelevant decoding, decoding accuracies for shape in the location 1-back and motion tasks, and 

those for location in the shape 1-back and motion tasks were combined (see Methods).  

 

 

Figure 6. Decoding accuracies of task-relevant (dark grey bars) and task-irrelevant (light grey bars) 
feature dimensions in superior IPS, inferior IPS, and LO. Relevant features were shape in the shape and 
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conjunction 1-back tasks, and location in the location and conjunction 1-back tasks. Irrelevant features 
were shape in the location 1-back and motion detection tasks, and location in the shape 1-back and 
motion detection tasks. Relevant features were decoded significantly better than irrelevant features in 
superior and inferior IPS, but not in LO, showing task-dependent representation in these parietal regions. 
Error bars indicate within-subject standard error of the mean. * p < .05; ** p < .01; *** p < .001.  

 

A repeated measures ANOVA with region (superior IPS, inferior IPS, and LO) and task-

relevancy (relevant vs. irrelevant) as factors revealed a main effect of region (F(2,26) = 66.075, p 

< .001), with overall lower decoding accuracy in superior IPS than in inferior IPS and LO (t(13) = 

8.044, p < .001, and t(13) = 12.667, p < .001, respectively, Bonferroni corrected) (Figure 6). There 

was also a main effect of task, with task-relevant dimensions decoded better than task-irrelevant 

dimensions (F(1,13) = 12.285, p = .004). Importantly, interaction between region and task-

relevancy was significant (F(2,26) = 6.552, p = .005). Further pairwise comparisons revealed that 

task-relevant decoding showed significantly greater accuracy than task-irrelevant decoding in 

superior and inferior IPS (ts > 2.717, ps < .018). In addition, this task-relevancy effect was 

significantly greater in superior and inferior IPS than in LO (region by task-relevancy 

interactions, Fs > 7.271, ps < .018).  

Taken together, we found visual information representation was decoded better when it 

was task relevant in superior and in inferior IPS, but not in LO. This task-driven visual 

information representation in superior and inferior IPS is similar to responses observed in LIP 

neurons in monkey neurophysiology studies (Fitzgerald, Swaminathan, & Freedman, 2012; 

Freedman & Assad, 2006; 2009; Swaminathan & Freedman, 2012; Toth & Assad, 2002). 

 

Shape and Location decoding 
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Next, we examined shape and location decoding separately in each task to determine 

which feature dimension contributed to task-dependent representation. First, we tested shape 

and location decoding performance in each task in superior IPS. In the shape 1-back task, object 

shape, rather than its location, became task relevant. We found significant shape decoding (t(13) = 

3.329, p = .005) and marginally significant location decoding in the shape 1-back task (t(13) = 1.82, 

p = .092) (Figure 7a). In contrast, in the location 1-back task, location, but not shape, could be 

decoded (t(13) = 2.722, p = .017, and t(13) = 1.532, p = .125, respectively). In the conjunction 1-back 

task where both shape and location were task-relevant, we observed successful decoding of both 

shape and location (ts > 2.747, ps < .017). In the motion detection task, neither shape nor 

location was task-relevant and we failed to find any information representation (t(13) < 1, p = .913 

for shape, t(13) = 1.147, p = .272 for location).  

To determine whether shape and location representations were modulated by task 

demands, we compared task-relevant and task-irrelevant shape (or location) decoding accuracies. 

In superior IPS, shape decoding accuracy in relevant tasks (shape and conjunction 1-back tasks) 

were greater that that in irrelevant tasks (location 1-back and motion tasks), showing task-

dependent shape representation (t(13) = 2.14, p = .052). However, decoding accuracies of location 

in relevant and irrelevant tasks were not different from each other (location decoding in the 

location and conjunction tasks vs. that in the shape and motion tasks, t(13) = 1.37, p = .192).  

Thus, superior IPS carried shape representation, but only when such information was 

required by the task. Significant location decoding was found in the location and conjunction 1-

back tasks, where such information was required. Nevertheless, task-dependent modulation of 
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location was not as dynamic as shape representation, as location decoding accuracy did not differ 

significantly whether tasks required location information or not.  

 

 

Figure 7. Decoding accuracies of shape and location in each task in (a) superior IPS, (b) inferior IPS and 
(c) LO. Dark and light grey bars indicate shape and location decoding, respectively. Decoding accuracies 
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were compared to the chance level (50%). X axis shows shape, location, conjunction, and motion tasks. 
Error bars indicate within-subject standard error of the mean.  
(a-b) In superior and inferior IPS, shape decoding accuracies in the shape and conjunction 1-back tasks 
were greater than those in the location 1-back and motion tasks, showing task-dependent shape 
encoding. However, location decoding accuracies did not differ between tasks. (c) In LO, both shape 
location could be decoded in all four tasks, but task did not modulate shape and location representations 
by task. † p < .1; * p < .05; ** p < .01; *** p < .001. 

 

Next, we evaluated shape and location decoding in inferior IPS in each task. Inferior IPS 

revealed strong location representation across all four tasks (ts > 11.649, ps < .001) (Figure 7b). 

Significant location decoding in inferior IPS is consistent with its role in object individuation 

suggested by previous studies (Xu, 2009; Xu & Chun, 2006). Interestingly, object shape also could 

be decoded in all four tasks (ts > 3.397, ps < .005 in the shape, location, and conjunction 1-back 

tasks; t(13) = 2.144, p = .051 in the motion detection task). Though shape could be decoded even in 

tasks that did not require such information, the decoding accuracy was significantly lower than 

that in tasks required shape information (shape decoding in the shape and conjunction tasks vs. 

in the location and motion tasks, t(13) = 5.448, p  < .001). Location decoding did not show any 

difference whether task required location encoding or not (t < 1, p = .907). Thus, inferior IPS also 

showed task-dependent object shape, but not location, representation as superior IPS did. 

To test whether task-dependent modulation of shape representation is prevalent in the 

visual system, next we examined LO, a visual object processing region. In LO, both object shape 

and location information could be reliably decoded in all four tasks (ts > 16.348, ps < .001, Figure 

7c), consistent with previous findings (Kravitz, Kriegeskorte, & Baker, 2010; Schwarzlose, 

Swisher, Dang, & Kanwisher, 2008). Both shape and location decoding did not differ between 

relevant and irrelevant tasks, showing task-independent object representation in LO (ts < 1, ps 

> .551). 
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These results suggest that task-dependent modulation of visual representation found in 

superior and inferior IPS was caused by better shape decoding in tasks that required such 

information.  

 

2.3 Discussion and conclusion 

	  
Taken together, we found that functional sub-regions in human IPS carry visual shape 

representation in a task-dependent manner. Across four tasks with identical visual input, 

superior IPS discarded irrelevant shape feature of the attended object when such information was 

not required by task, consistent with previous findings that showed selective encoding of task-

relevant information in superior IPS (Jeong & Xu, 2013; Xu, 2010) and flexible information 

processing in human parietal cortex (Liu, Hospadaruk, Zhu, & Gardner, 2011; Thompson & 

Duncan, 2009; Woolgar, Hampshire, Thompson, & Duncan, 2011). Inferior IPS, an adjacent 

region along IPS, encoded shape representation regardless of task demands. However, shape was 

decoded better when it was task-relevant in inferior IPS, showing task-dependent modulation.  

Interestingly, object location representation was not dynamically modulated by task 

demands in both superior and inferior IPS. This could be due to obligatory processing of location 

information during object processing. Theories on visual object perception and recognition 

suggest that location encoding is the initial stage of visual object processing. For example, 

according to feature integration theory, focal attention needs to bind location and features to 

enable identification of an object with multiple features (Treisman & Gelade, 1980). Similarly, 

object-file theory suggests that objects are first individuated based on location and then their 
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detailed features are identified (Kahneman et al., 1992; Xu & Chun, 2009). Also, in the current 

study, participants could not predict the exact position of the object as it appeared in a different 

position in every trial. Thus, they had to locate the object as the first step of visual information 

processing in all four tasks, resulting in task-independent location representation.   

 The task-dependent shape representation in human IPS is similar to the response 

properties of LIP neurons previously reported in monkey neurophysiological studies. For 

example, LIP neurons have exhibited selectivity for shape (Sereno & Maunsell, 1998), color (Toth 

& Assad, 2002), task sets (Stoet & Snyder, 2004), and category membership (Freedman & Assad, 

2006; Swaminathan & Freedman, 2012). Although the exact human homologue of LIP is still 

under debate, previous studies on visual information encoding in superior IPS (Christophel et al., 

2012; Jeong & Xu, 2013; Xu, 2010; Xu & Chun, 2006; 2009) and our current results suggest 

possible functional correspondence between the human superior IPS and monkey LIP. 

Growing evidence suggests that human parietal cortex is involved in a network of regions 

that enables flexible information processing (Cole et al., 2013; Fedorenko, Duncan, & Kanwisher, 

2013; Vincent et al., 2008). The current results showed human IPS may be one of the key regions 

in the control network that supports the moment-to-moment visual information processing in a 

task-dependent manner. 

 

2.4 Methods 

 

Participants 
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Fourteen participants took part in the study including the author (8 females, mean age 

29.5, SD 3.52). One additional participant was scanned, but excluded from further data analysis 

due to a failure to maintain proper fixation. All participants were right-handed and had normal 

or corrected-to-normal visual acuity. They were recruited from the Harvard University 

community, gave an informed consent prior to participation and received payments. The 

experiment was approved by the Harvard University Committee on the Use of Human Subjects. 

