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A

Fluorescence diffuse optical tomography provides non-invasive, in vivo imaging of molecular

targets in small animals. While standard fluorescence microscopy is limited to shallow depths and

small fields of view, tomographic methods allows recovery of the distribution of fluorescent probes

throughout the small animal body. In this thesis, we present novel reconstruction algorithms for

the tomographic separation of optical parameters using time-domain (TD) measurements. ese

technique are validated using simulations and with experimental phantom and mouse imaging

studies. We outline the contributions of each chapter of the thesis below.

First, we explore the TD fluorescence tomography reconstruction problem for single and mul-

tiple fluorophores with discrete lifetimes. We focus on late arriving photons and compare a direct

inversion approach with a two-step, asymptotic approach operating on the same TD data. We

show that for lifetime multiplexing, the two methods produce fundamentally different kinds of

solutions. e direct inversion is computationally inefficient and results in poor separation but

has overall higher resolution while the asymptotic approach provides better separation, relative

quantitation of lifetime components and localization but has overall lower resolution. We verify

these results with simulation and experimental phantoms.

Second, we introduce novel high resolution lifetime multiplexing algorithms which combine

asymptotic methods for separation of fluorophores with the high resolving power of early photon

tomography. We show the effectiveness of such methods to achieve high resolution reconstruc-

tions of multiple fluorophores in simulations with complex-shaped phantoms, a digital mouse
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atlas and also experimentally in fluorescent tube phantoms.

ird, we compare the performance of tomographic spectral and lifetime multiplexing. We

show that both of these techniques involve a two-step procedure, consisting of a diffuse propaga-

tion step and a basis-function mixing step. However, in these two techniques, the order of the two

steps is switched, which leads to a fundamental difference in imaging performance. As an illustra-

tion of this difference, we show that the relative concentrations of three colocalized fluorophores

in a diffuse medium can accurately be retrieved with lifetime methods but cannot be retrieved

with spectral methods.

Fourth, we address the long standing challenge in diffuse optical tomography (DOT) of cross-

talk between absorption and scattering. We extend the ideas developed from lifetime multiplexing

algorithms by using a constrained optimization approach for separation of absorption and scatter-

ing in DOT. Using custom designed phantoms, we demonstrate a novel technique allows better

separation of absorption and scattering inclusions compared to existing algorithms for CW and

TD diffuse optical tomography.

Finally, we show experimental validation of the lifetime multiplexing algorithms developed in

this thesis using three experimental models. First, we show the reconstruction of overlapping com-

plex shapes in a dish phantom. Second, we demonstrate the localization accuracy of lifetime based

methods using fluorescent pellets embedded in a sacrificed mouse. ird, we show using planar

imaging and tomography, the in vivo recovery of multiple anatomically targeted near-infrared

fluorophores.

In summary, we have presented novel reconstruction algorithms and experimental methods

that extend the capability of time-domain fluorescence diffuse optical tomography systems. e

methods developed in this thesis should also have applicability for general multi-parameter image

reconstruction problems.
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1
Introduction

Molecular imaging allows the visualization of fundamental biological processes such as gene ex-

pression and protein interactions in the whole body of small animals (Massoud & Gambhir,

2003; Bremer et al., 2003). Optical methods for molecular imaging use visible to near-infrared

light to probe intrinsic optical properties, absorption and scattering or the distribution of fluo-

rophores in tissue. Optical methods can be distinguished from other molecular imaging modal-

ities such as PET, SPECT, MRI and CT as they are relatively cheap, simple to implement and
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portable. Secondly, a multitude of molecular probes which are used in microscopy applications

can be directly imported for use in whole body imaging. irdly, optical methods provide excel-

lent capabilities for multiplexing using either spectral or fluorescence lifetime contrast.

Optical molecular imaging techniques have been widely applied to study disease models in

mice. Studies have investigated various cancer related processes such as tumor growth, metastasis

formation and gene expression (Weissleder & Ntziachristos, 2003; Montet et al., 2007). Using

fluorescent proteins such as GFP has allowed monitoring of surface tumors (Garofalakis et al.,

2007; Rice & Kumar, 2014) while the development of near-infrared fluorescent proteins (iRFP)

(Shcherbakova & Verkhusha, 2013) allows the potential of imaging deep seated tumors in vivo.

Fluorescence tomography has also been applied to the brain for imaging of Amyloid-β plaques in

Alzheimer’s disease (Hyde et al., 2009) and matrix metalloproteinase activity after stroke (Klohs

et al., 2009).

In this thesis, we focus on both the development of reconstruction algorithms for time-domain

optical molecular imaging using both fluorescence and intrinsic optical properties as contrast. We

also study the application of these techniques in liquid and gel phantoms, phantoms with complex

shaped inclusions and living mice. We describe below the various kinds of information that can be

obtained from time-domain optical tomography measurements and how this information can be

used for image reconstruction.

Existing fluorescence tomography systems are mainly based on continuous wave (CW) exci-

tation. Although time domain methods use more expensive instrumentation and are experimen-

tally more complex, they offer several advantages compared to CW methods. Time domain mea-

surements contain comprehensive information about the biological medium being probed. e

temporal point spread function (TPSF) measured at the surface of a turbid medium can be tem-

porally divided into an early portion and a late portion. Early arriving photons have been shown

to provide higher resolution than CW measurement and late arriving photons (Chen et al., 2000;
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Turner et al., 2005; Niedre et al., 2008). Despite its more diffusive nature, late arriving photons

provide information about the intrinsic fluorescence lifetime. Although recovered lifetime val-

ues may become distorted due to propagation through a medium (Patterson & Pogue, 1994;

Hutchinson et al., 1995; O’Leary et al., 1996), in (Kumar et al., 2005), it was shown that the

condition for exact recovery of the intrinsic lifetime from asymptotic TD measurements is based

on the diffuse time scale of the medium. In chapter 4, we extend this previous analysis by intro-

ducing a new time constant dependent on both the intrinsic lifetime and diffuse time scale which

determines the start of the asymptotic regime. We also compare the conditioning of the inverse

problem for multiple early and late time points in the case of a single fluorophore. e single flu-

orophore reconstruction problem can be readily extended to multiplexing multiple fluorophores

with discrete lifetimes.

Multiplexing allows the simultaneous tracking of multiple molecular processes and the study

of the interactions between different processes. In fluorescence tomography, multiplexing of fluo-

rophores is enabled through separation of the decay portion of a measured TD signal into individ-

ual components corresponding to each fluorophore. Since multiplexing of multiple lifetimes has

already been successfully applied in fluorescence lifetime imaging microscopy (FLIM), there exist

many contrast agents for FLIM which can be translated directly for tomographic imaging (Basti-

aens & Squire, 1999; Selvin, 2000; Berezovska et al., 2003). e development of reliable lifetime

based reconstruction techniques which could accurately reconstruct the fluorescence yield of in-

dividual dyes would allow for measurements which were not previously possible in whole body

imaging. ese measurements include the detection of molecular interactions using fluorescence

resonance energy transfer (FRET) (Jares-Erijman & Jovin, 2003) deep in tissue and the detec-

tion of an activatable probe in an activated state over a stronger fluorescence background signal

through shifts in lifetime (Goergen et al., 2012).

e tomographic separation of fluorophores using lifetime as contrast has previously been
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performed using two approaches. In the direct inversion approach, late time gates at every de-

tector location are combined into a measurement vector and inverted using the single time do-

main weight matrix which relates fluorescence yield to the measurements (Chen et al., 2011). In

the second approach, the time domain weight function is decomposed into spatial and temporal

terms. A two step algorithm for reconstruction is then employed which performs a linear multi-

exponential fit to obtain the decay amplitudes followed by a separate inversion of CW weight ma-

trices applied on the decay amplitudes (Kumar et al., 2006). In chapter 4, we express the spatio-

temporal factorization in matrix form and show that the inverse operators corresponding to the

two step approach is mathematically distinct from direct inversion of the TD data. We explore

the different forms of the inverse operator for each approach and show the implementation differ-

ences between the two forms. We analyze the separation capability of both methods by defining

a new quantitative measure for cross-talk between lifetime components. We compare the ability

of each approach to recover the relative amounts of two overlapping fluorophores. ese simula-

tion results have direct applicability when fluorophores of different lifetimes are in close proximity

such as the case with FRET. We further validate our results in an experimental phantom.

While chapter 4 demonstrates that the asymptotic approach results in superior performance

for separation of fluorophores, a potential downside of the approach is that its applicability is

limited to time points in the asymptotic regime. Such an approach leaves out time points around

the peak of the TPSF which have the highest signal-to-noise ratio and time points at the start of

the TPSF whose weight matrices are better conditioned than weight matrices for all other time

points. In Chapter 5, we develop hybrid methods which combine the resolution of early photons

with the complete separation of fluorescence yield offered by the asymptotic approach applied to

late arriving photons. Simulations and experimental phantom results are presented comparing the

hybrid methods to asymptotic and early photon methods alone.

While we have shown that lifetime can be used to distinguish fluorophores, another method to
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characterize a fluorophore is by its excitation and emission spectrum. Spectral contrast has been

used extensively in microscopy and has found application in fluorescence tomography, mainly for

the separation of autofluorescence from fluorophores of interest (Mansfield et al., 2005). Spec-

tral methods have also been used in diffuse optical tomography for separation of oxy and deoxy-

hemoglobin (Boas et al., 2001a). In chapter 6, we compare lifetime and spectral methods for the

multiplexing of fluorophores. We make the observation that for both types of imaging, the full

weight matrix can be written as a product of a spatially dependent matrix containing CW weight

matrices and a matrix containing basis functions (exponential decay functions for lifetime, excita-

tion/emission spectra for spectral). However, lifetime and spectral methods differ in that the order

of the matrix product is switched. We explore how this difference in the forward problem affects

the separation capability of each method.

In addition to fluorescence imaging, the imaging of optical properties is frequently possible

using the same optical tomography system. However, there exist significant differences between

the optical property and fluorescence reconstruction problems. While fluorescence tomography in

the case of discrete and known lifetimes is a linear inverse problem, optical property tomography

is nonlinear inverse problem and image reconstruction requires linearization using a perturbative

approach (O’Leary et al., 1995). is step adds to the complexity of the reconstruction algorithm

and the validity of the linearized model must be taken into account. An iterative scheme for non-

linear reconstruction has also frequently been applied (Schweiger et al., 2005). Like for fluores-

cence tomography, optical property reconstructions can also benefit significantly from using time

domain measurements. Due to non-uniqueness, CW cannot be used to separate absorption and

scattering (Arridge, 1999). Reconstruction using time domain data can improve the separation of

absorption and scattering although a significant cross-talk component remains between the two

parameters (Gao et al., 2002).

In chapter 7, we extend the concepts developed in previous chapters for the separation of ab-
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sorption and scattering. We investigate inversion methods which may perform worse in overall

error but perform better in separating different parameters using measures such as cross-talk.

Since a spatio-temporal factorization can no longer be performed on the time domain weight

matrix as in the fluorescence case, we consider a more general approach to improve separation of

the parameters of interest. We frame the inverse problem using a Bayesian approach and derive

a new estimator which minimizes for mean square error while also placing constraints on inter-

parameter cross-talk. We compare this estimator with estimators based on minimum error for

optical property reconstruction. We also apply this method for the separation of fluorophores for

TD measurement data outside the asymptotic regime.

Even though the development of reconstruction algorithms is important for progress in the

field of optical tomography, a parallel challenge remains producing reliable and consistent ex-

perimental results in small animal applications. (Raymond et al., 2010) demonstrated an in vivo

lifetime based tomography application using dyes with varying specificity for organs. We expand

on this previous work by first constructing complex shaped phantoms with known shapes and lo-

cations and performing tomographic reconstruction. We also verify the localization accuracy of

lifetime based methods in a sacrificed mouse. Finally, we perform lifetime screening and tomogra-

phy measurements with dyes targeting specific organs.

1.1 O

In summary, this dissertation presents novel reconstruction algorithms for time domain measure-

ments of fluorescence and optical property imaging as well as experimental reconstructions in

phantoms and in vivo applications. In chapter 2, optical tomography theory is presented includ-

ing the physical bases for the optical parameters which provide contrast, light propagation models

and the solution of ill-conditioned inverse problem. In chapter 3, the instrumentation and exper-
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imental procedure are described along with system calibration measurements, novel experimental

techniques and new acquisition software. In chapter 4, we analyze the asymptotic and direct in-

version approaches for lifetime tomography. In chapter 5, we develop new hybrid reconstruction

methods which combine early and late time gates. In chapter 6, we compare lifetime and spectral

multiplexing for the separation of multiple fluorophores. In chapter 7, we present a constrained

optimization approach for parameter separation in general optical tomography problems. Finally

in chapter 8, we validate lifetime based tomography in a complex shaped phantom, sacrificed

mouse and in vivo.
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2
eory

Fluorescence diffuse optical tomography can provide a non-invasive method to image the in vivo

3D distribution of molecular probes deep in tissue with applications in preclinical research (Ntzi-

achristos et al., 2005; Leblond et al., 2010). While some general features of an embedded object

may be obtained from planar images at the surface of a diffuse medium, tomographic reconstruc-

tion methods must be used to determine the spatial location of an object in all three dimensions

or extract quantitative information about physical parameters of interest. e reconstruction of
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optical parameters from multiply scattered light is a challenging problem and requires accurate

models for light propagation in tissue and an understanding of the assumptions that underlie dif-

ferent reconstruction algorithms.

In this chapter, we consider the various optical parameters which provide contrast in optical

tomography and their physical bases. We provide an overview of the commonly used models for

light propagation in tissue. We review methods of expressing measurement data and unknown

optical parameters as linear inverse problems with an emphasis on the problem of fluorescence

lifetime multiplexing. We finally review standard techniques to solve ill-conditioned linear inverse

problems.

2.1 O P  O T

An overview of the three main optical parameters, absorption, scattering and fluorescence which

we use for imaging is presented in this section.

2.1.1 A

Absorption causes the attenuation of light as it propagates through a medium. rough absorp-

tion of a photon, an absorbing molecule or chromophore moves from its electronic ground state

to an electronic excited state. e molecule can subsequently return to its ground state through

dissipation by heat or emission of a photon through fluorescence or phosphorescence.

e effect of absorption can be modeled statistically by considering a non scattering medium

with a single type of absorber. Each absorber can be characterized by its cross sectional area σ

which represents its absorbing capacity. For a density of absorbers, N and thickness dx, the relative
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Figure 2.1: The absorption spectra for the threemain chromophores in tissue for visible to near-infraredwavelengths (Data

taken from (Prahl, 2001)).

reduction in light intensity I is equal to the fractional area occupied by the absorbers:

dI/I = −σNdx (2.1)

Integrating for thickness 0 to x leads to the Beer-Lambert Law:

I(x) = I0exp(−µax) (2.2)

where µa = σN in units of cm−1 is called the absorption coefficient and can be interpreted as the

probability of photon absorption per unit infinitesimal length. µa can equivalently be expressed

as: µa = ϵC where ϵ is the extinction coefficient in units of M−1 cm−1 and C is the concentration

in units of M.

For tissue, the main chromophores for near-infrared wavelengths are oxygenated (HbO) and

deoxygenated (HbR) hemoglobin, and water. Other minor contributors include melanin, fat and

bilirubin. e absorption spectra of the three main chromophores are shown in Fig. 2.1 for visible

to near-infrared wavelengths.
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From Fig. 2.1, the ’optical window’ corresponding to wavelengths from 650 nm to 900 nm is

the region of the spectrum where the chromophores have low absorption. Non-invasive optical to-

mography is typically performed in this spectral range to maximize tissue penetration. For shorter

wavelengths, hemoglobin absorption dominates while for longer wavelengths water absorption

dominates resulting in much reduced light transmission in both cases. Measurements of temporal

dynamics of HbO and HbR in this wavelength range can provide important physiological infor-

mation about blood oxygenation and volume and have been applied for stroke imaging (Culver

et al., 2003) in small animals and breast cancer imaging (Fang & Boas, 2009) and functional brain

imaging (Boas et al., 2001b) in humans. Due to the unique absorption spectra for both chro-

mophores, estimates for their concentrations can be obtained from absorption measurements at

two wavelengths.

2.1.2 S

Scattering causes the broadening of the light distribution in tissue and manifests itself as changes

in direction of the photon through collisions inside a medium. In the case of a highly scattering

medium such as biological tissue, photons will quickly undergo enough collisions that their direc-

tions become random. In our propagation models, photon energy is modeled as being preserved

after collisions (elastic scattering). Similar to absorption, a measure for scattering can be defined

in a statistical manner. e scattering coefficient µs in units of cm−1 is the probability of a photon

being scattered per unit infinitesimal length.

Scattering arises from refraction index mismatches within a medium and depends on many

factors including the sizes of the scattering particles, the wavelength of light and on the indices of

refraction of the particles and the medium (Niemz, 2007). Scattering due to particles of any size

can be approximately modeled using Mie theory which describes the scattering of light by spheres.

For particles of size comparable to the light wavelength, scattering as predicted by Mie theory
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shows a wavelength dependence of ∼ λ−x with 0.4 ≤ x ≤ 0.5. For scattering particles much

smaller than the wavelength of light, Mie theory can be reduced to Rayleigh theory in which case

the scattering shows a wavelength dependence of ∼ λ−4. It has been found that the wavelength

dependence measured in tissue cannot be explained by either Mie theory or Rayleigh theory alone

(Niemz, 2007). Alternatively, tissue scattering can be modeled considering separate contributions

of Mie and Rayleigh scattering (Jacques, 2013).

A scattering phase function, P(̂s, ŝ′) is used to characterize the probability distribution of a

photon’s initial direction ŝ and direction after scattering ŝ′. Tissue is typically assumed to be an

isotropic medium so that the phase function is independent of the absolute ŝ and ŝ′ of the photon

and only depends on the angle between them P(̂s, ŝ′) = P(̂s · ŝ′). A commonly used phase function

is the Henyey-Greenstein function:

p(cos(θ)) =
1 − g2

2(1 + g2 − 2gcos(θ)3/2)
(2.3)

A measure for the direction of scattering in a medium is the anisotropy, g which can be found by

taking the average of the cosine of the scattering angle. Scattering in tissue has been shown to be

highly forward scattering with g > 0.9 (Cheong et al., 1990).