 

Experimental design 

Main experiment 

The main experiment included four tasks; shape 1-back, location 1-back, conjunction 1-

back, and motion detection task. The display contained a white-colored square that subtended 

10.5° x 10.5° in the center on a grey-background (see Figure 5). In each block, ten exemplars 

from one object category were shown sequentially in one visual field within the white-colored 

square. Gray-scaled photographs of shoes and bikes with a side view were used as stimuli (see 

Figure 5) and different object categories were viewed in different trial blocks. Each item 

subtended approximately 5° x 2.6°. Though all the exemplars within a block were presented in 

one visual field, the exact position of the item within the visual field varied slightly. Specifically, 

there were four possible positions in each visual field; upper left, upper right, lower left, and 

lower right, with the distance between adjacent positions being approximately 0.9° horizontally 

and vertically apart. In the shape 1-back task, participants were asked to pay attention only to 

identity repetition and ignore positions. In the location 1-back task, they were asked to pay 

attention to position repetition while ignoring identities. In the conjunction 1-back task, they 
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monitored both identity and position repetition. To ensure participants pay attention to both 

dimensions, catch trials with only identity or position repetition were included in the 

conjunction 1-back task. Participants had to press a button when an immediate repetition of the 

attended feature(s) occurred. In the motion detection task, participants monitored an occasional 

spatial jitter (either horizontal or vertical) of the item and pressed a button corresponding to the 

direction of the jitter. The repetition (or motion) occurred once in half of the stimulus block and 

twice in the other half of the stimulus blocks. Thus, participants had to pay attention even after 

they detected the first repetition/motion, because there could be second repetition/motion. The 

order of the four tasks was counterbalanced across participants. 

Sixteen stimulus blocks were included in each run (2 object categories x 2 locations x 4 

repetitions). The order of the stimulus blocks and the order of the images within each block were 

randomly decided in each run. Each stimulus block lasted 8 sec and contained 10 images, with 

each image appearing 300 ms followed by a 500 ms blank display. Fixation block, which lasted 8 

sec, was inserted at the beginning and end of the run, and between each stimulus block. Each 

participant received 4 runs for each task, each lasting 4 min 32 sec.  

To ensure proper central fixation of each participant, we monitored eye movements in 

the main experiment with an EyeLink 1000 eye tracker.  

 

Inferior IPS/LO localizer  

Participants viewed blocks of objects and noise images (both subtended approximately 

12°x 12°). The object display contained four objects that appeared above, below, left, and right to 

the fixation (the distance between the fixation and the center of each object was 4°). Gray-scaled 
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photographs of everyday objects including those appeared in the main experiment (e.g., shoes, 

bikes, guitars, couches, and so on) were used as stimuli. The objects appeared on white-colored 

placeholders (4.5° x 3.6°) that were visible during the object image block. The noise images were 

phase-scrambled version of the same object images. Each block lasted 16 sec and contained 20 

images, with each image appearing for 500 ms followed by a 300 ms blank display. The 

participants were asked to detect the direction of a slight spatial jitter (either horizontal or 

vertical), which occurred randomly once in every 10 images. Eight object blocks and eight noise 

blocks were included in each run. Each participant conducted two or three runs, each lasting 4 

min and 40 sec.  

 

Superior IPS localizer  

To localize the superior IPS, we conducted an object VSTM experiment. Participants 

were asked to remember category and location of objects in a sample display. The sample display 

contained 1 to 4 objects appearing in 4 possible locations. Each item in the sample display was 

chosen from a different category. After a short delay, a probe item (a new object) was shown at 

one of the locations previously occupied by sample items. For no-change trials, the probe item 

matched the category of the sample item shown at the same location in the sample display. For 

change trials, the probe item was an exemplar from a different category. Half of trials were 

change trials. Gray-scaled photographs of objects from four categories (shoe, bike, guitar, and 

couches) were used as stimuli. The size of the individual object and the whole display were 

identical to those used in inferior IPS/LO localizer experiment.  
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Each trial began with a fixation period (1,000 ms), followed by a sample display (200 ms), 

a delay period (1,000 ms), and a test display/response period (2,500 ms), and a feedback (1,300 

ms). With a counterbalanced trial history design, there were 15 stimulus trials for each set size as 

well as 15 fixation trials in which only the fixation dot appeared for 6 sec. Three filler trials were 

added for practice and trial history balancing, but were excluded from data analysis. Each 

participant was tested with two runs, each lasting 8 min.  

 

fMRI methods 

fMRI data were acquired from a Siemens Tim Trio 3T scanner at the Harvard Center for 

Brain Science in Cambridge, MA. Participants viewed images back projected onto a screen at the 

rear of the scanner bore through an angled mirror mounted on the head coil. All experiments 

were controlled by an Apple MacBook Pro running Matlab with Psychtoolbox extensions 

(Brainard, 1997). For anatomical images, High-resolution 144 T1-weighted images (echo time, 

1.54 ms; flip angle, 7°; 256 x 256 matrix size; repetition time, 2,200 ms; 1 mm x 1 mm x 1 mm 

voxel size) were acquired. For the main experiment and inferior IPS/LO localizers, thirty-one 

slices of 3 mm thick (3 mm x 3 mm in plane, 0 mm skip) T2*-weighted images were acquired 

using standard protocols. T2*-weighted image parameters were; echo time 30 ms; flip angle, 90°; 

72 x 72 matrix; repetition time, 2,000 ms (136 volumes for the main experiment, 140 volumes for 

inferior IPS/LO localizer runs).  For superior IPS localizer runs, twenty-four slices of 5 mm thick 

(3 mm x 3 mm in plane, 0 mm skip) images parallel to AC-PC line were acquired (320 volumes; 

echo time, 29 ms; flip angle, 90°; 72 x 72 matrix; repetition time, 1,500ms). 
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Data analysis 

fMRI data were analyzed on native space with BrainVoyager QX 

(http://www.brainvoyager.com). 3-D motion correction, slice acquisition time correction, and 

linear trend removal were conducted during data preprocessing.  

LO and inferior IPS ROIs were defined as voxels showing higher activations to the objects 

than to the noise displays (false discovery rate (FDR) q < .05, corrected for serial correlation) in 

lateral occipital cortex and IPS, respectively. Following previous studies (Todd & Marois, 2004; 

Xu & Chun, 2006), superior IPS was defined as voxels that tracked each participant’s behavioral 

VSTM capacity. VSTM capacity of each participant was estimated using Cowan’s K formula 

(Cowan, 2001). To define the superior IPS ROI, we performed multiple regression analysis with 

the regression coefficients for each VSTM set size weighted by each participant’s behavioral 

VSTM capacity for that set size. Superior IPS was defined as voxels showing significant 

activations in the regression analysis (FDR q < .05, corrected for serial correlation).  

We overlaid ROIs onto the data from the main experiments and extracted each voxel’s β-

weights for each stimulus condition from each ROI. To decode shape and location 

representations in each ROI in each task, we used a linear support vector machine (SVM) (Chang 

& Lin, 2011). Each voxel’s β-weight was normalized using z score. We normalized the data to 

remove possible contribution of response amplitude differences among tasks. This normalization 

did not have a significant influence as non-normalized data also showed similar results. We 

divided the four runs in each task into three training runs and one test run, with N-fold cross 

validation. Linear classifiers were trained to predict shape (shoe vs. bike) and location (up vs. 
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down) in each task in each ROI separately. Decoding accuracy was compared to the chance level 

(50%) using one sample t-test.  

To evaluate the existence of task-dependent representation across ROIs, we averaged 

decoding accuracies of task-relevant and -irrelevant feature dimensions separately. Task-relevant 

dimensions were shape in the shape and the conjunction 1-back tasks, and location in the 

location and the conjunction 1-back tasks. Task-irrelevant dimensions were shape in the location 

1-back and the motion detection tasks, location in the shape 1-back and the motion detection 

tasks. Repeated measures ANOVA with region (superior IPS, inferior IPS, and LO) and task-

relevancy (relevant vs. irrelevant dimensions) as factors, and paired samples t-test were 

performed to evaluate task-dependent representation within and between ROIs.  

All statistical tests were two-tailed with a significance level of .05. 
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3	  

Abstract object identity representation in human 

superior intra-parietal sulcus 

 
3.0 Abstract  

	  
Although the primate parietal cortex has been traditionally associated with spatial location and 

attention-related processing (Colby & Goldberg, 1999; Gottlieb & Balan, 2010), using fMRI and 

multi-voxel pattern analysis (MVPA), here we show that highly abstract object identity 

information can be robustly represented in human superior intra-parietal sulcus (IPS), a parietal 

region previously shown to track the content of visual short-term memory (VSTM) (Todd & 

Marois, 2004; Xu & Chun, 2006). We presented human observers with face images from well-

known movie actors and asked them to extract face identities from these images. Despite large 
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variations in viewpoint, hairstyle, facial expression and age, in superior IPS, we found higher 

correlations of fMRI response patterns between two sets of face images belonging to the same 

than different actors, indicating abstract face identity representation in this brain region. Such 

identity representation was not limited to faces and could also be seen for well-known cars when 

they were shown embedded in different scenes, viewpoints and sizes. Critically, identity 

representation in superior IPS closely tracked perceived object identity similarity in behavioral 

measures, supporting its role in goal-directed visual information processing. Meanwhile, none of 

the ventral and lateral visual object processing regions we examined exhibited such 

representation. The human parietal cortex thus plays a greater role than simply directing 

attentional resources during visual perception as is commonly known. But rather, a sub-region 

within parietal cortex can directly represent incoming visual information as abstract as object 

identity. We propose that human superior IPS functions similarly as the random access memory 

(RAM) in a computer and can flexibly represent a variety of task-relevant visual information to 

support goal-directed visual information processing in the brain.  

 

3.1 Introduction 

 

Decades of cognitive neuroscience research has attributed the function of the primate 

parietal cortex primarily to spatial location and attention-related processing (Colby & Goldberg, 

1999; Gottlieb & Balan, 2010). Emerging evidence from monkey single neuron recording studies, 

however, shows that object information, such as color, shape, motion, and category membership, 
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can be directly represented in lateral intra-parietal (LIP) sulcus (Fitzgerald et al., 2011; Freedman 

& Assad, 2006; Sereno & Maunsell, 1998; Toth & Assad, 2002). Consistent with these 

neurophysiological findings, human fMRI studies have reported the encoding of basic visual 

features, such as color and shape, along IPS (Christophel et al., 2012; Konen & Kastner, 2008; 

Todd & Marois, 2004; Xu & Chun, 2006). Superior IPS, in particular, has been linked to the 

encoding and storage of object color and shape in VSTM in a task dependent manner (Jeong & 

Xu, 2013; Todd & Marois, 2004; Xu, 2010; Xu & Chun, 2006; 2009; Xu & Jeong, in press). This 

collection of evidence calls for a revision of our understanding of the role of the primate parietal 

cortex in visual processing and suggests that this brain region plays a critical role in task-driven 

visual representation.  

In everyday vision, task-relevant visual information varies drastically across tasks, ranging 

from simple features, such as color and shape, to high-level ones, such as abstract object identity 

representation invariant to changes in view point, size and other non-essential visual features. 

Although the representation of abstract object identity is fundamental to human vision, whether 

or not it can be directly represented in the primate parietal cortex has not been shown. If the 

parietal cortex plays a critical role in task-driven visual representation, then it must be capable of 

representing a great variety of visual information, including abstract object identities. Moreover, 

such abstract object identity representation must be directly linked to behavior.  In the studies 

presented here, we provide evidence supporting both of these predictions.  

Among the many object identities we extract in everyday vision, face identity is perhaps 

the most challenging one to form, owning to the greater amount of changes that could be 

associated with faces without changing their identities. This includes changes such as viewpoint, 
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expression, hairstyle, and age. Reflecting this computational challenge, a specialized brain 

network has been dedicated for face processing (Tsao, Moeller, & Freiwald, 2008). Within this 

network, face-identity representation has been reported in regions surrounding the right 

fusiform face area (FFA) and in anterior inferior temporal cortex in both neuropsychological and 

fMRI MVPA studies (Anzellotti, Fairhall, & Caramazza, 2013; De Renzi, Perani, Carlesimo, 

Silveri, & Fazio, 1994; Kriegeskorte, Formisano, Sorger, & Goebel, 2007; Nestor, Plaut, & 

Behrmann, 2011). However, whereas real-world faces vary freely across multiple dimensions, 

these fMRI studies have only employed limited manipulations, changing only viewpoint or 

expression, and have not revealed the representation of real-world abstract face identity in these 

ventral brain regions. Regardless, given the importance of face identity representation in 

everyday vision and social interactions, parietal cortex ought to carry these representations 

robustly if it were to play a critical role in task-driven visual processing. Thus, to provide the 

most stringent test on parietal cortex’s ability to represent abstract object identities, we tested its 

ability to represent face identity from real-world face images varying freely in viewpoint, 

expression, hairstyle, and age. We used fMRI MVPA, a tool that has been widely used in recent 

fMRI studies to understand information representation in the brain (Haxby et al., 2001; Norman 

et al., 2006). 

 

3.2 Experiment 1 results 

	  
In Experiment 1, we used face images of Leonardo DiCaprio and Matt Damon, two well-

known actors matched in overall appearance. To encourage the formation of real-world abstract 
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face identity representations, we varied viewpoint, hairstyle, facial expression, and age of the 

faces and constructed two unique face sets for each actor. While lying in an MRI scanner, 

observers viewed the sequential presentation of the images in each face set multiple times and 

detected an occasional presence of an oddball face drawn from one of eight other male actors 

(Figure 8a and Figure 12). The formation of abstract face identity for the two actors was thus 

necessary to ensure successful task performance. To remove the contributions of oddball face 

responses to the observed fMRI response patterns, they were excluded from data analysis (see 

Methods). In addition to face images, we also showed the written names of each actor in different 

fonts in the same oddball task (Figure 8b). The name task allowed us to evaluate whether brain 

responses associated with face images reflected a visual code (i.e., abstract face identity 

representation) or a phonological code (i.e., observers rehearsing an actor’s name), as 

phonological code is automatically activated during word reading (Van Orden, 1991). Although 

names can evoke face identity representations, because our oddball name task could be 

performed based on the phonological code alone, the activation of face identity representations 

would be unnecessary here. 

We obtained averaged fMRI response patterns for each face set (or name set) of each 

actor in independently defined brain regions of interest (ROIs, see Figure 8c and Methods). We 

targeted our investigation in the parietal cortex to superior IPS, as this brain region tracks the 

encoding and storage of simple visual features in VSTM in a task-dependent manner (Todd & 

Marois, 2004; Xu & Chun, 2006), and is thus a promising parietal region where abstract face 

identity representation may exist. Besides superior IPS, we also examined representation in three 

ventral brain regions, one involved in object shape representation - the lateral occipital region 
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(LO) (Malach et al., 1995), one involved in face processing - the right FFA(Kanwisher, 

McDermott, & Chun, 1997), and the third involved in letter string processing - the visual word 

form area (VWFA) (L. Cohen et al., 2000). 

 

Figure 8. Experiment 1 example stimuli, trial structure and example ROIs. a, Example images from 
a block of face trials. Face images from two well-known actors, Leonardo DiCaprio and Matt Damon, were 
used here. Within a block of trials, observers viewed a sequential presentation of ten face images sharing 
the same identity but differed in viewpoint, hairstyle, facial expression, and age. Observers were asked to 
detect the occasional presence of an oddball face from one of eight other actors. James Dean’s face is 
shown here as the oddball among Leonardo DiCaprio’s faces. b, Example images from a block of name 
trials. Actor names written in different fonts were used here in an oddball name detection task. James 
Dean’s name is shown here as the oddball among Leonardo DiCaprio’s names. Oddball occurred rarely 
and blocks containing the oddball were removed, leaving only blocks containing face or name images of 
the same actor included in the final analysis.  c, Example ROIs from one representative observer.  

 

Similar to the approach used by Haxby and colleagues (2001), we correlated fMRI 

response patterns obtained from different face sets in each ROI and Fisher-transformed the 

resulting correlation coefficient (see Methods). In superior IPS, two face sets from the same actor 

elicited a higher correlation than two each from a different actor (Figure 9b, paired samples t-test, 



	  
	  

	  
	  
59	  

two-tailed, t(12) = 2.86, P = .014; this applies to all subsequent analyses except where noted). Thus, 

despite large variations in face appearance, two distinctive face sets sharing an identity were 

represented more similarly than two that differed in identity, indicating the representation of 

abstract face identities in superior IPS. Such representation, however, was not found in LO, the 

right FFA, or VWFA (ts < 1.13, Ps > .27; see Figure 9b). Further pairwise comparisons revealed 

that superior IPS differed significantly from the other ROIs in abstract face identity 

representation (region by identity interaction, Fs > 8.71, Ps < .012). Differences among the brain 

regions could not be attributed to voxel number differences, as both superior IPS and LO 

contained similar number of voxels (see Table 1). Additionally, when the number of voxels in 

each ROI was limited to 50, the same results were obtained (see Figure 13a).  

 

 

Figure 9. Experiment 1 design and results. a, Schematic illustration of the key comparisons made in 
the experiment. To evaluate the existence of abstract identity representation, we examined whether 
within-identity correlation was greater than between-identity correlation. Within-identity correlation referred 
to the correlation of fMRI voxel response patterns between two face sets (or two name sets) from the 
same actor, whereas between-identity correlation referred to pattern correlation between two face sets (or 
two name sets) each from a different actor. b, Fisher-transformed correlation coefficients (z) from face 
sets in superior IPS, LO, the right FFA, and VWFA. Only superior IPS showed a higher within-identity than 
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between-identity correlation, indicating abstract face identity representation in this brain region despite 
large variations in viewpoint, hairstyle, facial expression and age of the face images used. c, Fisher-
transformed correlation coefficients from name sets in the same brain regions. None of the regions 
showed a higher within-identity than between-identity correlation, indicating the absence of identity 
representation in these brain regions when name stimuli were used. Grey bars indicate within-identity 
correlations and white bars indicate between-identity correlations. Error bars indicate within-subject 
standard error of the mean. * P < .05. 