For wavelengths in the optical window, the cell constituents which are responsible for scattering

are mainly intracellular components such as mitochondria and nuclei (Mourant et al., 1998).

2.1.3 F

Fluorescence is the emission of light from a molecule following absorption and can be described

by the following sequence of steps (Lakowicz, 2006). First, a fluorescent molecule or fluorophore

absorbs a photon and goes from the electronic ground state, S0 to an electronic excited state (usu-

ally S1 or S2). rough collisions with surrounding molecules, the fluorophore loses energy non-
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Figure 2.2: A Jablonski diagram showing the various transitions which occur after excitation of a fluorophore.

radiatively and goes to the lowest vibrational energy level of S1 in a process called internal con-

version. From this state, the fluorophore can return to some vibrational energy level of S0 either

through a non-radiative process characterized by rate knr or through emission of a photon char-

acterized by the fluorescence decay rate kf. Because the fluorophore has lost some of its vibra-

tional energy after excitation and returns to a higher energy vibrational state than it started in, the

emitted photon is red shifted relative to the absorbed photon. is phenomenon is known as the

Stokes shift. e entire process can be illustrated schematically with the Jablonski diagram shown

in Fig. 2.2.

Two important parameters that characterize a fluorophore are its lifetime and its quantum

yield. Quantum yield is a measure for the brightness of a fluorophore and is defined as the ra-

tio of the number of emitted photons to the number of absorbed photons. It can be expressed in

terms of the rate constants, knr and kf:

Q = kf/
(
knr + kf

)
(2.4)

Fluorescence lifetime is an important parameter only accessible by time resolved measurements.

Following a short pulsed excitation of a sample, an initial population of n0 excited states is cre-

13



ated. e temporal dynamics of the number of excited states n can be described by the following

equation:

dn(t)/dt = −(knr + kf)n (2.5)

By solving (2.5), the number of molecules in the excited state can be expressed as:

n(t) = n0exp(−(knr + kf)t) (2.6)

Since the measured fluorescence intensity I(t) is directly proportional to n(t) and given the fluo-

rescence lifetime is defined as the inverse of the rates of decay τ = 1/(knr + kf), I(t) can also be

written as a exponential decay function:

I(t) = I0exp(−t/τ) (2.7)

e lifetime represents the average amount of time a fluorophore with a single exponential decay

function stays in its excited state before a photon is emitted and the fluorophore returns to its

ground state:

< t >=

∫∞
0 tI(t)dt∫∞
0 I(t)dt

= τ (2.8)

A major advantage of using fluorescence lifetime as a quantitative measure is that it is generally

independent of concentration. Due to the relatively long duration of typical fluorescence lifetimes

(ns) compared to absorption which occurs on the fs time scale, lifetime can also be sensitive to

many biochemical processes not available from absorption measurements such as environmental

changes in viscosity, pH, polarity and solvent relaxation, molecular interactions, energy transfer

and quenching (Lakowicz, 2006).
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2.2 L P F M

In the forward problem, the light intensity at detector positions on the surface of a turbid medium

is determined from a given distribution of the absorption coefficient, scattering coefficient and

fluorescence yield throughout the medium. e function relating the optical parameters to the

measurements can be expressed in terms of fundamental solutions to photon transport equations.

2.2.1 R T E

A general model for propagation of photons in biological tissue is the radiative transport equa-

tion (RTE). e RTE can be derived based on energy conservation within each volume element

of phase space while neglecting effects such as polarization and coherence. e quantity of inter-

est is the radiance L measured in units of W m−2 sr−1 and is a function of six independent vari-

ables (r, ŝ, t). e time-dependent RTE, expressed in integro-differential form is given by (Arridge,

1999): [
1
v
∂

∂t
+ ŝ · ∇+ µt

]
L(r, ŝ, t) = µs

∫
4π
L(r, ŝ′, t)P(̂s · ŝ′)d̂s′ + S(r, ŝ, t) (2.9)

where v is the speed of light in the medium, µt is the transport coefficient equal to the sum of

µs and µa, S(r, ŝ, t) is the photon source, L(r, ŝ, t) is the fluence, ŝ is the unit direction vector and

P(̂s · ŝ′) is the scattering phase function, frequently modeled by the Heyney-Greenstein function

(2.3).

e RTE cannot be solved analytically for any practical geometries. A common numerical

method of solving the RTE is with Monte Carlo simulation (Wang et al., 1995). In this disserta-

tion, the RTE is primarily solved using the Monte Carlo approach. A brief overview about Monte

Carlo methods is given in section 2.2.2. Other numerical methods for solving the RTE use higher

order approximations such as expansion in spherical harmonics (PN) (Aydin et al., 2002) and
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discrete ordinates (SN) (Abdoulaev & Hielscher, 2003). e first order spherical harmonics ap-

proximation (P1) results in widely used diffusion equation (section 2.2.3).

2.2.2 M C S

Monte Carlo software for photon propagation has seen significant progress in recent years includ-

ing improvements in computation time from GPU based implementations (Prahl et al., 1989;

Wang et al., 1995; Fang & Boas, 2009). In the Monte Carlo approach, a random walk for N pho-

tons is performed. Since the signal to noise ratio of a Monte Carlo simulation depends on ∼
√
N,

a large number of photons must be simulated to produce reliable estimates. e standard rules for

incrementally moving a photon through a medium are outlined by (Wang et al., 1995) and are

used in the Monte Carlo simulations (Boas et al., 2002) presented in later chapters . We briefly

describe them below.

Absorption is modeled by assigning a weight to every simulated photon. As a photon propa-

gates through the medium its weight is reduced by a factor of exp(−µaL) where L is the distance

traveled. e distance a photon travels between scattering events is determined by sampling an

exponential distribution based on the scattering coefficient at the location of the photon. e

new direction of the photon is determined from sampling the scattering phase function. Fresnel’s

equations are used to find the probability of internal reflection at medium boundaries. e ran-

dom walk for a photon ends either when it leaves the medium or it makes contact with a set of

predefined detectors.

2.2.3 D E

e diffusion equation provides a computationally tractable model for light propagation but is not

generally applicable like the RTE. e time-dependent diffusion equation is given as (Wang &
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Wu, 2007):
∂U(r, t)
v∂t

+ µaU(r, t)−∇ · [D∇U(r, t)] = S(r, t) (2.10)

where U(r, t) is the fluence measured in units of W cm−2 which is the integral of the radiance

U(r, t) =
∫
Ω L(r, ŝ, t)d̂s, µ′

s = (1 − g)µs is the reduced scattering coefficient, where 1/µ′
s is the

distance a photon travels before scattering has made its direction isotropic and D = 1/(3(µa+µ′
s))

is called the diffusion coefficient.

Unlike the RTE, the diffusion equation has analytical solutions for certain homogeneous ge-

ometries. For example, in an infinite homogeneous medium for source, S(r, t) = δ(r, t), the

solution is in the form of a damped exponential with an asymptotic decay rate µac:

Φ(r, t) =
c

(4πDct)3/2 exp
(
− r2

4Dct
− µact

)
(2.11)

For more complex geometries, a finite element method can be used to numerically solve the diffu-

sion equation (Arridge et al., 1993).

e diffusion approximation is only valid when the radiance has become nearly isotropic due

to multiple scattering events. e general conditions for validity of the diffusion equation are

detailed in (Boas, 1996) and summarized below.

First, the transport albedo c = µ′
s/(µ

′
s + µa) should be close to unity or µ′

s ≫ µa. is is

generally satisfied in tissue where µ′
s can be as much as 100 times greater than µa . However, in

small animal imaging there exist highly vascularized organs such as the heart or the liver where

literature values suggest µa can be larger than 1 cm−1 (Krainov et al., 2013; Alexandrakis et al.,

2005). For these regions of high albedo, it is unclear if the diffusion approximation holds with

sufficient accuracy.

Second, the scattering should not be too anisotropic. From (Cheong et al., 1990) where tissue g

has been measured to be between 0.68 and 0.99, this condition is generally satisfied.
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Figure 2.3: Schematic showing the three components of fluorescent light transport in a scatteringmedium: propagation of

the excitation light atλx , response of the fluorophore to excitation (exp(−t/τ)) and propagation of the fluorescence light
atλm . Also shown is the broadening of the temporal response due to themedium compared to the excitation pulse.

Finally, sources should be at least one random walk length (1/µ′
s) from detectors. For a stan-

dard µ′
s = 10 cm−1, the random walk length is 1/µ′

s = 1 mm. is condition should hold easily

for small animal imaging in the transmission geometry.

2.2.4 F L T

Photon propagation in a medium with fluorophores can be modeled as propagation of the exci-

tation light from the source to fluorophores inside the medium and propagation of the emitted

fluorescence from the fluorophore throughout the medium (shown schematically in Fig. 2.3).

is process can be described by coupled RTE’s and a rate equation relating the excitation field to

the temporal response of the fluorophore (Klose, 2009; Hutchinson et al., 1995, 1996).

First, the excitation field can be modeled as before using a RTE for photons at the excitation

wavelength λx:

[
1
v
∂

∂t
+ ŝ · ∇+ (µx

t + µx
af)

]
L(r, ŝ, t) = µx

s

∫
4π
L(r, ŝ′, t)P(̂s · ŝ′)d̂s′ + S(r, ŝ, t) (2.12)

where the absorption due to the fluorophore, µx
af is separated from the background absorption of
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the medium. e fluorophore response due to the excitation field can be obtained using the rate

equation for excited state fluorophores where the source is the excitation light being absorbed by

the fluorophore:

dn(t)/dt = −(1/τ)n+ µx
afϕ(r, t) (2.13)

e solution to this equation is given by:

n(t) = µx
af

∫ t

0
ϕ(r, t′)exp

(
− t− t′

τ

)
dt′ (2.14)

e fluorophore response multiplied by the quantum yield term Q acts as the source term for the

RTE equation at the emission wavelength λm:

[
1
v
∂

∂t
+ ŝ · ∇+ (µx

t + µx
af)

]
L(r, ŝ, t) = µx

s

∫
4π
L(r, ŝ′, t)P(̂s · ŝ′)d̂s′

+ Qµx
af

∫ t

0
ϕ(r, t′)exp

(
− t− t′

τ

)
dt′ (2.15)

In the next section, we solve the forward problems for optical properties and fluorescence using

Green’s function methods.

2.3 S  F P

A general method to solve the RTE or diffusion equation for arbitrary sources and boundary con-

ditions is the application of Green’s functions. If the volume Green’s function, G(r, t; r′, t′) is

defined as the response to a source S(r, t) = δ(r, t) where δ(r, t) is the Dirac delta function, then

the solution to an arbitrary source S(r′, t′) is given by (Case & Zweifel, 1967):

U(r, t) =
∫ t

0

∫ ∞

0
G(r, t; r′, t′)S(r′, t′)dr′dt′ (2.16)
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We also introduce a symmetry property which is valid for both the RTE and diffusion equation

Green’s functions. Frequently due to implementation considerations, we seek solutions to an ad-

joint problem. A standard procedure to find the adjoint solution is by solving the direct problem

and applying a reciprocity relation (Case & Zweifel, 1967):

G(r, t; r′, t′) = G(r′,−t′; ; r,−t). (2.17)

Application of (2.17) can result in significant reduction in the total number of Monte Carlo sim-

ulations needed to solve the forward problem. Next, the Green’s function methods are used to

find linear functions which relate the fluence at detectors to changes in optical properties and flu-

orophore concentration.

2.3.1 O P

Since optical properties (µa(r), µs(r)) are related to the surface measurements through a nonlinear

function, the problem is first simplified by linearization using a perturbation approach (O’Leary

et al., 1995). is linearization has most commonly been performed for the diffusion equation

and the resulting Jacobians for absorption and scattering are presented below. Jacobians based on

the RTE are presented in Chapter 6.

Using the perturbation approach, the total parameters, µa(r) and µs(r) are equal to the sum of

background terms and perturbation terms:

µa(r) = µa0(r) + δµa(r) (2.18)

µs(r) = µs0(r) + δµs(r) (2.19)
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By substituting (2.18) and (2.19) into the time-dependent diffusion equation (2.10), assuming

all first order terms go to zero (Born approximation) and application of (2.16) and (2.17), the

perturbation in measured signal (δUa(r, t) and δUs(r, t)) due to an absorption and a scattering

perturbation can be expressed as:

δUa(r, t) = −
∫
V
G(rs, r, t)

⊗
G(r, rd, t)δµa(r)d3r (2.20)

δUs(r, t) = −
∫
V
∇G(rs, r, t)

⊗
∇G(r, rd, t)δµs(r)d3r (2.21)

where rs and rd are the source and detector locations respectively and G(rs, r, t) and G(r, rd, t) are

the source and detector Green’s functions. It should be noted that the above equations assume

the validity of the diffusion equation and may become less accurate for early time points where

photons have undergone minimal scattering events.

2.3.2 F

Applying the definition of the Green’s function to (2.15) and assuming the emission of photons

is due only to absorption at the excitation wavelength while neglecting re-emission due to absorp-

tion of photons at the emission wavelength, the fluorescence intensity can be expressed as double

time convolutions:

U(rs, rd, t) =
∫
V
d3r
∫ t

0
dt′
∫ t′

0
dt′′Gex(r, rs, t′′)exp

(
− t′ − t′′

τ(r)

)
Gem(rd, r, t− t′)η(r) (2.22)

In this equation, the interactions between emission wavelength photons with the background

medium and fluorophores are included in the emission Green’s function Gem. Here, a new term

called fluorescence yield is defined as η = Qµf
ax. Using a more general method for fluorescence
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tomography, (Eppstein et al., 2003) has investigated the case when emitted fluorescence can re-

excite the fluorophore using a full perturbation approach.

For fluorescence tomography problems investigated in this dissertation, fluorophores are as-

sumed to have known discrete lifetimes τn with the unknown parameters being the fluorescence

yields associated with each fluorophore ηn. We have found this assumption is generally satisfied

for near-infrared dyes and fluorescent proteins in vivo. is allows the fluorescence inverse prob-

lem to be solved directly by linear inverse methods for the unknown fluorescence yields.

2.3.3 A F L A

Understanding the effects of a turbid medium on a fluorophore’s intrinsic lifetime is important

for the implementation of lifetime based reconstruction algorithms. is problem was studied

in (Kumar et al., 2005, 2006) using asymptotic lifetime analysis and the following discussion is

taken largely from these sources. First it was shown that in a scattering medium, the fluorescence

intensity can be written as a sum of a diffusive decay term and a fluorescence decay term:

U(rs, rd, t) =
n∑
i=1

aD(rs, rd, t)exp(−vµat) + aFn(rs, rd)exp (−t/τn) (2.23)

where the diffusive term decays with a time constant, τD. From (2.23) it can be observed that if

fluorescence term decays at a slower rate than the diffusive term (τn > τD), then the fluorescence

intensity at times after the diffusive decay term has completed its evolution can be used to directly

measure the intrinsic fluorescence lifetime in a medium by fitting to an exponential basis function.

is condition is verified with simulations in chapter 4.

To apply this concept to the fluorescence tomography reconstruction problem, we consider the

time dependent weight term which can be written as a time convolution between an exponential
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basis function and a time-dependent background weight function:

W(rs, rd, r, t) =
∫ t

0
dt′exp

(
−(t− t′)

τ(r)

)
WB(rs, rd, r, t′) (2.24)

WB(rs, rd, r, t) =
∫ t

0
dt′Gex(r, rs, t− t′)Gem(rd, r, t′) (2.25)

For lifetimes longer than the absorption timescale (τn > τa = 1/(vµa)), (2.24) can be writ-

ten in a new form. First, it can be shown that when the Green’s function for the RTE is written

as a product of a background Green’s function G0 and an exponential decay term, G(r, t) =

G0(r, t)exp (−vµa(t)), G0 is only dependent on ∇µa and is invariant to constant shifts in µa.

Based on this property, a new reduced absorption Green’s function, Gn can be introduced which

is the RTE Green’s function evaluated at background absorption, µa − 1/(vτ):

Gn(r, t) = G(r, t) |µa−1/(vτn)= G(r, t) |µa exp(−t/τn) (2.26)

A fluorophore dependent background weight function Wn
B can then be written in terms of re-

duced absorption Green’s functions. is allows the fluorescence measurement from (2.22) to be

expressed as the product of a time-dependent amplitude function and an exponential decay term:

U(rs, rd, t) =
∑
n

An(rs, rd, t)exp (−t/τ) (2.27)

An(rs, rd, t) =
∫
V
d3r
[∫ t

0
dt′WB(rs, rd, r, t)

]
ηn(r) (2.28)

For times t ≫ τD, An(rs, rd, t) approaches a constant in time and the fluorescence intensity can be
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written as a sum of weighted exponential decay functions:

U(rs, rd, t) =
∑
n

exp (−t/τn)
∫
V
drWn

B(rs, rd, r)ηn(r) (2.29)

where Wn
B are generated from CW reduced absorption Green’s functions. It can be seen that in the

asymptotic regime the fluorescence intensity at the surface of a scattering medium reduces to the

same form as the fluorescent response from direct excitation of a fluorophore.

2.4 O T I P

e goal of the inverse problem is to reconstruct the spatial distribution of the unknown optical

parameters from surface measurements. After discretization of the forward operators, the recon-

struction for both optical properties and fluorescence yield are reduced to solving a linear matrix

equation:

y = Wx (2.30)

where y is a known vector containing measurements at combinations of source/detector pairs,

time gates and wavelengths and x is an unknown vector containing the optical parameters at every

voxel in the medium.

A standard method to solve (2.30) is by the method of least squares where the x which mini-

mizes the residual between the measurement y and Wx is found:

x = argmin
x

∥Ax− y∥2 (2.31)

e solution of (2.31) can be obtained using the generalized inverse or Moore-Penrose pseudoin-

verse (A†):

xLS = A†y (2.32)
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e generalized solution in (2.32) has the property that when A is invertible, A† is equal to

the inverse matrix, A−1. In the case when multiple solution produce the same minimum residual

(for example, in underdetermined systems when an infinite number of solutions, x result in zero

residual), the generalized solution corresponds to the minimum norm (∥x∥) solution.