 

Table 1. Number of voxels in each ROI (mean and SD).  
 
 Superior IPS LO Right FFA PPA VWFA 

Experiment 1 (faces, 2 actors) 260.61  
(115.19) 

303.38  
(51.12) 

70.46  
(28.23) - 68.3  

(29.25) 

Experiment 2 (cars) 271.61  
(70.13) 

275.07  
(46.60) - 227.23 

(63.51) 
64.15  

(27.88) 

Experiment 3 (faces, 8 actors) 276.09 
(81.86) 

322.8 
(59.45) 

69 
(23.87) - - 

 

Face identity representation in the superior IPS could not be attributed to perceptual 

differences among the face sets, as low-level perceptual differences such as luminance and spatial 

frequency could not account for our results (see Appendix A). Moreover, although some of the 

ventral ROIs showed sensitivity to perceptual differences among the sets (i.e., showing a higher 

correlation between odd and even runs of the same set than between different sets sharing an 

identity, see Appendix A and Figure 14a), none of them showed the same face identity effect as 

superior IPS.  

Face identity representation in superior IPS reflects the representation of an abstract 

visual code and not that of a phonological code generated by observers actively rehearsing the 

actors’ name while viewing the face images. This is because in our name task no name identity 

representation was found (i.e., no difference in correlation between two sets that shared name 

identity and those that did not, t(12) < 1, P = .56 in superior IPS, ts < 1, Ps > .84 in LO and VWFA, 

and t(12) = -2.06, P = .066 in the right FFA in the opposite direction; see Figure 9c). Further 
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comparison between tasks revealed that in superior IPS identity representation was marginally 

greater for faces than for names (task by identity interaction, F(1, 12) = 4.06, P = .067).  

Thus, among the brain regions examined, superior IPS was the only one that showed 

sensitivity to face identity change despite large variations in face appearance within each fact set. 

To our knowledge, this is the first evidence showing the existence of real-world abstract face 

identity representation in the human parietal cortex. 

 

3.4 Experiment 2 results 

	  
Abstract object identity representation is not limited to the perception of faces but applies 

to the perception of visual objects in general. To replicate and generalize our findings, in 

Experiment 2, photographs of two familiar car models, BMW Mini and Volkswagen Beetle, were 

used. Images from these car models were shown in different viewpoints, sizes, and background 

scenes as how they would naturally appear in everyday visual perception (Figure 12b). As in our 

face experiment, the written names of the cars were also shown in different fonts. Using the same 

oddball detection task, abstract car identity representation was examined in superior IPS, LO, 

and VWFA. As cars were shown embedded in background scenes, responses were also examined 

in the parahippocampal place area (PPA), a brain region specialized in scene processing (Epstein 

& Kanwisher, 1998). 
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Figure 10. Experiment 2 design and results. a, Schematic illustration of the key comparisons made in 
the experiment. Similar to faces and names in Experiment 1, we examined for car images and names 
whether within-identity correlation was greater than between-identity correlation. b, Fisher-transformed 
correlation coefficients (z) for car image sets in superior IPS, LO, PPA, and VWFA. Replicating the results 
for faces in Experiment 1, only superior IPS showed a higher within-identity than between-identity 
correlation, indicating abstract car identity representation in this brain region despite large variations in 
viewpoint, size, and the background scene in which the car appeared. c, Fisher-transformed correlation 
coefficients for car name sets in the same brain regions. As with face names in Experiment 1, none of the 
regions showed a higher within-identity than between-identity correlation, indicating the absence of 
identity representation in these brain regions when name stimuli were used. Grey bars indicate within-
identity correlation and white bars indicate between-identity correlation. Error bars indicate within subject 
standard error of the mean. * P < .05. 

 

Replicating the results of the face experiment, only superior IPS revealed an abstract car 

identity representation (Figure 10b), showing higher correlation in fMRI response patterns 

between two sets of car images sharing the same than different identities (t(12) = 2.26, P = .043). 

Such real-world abstract car identity representation, however, was not found in the other ROIs 

examined (t(12) < 1, P > .62 in PPA; t(12) = -1.96, P = .073 in LO, t(12) = -2.8, P = .016 in VWFA, 

both in the opposite direction). Further pairwise comparisons revealed that superior IPS differed 

significantly from the other ROIs in car identity representation (region by identity interactions, 

Fs > 7.87, Ps < .016). As in the face experiment, differences among the brain regions could not be 
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attributed to voxel number differences, as voxel numbers were similar in superior IPS and LO 

(Table 1), and the same results were obtained when the number of voxels in each ROI to was 

limited to 50 (Figure 13c). Car identity representation in superior IPS also could not be 

accounted for by perceptual differences among the sets (see Appendix A and Figure 14c).  

Meanwhile, no car name identity representation was found in any of the ROIs examined 

(Figure 10c, ts < 1, Ps > .13 in superior IPS, LO, and VWFA; t(12) = -1.96, P = .073 in PPA in the 

opposite direction). Comparison between tasks revealed that identity representation was greater 

for car images than for car names in superior IPS (task by identity interaction, F(1,12) = 9.23, P 

= .01). These results thus replicated those of the face experiment and showed that abstract 

identity representation exists in superior IPS for both faces and non-face objects such as cars. 

 

3.5 Experiment 3 results 

	  
In Experiment 1, the decoding of face identity was examined between two individuals. To 

generalize our finding beyond these two specific individuals, in Experiment 3, the same oddball 

detection task paradigm was applied to face images from eight famous actors (see Figure 11a, 

Figure 12c, and Methods). Replicating the results from Experiment 1, when all pairwise 

comparisons between the 8 actors were averaged, face identity decoding was again observed in 

superior IPS (t(10) = 2.58, P = .027, Figure 11b), but not in LO or the right FFA (ts <1.17, Ps 

> .266), with greater identity decoding in superior IPS than LO (region by identity interaction, 

F(1,10) = 8.13, P  = .017). When the number of voxels in the two regions were matched (up to 50 

most responsive voxels), the difference between superior IPS and the right FFA approached 
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significance (F(1,10) = 4.07,  P = .071, see Figure 13e). Such face identity decoding in superior IPS 

was not driven by the decoding of the best face pairs, as removing the two best face pairs from 

the analysis did not change the results (t(10) = 2.231, P = .049). Similarly, removing the two worst 

pairs from the analysis did not improve the results in LO and the right FFA with decoding still be 

at chance (ts < 1.324, Ps > .215).  

 

 

Figure 11. Experiment 3 example stimuli and results. a, Example images of the eight actors used. b, 
Fisher-transformed correlation coefficients (z) between face image sets in superior IPS, LO, and the right 
FFA. Superior IPS again showed higher within- than between-identity correlation whereas LO and right 
FFA did not. Grey bars indicate within-identity correlation and white bars indicate between-identity 
correlation. c, An example face visual search display. Observers performed a speeded search for the 
presence of the face of a target actor among faces of a distractor actor. Target face appeared in 50% of 
the trials. In the example shown, DiCaprio is the target actor and Crowe is the distractor actor. d, 
Correlation between behavioral similarity measure of face identity (as measured by visual search speed) 
and neural similarity measure of face identity (as measures by fMRI pattern correlations) in each ROI. 
This correlation reached significance only in superior IPS, indicating that face representation formed there 
closely tracked perception. Error bars indicate within subject standard error of the mean. * P < .05. 
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The oddball detection task recruited multiple brain regions, other than superior IPS, that 

might contribute to identity representation. We chose ROIs based on their known functional role 

in visual information processing, but we could have overlooked identity representation that 

might exist in other parts of ventral/temporal and posterior parietal cortices. Also, lateral 

prefrontal cortex (LPFC) is a promising candidate region to find identity representation as this 

region is recruited during working memory (Goldman-Rakic, 1995) and categorization tasks 

(Freedman, Riesenhuber, Poggio, & Miller, 2001). To assess these possibilities, we examined face 

identity decoding in LPFC, PPC, and ventral/temporal cortices in Experiment 3. In this further 

analysis, all of these regions failed to show identity representation, confirming that such 

representation uniquely exists in superior IPS (see Appendix A).  

Besides identity, faces may differ in other abstract properties, such as familiarity, 

attractiveness, trustworthiness, and so on. To examine whether decoding in superior IPS 

reflected face identity representation and not any of the other abstract properties associated with 

face perception, we compared neural measures of face similarity in superior IPS with behavioral 

measures of face similarity from a speeded visual search task. In addition to the fMRI study, the 

same observers from Experiment 3 also performed a speeded visual search task outside the 

scanner and searched for a target actor face among distractor faces of another actor with all the 

possible pairings among the 8 actors (Figure 11c). As target-distractor similarity has been shown 

to govern visual search efficiency (Duncan & Humphreys, 1989), search speed was used as a 

behavioral measure of face similarity between two actors with a slower search speed indicative of 

greater similarity between two face identities. From all possible pairing of the 8 face identities, we 

constructed a behavioral face similarity matrix. Using the fMRI correlation coefficient values, a 
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neural face similarity matrix was constructed separately for superior IPS, LO, and the right FFA 

and correlations between the behavioral and the neural measures of face similarity were then 

calculated (Kriegeskorte et al., 2008). This analysis revealed that behavioral similarity measure 

was correlated significantly with neural similarity in superior IPS (P < .013, permutation test), 

but not in LO or the right FFA (P = .112 and P = .317, respectively, see Figure 11d). Moreover, 

behavioral similarity measure correlated more with neural similarity measure in the superior IPS 

than in the right FFA (P =. 028, permutation test; this correlation did not differ between the 

superior IPS and LO, P = .254,). The results remained the same when only up to 50 top voxels 

were included in each ROI and when search data were truncated to remove outliers greater than 

3 SD (P = .028 in superior IPS; Ps > .293 in LO and the right FFA, see Figure 15).  Thus, 

perceived face identity similarity in our speeded visual search task was truthfully reflected in the 

neural response patterns in superior IPS, and more so than that in the right FFA. These results 

thus provide the strongest support showing that goal-driven face identity information can be 

directly represented in superior IPS.  