Even though the generalized solution in (2.32) is the x that after linear transformation with W

best matches the measurement data, in the presence of noise it will not necessarily be a solution

with the lowest reconstruction error (∥xrecon − xtrue∥2). In fact, generalized solutions are seldom

useful in optical tomographic reconstruction. Due to their high sensitivity to noise, generalized

solutions typically show non physical characteristics such as large oscillations. e noise sensitivity

of a solution can be analyzed by considering the conditioning of the weight matrix A which de-

scribes the amount a change in y produces a corresponding change in the inverted solutions x. e

degree of conditioning can be measured using the condition number α which gives a bound on

how much the error can propagate from the data to the solution:

∆x
x

≤ α
∆y
y

(2.33)

One of the major difficulties associated with all types of diffuse optical imaging is that W has a

large condition number. To address this problem, regularization methods are typically used. e

process of regularization involves finding solutions to an approximate version of the original in-

verse problem by incorporation of prior information about the unknowns. A commonly used

regularization technique is Tikhonov regularization where a penalty term based on the norm of

the solution is added to the least square functional (Bertero & Boccacci, 1985):

Φ(x) = ∥Ax− y∥2 + λ∥x∥2 (2.34)
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where λ is a real positive number called the regularization parameter. It can be shown that there

exists a λ which minimizes the reconstruction error. is property of the algorithm is referred to

as semi-convergence.

For a given λ, the solution x that minimizes (2.34) can be written in two equivalent forms:

xTR = AT(AAT + λI)−1y (2.35)

xTR = (ATA+ λI)−1ATy (2.36)

e first form is used for undetermined problems while the second is used for overdetermined

problems. Selecting the proper form will reduce the computation time associated with performing

the matrix inversion.

One of the main difficulties with ill-conditioned inverse problems is that the λ which produces

the solution with the least reconstruction error cannot be determined without knowledge of the

true object although there exist certain heuristic methods such as L-curve analysis which can be

used to select the value (Hansen, 1992).

To better understand the sources of error when using a regularized inverse, the two terms that

result from multiplication of the Tikhonov inverse operator, Ainv from (2.35) and (2.36) with a

measurement vector containing noise (y = Ax+ n) is given below (Bertero & Boccacci, 1985):

xTR = AinvAx+ Ainvn (2.37)

From the first term of (2.37), the matrix AinvA is called the resolution matrix of the inverse oper-

ator. Each element ij of the matrix represents the response at voxel j due to an object at voxel i in

x. erefore, columns of the matrix contain the point spread function (PSF) for different voxels
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in the medium. e difference between the AinvAx and x is called the approximation error and it

quantifies the effect of using a regularized inverse compared to A† when noise is not considered.

e second term of (2.37) represents the effect of noise on the inverse operator and is called the

noise amplification error. As the regularization parameter is decreased, the resolution matrix ap-

proaches the identity matrix and the solution becomes less biased while the error due to the noise

term increases. As the regularization parameter is increased, the solution becomes more biased and

the corresponding point spread functions in the resolution matrix expand while the noise amplifi-

cation error is decreased. Selecting a regularization parameter involves finding a balance between

these two sources of error.

A well known method to improve computational efficiency while calculating a regularized

inverse is to make use of the connection between the singular value decomposition (SVD) and

Tikhonov regularization. Given the SVD of A (A = USVT), the solutions in (2.35) and (2.36) can

be expressed as (Vogel, 2002):

xLS =
n∑
i=1

(uTi d)
si

vi (2.38)

xTR =
n∑
i=1

si(uTi d)
s2i + λ

vi (2.39)

where ui is the column i of U and vi is column i of V and si are the singular values in S. From

(2.38), it can be seen that noise in the measurement data is amplified by small singular values

which causes the instability in the least squares solution. From (2.39), Tikhonov Regularization

can be viewed as a method to stabilize the solution by reducing the effect of small singular values

while retaining the effect of large singular values. Since the singular vectors vi contain lower spatial

frequencies for larger singular values, the regularized solution is a smoothed version of the true

object.

e computational advantage of using the SVD becomes apparent when evaluating the inverse
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for multiple regularization parameters. In this case, an initial singular value decomposition fol-

lowed by subsequent application of (2.39) is frequently more computationally efficient than the

repeated calculation of the matrix inverse in (2.35) or (2.36).

An alternate approach for solving linear inverse problems is by applying a Bayesian approach.

In this case prior information about the object is explicitly modeled with a probability distribu-

tion. ese methods will be summarized in Chapter 6.
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3
Instrumentation and Experimental

Procedure

3.1 I

Most early optical tomography systems used optical fibers placed in contact with the sample to

deliver light and detect light that has propagated in the sample (Schulz et al., 2006). Fiber-based
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systems use a matching medium or compression to conform to a constant sample geometry. Re-

cently, there has been interest in the development of noncontact systems which can avoid experi-

mental errors introduced by fiber/tissue contact and the use of matching mediums (Schulz et al.,

2003; Kumar et al., 2008b; Graves et al., 2003). In noncontact systems, a collimated free-space

laser beam is delivered to the sample and light is detected with a CCD camera and lens. Despite

its flexibility in imaging samples of various sizes, a noncontact system requires accurate methods

to capture the 3D surface of the sample.

e methods for illuminating and recording from tissue can be generally divided into either

planar and tomographic. Planar imaging is performed in the reflection geometry where wide field

sources and detectors are positioned on the same side of the sample. Planar imaging is used to

generate a single 2D image with no additional processing. erefore, there is no explicit informa-

tion about depth of the object being imaged although objects closer to the surface are more heav-

ily weighted than deeper ones. Tomographic imaging is typically performed in the transmission

geometry where point sources and a wide field detector are on opposite sides of the sample. Mea-

surement data for multiple source and detector locations are used in tomographic reconstruction

algorithms to recover the 3D distributions of optical parameters. ese reconstruction algorithms

are based on light transport models discussed in chapter 2.

Optical tomography systems can also be categorized based on their method of excitation: con-

tinuous wave (CW) systems use time-independent sources (Ntziachristos & Weissleder, 2001;

Zacharakis et al., 2005; Klose & Hielscher, 2003), frequency domain (FD) systems use intensity

modulated sources with frequencies in the MHz to GHz range (Milstein et al., 2003; Godavarty

et al., 2005) and time-domain (TD) systems use nanosecond to picosecond pulsed sources (Das

et al., 1997; Bloch et al., 2005; Kumar et al., 2008b).

CW systems are the simplest to implement and are the least expensive as compared to FD and

TD systems. Typical sources for CW imaging are LED’s and laser diode’s (LD) and detection
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can be fiber based or wide-field with a CCD camera. Despite its simplicity, CW is limited by its

inability to differentiate absorption and scattering in optical property measurements and fluo-

rescence lifetime and yield in fluorescence tomography. In FD systems, the intensity modulated

source creates diffusive waves of the same frequency as the source which propagate in highly scat-

tering media (O’Leary, 1996). e phase shift and amplitude change of the intensity modulated

signal at the detectors can be used to determine absorption and scattering perturbations within the

medium and recover fluorescence lifetime and yield. Since the response to a laser pulse implicitly

contains all modulation frequencies including the CW (zero frequency) component, TD measure-

ments offer the most comprehensive information about the imaging medium. However, due to

the popularity of FD systems, TD data is commonly processed through Fourier transform into a

few discrete frequencies (Stott & Boas, 2002; Nothdurft et al., 2009). Two aspects of TD data can

be highlighted. Early time points represent photons which have undergone fewer scattering events

than CW data. erefore, using early time point data for reconstruction results in better condi-

tioned inverse problems and subsequently higher spatial resolution reconstructions (Leblond et al.,

2009). Also, information about intrinsic fluorescence lifetime within a medium are encoded into

the late time points of the temporal response (O’Leary et al., 1996).

3.2 S

A time-domain fluorescence diffuse optical tomography system for small animal imaging has been

developed in the Optical Molecular Imaging Lab at Massachusetts General Hospital. e device

uses a noncontact method for temporal measurements and free-space laser delivery at the surface

of the animal. A schematic of our system is shown in Fig 3.1.
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Figure 3.1: Time-domain fluorescence diffuse optical tomography system for small animal imaging. (a) A schematic of the

system is shown. For transmissionmeasurements, the source fiber is attached to the translation stage (xy) and scanned

across the bottom surface of themouse. For reflectionmeasurements, the source fiber is attached to an engineered dif-

fuser (d) to provide wide field illumination of themouse. An intensified CCD camera is used for time-resolved detection. (b)

A photograph of the system is shown. To eliminate stray light, a black enclosure is used to surround the system during image

acquisition.
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3.2.1 S

For excitation in the near-infrared spectrum, a Ti:Sapphire Laser (Mai-Tai, Newport-Spectra

Physics, Moutain View CA) was used with a 150 ps pulse width, 80 MHz repetition rate and

tuning range between 700-900 nm. To achieve a pulsed source in the visible spectrum, a pho-

tonic crystal fiber (Femtowhite 800, Crystal Fibre, Denmark) was pumped at 800 nm with the

Ti-Sapph. Excitation filters that span the range 480-700 nm were used to select out narrow ranges

of wavelengths. To control for the amount of input laser power, a rotating polarizer was placed

at the output of the Ti-Sapph. Typical output powers were in the range of ≈ 10-100 mW. e

laser was launched into a 400 µm multi-mode fiber through a fiber collimation package. e out-

put of the fiber was also attached to a collimation package. For reflection imaging, the fiber was

moved above the sample and an engineered diffuser was placed in front of the fiber output to pro-

vide wide field illumination for an area ≈ 5 cm × 5 cm. For transmission measurements, the fiber

output was moved below the imaging platform and attached to a linear translation stage (Velmex

Inc., Bloomfield, NY) which allowed for scanning of different x-y positions with a precision of ∼

1 µm. e laser beam was focused to a < 1 mm diameter spot at the imaging plane.

3.2.2 D

We first review the operation of an intensified CCD camera (ICCD) for time resolved detection

(Selb et al., 2006; Patwardhan & Culver, 2008; Kumar et al., 2008b). ICCD cameras consist of

two main components: an image intensifier which acts as a fast optical shutter and a CCD cam-

era. An image intensifier can be described in terms of three elements: a gateable photocathode, a

microchannel plate (MCP) for electron multiplication and a phosphor screen for re-conversion

of photons. Photons first enter the intensifier input window and strike the photocathode where

they are converted to photoelectrons. When the voltage of the photocathode is negative relative to
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the MCP entrance face, the photoelectrons are pulled toward the MCP and the gate is in the ’on’

state. When the polarity is reversed, photoelectrons remain at the photocathode and the gate is in

the ’off’ state. photoelectrons at the MCP are accelerated along a series of thin (10 µm) channels

where collision with the inner walls produce secondary electrons. At the output of the MCP, the

electrons are drawn to a phosphor screen which is held at a positive voltage relative to the MCP

output. Electrons colliding with the phosphor screen produce green photons. A lens is used to re-

lay photons from the intensifier to the CCD where they are converted to photoelectrons. During

the exposure time of the CCD, charge wells are filled with photoelectrons which are subsequently

read out at the end of the exposure. To collect the full temporal response to a laser pulse, the in-

tensifier gate is in the ’on’ state at different time delays relative to the pulse of the laser.

e specifications of our ICCD system is as follows. A 12-bit cooled CCD camera (Picostar

HR-12 CAM 2, LaVision GmbH Goettingen Germany) with resolution of 1376 × 1024 pixels

is mounted to a voltage-gated image intensifier (Picostar HR-12, LaVision GmbH, Goettin- gen,

Germany). e system is synchronized relative to the 80 MHz pulse repetition rate of the Ti-

Sapph laser through a constant fraction discriminator (Becker & Hickl GmbH) using either the

electronic trigger of the laser or directly from the optical pulses. A fast HRI delay unit was used to

set the gate opening at different times relative to the laser pulse. Typical CCD integration times

of 100 ms corresponds to data acquisition at 8 million laser pulses for each image. To project the

image onto the photocathode of the image intensifier, a camera lens (AF Nikkor, f2.8 Nikon) is

mounted to the intensifier. For fluorescence measurements, 2-inch emission filters were attached

to the lens.
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3.3 E M  R P

In this section, we summarize the steps taken when performing a standard fluorescence tomogra-

phy experiment. We divide the procedure into two parts, the acquisition of data and the process-

ing of data for reconstruction.

3.3.1 M P

1. Sample Preparation: e sample is placed on the imaging platform and positioned such

that all fiducial markers are within the CCD field of view. For in vivo measurements anes-

thesia is delivered through tubes attached to the imaging plate.

2. Excitation Measurement: A measurement at the excitation wavelength of the fluorophore

is obtained through the sample. is data can be used to determine the relative transmis-

sion of the excitation light at different sources or for full 3D reconstruction of optical prop-

erties throughout the medium.

3. Calibration Measurement: An excitation measurement is obtained through a calibration

phantom with known optical properties (standard epoxy resin phantom, µa = 0.1 cm−1,

µ′
s = 10 cm−1). e scaled measurement data, yscaled can be written in terms of the actual

measurement data, ymeas, measured calibration data, ymeas−calib and simulated calibration

data, ysim−calib:

yscaled = ymeas
ysim−calib

ymeas−calib
(3.1)

A calibration measurement allows both the cancellation of source and detector coupling

coefficients and the conversion of the units of the experimental data (CCD counts) to the

physical units of the Monte Carlo simulation.
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4. Fluorescence Measurement: e appropriate emission filter is placed in front of the lens. A

fluorescence measurement is obtained through the sample of interest.

5. Surface Capture Measurement: For capturing the 3D surface boundary using the photo-

stitching technique, multiple white-light images are taken with a standard camera centered

on the sample. e camera is rotated around the sample and positioned at various angles

relative to the sample.

6. IRF Measurement: e sample is removed from the imaging platform and replaced with

a white paper. e instrument response function (IRF) is measured through the paper at

every source and detector location. In many measurements, detectors are taken at the same

x-y coordinates as the sources.

3.4 R P

1. Surface Reconstruction: e software Autodesk 123D Catch is used to reconstruct the

3D scene from the white light images. e output of Autodesk 123D Catch is the photo

scene in the form of a 3D surface mesh (.obj format). Using MeshLab, extraneous elements

of the scene are removed. e mesh is imported into Matlab for alignment and then con-

verted into a volumetric binary cloud used for forward modeling. Fig. 3.2(b) shows the

reconstructed surface of a nude mouse under anesthesia after processing from the original

captured scene in Fig. 3.2(a). Fig. 3.2(c) shows surface reconstruction can be successfully

applied to smaller samples such as excised mouse organs which can be used for ex vivo op-

tical tomography measurements.

2. Co-registration: e affine transformation which maps the coordinates of the CCD cam-

era to the reconstructed 3D surface is generated using fiducials (CT spots) which are visible
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from the CCD white light image and on the surface mesh.

3. Source and Detector Positions: e source positions are determined by first measuring the

IRF for each source and then by finding the pixel corresponding to the maximum intensity

for each measurement. Detectors are chosen as subsets of CCD pixels within the coverage

area of the sources. Sources and detectors are mapped into the surface mesh coordinate

system using the affine transformation from the previous step.

4. Monte Carlo Simulation: e source and detector positions and the volumetric binary

cloud are used as inputs into the time-domain Monte Carlo software, tMCimg (Boas et al.,

2002). e output of the Monte Carlo simulation are the source and detector Green’s

functions. ese are also frequently referred to as the two-point functions.

5. Weight Matrix Calculation: e weight matrix (or sensitivity matrix) is generated using

the source and detector’s Green’s functions. Since the shape of the IRF was found to de-

pend on detector location (section 3.5.2), the weight matrix for each detector was con-

volved with the experimentally measured IRF at each detector.

6. Reconstruction Algorithm: Linear inversion is performed using the SVD implementation

of Tikhonov regularization.

3.5 S C  C

3.5.1 F F C

e flat field correction technique can compensate for differences in sensitivity over the field of an

image. is sensitivity difference, due to both the sensitivity variations in the intensifier phosphor

and CCD pixel sensitivity can be measured and used to correct measurement data. Two images
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Figure 3.2: Demonstration of the photo-stitching technique applied to an anesthetizedmouse and excisedmouse organs.

(a) 3D scene of anesthetizedmouse with camera positions for each white light image displayed. (b) 3D surface of mouse

after a processing step. (c) Capture 3D surface of mouse organs which were used for ex vivo imaging.

are required for this technique, a blank image, Iblank under an uniform light source and a dark

image, Idark with the camera shutter closed. e corrected image, Icorrected in terms of the measured

image, I is given by:

Icorrected =
I− Idark

Iblank − Idark
(3.2)

Both Iblank and Idark are dependent on system parameters such as intensifier gatewidth settings.

An example of a blank image used for flat field correction is shown in Fig. 3.3. e image was

generated by averaging 50 measurements of a uniform light source for intensifier gain = 500 V

and gatewidth = 500 ps.

3.5.2 I R F

e instrument response function accounts for multiple experimental parameters such as the pulse

width of the laser, the shape of the gate of the image intensifier and the broadening of the laser

pulse inside the optical fiber. It is used to estimate the time t0 that the laser is first incident into

the surface of the imaging medium. As part of our experimental procedure, we measure the IRF

using excitation light focused onto a piece of white paper. e measured IRF is directly convolved
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Figure 3.3: Example blank image used for flat field correction for intensifier gain = 500 V an gatewidth = 500 ps.

with the time domain weight matrices before image reconstruction. We have observed a depen-

dence of the measured IRF shape on the spatial location of the source. is effect is shown in Fig.

3.4 where the IRF’s measured for sources along a line in either the x or y direction are plotted. To

account for this dependence, the IRF for every detector must be measured. Also in the reconstruc-

tion algorithm, the temporal profile of the weight matrix for a particular source/detector pair and

voxel is convolved with the IRF for the corresponding detector.

3.5.3 T J

An important characterization of a time domain system is the stability of the IRF over time. We

measured the timing jitter of our system over 45 minutes, which is the typical measurement time

for a combined excitation and fluorescence measurement of a mouse. e jitter at each time point

was obtained by fitting for the time shift ∆t which produced the best match between the mea-

sured IRF and a reference IRF at t = 0. It can be seen that the mean of the jitter stays close to

zero over the duration of this measurement while maximum absolute jitter did not exceed 20 ps

(Fig 3.5). However, in separate measurements we have observed two effects which produce more
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Figure 3.4: The dependence of the IRF on the location of a point source. The IRF’s for five sources scanned in a line along

the x-direction (left) and y-direction (right) are shownwith different colors.

significant changes in the IRF. First, the shape of the IRF can abruptly change along with a sig-

nificant shift in t0 by as much as 50-100 ps. Second, the mean timing jitter can undergo gradual

drifting which can exceed 50 ps. is drift occurs more frequently in longer experiments (> 2

hours). Since accurate optical property reconstructions are particularly sensitive to timing jitter, a

method was devised to reduce overall jitter.

To track the amount of timing jitter, a reference fiber source was incorporated into our system

using a 1 × 2 fiber coupler. e IRF was obtained simultaneously with each measurement. If the

jitter between a reference IRF and the measured IRF is above a preset threshold, the measurement

is reacquired. is reduces the overall jitter in the acquired data set at the expense of additional

acquisition time.

3.6 D P C

It is known there exist large variations in light transmission through the mouse body due to dif-

ferences in tissue absorption and mouse thickness. is precludes obtaining a high signal to noise

ratio for all regions of the mouse. is issue is illustrated in Fig 3.6(a) showing the transmission

through a live mouse with a lung tumor model consisting of iRFP720 cells. e high signal from

the lateral chest region approaches the dynamic range limit of the CCD camera while the central
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Figure 3.5: Stability measurement for the IRF. The amount of timing jitter in the IRF is quantified for a single 45minute

measurement.

chest area has very low SNR. We address this problem in two ways: dynamic laser power control

and spatial filters.

e laser power reaching the mouse can be dynamically controlled using a filter wheel con-

taining neutral-density (ND) filters (0.1 to 3 OD). At each source position in a tomography mea-

surement, a preliminary scan is performed for a range of time gates close to the peak of the TPSF.

Appropriate ND filters are chosen based on this initial scan and the TPSF is taken with these

settings. e measurement data is scaled based on the source dependent ND filters so that recon-

struction is performed on data with the same effective input laser power. is method is able to

produce uniformity in the maximum SNR for different sources in a scan. However, a large spatial

variation in SNR can still remain for a single source.

To account for this problem, we have also incorporated a spatial filter technique to achieve

high SNR data throughout the mouse. In this technique, areas of high transmission are com-

pletely blocked from the camera. is allows the signal for low SNR regions to be increased either

through an increase in laser power or through longer exposure time of the camera. e filtering

is implemented using a mechanical slide whose size is adjustable in both axes. e filter is placed

∼5 cm above the mouse surface. To demonstrate the utility of a spatial filter, we compare data

41



  

0.4 

0.8 

1.2 

1.6 

2 
x 10 

6 

0 1 2 3 4 5 

-5 

-4 

-3 

-2 

-1 

0 

Actual 

With spatial filter 

Nanoseconds 

L
o
g
(n

o
rm

a
liz

e
d
 T

P
S

F
) 

Spatial filter Combined Actual 

(a) (b) (c) 

(d) 

Figure 3.6: Improved SNR performance using spatial filers. (a) Light transmission through the chest of a mouse with near-

infrared fluorescent proteins in the lungs. (b) Light transmission when lateral chest region is masked out using spatial filter.

(c) Combination of the transmission data from (a) and (b) while scaling for input laser power.

acquired without a spatial filter (Fig. 3.6(a)) with data acquired with a spatial filter over the lateral

chest region (Fig. 3.6(b)). While combining the two data sets with proper scaling produces an in-

tensity image (Fig. 3.5(c) with similar appearance to Fig. 3.6(a), it is clear from the TPSF’s taken

from the central chest region where the transmission of light is low that the exponential decay of

the iRFP720 fluorescence is measured much more accurately with a spatial filter.

3.7 A S

A custom Matlab GUI was written for data acquisition to replace a previous proprietary acquisi-

tion software. Serial communication is initiated to various hardware devices (CCD camera, image

intensifier, delay box, translation stage and filter wheel). e laser trigger from the constant frac-

tion discriminator (CFD) is automatically detected. Coregistration between the x-y translation

stage coordinate system and the CCD camera field of view is implemented using a calibration
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procedure at four points on the stage. is allows for easy selection of source locations and man-

ual positioning of the laser source relative to the sample. Different modes of operation include

single or continuous scanning for a set of time gates and sources. e software includes the afore-

mentioned methods for higher quality data acquisition such as dynamic power control, which

allows a preliminary scan to determine appropriate source position dependent input laser power

and IRF jitter control which discards measurements containing high timing jitter.
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4
Time Domain Fluorescence

Reconstruction in the Asymptotic Regime

In this chapter, we will focus on image reconstruction using the decay portion of the fluorescence

temporal point spread function which contains information about the intrinsic fluorescence life-

times of fluorophores within a turbid medium. We will consider the case of reconstruction of

a single lifetime component but more emphasis will be placed on multiplexing multiple fluo-
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rophores using lifetime as contrast. Although fluorescence lifetime multiplexing is being widely

used in fluorescence lifetime imaging microscopy (FLIM) (Bastiaens & Squire, 1999; Selvin,

2000; Berezovska et al., 2003), a technique applicable for tissue sections, we and others look to

extend this concept to tomographic separation of multiple fluorophores with the ultimate goal of

visualization of multiple molecular processes simultaneously in the entire mouse.

Traditionally, a common method to perform time domain fluorescence tomography reconstruc-

tion was by taking TD data for a set of time gates and stacking them for every source/detector

pair into a measurement vector. Standard linear inverse techniques were used to invert the mea-

surement vector with the full time domain weight matrix (Chen et al., 2011; Holt et al., 2012).

We refer to this approach as the Direct TD (DTD) approach. In (Kumar et al., 2005, 2006), an

asymptotic TD (ATD) approach for lifetime multiplexing was introduced where reconstruction

was performed in two steps. First, a multiexponential fit is performed on late time gates to recover

decay amplitudes. Second, the decay amplitudes for each fluorophore are independently inverted

using CW weight functions. It was shown with simulations that ATD could separate inclusions

which were 7 mm, 5 mm and 3 mm apart while a DTD approach using early time gates produced

reconstructions with significant cross-talk and inclusions could not be correctly localized. A sepa-

rate study (Kumar et al., 2008a) comparing lifetime multiplexing using an ATD approach with a

frequency domain (FD) approach applied to Fourier transformed TD data showed that the ATD

approach could accurately localize the positions of inclusions 3 mm apart in a simulation and 6

mm apart in an experimental phantom while reconstructions using FD data could separate nei-

ther.

We build on this previous work in the following ways. We show experimentally the separa-

tion of fluorescent inclusions down to 1.4 mm using the ATD approach to validate previous sim-

ulation results. We express the ATD approach in matrix form by decomposing the TD weight

matrix for late time gates as a product of a temporal basis function matrix and a spatial block diag-
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onal matrix. We compare the linear inverse operators for the ATD approach and DTD approach

and show they are mathematically distinct. We show that within a Bayesian framework, both the

DTD and ATD approaches can produce inverse operators that can be applied either directly to

the TD data or to the decay amplitudes and ATD can be obtained from DTD through a substi-

tution of the measurement covariance matrix. We introduce a quantitative measure for cross-talk

and show that the ATD approach provides reconstructions with superior cross-talk performance

and better separation than DTD. We show through simulation that ATD can provide better esti-

mates for the relative amounts of two fluorophores than DTD. Finally, we revisit the asymptotic

condition and explore the relationship between the diffuse temporal response and the intrinsic flu-

orescence lifetime. We introduce a new time constant for determination of the beginning of the

asymptotic regime. Finally, we plot contours for the diffuse time constant and recovered fluores-

cence lifetime as a function of background optical properties using simulation. Prior to introduc-

ing the mathematical form of the time domain algorithms, we describe a source of error inherent

to multiplexing experiments known as cross-talk.

4.1 C-T  L M

When multiplexing multiple parameters, an important performance measure, along with reso-

lution is inter-parameter cross-talk. Cross-talk can be understood as the interference caused by

the presence of one type of parameter on the reconstruction of other types of parameters. is is

typically illustrated in the two parameter case by considering a medium where objects of the two

parameter types are separated spatially. When image reconstruction is performed, regions which

should only reconstruct for one type of object will show reconstructed values for both types. In

the case of closely spaced objects, cross-talk has also been shown to result in localization error (Ku-

mar et al., 2006). In certain optical tomography problems, cross-talk is known to be high due to
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non-uniqueness of the inverse problem. In the field of diffuse optical tomography (DOT), it was

shown that multiple absorption and scattering distributions can produce the same single wave-

length CW measurement at the surface (Arridge & Lionheart, 1998). Reconstruction with CW

data results in indistinguishable reconstructions for absorption and scattering inclusions. Simi-

larly in fluorescence tomography, since lifetime information cannot be obtained from CW data,

reconstruction of multiple lifetimes with CW data results in a large cross-talk component. In later

sections of this chapter, we will develop an intuitive method to quantify the cross-talk perfor-

mance of an experimental technique or reconstruction algorithm for multiplexing which to our

knowledge has not previously been applied.

4.2 T D F T F  I P

Consider a diffuse medium embedded with N fluorophores, characterized by yield distributions

ηn(r) and lifetimes τn. e fluorescence temporal point spread function (TPSF) for impulsive

excitation at source position rs and detection at rd on the surface of a bounded transport medium

of support Ω takes the form:

Uf(rs, rd, t) =
N∑
n=1

∫
Ω
Wn(rs, rd, r, t)ηn(r)d3r, (4.1)

where Wn = Gx(rs, r, t)
⊗

exp(−t/τn)
⊗

Gm(r, rd, t) is the TD sensitivity function, expressed as

a double convolution of the source and detector Green’s functions, Gx and Gm, for light transport

in the medium (Arridge, 1999), and a fluorescence decay term. Discretizing the medium volume

into V voxels, (4.1) can be written as a linear matrix equation for M source-detector pairs, L time
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gates and N lifetime components:


y(t1)

...

y(tL)

 =


W1(t1) . . . WN(t1)

...
. . .

...

W1(tL) . . . WN(tL)



η1

...

ηN

 (4.2)

y = Wη, (4.3)

where y is a (ML × 1) vector of the measured fluorescence data Uf, W = [W1, ...,WN] is a

(ML × VN) matrix of TD sensitivity functions and η = [η1, ..., ηN]
T is a VN × 1 vector of yield

distributions for all lifetimes. A direct inversion of (4.3) leads to the direct TD (DTD) approach,

and the inverse problem is expressed in the standard way using Tikhonov regularization (Bertero

& Boccacci, 1985) to recover η:

ηDTD = WT(WWT + λI)−1y. (4.4)

It is possible to recast the TD forward problem in an alternate form in the asymptotic limit, i.e.,

for times much longer than the intrinsic diffuse timescale τD of the medium, and assuming the

widely held condition, τn > τD (Kumar et al., 2005). e Wn(t)’s in (4.1) can then be factored

into a product of CW sensitivity functions and simple exponential decays (Kumar et al., 2005,

2006), for arbitrary transport media.

While previously, this separation of the temporal and spatial components was used in a two

step reconstruction algorithm without consideration for the underlying matrix operations, we

show additional insights can be gained when the forward problem in (4.2) is first expressed as a

product of two matrices:

y t≫τD= AWη, (4.5)
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where A = [exp(−t/τ1) ∗ I, ..., exp(−t/τN) ∗ I] is a (ML × MN) basis matrix of exponential

decays, I is a (M × M) identity matrix, and W = diag(Wn) is a (MN × VN) block diagonal

matrix containing CW weight matrices, Wn, which are evaluated with the background absorption

reduced by 1/vτn.

A simple manipulation of (4.5) can allow a fundamentally different approach to solving the

TD inverse problem in the asymptotic limit. Since A is a well-conditioned matrix, it can be first

inverted without regularization by multiplication with its Moore-Penrose pseudoinverse A†. e

left hand side of (4.5), after pre-multiplication with A†, is then simply a linear least squares solu-

tion for a multi-exponential analysis of Uf:

a = Wη (4.6)

where a = [a1, ..., aN]T is a (MN × 1) vector of decay amplitudes for all source/detector pairs and

lifetimes. In the next step, we apply Tikhonov regularization to invert the decay amplitudes:

ηATD = WT
(WWT

+ λI)−1A†y. (4.7)

Application of the above inverse matrix operator is equivalent to the two step asymptotic TD

(ATD) approach from (Kumar et al., 2008b). When both DTD and ATD are expressed in their

matrix forms, it is clear that although their forward problems ((4.3) and (4.5)) are the same for

late time gates, the corresponding inverse problems ((4.4) and (4.7)) are distinct, and will produce

different reconstructions even when applied to the same measurement. e key aspect of the ATD

approach is that the inversion of the basis matrix A is removed from the regularized inversion.

is ensures that the measurements in y are directly separated using the exponential basis function

of each fluorophore. Additionally, given the block diagonal nature of W, (4.7) essentially reduces
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to completely separate inverse problems for each yield distribution ηn. is should be contrasted

with the DTD inversion in (4.4), where the inverse problem for each ηn is not separable. Conse-

quently, the ATD approach results in significantly lower cross-talk between the yields of multiple

lifetimes than the DTD approach, as we will demonstrate using simulations and experiments later

in the chapter.

4.3 B I

In the previous section, we have shown that the DTD and ATD methods produce distinct lin-

ear inverse operators for the TD fluorescence tomography problem. In this section, we show

that both DTD and ATD can be expressed either in terms of the full TD weight matrix W or

the block diagonal weight matrix containing the CW weight matrices, W . We use a Bayesian

framework to interpret the dual forms of each method.

We start with the ATD inverse operator from (4.7) and derive its alternate form as follows:

W−1
ATD = WT

(WWT
+ λI)−1A†

= WTAT(AT)†(WWT
+ λI)†A†

= WTAT(AWWTAT + λAAT)† (4.8)

= WT(WWT + λAAT)† (4.9)

where step 3 results from application of the generalized inverse product rule (ABC)† = C†B†A†

(Hartwig, 1986). Similarly, the DTD inverse operator (from (4.4)) can also be written in terms of
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the block diagonal weight matrix, W:

W−1
DTD = WT(WWT + λI)−1 (4.10)

= WT
(WWT

+ λ(ATA)−1)−1A† (4.11)

Since the DTD and ATD solutions can be obtained using either form, implementation consid-

erations should dictate which form is used. We will show in section 4.6 that the W form applied

to amplitudes has significant advantages in terms of computation time and memory storage over

the W form. We next interpret the results in (4.9) and (4.11) using a Bayesian approach. First we

assume that the fluorescence yield, η and the noise corrupting the measurement are drawn from

white Gaussian distributions with covariance matrices Cη = σ2
ηI and Cy = σ2

y I respectively. For

λ = (σy/ση)
2, the DTD inverse operator (4.9) is the minimum mean square estimator (MMSE)

for η (Bertero & Boccacci, 1985). e ATD solution can be understood in two different ways

with respect to the DTD solution. From (4.8-4.11), it is clear that the DTD inverse operator is

identical to the ATD inverse operator under two conditions. (i) When the amplitude covariance

matrix (ATA)−1 is replaced by a diagonal matrix λI in (4.9). (ii) When a measurement covariance

AAT is added within the DTD inverse operator in (4.11).

Given accurate assumptions about the noise model and for appropriate choice of λ, the DTD

solution will have lower mean square error than solutions from all other estimators including

the ATD solution. However, we have shown in the previous section that ATD reconstructions

may perform better using other measures such as reduced cross-talk and improved localization of

closely separated inclusions. In the next section, we will attempt to gain insight into why ATD

approach has better cross-talk performance than the DTD approach and how this improvement is

generally true for all voxels in an arbitrary diffuse medium.
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4.4 R M

A useful tool for analyzing the properties of an inverse operator is its resolution matrix. It is de-

fined as the product of the inverse operator, W−1 and the forward matrix, W:

R = W−1W (4.12)

In the case of reconstructing yield for a single lifetime, the jth column of R represents the point

spread function due to an inclusion at the jth voxel in the imaging medium. In the case of recon-

structing the yields at N lifetimes and for V voxels in the imaging medium, the (n − 1)V + jth

column of R contains a general response due to an inclusion at the jth voxel and for the nth life-

time. is response includes both the point spread function for lifetime n and the point spread

function for all other lifetimes. is leads to a natural definition of cross-talk for a voxel j of life-

time n as the magnitude of the point spread function for j at lifetimes different from n. In Fig.

4.1, we show the form of the resolution matrix in the case of two lifetimes. e cross-talk for ev-

ery voxel in the imaging medium can be determined from the off diagonal blocks of the resolution

matrix.

For comparison of the cross-talk for the DTD and ATD methods, we derive the form of their

respective resolution matrices:

RDTD = W−1
DTDW = WT

(WWT
+ λ(ATA)−1)−1A†(AW) (4.13)

RATD = W−1
ATDW = WT

(WWT
+ λI)−1A†(AW) (4.14)

It can be observed that since A†A = I (a property that holds when A is full column rank (Ben-
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Figure 4.1: The form of the resolutionmatrix for multi-parameter imaging problems. The on-diagonal blocks represent the

individual parameter responses. The off-diagonal blocks represent cross-talk between two parameters.

Israel & Greville, 2003)) and every remaining term in (4.14) is block diagonal, the resulting RATD

is also a block diagonal matrix. erefore, ATD reconstructions have zero cross-talk. On the other

hand, RDTD is generally not block diagonal and hence DTD reconstructions contain non zero

amounts of cross-talk. is observation provides justification for replacement of the measurement

covariance matrices in the ATD approach from the last section. Essentially, in ATD, the measure-

ment covariance matrix which leads to the minimum error is replaced by one which leads to zero

cross-talk. We will verify the forms of the resolution matrix in simulations in the next section.