 

3.6 Discussion and conclusion 

	  
Taken together, the results from three experiments demonstrated that real-world abstract 

object identity information invariant to large changes in object appearance could be robustly 

represented in human superior IPS. Although face identity representation has been reported in 

the fusiform gyrus previously (Anzellotti et al., 2013), no such representations were found in the 

ventral ROIs examined here, including the right FFA. This could be due to the greater perceptual 
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diversity of the face images used here than what was used previously, although such diversity is 

quite common in real world object perception. It is likely that real-world abstract object identity 

representation exists in more anterior ventral regions, such as anterior temporal cortex 

(Anzellotti et al., 2013; Nestor et al., 2011), but they were outside of our coverage in the present 

study. 

Our results are in line with previous neurophysiological and neuroimaging findings 

showing that the primate parietal cortex participates in task-relevant visual information 

processing (Fitzgerald et al., 2011; Jeong & Xu, 2013; Liu et al., 2011; Toth & Assad, 2002; 

Woolgar et al., 2011; Xu, 2010; Xu & Jeong, in press). While previous studies have only 

documented the representation of basic visual features in the human parietal cortex, here we 

show for the first time that visual information as abstract as real-world face and car identity can 

be robustly represented in superior IPS despite large variations in face and car appearance. 

Importantly, we also show that this representation closely tracked the perceived object identity. 

Although the frontal and parietal regions have long been implicated in task set and 

cognitive control (Dosenbach et al., 2008; Duncan, 2010; Duncan & Owen, 2000; Miller & Cohen, 

2001), with the fronto-parietal brain network capable of rapidly updating their pattern of global 

functional connectivity according to task demands (Cole, et al., 2013), the manner in which task-

driven visual information is processed remains poorly understood. Here we show that human 

superior IPS functions similarly as the RAM in a computer and represents a variety of object 

identities following task demands. This capability likely enables superior IPS to play a vital role in 

the fronto-parietal brain network in extracting task-relevant visual information to support the 

moment-to-moment goal-directed information processing in the brain.  
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3.7 Methods 

 

Participants 

Thirteen (9 females, mean age 28.6 ± 4.7), 13 (8 females, mean age 28.2 ± 4.9), and 11 (8 

females, mean age 28.64 ± 3.5) observers participated in Experiments 1 to 3, respectively. Of 

these observers, 3 females participated in all three Experiments, 5 (2 females) participated in both 

Experiments 1 and 2, 2 females participated in both Experiments 1 and 3, and 2 (1 female) 

participated in both Experiments 2 and 3. Besides these observers, 3, 2, and 2 additional 

observers were tested in Experiments 1 to 3, respectively, but were excluded from data analysis 

due to either excessive head motion during the experiment, a failure to localize all regions of 

interest, or observer’s failure to keep awake during the experiment. All observers were right-

handed and had normal or corrected-to-normal visual acuity. They were recruited from the 

Harvard University community, gave informed consent prior to participation and received 

payments. The experiments were approved by the Harvard University Committee on the Use of 

Human Subjects. 

 

Experimental design 

Main fMRI experiments 

In Experiment 1, face images of two well-known actors, Leonardo DiCaprio and Matt 

Damon, were used as stimuli. We constructed two unique face sets for each actor, with each 

containing five frontal and five profile/three-quarter/profile view faces of the actor. Besides faces, 

we also presented each actor’s last name written in 20 unique fonts and constructed two name 
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sets for each actor, each containing 10 unique fonts. Face and name images subtended 

approximately 11.5° x 8.5° and 10.5° x 3.0°, respectively. See Figure 12a for the full set of stimuli 

used in the experiment. 

The 10 images from a given set of faces or names were presented sequentially in a 8-sec 

block, with each image appearing for 300 ms and followed by a 500 ms blank display. The 

presentation of the face and name blocks was randomly intermixed within each run. Besides face 

and name blocks, 8-sec long fixation blocks were inserted between successive stimulus blocks 

and at the beginning and end of each run. Observers viewed the face or name images and 

detected the presence of an oddball face or name drawn from one of eight other actors (James 

Dean, Daniel Day-Lewis, Robert DeNiro, Gerard Depardieu, Johnny Depp, Matt Dillon, Michael 

Douglas, and Robert Downey Jr.). Two face images and two name images were used for each of 

the oddball actors. Note that because the last names of the two target actors all started with the 

letter “D” (i.e., DiCaprio and Damon), oddball actors’ last names all started with the letter “D” in 

an effort to discourage observers from attending only to the first letter of each last name instead 

of the entire last name in the oddball-name task.  

Each run contained four face blocks and four name blocks with no oddballs and one or 

two face or name blocks each containing a single oddball. Blocks containing an oddball were 

excluded from further data analysis to remove the contribution of oddball detection. When only 

one oddball block was present in a run, a dummy block containing no oddball was added to 

ensure that all runs had the same length whether or not it contained one or two oddball blocks. 

The dummy block was randomly chosen from one of the face or name blocks and was removed 

from further analysis. Each observer was tested with 10 runs, each lasting 2 min 45 sec.  
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In Experiment 2, the same oddball detection paradigm was used with images and names 

of two distinctive car models, BMW Mini and Volkswagen Beetle. In the car images, cars were 

shown in different viewpoints, sizes, and background scenes as how they would naturally appear 

in everyday visual perception. Car images and car names subtended approximately 11.5° x 7.5° 

and 8.0° x 4.0°, respectively. Oddball stimuli were drawn from one of sixteen other car models 

(Honda Accord, Nissan Altima, Toyota Camry, Honda Civic, Toyota Corolla, Chevrolet Cruze, 

Nissan Cube, Volkswagen Golf, Chevrolet Malibu, Ford Mustang, Honda Odyssey, Nissan 

Pathfinder, Toyota Prius, Land Rover Range Rover, Mercedes-Benz Roadster, Hyundai Sonata). 

One car image and one name image were used for each of the oddball cars. 

In Experiment 3, face images of eight famous actors (Leonardo DiCaprio, Matt Damon, 

Brad Pitt, George Clooney, Tom Cruise, Tom Hanks, Nicolas Cage, and Russell Crowe) were 

used as stimuli. These actors were the top actors rated in our behavioral familiarity ratings. The 

face images of DiCaprio and Damon included some used in Experiment 1 and some new ones, as 

no profile-view images were used in this experiment to ensure that face images from all actors 

were easily recognizable (see Figure 12c for the complete face images in Experiment 3). As in 

Experiment 1, two sets of unique face images were constructed for each actor, with five frontal 

and five three-quarter view faces in each face set. Oddball stimuli were frontal and three-quarter 

view face images from sixteen other famous actors (Christian Bale, Daniel Craig, Jude Law, 

Michael Douglas, Jack Nicholson, Colin Firth, Robert De Niro, Bruce Willis, Orlando Bloom, 

Richard Gere, Mel Gibson, Ashton Kutcher, Ben Stiller, Joseph Gordon-Levitt, Benedict 

Cumberbatch, and Robert Downey Jr.). One frontal-view and one three-quarter view images 

were used for each of the oddball actors. Name blocks were not included in this experiment. Each 
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run contained 16 stimulus blocks, two for each of the target actors, 1 or 2 oddball blocks, and one 

dummy block when there was only one oddball block present. Each observer was test with 16 

runs, each lasting 5 min 4 sec. Other aspects of the design were identical to that of Experiment 1. 

 

Superior IPS localizer  

Following Todd and Marois (2004), in an event-related object VSTM experiment, 

observers viewed in the sample display a brief presentation of 1 to 4 everyday objects, and, after a 

short delay, judged whether the probe object (a new object) shown in the test display matched 

the category of the object appeared in the same location in the sample display. A match occurred 

in 50% of the trials. Gray-scaled photographs of objects from four categories were used and they 

were shoes, bikes, guitars, and couches. Objects could appear above, below, to the left, or to the 

right of the central fixation. Object locations were marked by white rectangular placeholders that 

were always present during the trial. The placeholders subtended 4.5° x 3.6° and were 4.0° away 

from the fixation (center to center). The entire display subtended 12.5° x 11.8°. Each trial 

contained the following: fixation (1,000 ms), sample display (200 ms), delay (1,000 ms), test 

display/response (2,500 ms), and feedback (1,300 ms). With a counterbalanced trial history 

design (Todd & Marois, 2004; Xu & Chun, 2006), each run contained 15 trials for each set size 

and 15 fixation trials in which only the fixation dot was present for 6 sec. Two filler trials were 

added at the beginning and one at the end of each run for practice and trial history balancing 

purposes. They were excluded from data analysis. Each observer was tested with two runs, each 

lasting 8 min.  
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LO/FFA/PPA localizer  

Following Kourtzi and Kanwisher (2001), Kanwisher et al. (1997), and Epstein and 

Kanwisher (1998), observers viewed blocks of sequentially presented face, scene, object and 

scrambled object images (all subtended approximately 12.0°x 12.0°). The images used were 

photographs of gray-scaled male and female faces, common objects (e.g., cars, tools, and chairs), 

indoor and outdoor scenes, and phase-scrambled versions of the common objects. Observers 

monitored a slight spatial jitter which occurred randomly once in every 10 images. Each run 

contained four blocks of each of scenes, faces, objects, and phase-scrambled objects. Each block 

lasted 16 sec and contained 20 unique images, with each appearing for 750 ms and followed by a 

50 ms blank display. Eight-sec long fixation blocks were included at the beginning, middle, and 

end of each run. Each observer was tested with two runs, each lasting 4 min and 40 sec. 

  

Behavioral visual search experiment 

 In the visual search experiment, observers searched for a target actor face embedded 

among the faces of a distractor actor. Each observer was tested with 8 blocks of trials, with each 

of the 8 actors in Experiment 3 serving as the target actor for one block and the remaining 7 

actors serving as the distractor actors for that block. Each actor face could appear in one of six 

images, with three in frontal and three in three-quarter views. Each block began with an 

instruction indicating the target actor for that block. Observers then viewed six faces appearing 

in a circular array around the fixation (see Figure 11c) and made a speeded target present/absent 

judgment. The target actor face appeared in 50% of the trials and were shown equally often in 

each of the six possible locations. For a target-present trial, the target actor face was randomly 
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chosen from one of the 6 face images of that actor. In each trial, the distractor actor was 

randomly chosen from one of the remaining seven actors with either all 6 images of that actor 

shown for target-absent trials or a random 5 of the 6 images shown for target-present trials. In a 

given block, because observers were only told the target actor identity but not a specific face 

image of that actor to search for (three frontal and three three-quarter view faces of target actor 

were randomly chosen from the image sets as target images for each block), they had to form an 

abstract identity representation for that actor while performing the search, similar to what they 

had to do during the oddball detection task in the fMRI part of the experiment.  

Each block of trials contained 28 practice and 84 experimental trials (7 distractor actors x 

6 locations x 2 target appearance). When observers made an incorrect response, a red unhappy 

face flickered at fixation for 5 sec. Incorrectly responded trials were repeated at the end of each 

block until correct responses were obtained for all the trials in that block. Thus response accuracy 

was 100% correct and only search speed was analyzed and compared with neural responses. 

 

fMRI methods 

fMRI data were acquired from a Siemens Tim Trio 3T scanner at the Harvard Center for 

Brain Science in Cambridge, MA. Observers viewed images back projected onto a screen at the 

rear of the scanner bore through an angled mirror mounted on the head coil. All experiments 

were controlled by an Apple MacBook Pro laptop running Matlab with Psychtoolbox extensions 

(Brainard, 1997). For anatomical images, high-resolution T1-weighted images were acquired 

(repetition time, 2,200 ms; echo time, 1.54 ms; flip angle, 7°; 144 slices; matrix size, 256 x 256; 

and voxel size, 1 x 1 x 1 mm). For the functional images in the main experiments and in the 
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LO/FFA/PPA localizers, gradient-echo echoplanar T2*-weighted images were acquired 

(repetition time, 2,000 ms; time to echo, 30 ms; flip angle, 90°; 31 slices; matrix size 72 x 72; voxel 

size, 3 x 3 x3 mm; 88 volumes for Experiments 1 and 2, 152 volumes for Experiment 3, and 140 

volumes for the LO/FFA/PPA localizer). For the functional images in the superior IPS localizer, 

gradient-echo echoplanar T2*-weighted images with slightly different parameters were acquired 

(repetition time, 1,500 ms; time to echo, 29 ms; flip angle, 90°; 24 slices; matrix size 72 x 72; voxel 

size, 3 x 3 x 5 mm; 320 volumes). All functional slices were oriented near horizontal to optimally 

cover parietal, occipital, and ventral cortices. This resulted in the partial exclusion of anterior 

temporal and orbitofrontal cortices.  

 

Data analysis 

fMRI data were analyzed in native space with BrainVoyager QX 

(http://www.brainvoyager.com). Data preprocessing included 3D motion correction, slice 

acquisition time correction, and linear trend removal. No spatial smoothing or other data 

preprocessing was applied. 

 

ROI definitions 

fMRI data from the localizer runs were analyzed using general linear models. Following 

Todd and Marois (2004) and Xu and Chun (2006), superior IPS was defined as the collection of 

voxels that tracked each observer’s behavioral VSTM capacity. To localize these voxels, we first 

obtained each observer’s behavioral VSTM capacity using Cowan’s K formula (2001). We then 

performed multiple regression analysis on the fMRI VSTM data with the regression coefficient 
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for each set size weighted by that observer’s behavioral VSTM capacity for that set size. Superior 

IPS was defined as voxels in bilateral parietal cortex showing significant activations in the 

regression analysis (false discovery rate (FDR) q < .05, corrected for serial correlation). More 

details of this analysis can be found in Todd and Marois (2004) and Xu and Chun (2006). 

Following Grill-Spector et al. (1998) and Kourtzi and Kanwisher (2001), LO was defined 

as the collection of continuous voxels in bilateral lateral occipital cortex showing higher 

activations to objects than to noise (FDR q < .05, corrected for serial correlation). Following 

Kanwisher et al. (1997), the right FFA was defined as voxels in right fusiform gyrus showing 

higher activation for faces than for scenes and objects (FDR q < .05, corrected for serial 

correlation). Following Epstein and Kanwisher (1998), PPA was defined as voxels in bilateral 

collateral sulcus and parahippocampal gyrus showing higher activations for scenes than for faces 

and objects.   

Following Cohen et al. (2002), VWFA was localized using data from the oddball detection 

task and defined as voxels in the left middle fusiform gyrus showing higher activations for face 

names than face images in Experiment 1 or higher activations for car names than car images in 

Experiment 2 (FDR q < .05, corrected for serial correlation). 

 

MVPA 

MVPA was performed with custom-made Matlab code. We overlaid the ROIs onto the 

data from the main experiments, applied GLM and extracted the beta-weight for each stimulus 

set in each voxel of each ROI. To measure identity representation in each ROI, we compared 

correlation coefficient between voxel response patterns from stimulus sets that shared the same 
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identity (within-identity correlation) with that from stimulus sets that did not share identity 

(between-identity correlation) (see Figure 9a and 10a). For example, for face identity 

representation, within-identity correlation would be the correlation between Damon face set 1 

and Damon face set 2 or between DiCaprio face set 1 and DiCaprio face set 2, and between-

identity correlation would be the correlation between Damon face set 1 and DiCaprio face set 1, 

between Damon face set 1 and DiCaprio face set 2, between Damon face set 2 and DiCaprio face 

set 1, or between Damon face set 2 and DiCaprio face set 2. If the average of all the within-

identity correlations is higher than the average of all the between-identity correlations in an ROI, 

we would infer that abstract identity information was represented in that brain region. 

Correlation coefficients were Fisher-transformed to ensure normal distribution of the values 

before comparisons and statistical tests were conducted. All t-tests were two-tailed. When 

ANOVA was performed, Greenhouse-Geisser correction was applied if the sphericity 

assumption was violated. 

In additional analyses, to ensure that voxel number differences did not contribute to the 

observed abstract object identity representation in superior IPS, we limited the total number of 

voxels in each ROI by selecting the top 50 most active voxels based on their average response 

amplitudes across all the stimulus conditions. In the large ROIs including superior IPS, LO, and 

PPA, we were able to select 50 voxels in each observer in each ROI. In the small ROIs including 

the right FFA and VWFA, we were able to select 50 voxels in the majority of the observers in 

each ROI (see Table 1 and Figure 13).  

 

Behavioral and neural similarity measures of face identity  
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To construct behavioral similarity measures of face identity across the 8 actors, we 

obtained the search speed for each pairing of the 8 actors, totaling 28 pairs. The search speed for 

each pairing was averaged from trials with one actor serving as the target and the other one as the 

distractors and trials with the reverse assignment, as search speed from both types of trials 

reflected face identity similarity between the two actors. Furthermore, as search speed for target 

present and target absent trials were highly correlated in each observer (Ps < .026), these two 

types of trials were also combined (face similarity measure did not differ if only target present or 

target absent trials were included). A longer search speed would indicate a higher identity 

similarity between a given pair of actors, and a shorter search speed, on the other hand, would 

indicate a lower identity similarity between the two actors. The search speeds were extracted 

separately from each observer and then averaged across observers to form the group-level 

behavioral similarity measure of face identity. 

To construct neural similarity measures of face identity across the 8 actors in each ROI, 

we Fisher transformed the correlation coefficients of neural response pattern correlation for each 

pair of actors, totaling 28 pairs. A higher correlation in this measure would indicate a higher 

identity similarity between a given pair of actors, and a lower correlation, on the other hand, 

would indicate a lower identity similarity between the two actors. These correlations were 

performed separately for each observer and then averaged across observers to form the group-

level neural similarity measure of face identity separately for each ROI. 