4.5 S R

We next quantified the above theoretical results using Monte Carlo simulations, performed using

tMCimg (Boas et al., 2002). e simulation medium was a 2 cm × 2 cm × 2 cm slab with optical

properties of µa = 0.2 cm−1 and µ′
s = 10 cm−1. 49 equally spaced sources and detectors were
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located at z = 0 cm and z =2 cm planes respectively. e time step was set to 100 ps. Fluorescent

inclusions (0.125 mm3) were placed at the center of the slab. A 2% shot noise was added to all

forward data prior to reconstruction. In all simulations, the regularization parameter λ was chosen

corresponding to the least reconstruction error (E = ∥ηrecon − ηtrue∥).

4.5.1 S L R

Figure 4.2 shows simulation results for a single fluorescent inclusion using the DTD approach.

e inset of Fig. 4.2(a) shows that the resolution, quantified by the full volume at half maximum

(FVHM) of the reconstructed yield, is poorer with later time gates. Also, a singular value decom-

position (SVD) analysis of the DTD sensitivity matrix was performed. SVD analysis has been

used previously in optical tomography to explore optimizing experimental parameters such as

source/detector number and coverage and voxel size (Graves et al., 2004). e slope of the singu-

lar value spectrum is an indicator for the conditioning of the inverse problem. We see from Fig.

4.2(b) and 4.2(c) that SVD analysis shows distinct behavior for the early and late portions of the

TPSF. e slope of the singular value spectra increased with the number of early time gates, in-

dicating improvement in the conditioning of the inversion and gains in resolution (Fig. 4.2(b)).

However, the SVD spectra show negligible change for any combination of multiple late time gates

(Fig. 4.2(c)). is demonstrates the redundancy of using multiple gates in the asymptotic region

for tomography, as we expect from the spatio-temporal factorization in (4.5).

4.5.2 L M

We next compared the imaging performance of ATD and DTD methods using two inclusions

with distinct lifetimes (τ = 0.87 ns and 1.27 ns) and with varying separations of 2 mm to 6 mm.

Figure 4.3 shows a comparison of ATD with DTD applied to the same set of 12 late time gates.
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Figure 4.2: (a) Fluorescence TSPF for a 2 cm thick diffusive slab with a fluorescent inclusion (τ = 1ns) at the center. The

inset shows the FVHMof the reconstructed yield for individual time gates. SVD spectra of the DTDweight matrix are

shown for (b) one to eight early gates [indicated as blue circles in (a)] and (c) one to eight late gates [red circles in (a)]. The

gates were stacked in order of decreasing intensity for both cases.
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Figure 4.3: Comparison of reconstructions obtained from applying ATD andDTD to the same set of 12 late time gates. Red

and green corresponds to the yield distributions for 0.87 and (1.27 ns), respectively. The true locations of the inclusions are

shown in gray. In the first two rows, the X–Z plots are generated by assigning the recovered yields to the red (0.87 ns) and

green (1.27 ns) components of the RGB colormap. Each distribution is thresholded at 50% of its maximum. The bottom row

shows line plots for ATD (dashed line) and DTD (solid line) along the x axis at the depth of the inclusion. The computation

time for ATDwas 21 times shorter than that for DTD.

It can be seen from the line plots that there is significantly higher cross-talk for reconstructions

using DTD (Fig. 4.3, yellow indicates cross-talk), which precludes accurate localization of the

inclusions even for 4 mm separation. e ATD approach, however, provides minimal cross-talk,

and correctly localizes the inclusions down to 2 mm separation.

e resolution matrices for DTD and ATD, RDTD and RATD were computed using (4.13) and

(4.14). To aid with visualization, the rows and columns of the matrices were binned down by a

factor of 80 and normalized to the maximum value of the matrix. Fig. 4.4 shows plots of the res-

olution matrices for both methods. It can be seen that RDTD contained non-zero terms in the off
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Figure 4.4: The resolutionmatrices for DTD and ATD.Matrices are binned down by factor of 80 and normalized to their

maximum values.

diagonal block while RATD was exactly zero for all off diagonal terms. is indicates that cross-talk

is minimized for ATD reconstructions compared to DTD reconstructions over all voxels of the

imaging medium. Also, RDTD showed a significant difference in magnitude for the two lifetime

components on the main diagonal. is difference could lead to inaccuracy when determining

relative yields of the two lifetimes. RATD showed a much closer relative magnitude for the two

lifetime components on the diagonal blocks.

To demonstrate the quantitative accuracy of the ATD method in estimating the relative amounts

of two fluorophores, we performed a simulation with two fluorescent inclusions of differing life-

times (τ = 0.87 ns and 1.27 ns) placed at the same location in the slab at the z = 1cm depth. e

ratio of the fluorescence yields of the inclusions were varied from 1:1 to 1:6. Both ATD and DTD

reconstructions were performed on noise corrupted measurements. To calculate the standard de-

viation of the estimates, measurements formed from 50 different realizations of the noise were re-

constructed. In Fig. 4.5, the recovered yield using DTD (blue) and ATD (red) are shown with the

true ratio in black and the standard deviation as error bars. e ATD method is able to recover
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Figure 4.5: Determination of relative amounts of two fluorophores using ATD andDTD. The recovered yield using DTD

(blue) and ATD (red) are shownwith the true ratio in black.

the true yield ratios while, due to cross-talk, the DTD estimates are inaccurate. It can be observed

for high true ratio values, the standard deviation for the reconstructed ratio was higher for ATD

than DTD. is can be attributed to the fact that for large ratios, the uncertainty in the smaller

lifetime component is amplified. Since the ATD method was able to accurately reconstruct large

ratios while the DTD method underestimated large ratios, the uncertainty in the smaller lifetime

component was greater for ATD than DTD resulting in higher uncertainty in the recovered ATD

ratios.

4.6 E R

Finally, we validated our simulation results using phantom experiments. We constructed three

phantoms consisting of cell culture dishes [88 mm diameter, 17 mm in height, with two parallel

tubes (0.965 mm outer diameter, 0.58 mm inner diameter) spanning the length of the dish, at a

height of 8 mm, and a center-to-center separation of 5.6, 2, or 1.4 mm (see Fig. 4.6)]. e tubes

were filled with 3, 30-diethylthiatricarbocyanine iodide (DTTC) dye at a concentration of either
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Figure 4.6: Dish phantom filled with Intralipid and nigrosin solution to a depth of 1.7 cm, shownwith the tubes. Parallel dye

filled tubes have a center-to-center separation of 5.6 (shown), 2, or 1.4mm. Also shown are source and detector positions

(o) overlaid on top of the total CWfluorescence intensity distribution for all sources.

7.4 µM in 100% ethanol (τL = 1.27 ns) or 9.2 µM in 66% ethanol, 33% H2O (τS = 0.88 ns).

ese concentrations were selected to achieve similar CW fluorescence yield for the two dyes in

the absence of a scattering medium. e fluorescence lifetime of each DTTC solution was mea-

sured directly in the absence of a scattering medium. All phantoms were filled with 99 mL of 1%

Intralipid with 4.34 µg / mL of nigrosin, resulting in a reduced scattering coefficient of 10 cm−1

and an absorption coefficient of 0.1 cm−1 at 770 nm. e phantoms were imaged in a transmis-

sion geometry with the time-resolved system described in chapter 3.

Fluorescence was excited at 770 nm with a Ti:sapphire laser and detected with an 800 nm long

pass filter coupled to an intensified CCD camera (PicostarHR, LAVision, Gmbh; 500 ps gate

width, 600 V gain, CCD integration time of 100-200 ms, 46 time gates, 150 ps steps, 2 × 2 hard-

ware binning). Complete TD data were recorded for up to 84 sources and 84 detectors (Fig. 4.6)

arranged across the dye-filled tubes in three rows, spaced at 6.8 mm, and separated by either 1.8

mm (5.6 mm tube separation) or 1.4 mm (2 and 1.4 mm tube separation). For tomography, de-

tectors were selected as points on the phantom surface directly above each source.

In Fig. 4.7 we display a single x–z slice from the CW, DTD, and ATD fluorescence yield re-

constructions (thresholded at 90% of maximum) as well as normalized line profiles for each case.
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Both the DTD and the CW approaches can resolve tubes with center-to-center separations of 5.6

mm but fail to resolve the 2 or 1.4 mm cases for any value of the regularization parameter λ. Both

the 2 and 1.4 mm separations are well below the width of the typical point spread function (PSF)

(≈ 4–5 mm) for a 2 cm thick diffusive slab (Pogue et al., 2006) (the intrinsic PSF is also roughly

represented by the reconstructed distributions, ηn for CW in Fig. 4.7). e shift of the CW re-

constructions toward the long-lifetime tube for the 2 and 1.4 mm cases could be attributed to the

slightly larger net yield of the 1.27 ns dye compared to the 0.88 ns dye.

Although the individual ATD distributions (ηS and ηL) are limited by the intrinsic PSF, the

peaks of the distributions for each lifetime (red and green lines in Fig. 4.7) accurately represent

the true tube locations for all three cases for a range of λ. e recovered tube separations for the

ATD reconstructions were 5.5 (± 0.88), 2.17 (± 0.19), and 1.2 mm (± 0.06 mm) at λ = 1. It

is noteworthy that the DTD reconstructions used up to 18 time gates spanning the entire fluo-

rescence decay and were thus computationally several orders more cumbersome than the ATD

approach. e failure of the DTD approach to localize short separations can be attributed to the

cross-talk between multiple lifetimes. However, note that the distributions for the DTD and CW

are narrower than that for ATD, due to the better error performance of these methods.

4.7 C E

We showed in section 4.3 that both DTD and ATD approaches could be written either in a form

that requires the inversion of raw TD data with the full TD weight matrix W or a form that re-

quires inversion of the decay amplitudes with the matrix W. Although for a particular approach,

both forms produce the same solution, the computational efficiency and memory storage require-

ments for each form differ significantly. In the W form using decay amplitudes, the memory stor-

age and total computation time have negligible dependence on number of time gates. is effec-
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Figure 4.7: 3D fluorescence reconstructions using CW, DTD, and ATD approaches for three tube separations. Top three

rows: x–z projections of the reconstructions along a central slice through the phantom. The ATD andDTD yield distribu-

tions are shown for the long (ηL) and short (ηS) lifetimes as the red and green components of an RGB image. Bottom row:

corresponding normalized profiles of CWand ATD yield reconstructions along a line at a depth of 8.5mm.
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Figure 4.8: The image reconstruction time, using the full TDweight matrixW as a function of number of time gates.

tively allows the utilization of the entire decay portion of the measured TPSF for reconstruction.

In contrast, for inversion of the raw TD data using the W form, the memory storage requirement

shows a linear increase with number of time gates and the total computation time shows a greater

than linear dependence with number of time gates.

We compare memory storage and total computation time for both forms for the simulation pa-

rameters of section 4.5. For the W form operating on decay amplitudes, the main storage term is

the W matrix which occupies 5.30 GB of memory and does not depend on number of time gates.

e total computation time for 50 times gates is 7.4 minutes (<1 second for multiexponential fit,

7.4 minutes for inversion of W). For the W form operating on the raw TD data, the total memory

storage scales as 2.65 GB · (number of time gates). e computation time for up to 12 times gates

is shown in Fig. 4.8. It can be seen even on machines with large amounts of memory, the total

computation time quickly becomes impractical even for moderate number of time gates.
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4.8 A C

It is known that propagation through a turbid medium distorts the fluorescence TPSF such that

its decay rate is generally not the same as the intrinsic fluorescence decay rate (Patterson & Pogue,

1994). Previous studies have explored the relationship between recovered fluorescence lifetime

and medium related parameters such as volume and bulk optical properties. (Patterson & Pogue,

1994) found that distortion of the recovered fluorescence lifetime is increased due to short life-

times, thicker mediums (large source detector separations) and strong bulk scattering and weak

bulk absorption. (Vishwanath & Mycek, 2004) showed a tabulation of recovered fluorescence

lifetimes for different medium optical properties and thickness. (Kumar et al., 2005, 2006) estab-

lished a condition for the recovery of the intrinsic lifetime for a given diffuse medium. In this sec-

tion, we show that when this condition is met, an additional time constant can be derived which

determines the portion of the TPSF decay that follows the intrinsic lifetime decay rate. is time

constant can serve as a general approach for recovering fluorescence lifetimes from turbid tissue.

In this section, we look to determine conditions for when the fluorescence lifetime can be

determined asymptotically from the fluorescence TPSF. We call the portion of the fluorescence

TPSF when the time constant of the decay matches the intrinsic fluorescence lifetime the asymp-

totic regime. e ability to recover lifetimes asymptotically allows for a spatial-temporal separa-

tion of the fluorescence forward problem which we have applied in the asymptotic approach for

reconstruction. It also allows the determination of lifetime distributions that are present deep in-

side tissue for lifetime-based sensing methods without having to perform forward modeling and

tomographic reconstruction.

From (Patterson et al., 1989), we know that in an homogeneous semi-infinite medium, the

asymptotic diffuse time scale is equal to the absorption time scale, τabs = 1/(vµa). In a finite

sized imaging medium, the decay time constant of the diffuse temporal response is τD. It has been
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shown the effect of boundaries reduces the decay time constant (τD < τabs) (Haselgrove et al.,

1992). (Kumar et al., 2005, 2006) showed the condition for asymptotic recovery of lifetimes is

that the intrinsic fluorescence lifetime is longer than time constant for the temporal diffuse re-

sponse (τn > τD). Given a particular lifetime τn can be measured asymptotically, an important

time constant to consider is the time point past the peak of the fluorescence TPSF that marks

the beginning of the asymptotic regime. is is also the time at which the background diffusive

weight function becomes a constant. We will show that this time is characterized by a new time

constant that depends on both τD and τn.

Recall that for lifetime, τn, we can write the TD weight function in terms of the a background

weight function WB and an exponential decay function (Kumar et al., 2006).

WB(rs, rd, r, t) =
∫ t′

0
dt′′Gx(rs, r, t′ − t′′)Gm(r, rd, t′′) (4.15)

W(rs, rd, r, t) =
∫ t

0
dt′WB(rs, rd, r, t′)exp

(
−(t− t′)/τn

)
(4.16)

If we assume the change in optical properties between the excitation and emission wavelengths is

negligible, then both Gx and Gm decay as ∼ exp (−t/τD). Hence, WB decays as ∼ t · exp (−t/τD).

We rewrite (4.16) based on these time constants,

W(rs, rd, r, t) = exp (−t/τn)
∫ t

0
dt′αt′ · exp

(
−t′/τD

)
exp
(
t′/τn

)
(4.17)

We define a new time constant τBD for the decay of the background diffuse term inside the inte-

gral:

τBD = (1/τn − 1/τD)−1 (4.18)
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is time constant determines the time point at which the fluorescence TPSF enters the asymp-

totic regime. If τn is much larger than τD, then τBD is very close to τD. However, if τn is close to

τD, then τBD can be very long relative to the other two time constants. In this case, even though a

time point exists when the fluorescence decay term dominates, experimental conditions may make

it impractical to measure data at these long time points. is can happen if the time points fall

outside the repetition period of the laser or if the SNR of the time points is too low.

A simulation was performed to determine the conditions on the background absorption/scattering

medium such that lifetimes can be recovered asymptotically. e simulation parameters were as

follows. A 2 cm × 2 cm × 2 cm diffuse medium with background optical properties for µa in the

range of 0 to 0.15 cm−1 and µ′
s in the range 10 to 50 cm−1 was used. A 2 mm3 fluorescent inclu-

sion was placed at the center of the medium. e lifetime for the inclusion was set to τ = 0.4 ns.

e excitation source was placed directly below the inclusion and the TPSF measurement was

taken directly above the inclusion. First we determined the diffuse time constant, τD as a func-

tion of background optical properties. Fig. 4.9(a) is a plot with contour lines of constant τD. As

expected, τD increases for decreasing bulk absorption and increasing bulk scattering. Next we fit

for the fluorescence lifetimes starting from tfit which is chosen to be the time point past the peak

of the fluorescence TPSF corresponding to 0.2% of the peak value. Fig. 4.9(b) shows a plot with

contour lines of constant recovered lifetimes. It can be seen that lifetimes are generally recovered

for bulk optical properties corresponding to τD lower than τ . By choosing a set time point tfit to

begin the fitting procedure, we mimic the actual experimental situation where due to SNR and

other constraints we cannot choose time points arbitrarily past the peak. However, since tfit may

not meet the condition tfit ≫ τBD, it is possible that the true lifetime is not recovered even though

the asymptotic condition holds (τ > τD).
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Figure 4.9: Contour plots (units of ns) for the diffuse time scale, τD (left) and recovered lifetime, τ (right) for varying bulk

optical properties of themediumµa andµ
′
s .

4.9 T J S

In this section, we show how accurate determination of the start of the asymptotic regime has

practical importance for reconstruction of experimental data. We saw in chapter 3 that timing

jitter is an experimental impediment for time-domain systems. We will show below that im-

age reconstruction in the asymptotic regime is less sensitive to timing jitter than reconstruction

from time points before the asymptotic regime. If we assume the time origin for the measurement

weight matrix is t0 and the time origin for the model weight matrix has undergone a shift of δjitter

(this can occur because the reference IRF and IRF of the TD data are taken at different times and

the reference IRF has undergone a shift relative to the IRF of the TD data) then the measurement

and model weight matrices within the asymptotic regime are:

Measurement: Wexp(−(t− t0)/τ) (4.19)

Model: Wexp(−(t− t0 − δjitter)/τ) (4.20)

66



and outside the asymptotic regime are:

Measurement: W(t− t0)exp(−(t− t0)/τ) (4.21)

Model: W(t− t0 − δjitter)exp(−(t− t0 − δjitter)/τ) (4.22)

It can be seen that timing jitter only introduces a scaling factor (exp(δjitter)) for the reconstruction

problem in the asymptotic regime without changing the spatial distribution of the reconstruction

while timing jitter will change the spatial distribution of the reconstruction for TD data not in the

asymptotic regime.
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5
Hybrid Reconstruction Techniques for

Tomographic Lifetime Imaging

It has been shown that reconstruction using direct time points from early TD data can provide

higher spatial resolution than CW and late TD data (Niedre et al., 2008), due to the minimal

scattering experienced by early arriving photons. However, the early TD data offers poor lifetime

sensitivity, resulting in significant lifetime cross-talk and inaccurate localization of closely sepa-
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rated fluorophores with distinct lifetimes (Kumar et al., 2006). In chapter 4, we showed that an

asymptotic TD (ATD) approach based on a multi-exponential analysis of the decay portion of

TD data provides low cross-talk and superior tomographic localization of multiple fluorophores

with distinct lifetimes. e ATD approach relies on the asymptotic factorization of the TD fluo-

rescence into diffusive and pure exponential fluorescence decay components (Kumar et al., 2006).