Behavioral and neural similarity measures of face identity across the 8 actors were then 

directly correlated for each ROI. If representations in a brain region reflected perception, then a 

high correlation between behavioral and neural similarity measures was expected (Kriegeskorte 
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et al., 2008). The significance of the correlation was evaluated using a permutation test (10,000 

iterations) in which the values within the behavior and neural similarity measures were randomly 

shuffled and correlated for 10,000 iterations to derive the mean and SD of the baseline 

correlation value distribution.  
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4 

Conclusion 

 
In	  this	  dissertation,	  using	  univariate	  and	  multivariate	  fMRI	  analyses,	  I	  showed	  that	  

superior	  IPS	  encodes	  various	  types	  of	  task-‐relevant	  visual	  information,	  from	  simple	  

features	  such	  as	  shape	  to	  abstract	  object	  identities.	  In	  Chapter	  1,	  I	  showed	  that	  the	  

processing	  of	  task-‐irrelevant	  object	  shapes	  in	  superior	  IPS	  could	  be	  attenuated	  when	  their	  

locations	  were	  known.	  The	  presence	  of	  distractor	  shapes	  increased	  fMRI	  response	  

amplitudes	  in	  superior	  IPS	  during	  the	  VSTM	  encoding	  period	  when	  target	  encoding	  load	  

was	  low.	  However,	  the	  presence	  of	  distractors	  did	  not	  increase	  response	  amplitudes	  when	  

target	  locations	  were	  cued	  in	  advance,	  suggesting	  distractors	  were	  excluded	  from	  further	  

processing.	  In	  Chapter	  2,	  using	  MVPA,	  I	  found	  that	  shape	  information	  is	  represented	  in	  

superior	  IPS,	  but	  only	  when	  such	  information	  is	  task-‐relevant.	  I	  tested	  shape	  decoding	  in	  

superior	  IPS	  in	  four	  tasks	  that	  were	  perceptually	  same	  but	  had	  different	  task	  demands.	  
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Object	  shape	  could	  be	  decoded	  in	  superior	  IPS,	  but	  only	  in	  the	  tasks	  that	  required	  such	  

information,	  confirming	  that	  this	  region	  flexibly	  varies	  the	  type	  of	  information	  it	  encodes	  in	  

a	  task-‐dependent	  manner.	  In	  Chapter	  3,	  I	  showed	  that	  superior	  IPS	  represents	  not	  only	  

basic	  visual	  featural	  information,	  but	  also	  abstract	  object	  identity.	  Specifically,	  in	  superior	  

IPS,	  neural	  response	  patterns	  for	  face	  and	  car	  images	  of	  the	  same	  identity	  were	  more	  highly	  

correlated	  than	  those	  for	  images	  of	  different	  identities,	  even	  when	  the	  perceptual	  features	  

varied	  significantly	  within	  each	  identity.	  Importantly,	  I	  found	  the	  perceived	  similarity	  

between	  identities	  measured	  by	  a	  behavioral	  visual	  search	  task	  significantly	  correlated	  

with	  neural	  similarity	  measures	  in	  superior	  IPS,	  suggesting	  the	  representation	  in	  this	  

region	  reflected	  the	  perceived	  identities.	  	  

	   In	  addition	  to	  the	  findings	  of	  flexible,	  task-‐dependent	  visual	  representation	  in	  

superior	  IPS,	  these	  results	  also	  point	  out	  two	  important	  methodological	  issues	  for	  future	  

research.	  First,	  the	  results	  of	  this	  dissertation	  suggest	  that	  the	  task	  used	  has	  a	  significant	  

effect	  on	  the	  activation	  in	  superior	  IPS.	  The	  results	  in	  Chapter	  1	  and	  2	  showed	  that	  the	  

same	  visual	  input	  was	  either	  encoded	  or	  not	  depending	  on	  task	  context.	  Therefore,	  to	  study	  

the	  visual	  representation	  in	  IPS,	  one	  should	  use	  a	  task	  that	  directly	  requires	  the	  processing	  

of	  that	  visual	  information.	  A	  passive	  task	  or	  a	  task	  that	  is	  orthogonal	  to	  independent	  

variables	  of	  the	  study	  is	  not	  likely	  to	  recruit	  IPS	  regions.	  	  

Second,	  the	  present	  results	  suggest	  that	  the	  selection	  of	  task-‐relevant	  sub-‐region	  

within	  IPS	  is	  critical.	  While	  I	  and	  others	  have	  found	  object	  representations,	  in	  particular	  

VSTM	  information,	  within	  parietal	  cortex	  (Christophel	  et	  al.,	  2012;	  Christophel	  &	  Haynes,	  

2014;	  Todd	  &	  Marois,	  2004;	  2005;	  Xu,	  2007;	  Xu	  &	  Chun,	  2006;	  Xu	  &	  Jeong,	  in	  press),	  other	  
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studies	  have	  not	  (Emrich,	  Riggall,	  Larocque,	  &	  Postle,	  2013;	  Riggall	  &	  Postle,	  2012).	  This	  

could	  be	  due	  to	  functional	  heterogeneity	  in	  IPS.	  Examples	  of	  such	  heterogeneity	  include	  

variations	  in	  shape	  sensitivity	  across	  topographic	  IPS	  regions	  (Konen	  &	  Kastner,	  2008),	  

and	  differing	  roles	  in	  object	  individuation	  and	  identification	  in	  superior	  and	  inferior	  IPS	  

(Xu,	  2009;	  Xu	  &	  Chun,	  2006;	  2009).	  Studies	  that	  have	  observed	  VSTM	  representations	  in	  

parietal	  cortex	  either	  localized	  voxels	  that	  tracked	  VSTM	  capacity	  in	  individual	  observers	  

or	  used	  a	  searchlight	  approach	  (Kriegeskorte,	  Goebel,	  &	  Bandettini,	  2006)	  to	  locate	  

informative	  voxels.	  Thus,	  these	  results	  suggest	  that	  it	  is	  important	  to	  isolate	  sub-‐regions	  

within	  IPS	  that	  are	  directly	  involved	  in	  the	  task	  one	  wants	  to	  investigate.	  	  

Previously	  it	  was	  thought	  that	  featural	  and	  identity	  information	  was	  solely	  

processed	  by	  the	  ventral	  visual	  pathway	  (Ungerleider	  &	  Haxby,	  1994;	  Ungerleider	  &	  

Mishkin,	  1982).	  	  My	  results	  show	  a	  distinct	  role	  for	  the	  parietal	  cortex,	  in	  particular	  

superior	  IPS,	  in	  this	  sort	  of	  processing.	  	  In	  the	  ventral	  pathway,	  different	  object	  categories,	  

such	  as	  faces	  (Kanwisher	  et	  al.,	  1997),	  bodies	  (Downing,	  Jiang,	  Shuman,	  &	  Kanwisher,	  

2001),	  scenes	  (Epstein	  &	  Kanwisher,	  1998),	  and	  so	  on,	  are	  processed	  in	  spatially	  separable	  

clusters.	  	  However,	  to	  support	  flexible	  visual	  information	  processing,	  it	  would	  be	  optimal	  if	  

all	  of	  these	  object	  categories	  can	  be	  processed	  in	  the	  same	  region	  depending	  on	  task	  

demands.	  This	  dissertation	  shows	  that	  superior	  IPS	  is	  where	  a	  variety	  of	  visual	  information	  

can	  be	  stored.	  	  My	  results	  show	  that	  superior	  IPS	  not	  only	  represents	  visual	  information	  

from	  a	  variety	  of	  categories,	  but	  also	  at	  a	  variety	  of	  different	  levels,	  from	  simple	  shape	  

(Chapter	  1)	  to	  everyday	  objects	  (Chapter	  2),	  and	  even	  abstract	  object	  identities	  (Chapter	  3).	  	  

These	  representations	  are	  dynamically	  modulated	  by	  task	  demands.	  	  All	  together,	  this	  
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suggests	  that	  superior	  IPS	  may	  act	  as	  a	  general	  information	  storage	  region	  that,	  along	  with	  

a	  network	  of	  other	  brain	  regions,	  supports	  flexible	  goal-‐directed	  behavior	  (Cole	  et	  al.,	  2013;	  

Duncan,	  2010;	  Fedorenko	  et	  al.,	  2013;	  Salazar,	  Dotson,	  Bressler,	  &	  Gray,	  2012;	  Vincent	  et	  al.,	  

2008).	  

Perhaps	  the	  most	  striking	  finding	  in	  this	  dissertation	  is	  that	  superior	  IPS	  can	  encode	  

abstract	  object	  identities	  (Chapter	  3).	  These	  results	  suggest	  that	  superior	  IPS	  does	  not	  just	  

simply	  encode	  a	  “copy”	  of	  the	  visual	  input.	  Instead,	  this	  region	  seems	  to	  extract	  and	  

integrate	  visual	  information	  to	  meet	  task	  demands,	  showing	  the	  unique	  role	  of	  human	  

superior	  IPS	  in	  visual	  information	  processing.	  	  