In this chapter we present two novel, hybrid TD approaches that combine the resolving power

of early photon tomography with the lifetime multiplexing capability of the asymptotic approach

thereby achieving high resolution tomographic lifetime multiplexing. Experimental results from

phantom measurements demonstrate that the hybrid method is able to separate targets as close as

1.4 mm apart with minimal cross-talk and with distributions narrower than that obtained from

any individual method.

5.1 E P T

Early photon tomography (EPT) is a technique that has been explored as a way to improve the

spatial resolution of diffuse optical tomography (DOT) and fluorescence DOT. In EPT, the effect

of tissue scattering is reduced by considering early arriving photons which preferentially follow

straighter paths from source to detector. is reduction in scattering can lead to a better condi-

tioned inverse problem (Leblond et al., 2009). However, the loss in SNR associated with neglect-

ing diffusive photons has also been found to result in lower detection sensitivity as compared to

CW imaging (Valim et al., 2010). Despite this potential drawback, EPT has been applied success-

fully for in vivo monitoring of tumor growth in a lung carcinoma model where it was found to

offer better resolution than conventional CW imaging (Niedre et al., 2008).

To demonstrate resolution improvements offered by early photons, we plot for a single source

and detector, the time dependent weight function (or sensitivity) for early time points on the flu-
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Figure 5.2: Resolution as a function of time gate, measured by the full volume at half maximum of the reconstruction of a

point inclusion at the center of a 2 cm turbidmedium.

orescence TPSF in Fig. 5.1. As a comparison, the CW weight function is also plotted in the same

figure. It is clear that the spatial spread of the sensitivity function is significantly reduced for early

time gates compared to the CW sensitivity function indicating the less diffusive nature of early

photons. In Fig. 5.2, we quantify the resolution by plotting the recovered full volume at half max-

imum (FVHM) for a fluorescent inclusion at the center of a diffuse medium for each time gate.

For these simulations, realistic shot noise is added to the data. It can be seen despite the lower

SNR of early time gates, the FVHM increases with later time gates.
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Figure 5.3: The two parts of the fluorescence temporal point spread function. Early photons are shown in blue and consists
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5.2 H R T

In this section, we present two novel techniques to combine early and late arriving photon data.

Fig. 5.3 shows representative early and late time gates on the fluorescence TPSF. For convenience,

we restate the two forms for the inversion of time domain data below:

DTD : y = Wη

ATD : y = AWη

⇐⇒
ηDTD = WT(WWT + λI)−1y (for early and late time gates)

ηATD = WT
(WWT

+ λI)−1A†y (for late time gates)

e individual components for each hybrid technique are as follows:

- For time gates corresponding to the earliest to peak portions of the TPSF, we will apply a

DTD approach for reconstruction. is corresponds to the time points where the highest spatial

resolution can be achieved.

- For late time gates, we will apply an ATD approach for reconstruction. We showed in chapter
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4 that ATD results in significantly less cross-talk than inverting the full TD sensitivity matrix.

Also, initially performing a linear fit in the time domain before applying a regularized inverse with

CW weight matrices can significantly reduce the reconstruction time and memory requirements

compared to a direct inversion.

5.2.1 A R  S P

A unique feature of the TD weight matrix in the asymptotic regime is that the decay profile for

each lifetime component is independent of voxel location. e total TD measurement data for

these time points can be readily separated into temporal terms which correspond to each lifetime.

On the other hand, the TD weight matrix for an early times gate consists of different temporal

profiles at each voxel. For a TD measurement at these time gates, it is no longer possible to deter-

mine the temporal terms that correspond to each lifetime component without consideration for

the spatial distribution of the fluorophores. For early time gates, instead of attempting to separate

different fluorophores using TD measurement data, we consider separation of the fluorophores at

the voxel level using reconstructions derived from late time gates. We implement this separation

in the form of a spatial prior.

Spatial priors have previously been applied in optical tomography by incorporation of a low

resolution estimate of the imaging object, typically from another imaging modality such as mag-

netic resonance imaging (MRI) and x-ray as prior information in the optical reconstruction (Li

et al., 2003, 2005). For our application, an initial lower resolution, but well separated, estimate of

the fluorescence yield is obtained using the ATD approach applied to late gates (ηATD). Next, re-

construction on early time gates is performed with the spatial regularization matrix L = diag (1/ηATD)

encoded with the ATD reconstruction:

η = (WTW+ λLTL)−1WTy (5.1)
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is method will subsequently be referred as the Hybrid TD Asymptotic Prior (HTD-AP) method.

5.2.2 C M  M R P

In order to incorporate the advantages of early gates with the ATD approach into a single self con-

sistent inverse problem, we consider inverting a “hybrid” data set consisting of early time gates

and decay amplitudes, Y = [y(t1), y(t2), ..., a1, a2, ...]
T, using a hybrid weight matrix, W con-

sisting of the DTD and ATD weight functions (Wn and Wn). e hybrid TD (HTD) forward

problem takes the form Y = Wη or explicitly,



y(t1)

y(t2)
...

a1

...

aN


=



W1(t1) . . . WN(t1)

W1(t2) . . . WN(t2)
... . . .

...

W1 0 0

0
. . . 0

0 0 WN




η1

...

ηN

 . (5.2)

(5.2) can be inverted using Tikhonov regularization:

η = WT (WWT + λI)−1Y (5.3)

It is advantageous to impose a positivity constraint (see also (Bertero & Boccacci, 1985)) on the

Tikhonov cost functional, so that the inversion of the HTD approach is expressed as the mini-

mization problem:

ηHTD = argmin
η≥0

∥Y −Wη∥2
C−1 + λ∥η∥2, (5.4)
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where C is a measurement covariance matrix that incorporates the distinct noise characteristics of

the direct time points y and the amplitudes a within Y . e positivity constraint reduces cross-

talk with the HTD approach by preventing negative yield values from spuriously reducing the

ATD term of the HTD cost functional in (5.4). is method will subsequently be referred as the

Hybrid TD Combined Matrix (HTD-CM) method.

5.3 S - R S

We investigated the performance of hybrid algorithms for point inclusions and complex and

overlapping shapes in a rectangular slab. Early time gate, ATD and HTD reconstructions are

obtained for each problem. For the most general problem of two point inclusions of different

lifetimes we show results for both hybrid methods (HTD-AP and HTD-CM). For other simu-

lation problems, we present the results for only one of the hybrid methods. We quantified the

theoretical results of section 5.2 using Monte Carlo simulations, performed using tMCimg (Boas

et al., 2002). e simulation medium for the point inclusions and complex shapes was a 2 cm

× 2 cm × 2 cm diffuse box with bulk optical properties µa = 0.1 cm−1 and µ′
s = 10 cm−1. 49

sources and 49 detectors were located at the z = 0 cm and z = 2 cm planes respectively. Sources

and detectors covered the medium surface in a uniform grid configuration with distance between

adjacent sources/detectors to be 2 mm. Minimization of the HTD cost functional with positivity

constraint was implemented using L-BFGS-B (Byrd et al., 1995) in MATLAB (e Mathworks,

Inc.). In all simulations, the regularization parameter was chosen corresponding to the least recon-

struction error (E = ∥ηrecon − ηtrue∥).
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Figure 5.4: Comparison of reconstructions obtained from applying ATD to 12 late time gates andDTD to 4 early late time

gates. Red and green corresponds to the yield distributions for 0.87 and 1.27 ns, respectively. The true locations of the

inclusions are shown in gray. In the first two rows, the X–Z plots are generated by assigning the recovered yields to the red

(0.87 ns) and green (1.27 ns) components of the RGB colormap. Each distribution is thresholded at 50% of its maximum.

The bottom row shows line plots for ATD (dashed line) and DTD (solid line) along the x-axis at the depth of the inclusion.

5.3.1 T  

Two fluorescent inclusions of lifetimes τ1 = 0.87 ns and τ2 = 1.27 ns were embedded at the z = 1

cm depth and separated by 2 mm, 4 mm and 6 mm. We first evaluate the individual performance

of DTD approach for early time gates and the ATD approach for late time gates. Figure 5.4 shows

the ATD approach is able to separate the two inclusions with minimal cross-talk. Figure 5.4 also

shows reconstructions using the DTD approach with four early time gates. While the yield distri-

butions are smaller than the ATD distributions, the cross-talk is significantly higher than ATD for

all separations leading to inaccurate localization.
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Figure 5.5: Reconstruction obtained from both HTDmethods. Red and green correspond to the yield distributions for 0.87

ns and 1.27 ns respectively. Each distribution is thresholded to 50% of its maximum. The bottom row shows line plots for

HTD-AP (solid line) and HTD-CM (dashed line) along the x-axis at the depth of the inclusions.
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We next applied the hybrid approaches for reconstruction. Figure 5.5 shows the reconstruc-

tions using the HTD-CM approach with four early time gates and the decay amplitudes, which

provides high resolution and accurate localization for all separations. We note that when the pos-

itivity constraint (5.4) was not imposed, the cross-talk of the HTD-CM method was higher, but

still lower than for DTD alone. Figure. 5.5 also shows the HTD-AP reconstruction as applied

to four early time gates using the asymptotic reconstruction as a spatial prior. It can be seen that

separation and localization of the inclusions could also be achieved down to 2 mm.

5.3.2 F  

Simulations with two point inclusions of differing lifetimes showed that objects separable by the

ATD method could be made better resolved using information from early time gates. However, in

the case of multiple closely spaced objects of different lifetimes, the HTD method has the poten-

tial to resolve objects not resolvable by using either the lifetime contrast from ATD or the resolv-

ing power of early time gates alone.

Four point inclusions in a line are embedded at the center of the diffuse medium. e two

left-most inclusions have a lifetime of (τ = 0.87 ns) while the two right-most inclusions have a

lifetime of (τ = 1.27 ns). e inclusions are spaced such that the inner inclusions are separated

by 2 mm while the outer inclusions on both sides are separated by 4 mm. Even though ATD can

resolve each pair of inclusions with different lifetimes, it cannot resolve inclusions within each

pair with the same lifetime (Fig. 5.6). Early time gates cannot differentiate the lifetimes of the

inclusions and cannot resolve the two inner inclusions. However, it can be seen that the HTD

approach can correctly localize and resolve all four inclusions.
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(a) (b) (c) (d) 

Figure 5.6: Resolving closely spaced objects of differing lifetimes. (a) Four fluorescent inclusions placed in a line with two

inner inclusions separated by 2mm and two outer inclusions on both sides separated by 4mm. τ = 0.87 ns is shown in red

while τ = 1.27 ns is shown in green (b) Early time gate reconstruction (c) ATD reconstruction (d) HTD reconstruction.

5.3.3 C S

Although point inclusions are a simple model to evaluate the performance of the hybrid recon-

struction algorithms, simulations of larger objects with complex shapes would provide a more

realistic representation of how the algorithm would perform in small animal imaging applications

such as the imaging of deep-seated tumors. We chose three test cases that can illustrate the ability

of the algorithm to separate closely spaced fluorescent objects with varying degrees of overlap. e

test cases were: adjacent semi-circles, overlapping ellipses and concentric circles in a slab model.

e first column of Fig. 5.7 shows x-y projections of the true objects. For the semi-circles, the left

half had τ1 = 0.87 ns while the right half had τ2 = 1.27 ns. e diameter of the semi-circles

was 1 cm. For the overlapping ellipses, the ellipses with the major axis aligned with the x-axis and

y-axis had lifetimes of τ1 = 0.87 ns and τ2 = 1.27 ns respectively. Both ellipses had major axis

length of 1 cm and minor axis length of 4 mm. For the concentric circles, the larger circle had a

diameter of 1 cm and τ1 = 0.87 ns while the smaller circle had a diameter of 5 mm and τ2 = 1.27

ns. For all three test cases, the objects were located at the center of the medium. e objects were

uniform along the z-direction and had thicknesses of 5 mm.

It can be seen that the early gate reconstructions showed a strong cross-talk component for all

three cases. is was particularly noticeable for the semi-circles where a strong overlap between
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Figure 5.7: Reconstruction of complex and overlapping shapes. The true objects for three test cases, A - adjacent semi-

circles, B - overlapping ellipses and C - concentric circles are shown in column 1. Red and green correspond to the yield

distributions for 0.87 ns and 1.27 ns respectively. In all test cases, objects with a thickness of 5mm are embedded in the

center of a 2 cm thick slab. Reconstructions using early time gates (column 2), ATDmethod (column 3) andHTDmethod

(column 4) are shown for all test cases.

79



the two halves was present and for the concentric circles where the presence of a surrounding cir-

cle is no longer apparent. e ATD reconstruction showed improved separation for all three test

cases compared to early time gates even though the object shapes were not well preserved. is

distortion of the shape made it so that the overlap between the two lifetime components was not

recovered for the overlapping ellipses. While for the concentric circles, the ATD reconstruction

could recover the relative size difference of the circles, the hole shape of the surrounding circle

was not well captured. Finally, HTD reconstructions showed the sharpest images with the least

amount of cross-talk compared to DTD of early time gates and ATD alone for all three test cases.

e shapes for the semi-circles and overlapping ellipses were well recovered using the HTD ap-

proach. Also for the concentric circles test case, the inner circle could be easily be distinguished

from the surrounding circle.

5.4 S - M A

We next explore the feasibility of using hybrid reconstruction techniques for lifetime tomography

in mice by considering two potential applications: anatomical imaging using organ targeting dyes

and cardiac imaging with an activatable probe.

Anatomical imaging using organ targeting dyes with lifetime contrast would allow for the

validation of 3D reconstructions using fluorescence sources inside a living mouse with complex

shapes and known locations. Also, the ability to optically image organs would provide an oppor-

tunity for all-optical methods for fluorescence tomography with anatomical priors. Currently

anatomical landmarks such as the skeleton are obtained using other imaging modalities such as

CT or MRI (Grimm et al., 2005). An all-optical method for combined functional and anatom-

ical imaging would eliminate the need of performing co-registration between different imaging

modalities. In this study, we consider lifetime multiplexing with two organs in close proximity to
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each other, the skeleton and the kidneys. In vivo reconstructions for dyes targeting the kidneys

and skeleton are presented in chapter 8.

A major problem in imaging targeted fluorescent probes is background accumulation of flurophores,

especially in the liver. is problem can be addressed by using activatable probes whose lifetime

shifts upon activation. We have shown previously the ability to detect protease activation in in-

farcted myocardisum with an activatable near-infrared probe (PGC-800) (Goergen et al., 2012).

Planar fluorescence imaging showed that after infarction the lifetime in the thoracic region (0.53

ns) shifted relative to the lifetime in the liver (0.67 ns). Tomographic reconstruction based on the

amplitude of the thoracic signal would allow for quantitative estimates of the in vivo concentra-

tion of the activated probe.

Simulations were performed in a publicly available digital mouse atlas (Dogdas et al., 2007)

generated using CT and cryosection data from a nude mouse. e atlas is segmented into 21

anatomical regions with each voxel having a corresponding region label. For our study, the orig-

inal 0.1 mm voxels was binned down to 1 mm resulting in a 38 × 99 × 21 volume. Voxels cor-

responding to the skeleton and kidneys were assigned lifetimes of τ1 = 0.5 ns and τ2 = 0.85

ns respectively while the voxels corresponding to the heart and liver were assigned lifetimes of

τ1 = 0.53 ns and τ2 = 0.67 ns respectively. e fluorescence yield for all objects were set to be

the same value. Simulated TD measurements were generated for 87 source/detector pairs across

the mouse. Measurements were convolved with an experimentally derived instrument response

function assuming an image intensifier gate width of 500 ps. 2% shot noise was added to all data

prior to reconstruction. Both the true objects and reconstructions are displayed in Fig. 5.8 and

5.9 as maximum intensity projections. For cardiac imaging, the true skeleton was included as

the blue component in all images to show the relative locations of the true and reconstructed or-

gans. For anatomical imaging, reconstructions are shown for the horizontal plane while for cardiac

imaging, reconstruction are shown for the sagittal plane. CW reconstructions were also included
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in the comparison to show the potential benefits of using TD over CW data for reconstruction.

From Fig. 5.8, it can be seen that when imaging the skeleton and kidneys using CW, the rela-

tive magnitude of the objects could not be recovered accurately. is is due to cross-talk between

the lifetime components and makes CW reconstructed yields in a medium with multiple lifetimes

unreliable. Even though the early time gate reconstructions was able to delineate the shapes of

the organs quite well, there was significant cross-talk especially within the kidneys. ATD showed

excellent separation of the organs as expected although the shapes of the kidneys and the skele-

ton appeared more blurred relative to the early time gate reconstruction. HTD reconstructions

showed complete separation of the two organs. In particular, it can be observed only the HTD

reconstruction could recover the segment of the skeleton in the region between the two kidneys.

For cardiac imaging, the quality of the reconstructions (Fig. 5.9) followed a similar pattern

to the skeleton-kidneys reconstructions. CW reconstructions were able to differentiate the two

organs due to the difference in lifetime of the probe in both regions. However, the relative in-

crease of the reconstructed yield in the heart relative to the liver did not match the yields of the

true objects. is can be attributed to the non-uniqueness of lifetime and fluorescence yield for

CW reconstructions. Early time gate reconstructions were able to provide moderate amount of

separation of the heart from the liver, possibly due to separated nature of the two organs but a sig-

nificant cross-talk component is still visible. e ATD reconstruction showed clear separation of

the two organs although the shape of liver is not well recovered. Finally, HTD was able to sepa-

rate both organs with high resolution.