The	  goal	  of	  this	  dissertation	  was	  to	  investigate	  the	  neural	  mechanisms	  that	  support	  

flexible	  visual	  information	  processing.	  In	  conclusion,	  this	  dissertation	  provides	  evidence	  

that	  superior	  IPS	  is	  a	  general	  visual	  information	  storage	  where	  various	  type	  of	  visual	  

information	  is	  stored	  and	  integrated	  to	  support	  flexible	  goal-‐directed	  behavior.	  	  
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A 

 
Appendix to Chapter 3: 

Abstract object identity representation in human 

superior intra-parietal sulcus 
 

A.0 Perceptual differences among sets 

	  
Because we used photographs of face and car images as they appeared in the real world, 

minimal image processing was applied. Although we made sure that each face set contained a 
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similar range of variations in viewpoint, hair style, face expression and age and that each car set 

contained a similar range of variations in viewpoint, size and background scenes, lower-level 

perceptual differences such as luminance and image spatial frequency distribution could not be 

controlled for among the sets. Below we present three analyses showing that perceptual 

differences among sets could not account for the response patterns seen in superior IPS for 

abstract object identity representation in all three experiments. 

 

Luminance difference among sets 

In this analysis, we calculated the average luminance for each image in a set and 

compared whether sets differed in overall luminance. In Experiment 1, for the face images, face 

sets that shared identity were different from each other (ts > 2.26, Ps < .036, independent samples 

t-test, two-tailed). Face sets that did not share identity were not significantly different from each 

other (ts < 1.62, Ps > .12), except for one pair (Damon set 2 vs. DiCaprio set 2, t(18) = 3.51, P  

= .002). Thus, luminance difference was greater within than between face identities. This made 

face images to be more similar when they did not share an identity than when they did, working 

against the finding of an identity effect in the superior IPS. For face names, no significant 

difference in luminance was found between all possible comparisons (ts < 1, Ps > .72). In 

Experiment 2, for both car images and car names, there was no difference in luminance between 

sets that shared an identity and those that did not, ts < 1.67, Ps > .11. In Experiment 3, no 

luminance difference was found between any of the face pairs (for all possible pairwise 

comparisons, ts < 1.25, Ps > .22).  
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Spatial frequency distribution differences among sets 

In this analysis, we calculated spatial frequency distribution profile (i.e., the power at each 

spatial frequency) for each image in a set. We then used support vector machine, a linear 

classifier, to classify the images between sets based on this information to examine whether sets 

differed in spatial frequency distribution profiles. In Experiments 1 and 2, among all the 

comparisons made, the following yielded above chance level classification performance (ts > 2.44, 

Ps < .037, one-sample t-test, two-tailed): For face images, two out of the four between-identity 

comparisons; for face names, three out of the four between-identity comparisons; for car images, 

none; and for car names, three out of the four between-identity comparisons. These results 

showed that spatial frequency distribution envelope differed somewhat among the sets. Critically, 

although name sets were more similar when they shared an identity than when they did not, this 

similarity was not reflected in superior IPS response patterns for either face names or car names 

(see Figures 10 and 11). Additionally, although no difference was found among the car image sets, 

superior IPS response pattern still tracked car identity representation. Thus differences in spatial 

frequency distribution envelope did not seem to contribute to identity encoding in the superior 

IPS. 

In Experiment 3, we performed the same spatial frequency distribution analysis with the 

face image sets. For within-identity comparisons, image set 1 of one actor was compared with 

image set 2 of the same actor, resulting in a total of 8 comparisons. For between-identity 

comparisons, image set 1 or 2 of one actor was compared with image set 1 or 2 of another actor, 

resulting in a total of 112 comparisons. Above chance classification performance was obtained in 

1 out of the 8 within-identity comparisons (t(9) = 3, P = .015) and in 40 out of the 224 between-
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identity comparisons (ts > .244, Ps < .037). Although spatial frequency distribution differences 

between sets seemed to be greater between sets with different identities than those sharing the 

same identity, this difference was not registered by sensory regions as both LO and the right FFA 

showed similar correlations for within- and between-identity set comparisons. Given that 

sensory regions showed sensitivity to other perceptual differences among the image sets (see the 

analysis below on Comparing same with different sets sharing an identity), the insensitivity of 

sensory regions to spatial frequency distribution differences between sets suggests that they are 

unlikely to have contributed to the encoding of face identities in the brain. 

Taken together, although there were some spatial frequency distribution differences 

among the images in different sets, these differences by themselves could not consistently 

account for the abstract object identity representation found in superior IPS across the three 

experiments.  

 

Comparing same with different sets sharing an identity 

One way to measure whether or not a brain region is sensitive to perceptual differences 

among sets is to compare its response patterns to odd and even runs of the same set of images 

with that from two different sets sharing the same identity. In other words, when set identity was 

held constant, because unique images were used in each set, if perceptual differences among the 

images were encoded by a brain region, its response pattern should be more similar to the same 

than to different set of images sharing an identity. Across the three experiments, as shown in 

Figure 14, the following ROIs showed a significantly higher correlation between identical sets 

than between sets sharing an identity: For face images in Experiment 1, none; for face names in 
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Experiment 1, the right FFA (t(12) = 2.45, P = .03); for car images in Experiment 2, both PPA and 

VWFA (ts > 2.25, Ps < .044); and for car names in Experiment 2, none; for face images in 

Experiment 3, both LO and the right FFA (ts  > 2.61, Ps < .026).  

 

Thus, depending on the stimulus used, different ventral object processing regions showed 

different amount of sensitivity to perceptual or image differences between sets. Importantly, 

when identity was held constant, the superior IPS never differentiated between sets of images 

that were identical and those that were different. This provides further support that perceptual 

differences among sets did not modulate response pattern in superior IPS. 

 

A.1 Identity encoding in LPFC, PPC, and ventral/temporal visual regions 

	  
Besides our functionally defined ROIs, the face oddball detection task also activated 

regions in LPFC, PPC and ventral/temporal visual cortices. To assess whether or not abstract face 

identity representation exists in these regions, face identity decoding was examine in these 

regions in Experiment 3.  

To define LPFC, PPC and the ventral/temporal visual region ROIs, the continuous set of 

voxels showing a higher response to the face stimuli than to fixation in the main task (FDR q 

< .05, no more than 15 continuous voxels in each dimension was selected from the center of the 

activation) in the prefrontal cortex, posterior parietal cortex, and ventral region, respectively, 

were selected. To further refine our ROIs, voxels from frontal eye field, insular, and anterior 

cingulate cortex were excluded from LPFC, those from superior IPS were excluded from PPC, 
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and those from LO, the right FFA and early visual areas (localized by the contrast of scrambled 

objects minus intact objects in the LO localizer task) were excluded from the ventral/temporal 

visual region. 

None of these brain regions showed identity representation: in LPFC, t(10) = 1.27, P = .23; 

in PPC excluding superior IPS, t(10) = 1.61, P = .137; and in ventral/temporal visual region 

excluding LO, the right FFA, and the early visual areas, t(10) = 1.01, P =  .336. Although identity 

decoding showed a trend in PPC with a p-value of .137, the PPC region we defined here 

contained voxels near superior IPS which might have contributed to some amount of identity 

representation. To examine this possibility, we relaxed the threshold and defined a superior IPS 

by adding roughly twice more number of adjacent voxels to the original superior IPS (on average 

256 voxels) and then excluding this larger superior IPS from PPC. In this refined PPC, face 

identity decoding became less significant (t(10) = 1.38, P = .197). This suggested that the voxels 

near superior IPS likely contributed to the trending face decoding in PPC when a smaller 

superior IPS was excluded.  

Overall, these analyses showed that LPFC and ventral/temporal visual region did not 

contain abstract face identity representation. Moreover, not all visually responsive voxels in 

parietal cortex carry face identity representation, confirming the unique role of superior IPS in 

object identity representation.   
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a 

 
 
Figure 12. The full stimulus sets used, including both targets and oddballs, in a. Experiment 1, b. 
Experiment 2, and c. Experiment 3. 
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b 

 
Figure 12. (Continued)
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c 

 
Figure 12. (Continued) 
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c 

 
Figure 12. (Continued) 
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c 

 
 

Figure 12. (Continued) 
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Figure 13. Identity representation in each ROI when no more than 50 voxels were included. Limiting the 
total number of voxels in each ROI did not affect the results and superior IPS was still the only region 
showing abstract object identity representations for faces and cars (* P < .05; ** P < .01. Error bars 
indicate within-subject standard error of the mean). 
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Figure 14. Neural response patterns to perceptual differences among sets sharing an identity in each 
ROI. While holding identity constant, correlation between odd and even runs of the same set was 
compared with correlation between two different sets sharing an identity. A higher within- than between-
set correlation would indicate the encoding of perceptual or image differences between sets in a brain 
region. Depending on the stimulus used, different ventral object processing regions showed sensitivity to 
perceptual or image differences between sets. Importantly, with identity held constant, superior IPS never 
differentiated sets of images whether they were identical or different. This provides further support that 
perceptual differences among sets did not modulate response pattern in superior IPS. 
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Figure 15. Correlation between behavioral and neural similarity measures of face identity when only up to 
50 most responsive voxels were included in each ROI and when search speeds greater than 3 SD of the 
mean were removed. Only superior IPS, but not LO or the right FFA, showed a significant correlation.  
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