5.5 E

We validated the HTD approach using phantom experiments. Parallel tubes filled with two

dyes (τ = 0.87 and 1.27 ns) and separated by 5.6, 2, and 1.4 mm were embedded in a scattering
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ATD CW DTD (Early) HTD True 

Figure 5.8: Tomographic lifetimemultiplexing of organ targeted fluorophores, using the Digimouse atlas with 84 sources

and 84 detectors. 3D reconstructions were performed on simulated TD data which was convolvedwith an experimentally

determined IRF (gatewidth = 500 ps). The lifetimes of the skeleton and kidneys were τ = 0.5 ns and τ = 0.85 ns respec-

tively. The true yield distribution and reconstructed yield distributions for CW, early time gates, ATD andHTDmethods are

shown using the are shown for lifetimes τ = 0.5 ns and τ = 0.85 ns as the red and green components of an RGB image.
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Figure 5.9: Tomographic lifetimemultiplexing applied to cardiac imaging with an activatable probe, using the Digimouse at-

las with 84 sources and 84 detectors. 3D reconstructions were performed on simulated TD data which was convolvedwith

an experimentally determined IRF (gatewidth = 500 ps). The lifetimes of the heart and liver were τ = 0.53 ns and τ =
0.67 ns respectively. The true yield distribution and reconstructed yield distributions for CW, early time gates, ATD and

HTDmethods are shown using the are shown for lifetimes τ = 0.53 ns and τ = 0.67 ns as the red and green components

of an RGB image.
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medium consisting of Intralipid and nigrosin (µa = 0.1 cm−1 and µ′
s = 10 cm−1). Measurements

were performed with a previously described TD fluorescence tomography system (Kumar et al.,

2008b), consisting of a Ti-Sapphire laser for excitation and time-gated intensified CCD camera

for detection. Full tomographic measurements were acquired for up to 84 sources and 84 detec-

tors, and 46 time gates, with a gate width of 500 ps, CCD integration time of 100–200 ms, and

step size of 150 ps.

e results shown in Fig. 5.10 indicate that the ATD method is able to correctly localize the

tubes for all separations, while DTD and CW cannot separate tubes closer than 5.6 mm. How-

ever, the HTD method applied to three early time gates and decay amplitudes is able to accu-

rately localize the inclusions, with significantly narrower yield distributions compared to the ATD

method. We note that the same regularization was applied to ATD alone as to the ATD compo-

nent of the hybrid method, indicating that the improvement in resolution is due to the incorpora-

tion of early time gates in the reconstruction.

In summary, we have presented a novel approach for TD fluorescence tomography that com-

bines the use of early- and late-arriving photons, enabling high-resolution lifetime tomography in

turbid media. We have verified the approach in simulations involving simple point inclusions and

more complex shapes and organ labeling in a digital mouse atlas. We have experimentally demon-

strated the improved resolution and cross talk performance of the hybrid method in separating

closely located targets. e spatial resolution of the HTD approach can be further improved using

faster detectors that are capable of detecting photons arriving earlier than 100 ps. Future work will

be focused on in vivo applications of this technology in animal models of disease.
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Figure 5.10: Experimental reconstruction of fluorophores with lifetime contrast in a dish phantom. X–Z and line plots for

CW, ATD, DTD (three early and three late gates), and HTD combining ATD andDTD (three early gates) are shown. Red and

green correspond to the yield distributions for 0.87 and 1.27 ns, respectively. Each distribution is thresholded at 70% of its

maximum. The bottom row shows line plots for HTD (dashed line) and ATD (solid line) along the x-axis at the depth of the

inclusion.
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6
Comparison of Tomographic Spectral and

Lifetime Multiplexing

Mutltispectral methods have commonly been used in microscopy to separate multiple fluorophores

in a tissue sample using their unique spectral signatures (Zimmermann et al., 2003). ese meth-

ods have also been successfully applied to distinguish fluorophores of interest from tissue autoflu-

orescence (Mansfield et al., 2005; Levenson et al., 2008). In microscopy, the unmixing can be
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performed pixel by pixel with simple linear fits to predetermined spectral basis functions. How-

ever, in the case of thick samples, the measurement at the surface of the sample is distorted by the

wavelength dependent effects of light propagation (Chaudhari et al., 2009; Leblond et al., 2011).

Quantitative separation of fluorophores embedded deep in tissue using multispectral imaging

requires accurate modeling of absorption and scattering at multiple wavelengths and computa-

tionally inverting the effects of propagation through the medium.

In this chapter, we show that the multispectral fluorescence tomography inverse problem can

be written in two forms analogous to TD lifetime multiplexing. We also demonstrate that the

asymptotic TD (ATD) approach is mathematically distinct from multispectral tomography in

a manner that offers unique advantages over spectral methods for separation of fluorophores in

turbid media. We use near-infrared fluorescent proteins as a model to compare the performance of

lifetime and spectral methods.

6.1 M F  M F T

From chapter 2, we know the propagation of photons in fluorescence tomography can be modeled

by coupled radiative transport equations at the excitation and emission wavelengths. Under the

assumption of at most a single excitation/emission event per photon, the surface fluence can be

written as a linear function of the fluorescence yield. In the case of multispectral fluorescence

tomography (MSFT), the measurements are taken at multiple wavelengths and fluorescence yield

is a function of wavelength resulting in the following forward equation:

U(rs, rd, λx, λm) =

∫
Ω
Gx(rs, r, λx)Gm(r, rd, λ

m)η(r, λx, λm)d3r, (6.1)

where Gx is the source and Gm is the detector Green’s functions evaluated for optical properties

at the excitation and emission wavelengths, λx and λm respectively and η(r) is the fluorescence
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yield. In excitation-resolved fluorescence tomography, measurements are taken at different λx and

collected for a single λm while in emission-resolved fluorescence tomography λx is held constant

while measurements are taken at different emission wavelengths. For both measurement modes,

η can be factored into a spectral term ϵ(λ) containing the quantum yield, extinction coefficient

and relative emission strength and a spatial term containing the unknown concentration C(r). For

simplicity, we consider the emission-resolved case below where only λm = λ is varying. (6.1) can

be rewritten as:

U(rs, rd, λ) =
∫
Ω
Gx(rs, r, λx)Gm(r, rd, λ)ϵ(λ)C(r)d3r, (6.2)

We now consider the problem of fluorophore multiplexing using multispectral data where the aim

is to separate N fluorophores with concentrations Cn(r) and spectral terms ϵn(λ) using data at M

source/detector pairs and L wavelengths. e fluorescence yield in (6.1) can first be replaced by a

spectrally weighted sum of the concentrations:

η(r, λ) =
N∑
n=1

ϵn(λ)Cn(r) (6.3)

We discretize the medium into V voxels so that (6.2) and (6.3) can be written as a linear matrix

equation:

y = Wc (6.4)

where W is a (ML×VN) multispectral weight matrix containing both information about the wave-

length dependent absorption/scattering properties of the medium through the Green’s functions

and the emission spectra of the fluorophores. y is a (ML × 1) vector containing the measurement

at different emission wavelengths and c is a (VN × 1) vector containing the concentrations for all

fluorophores.

e full weight matrix W can be also be factored into spatially dependent and spectrally depen-
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dent matrices so that (6.4) can be rewritten as:

y = WAc (6.5)

W =


W1 . . . 0
...

. . .
...

0 . . . WN

 ,A =

[
ϵ1(λ) ∗ I . . . ϵN(λ) ∗ I

]
(6.6)

where W is a (ML × VL) matrix containing CW weight matrices at each emission wavelength, I is

a (V × V) identity matrix and A is a (VL × VN) matrix containing the spectral basis function for

each fluorophore.

To reconstruct for the unknown concentration Cn, two methods will be considered. In the

direct approach, the full weight matrix in (6.4) is inverted using Tikhonov regularization:

cDirect = WT(WWT + αI)−1y (6.7)

In the indirect approach, the inversion is performed on (6.5) in two steps. First, W is inverted

using Tikhonov regularization. Next, due to the well conditioned nature of A, it is inverted with-

out regularization by multiplication with its Moore-Penrose pseudoinverse. is is equivalent to

performing a least squares fit at each voxel using the spectral basis functions, ϵn(λ).

cIndirect = A†WT
(WWT

+ αI)−1y (6.8)

e direct and indirect forms for solving the inverse problem also arise in blood oxygenation

imaging using multispectral diffuse optical tomography (DOT) after linearization of the DOT

forward problem. e multispectral DOT problem is mathematically identical to MSFT as de-
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tailed above, except that the oxy and deoxy-hemoglobin absorption spectra replace the fluores-

cence emission spectra in (6.1)-(6.6). Although a systematic comparison of indirect and direct

approaches for MSFT has not been conducted previously, properties of both approaches have

been analyzed in multispectral DOT. ese results will be summarized in the next section.

For ease of comparison of TD and spectral methods for multiplexing, we restate the direct TD

(DTD) and asymptotic TD (ATD) forward and inverse operators below:

DTD : y = Wη

ATD : y = AWη

⇐⇒
ηDTD = WT(WWT + λI)−1y

ηATD = WT
(WWT

+ λI)−1A†y
(6.9)

It can be seen that the DTD approach is analogous to the direct approach in the spectral domain

while the ATD approach is analogous to the indirect approach. However, it is clear from a com-

parison of (6.5) and (6.9) that there exists a fundamental difference between the spectral and TD

forward problems. Although both the full TD and spectral weight matrices can be written as a

product of a block diagonal matrix containing CW weight matrices and basis function matrix

containing either the excitation/emission spectra (for the spectral case) or the exponential decay

functions (for the TD case), the order of these two matrices in the product is different for the

multispectral and lifetime problems. In the case of spectral tomography, the mixing of the un-

known fluorophore concentrations occurs at the level of the individual voxels. e mixed concen-

trations are then propagated through the medium by wavelength dependent CW weight matrices.

In the TD case, the separated unknown concentrations are propagated through the medium by re-

duced absorption CW matrices first and then mixing occurs at the level of the measurement. is

difference in ordering results in a fundamental difference between the capability of each method

to separate fluorophores.

To evaluate the separation capability of spectral compared to TD, we measure the amount of
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cross-talk that results for both methods. In chapter 4, we showed that cross-talk in tomographic

reconstructions of fluorophores can result in error in quantifying relative amounts of multiple flu-

orophores and inaccurate localization for closely spaced fluorescent objects. We also showed that

a general way to evaluate cross-talk throughout an imaging medium for a linear inverse operator

is to consider the values of the off-diagonal blocks of the resolution matrix. For the ATD method,

we showed the resolution matrix reduces to a block diagonal matrix due to cancellation of the

basis matrix, A with its pseudoinverse, A†:

RATD = W−1
ATDW

= WT
(WWT

+ αI)−1A†(AW) (6.10)

However, if we consider the resolution matrix for the two spectral methods, we see that the res-

olution matrix is not generally block diagonal for either method. In particular, for the indirect

method we see that due to reversal in ordering of the factorization in (6.5), the basis matrix A† is

no longer canceled by its pseudoinverse as occurs for ATD:

RDirect = W−1
DirectW

= WT(WWT + αI)−1W (6.11)

RIndirect = W−1
IndirectW

= A†WT
(WWT

+ αI)−1(WA) (6.12)

From (6.11), it can be seen that RIndirect is only block diagonal when either or both of the follow-

ing conditions are true:
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- e spectra for the different flouorophores are orthogonal to each other. is is equivalent to

completely non-overlapping excitation and emission spectra.

- e individual CW weight matrices along the block diagonal in W are identical (i.e. Wi =

Wj = W0 in (6.6), so that W = W0 ∗ I). is is equivalent to the condition that optical properties

of the medium do not change with wavelength.

Both the above conditions are hard to satisfy for practical fluorophores and tissue optical prop-

erties. It is interesting to compare the resolution matrix for ATD inversion (6.9) which is block

diagonal under the well satisfied condition that A†A = 1. us, lifetime multiplexing using the

ATD approach is fundamentally better posed for un-mixing multiple fluorophores as compared to

spectral un-mixing. In what follows, we will demonstrate the difference between TD and spectral

methods using simulations with multiple infrared fluorescent proteins (iRFP) in diffuse media.

6.2 M D O T

Before simulation results are presented for MSFT, we give a brief overview of reconstruction of

oxy and deoxy-hemoglobin using multispectral DOT where both direct and indirect forms have

been used and comparisons of the two methods have been performed. We know from chapter 2

that in the DOT forward problem, the measurements are a nonlinear function of µa and µs. For

imaging of dynamic changes in blood oxygenation, it is generally assumed changes in scattering

is negligible and any change in measurements results from a change in absorption. One approach

to solve the nonlinear inverse problem is to linearize about a particular set of µa values. Using this

approach, the Jacobian, Ja relating a change in measurement ∆y to a change in absorption, ∆µa

can be calculated using the Born approximation. e change in absorption can then be spectrally

divided into ∆HbO and ∆HbR using a Jacobian matrix Js which contains the extinction coeffi-

cent spectra for both chromophores. e Jacobian that directly relates ∆y to ∆HbO and ∆HbR,
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Jd is the product of Ja and Js. As in the case for MSFT, the inversion can either be performed with

the full weight matrix (direct) or in two steps (indirect). Both forms are shown below:

∆HbO

∆HbR

 = JTd (JdJ
T
d + αI)−1∆y (6.13)

∆HbO

∆HbR

 = J†s J
T
a (JaJ

T
a + αI)−1∆y (6.14)

A key difference between multispectral DOT and MSFT is that typically measurements are only

collected at two wavelengths for multispectral DOT while multiple wavelengths are collected for

MSFT. When comparing cross-talk performance of both methods, (Li et al., 2004) showed that

cross-talk is higher for the direct approach than the indirect approach for two sets of wavelengths.

On the other hand, (Zhan et al., 2012) showed with simulations that the indirect approach had

lower cross-talk than the direct approach. e discrepancy may lie in how regularization was cho-

sen for each study. (Li et al., 2004) regularized both methods such that the full width at half max-

imum (FWHM) of the reconstructions were the same. is may result in under regularization of

the indirect approach which could lead to increased cross-talk. We have found that the regulariza-

tion parameters which produce the smallest reconstruction error results in significantly different

FVHM’s for direct and indirect methods. In our simulations, cross-talk of indirect and direct ap-

proaches for MSFT will be compared using the off diagonal elements of their resolution matrices.

ese results should also be generalizable to multispectral DOT.
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6.3 I F P

Whole body imaging of fluorescent proteins in mice would allow for non-invasive monitoring of

biological processes such as gene expression without the need for external contrast agents. Most

current studies use fluorescent proteins in the visible to far red regions of the spectrum where due

to absorption by hemoglobin and melanin, the penetration depth is low and the background sig-

nal from tissue autofluorescence is high. Measurements are generally collected in the reflection

geometry and reconstruction is limited to regions close to the mouse surface. A new set of near

infra-red fluorescent proteins (iRFP) with excitation and emission in the near infrared have the

potential to allow imaging throughout the mouse body. eir unique spectra and lifetimes should

allow for multiplexing of multiple processes in vivo. We use these iRFP’s as a model to compare

the fluorophore separation capability of TD and spectral methods.

e lifetimes of three iRFP’s (iRFP 670, 702 and 720) from (Shcherbakova & Verkhusha,

2013) have been characterized in bacteria. Reflectance measurements were performed with excita-

tion at 700 nm and with emission collected with a 750 nm long pass filter. Fig. 6.1 (b) shows the

measured decay functions for the three bacteria streaks. Histograms for the three iRFP’s showed

narrow lifetime distributions with lifetimes centered at τ = 0.68, 0.78 and 0.93 ns. Fig. 6.1 (a)

shows plots of the excitation and emission spectra taken from (Shcherbakova & Verkhusha, 2013).

6.4 S P

All forward simulations were performed with the photon transport software package, tMCimg.

Spectral simulations used eight wavelengths (650 nm to 790 nm in steps of 20 nm) from each

iRFP’s emission spectrum. Time domain simulations used 30 times gates in the asymptotic regime.

Two imaging mediums were considered in this study: a rectangular slab and a digital mouse

atlas.
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Figure 6.1: (a) Excitation (left) and emission (right) spectra for the three iRFP’s (iRFP 670, 702 and 720) used in this study

(taken from (Shcherbakova &Verkhusha, 2013)). (b)Measured fluorescence decay functions for streaks of bacteria ex-

pressing the three iRFP’s.
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e rectangular slab was used for simulation results presented in sections 6.5.1, 6.5.2 and 6.5.3.

e slab size was 2 cm × 2 cm × 2 cm with 1 mm3 voxel size. 49 sources and 49 detectors were

located at the z = 0 and z = 2 cm planes respectively. e background absorption coefficient of the

medium was varied linearly as a function of wavelength while the background reduced scattering

coefficient was held constant at µ′
s = 10 cm−1.

e separation of three iRFP’s was investigated in a realistic mouse model (Dogdas et al., 2007)

(results in section 6.5.4). e mouse atlas was first binned down from 0.1 mm voxel length to 1

mm voxel length. 72 sources were placed under a region of the torso covering parts of the skele-

ton, lung, heart, liver and kidneys. An equal number of detectors were located directly above each

source at the top surface of the mouse model. Fig. 6.2 shows the coverage of the source/detectors

and the included organs highlighted with different colors. Background absorption values were

assumed to depend only on the absorption coefficients of oxy and deoxy-hemoglobin and water

(µaHbO, µaHbR and µaW). e total absorption in an organ can be modeled as a weighted sum of

each chromophore using:

µa(λ) = SB(xµaHbR(λ) + (1 − x)µaHbO(λ)) + SWµaW(λ) (6.15)

where SB and SW are scaling factors for blood and water components and x is the oxygen satura-

tion, SO2.

e scattering spectra for each organ was assumed to follow an inverse power law:

µ′
s(λ) = a× λ−b, λ in nm (6.16)

where a is the scattering amplitude and b is the scattering power.

In (Alexandrakis et al., 2005), the parameters SB, SW, x, a and b in (6.15) and (6.16) were em-
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Tissue type SB x SW a(mm−1) b
Bone 0.049 0.8 0.15 35600 1.47
Lung 0.15 0.85 0.85 68.4 0.53
Liver 0.30 0.75 0.7 629 1.05
Heart 0.30 0.75 0.7 629 1.05
Kidneys 0.056 0.75 0.8 41700 1.51
Muscle 0.07 0.8 0.5 4e7 2.82

Table 6.1: Optical parameters SB , SW , x, a and b used in (6.15) and (6.16) to determineµa(λ) andµs(λ) for each seg-
mented organ. Tables values are taken from (Alexandrakis et al., 2005).

Figure 6.2: Horizontal view of Digimousemodel (Dogdas et al., 2007) with source/detector positions labeled as black cir-

cles.

pirically fit using data from literature for various organs. Table 6.1 summarizes the parameter val-

ues for the organs used in this study. e absorption spectra of individual chromophores (µaHbR,

µaHbO, µaW) were obtained from (Prahl, 2001). Since parameters were not available for the heart,

the parameters for the liver was used in its place as both are highly absorbing organs. Voxels in the

mouse atlas not corresponding to any of the five organs was modeled using muscle optical proper-

ties.
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6.5 R

6.5.1 R M C

e resolution matrices for ATD, multispectral indirect and direct approaches, RATD, RIndirect

and RDirect were computed using (6.10)-(6.12). For spectral methods, the absorption coefficient

was assumed to increase linearly by 100% over the wavelength range. For ATD, the absorption

coefficient was taken to be absorption at the first spectral wavelength. e emission spectra and

lifetimes of iRFP702 and iRFP720 were used for multiplexing. e cross-talk is represented by

any terms in the off diagonal blocks of the resolution matrix. For aid in visualization, the rows

and columns of resolution matrices were both binned by a factor of 40. Fig. 6.3 shows the reso-

lution matrices for all three methods. It can be seen that the crosstalk terms for RDirect are positive

and generally symmetric between the two iRFP’s. RIndirect shows more asymmetry between the two

iRFP’s with a major portion of the cross-talk being negative. As expected, all cross-talk terms for

RATD are zero since the ATD resolution matrix is block diagonal. To quantify cross-talk between

direct and indirect spectral methods, cross-talk was evaluated at each voxel by taking the absolute

value of the ratio between the on-diagonal and off-diagonal terms of the resolution matrix corre-

sponding to that voxel. Line plots showing cross-talk for both iRFP’s are shown in Fig. 6.3. It can

be seen that cross-talk in the indirect approach is generally lower than that for the direct approach.

6.5.2 C- . O P C

It is known from (6.12) that for the indirect method, a change in optical properties at different

wavelengths results in cross-talk and a flat optical property spectrum would result in zero cross-

talk. We look to explore the relationship between cross-talk and the variation of the optical prop-

erty spectrum. Different optical property spectra are created by taking a particular starting bulk
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Figure 6.3: (a) Resolutionmatrices for spectral methods (indirect and direct) and ATD. (b) The cross-talk for overlapping

fluorophores is plotted at each voxel of themedium for direct (blue) and indirect (red) methods.
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Figure 6.4: Total cross-talk for different amounts of variation of the optical property spectra. Optical property spectra are

increased linearly from a starting absorption ofµa = 0.6 cm−1 .

absorption (µa = 0.6 cm−1) and linearly increasing it by different amounts over the range of wave-

lengths. e total cross-talk is evaluated for each of these optical property spectra. From Fig. 6.4,

it can be observed that cross-talk increases with larger variations of the absorption spectra for the

three pairs of iRFP’s.

6.5.3 C- . E  O P

In the previous section, the cross-talk was compared for various changes in optical properties

when they were exactly known at each wavelength. However, the optical property distribution

in a living mouse is widely varying and with current techniques for in vivo optical property re-

construction, only low resolution reconstructions with large errors can be achieved. We investi-

gated the effect of error in the model optical properties on cross-talk performance. Spectral data

was generated assuming an absorption spectra that increased by 100% over the iRFP emission

wavelengths. Error optical property spectra were generated using the true spectra, ϵtrue and a flat
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Figure 6.5: Total cross-talk for different amounts of error in themodel optical properties of themedium. Optical property

spectra was increased by 100% over the wavelength range of the spectral measurements.

spectra, ϵflat:

ϵerror = ϵtrue + f(ϵflat − ϵtrue), 0 ≤ f ≤ 1 (6.17)

For the indirect approach, cross-talk was found to increase significantly as the error in the model

optical properties was increased (Fig. 6.5).

6.5.4 M  T RFP’  M A

To demonstrate the difference in separation capability for TD and spectral methods, we con-

sider the simple problem of determining the relative amounts of three iRFP’s embedded within

a mouse. e imaging medium was a realistic mouse model with optical property spectra de-

rived from literature. A single voxel sized fluorescent inclusion was placed at the center of the

heart containing equal amounts of all three iRFP’s. Both ATD and spectral methods were used to

reconstruct for the inclusion. Fig. 6.6 shows the recovered concentration for each iRFP normal-

ized to the concentration of iRFP720. It is clear that the ATD method could accurately recover

the relative amounts of each iRFP as recovered concentrations did not differ by more than 3.7%
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Figure 6.6: Reconstruction of three colocalized iRFP’s using indirect-spectral (left) and ATD (right). The normalized yields

for iRFP702, iRFP720 and iRFP670 are shown in red, green and blue respectively.

from each other. However, due to cross-talk the indirect spectral method could not accurately re-

cover the correct relative amounts. e yield for iRFP702 differed from iRFP720 by 27.7% and

iRFP670 differed from iRFP720 by 68.1%.

To verify that cross-talk is the source of this error in quantitation, we performed spectral recon-

struction in the two cases when cross-talk could be eliminated for spectral methods. In the first

case, the iRFP basis functions were made orthogonal by setting two of the three emission spectra

to zero at each wavelength. In the second case, the optical property spectrum was kept constant

for all wavelengths. Reconstructions in both cases showed accurate recovery of the relative concen-

trations for each iRFP.

6.6 D

We have used recently developed iRFP’s to compare the performance of separating multiple flu-

orophores with TD and spectral methods. In a mouse atlas model, we have shown the ability of

ATD to accurately recover the relative amounts of three iRFP’s while cross-talk prevented spectral

methods from obtaining an accurate estimate.

103



For a general problem of separating multiple fluorophores, the amount of cross-talk and degree

of quantitation error for spectral methods will depend on many factors. In this study, we have

shown the dependence of cross-talk on the fluorescence spectra, the variation in optical properties

over the wavelength range of interest and the accuracy of the optical properties used to model the

medium. Other factors that may also influence separability include the number of wavelengths

used and noise level of the system. However, the central result of this study remains true. TD

methods provide an inherent advantage for separating fluorophores in deep tissue because it allows

un-mixing of the fluorophores at the measurement level while in spectral methods measurements

are distorted by propagation through a diffuse medium and un-mixing of the fluorophores occurs

at the voxel level after attempting to correct for this distortion.

e effect of optical property spectra on multispectral reconstructions has also been inves-

tigated for single fluorophore reconstructions (Swartling et al., 2005; Chaudhari et al., 2009;

Leblond et al., 2011). In these studies, multispectral data has been used to determine the depth

of a fluorescent inclusion and it has been found that large changes in the optical properties at dif-

ferent wavelengths improves the localization due to reduced redundancy in the data. Since the

spectrum is more slowly varying for longer near-infrared wavelengths, excitation-resolved tomog-

raphy was shown to perform better than emission-resolved tomography. Our results show the

opposite is true when the goal is to separate multiple fluorophores. A flatter spectrum for opti-

cal properties results in less distortion of the fluorophore spectra by the medium. is ultimately

leads to less cross-talk and better quantitation of relative amounts of each fluorophore.
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7
Constrained Optimization in Optical

Tomography

7.1 I

In chapter 4, we have shown that in fluorescence lifetime tomography, the TD measurements

can be inverted in two ways. From the perspective of a Bayesian framework and assuming white
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DTD point spread function ATD point spread function 

Figure 7.1: Representative responses to two point inclusions with different lifetimes for DTD (left) and ATD (right). Red and

green represent the individual yield components of each fluorophore while yellow represents cross-talk.

Gaussian processes for the measurement and fluorescence yields, the Direct TD (DTD) solution

is equivalent to the minimum mean square error (MMSE) solution for appropriate choice of the

regularization parameter. We saw that by replacing the actual measurement covariance matrix

with a matrix formed from exponential basis functions, we could obtain another estimator (ATD

approach) which results in better separation of the fluorophores at the cost of mean square error.

e cartoon in Fig. 7.1 illustrates the features of both estimators. Red and green represent the

yields components of individual fluorophores and the size of the circle represents the point spread

function or resolution of the method. ATD has larger circles but with complete separation of the

fluorophore while DTD has smaller circles with the yellow in each circle representing a mixture of

the two fluorophores due to cross-talk.

In this chapter, we seek to obtain new estimators which provide better separation than stan-

dard estimators in more general multiple parameters separation problems. We know that the ATD

method depends on the factorization of the full TD weight matrix into a well conditioned tempo-

ral basis matrix and a spatially dependent matrix containing CW weight matrices. For many prob-

lems in TD optical tomography, this factorization is not possible and a new approach is needed.

Two problems in optical tomography where a general parameter separation algorithm can be ap-

plied are absorption and scattering separation in diffuse optical tomography and the separation

of fluorophores using TD data not within the asymptotic regime where an ATD reconstruction
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method cannot be applied.

7.2 A  S S

We recall from chapter 2 that a nonlinear function relates the experimental measurements at the

surface of a diffuse medium, y with the absorption coefficient, µa(r) and scattering coefficient,

µs(r) throughout the medium:

y = Φ(µa(r), µs(r)) (7.1)

Solving the inverse problems requires linearization of Φ to find the absorption and scattering Ja-

cobians (Jµa and Jµs) about a set of background optical properties, µao(r) and µso(r). e Jaco-

bians are used to relate the difference between the unknown and background optical properties

(∆µa = µa − µao, ∆µs = µs − µso) and the difference between the experimental measurement

and the simulated measurement through the background medium (∆y = y− Φ(µao, µso)):

∆y =
[
Jµa Jµs

]∆µa

∆µs

 (7.2)

For simultaneous imaging of the absorption and scattering coefficient, (Arridge & Lionheart,

1998) has shown that in a highly scattering medium where the diffusion approximation holds, it

is generally not possible to uniquely determine both using CW data. Uniqueness of absorption

and scattering requires time-resolved data types such as frequency domain (FD) or time-domain

(TD). To illustrate this point, Fig. 7.2 shows the simulated response of a pure absorption and pure

scattering inclusion for the two measurement types. For the spatial response of CW in Fig. 7.2(b,

d) it can be seen that the normalized δy for absorption and scattering are nearly indistinguishable.

On the other hand, the normalized δy for the TD response in Fig. 7.2(c) shows distinct behavior

between the absorption and scattering responses with the scattering temporal profile preceding the
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absorption temporal profile.

Despite the ability of TD methods to better distinguish µa and µ′
s than CW, there still remains

a large cross-talk component when simultaneously reconstructing for both parameters (Gao et al.,

2002). To bypass this problem many studies have assumed pure absorption or scattering perturba-

tions. ere have also been attempts to use differences between the temporal profile of the absorp-

tion and scattering response to provide better separation. In (Nouizi et al., 2011), a reconstruction

algorithm was devised using points near the tail of the TPSF to reconstruct solely for absorption

while points on the rising portion were used to reconstruct solely for scattering. It was found that

cross-talk between absorption and scattering was reduced compared to reconstructions using the

full TD data. An alternate approach was introduced in (Painchaud et al., 1999) which utilized

temporal responses to single absorption and scattering inclusions at the center of a scattering slab

as basis functions. A linear fit of the TD measurement data to the basis functions was able to dis-

criminate absorption and scattering inclusions in the center plane while performance was poor

for other regions in the medium. In this chapter, we seek a general method which can be applied

for inclusions throughout the medium and which optimally uses all time points on the TPSF to

separate both absorption and scattering simultaneously. To achieve this aim, we investigate using

a constrained optimization approach for parameter separation in the next section.

7.3 C M S E E

In this section, we introduce a new reconstruction method based on the Bayesian approach for

solving linear inverse problems. A general linear inverse problem with a linear estimation matrix,
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Figure 7.2: A comparison of CWand TD surfacemeasurements for absorption and scattering inclusions. (a) The perturbed

measurement due to δµa = 0.2 cm−1 and δµ′
s = 20 cm−1 inclusions are convolvedwith the instrumental response func-

tion of our TD system. (b) Spatial response due to absorption and scattering inclusions. (c) Normalized temporal response

of absorption (blue) and scattering (red) inclusions. (d) Line plot of the spatial response due to absorption and scattering

inclusions.
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W can be described as follows:

y = Axtrue + n (7.3)

xrecon = Wy (7.4)

It is known that the linear minimum mean square estimator (LMMSE) can be derived by mini-

mization of the following functional:

WMMSE = argmin
W

E
[
∥xrecon − xtrue∥2] (7.5)

e solution of (7.5) can be obtained by differentiation with respect to W. Under the assumption

that the noise n is zero mean with covariance matrix, Cn, the object xtrue is zero mean with covari-

ance matrix, Cx and n and xtrue are independent random vectors, this minimization leads to the

LMMSE estimator:

WMMSE = CxAT(ACxAT + Cn)
−1 (7.6)

An alternate form which is mathematically equivalent to (7.6) but is more computationally effi-

cient in the case when number of unknowns is greater than number of measurements is given as:

WMMSE = (ATC−1
n A+ C−1

x )−1ATC−1
n (7.7)

It should be noted that the LMMSE only depends on the second order statistics of n and xtrue and

does not assume them to be Gaussian. However, the minimum mean square error (MMSE) es-

timator is the same as the LMMSE when n and xtrue are jointly Gaussian. To see the connection

between the Bayesian approach and Tikhonov regularization, we consider the form of (7.6) and

(7.7) when n and xtrue are white processes with Cn = σ2
nI and Cx = σ2

x I. In this case, the LMMSE
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estimator is the same as the Tikhonov regularization inverse operator with the choice of regulariza-

tion parameter, λ = σ2
n/σ

2
x .

We have seen for the tomographic lifetime multiplexing problem, the linear MMSE estimator

does not necessarily correspond to the linear estimator which optimizes for other performance

measures such as inter-parameter cross-talk. We look to derive a new estimator for a multiple

parameter inverse problems which minimizes for error while placing a restriction on cross-talk. As

a first step, we define cross-talk in a statistical manner.

We know cross-talk arises during reconstruction in a multiple parameter problem when the

presence of one parameter type in a spatial location results in reconstruction of other parame-

ter types in the same location. is leads to a natural definition for cross-talk as the correlation

between the true object of a particular parameter type with the reconstructed objects of other pa-

rameter types. We consider the case of two parameters where xtrue = [(x1_true)
T (x2_true)

T]T and

xrecon = [(x1_recon)
T (x2_recon)

T]T. e cross-talk for x1 and x2 can be expressed in terms of their

cross-talk matrices, Crosstalk1 and Crosstalk2:

Crosstalk1 = E
[
(x1_true) (x2_recon)

T
]

(7.8)

Crosstalk2 = E
[
(x2_true) (x1_recon)

T
]

(7.9)

Element ij of the cross-talk matrices represents the response at voxel j of parameter 1 (2) due to

a true object at voxel i of parameter 2 (1). We see that E[(xtrue) (xrecon)T] can also be expressed in

terms of the resolution matrix R = WA:

E
[
(xtrue) (xrecon)T

]
= E[xtrue(WAxtrue +Wn)T = Cx(WA)T (7.10)

erefore, from (7.10), our statistical definition of cross-talk also corresponds to the off-diagonal

111



blocks of the resolution matrix when Cx is the identity matrix.

We now define a new estimator based on minimizing the mean squared error while imposing

linear constraints that all terms of the cross-talk matrices must be zero using the method of La-

grange multipliers. We combine the MMSE functional (7.5) with linear equality constraints on

(7.8) and (7.9) to form the Lagrangian below:

L(W, λ1ij, λ2ij) = E
[
∥xrecon − xtrue∥2]+ V∑

i=1

V∑
j=1

λ1ijE
[
(x1_true) (x2_recon)

T
]
ij

+

V∑
i=1

V∑
j=1

λ2ijE
[
(x2_true) (x1_recon)

T
]
ij

(7.11)

where λ1ij and λ2ij are Lagrange multipliers and V is the number of voxels in the medium. e W

which minimizes (7.11) while satisfying the linear constraints can be found by solving:

∇L = 0 (7.12)

Although we have shown a general method for minimizing cross-talk using a linear estimator,

an important issue to consider is the increase in error due to application of constraints. e con-

straints that are being imposed in (7.11) are effectively shaping the resolution matrix to be closer

to a diagonal matrix. We know from chapter 2 that as the resolution matrix approaches the iden-

tity matrix, the approximation error decreases while the noise amplification error increases. Since

any constraint on the LMMSE functional will result in sub-optimal solutions, the total MSE will

also increase relative to the LMMSE solution. When too many constraints are imposed or the

constraints are too restrictive, the gain in cross-talk performance may not be worth the loss in er-

ror performance. Preliminary simulations show that the noise amplification error is much above

the reconstructed objects when a constraint is placed on every term of the cross-talk matrix. How-
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ever, a compromise between cross-talk performance and keeping a low noise amplification error

can be achieved using fewer constraints. Since the highest cross-talk term for parameter n at voxel

i is frequently also at voxel i for other parameters, we have found that estimators with only con-

straints on these voxels can perform well in reducing cross-talk without an increase in noise level

that will overwhelm the solution. For the two parameter case, this corresponds to constraints on

the diagonal elements of the cross-talk matrices:

E
[
(x1_true) (x2_recon)

T
]
ii
= 0, for 1 ≤ i ≤ V (7.13)

E
[
(x2_true) (x1_recon)

T
]
ii
= 0, for 1 ≤ i ≤ V (7.14)

Also, despite only placing a single constraint for each voxel we have found that after solving for

the optimal constrained W, the resulting cross-talk matrix has many of its terms reduced. e

estimator using the constraints in (7.13) and (7.14) are used for all simulations and experimental

results presented in this chapter. In later sections, we investigate this estimator for two types of

multiple parameter problems in optical tomography: separation of absorption and scattering in

DOT and separation of short lifetime components which do not satisfy the asymptotic condition

in fluorescence tomography.

7.4 D O T J M

Before optical property reconstructions can be performed, a method to generate time dependent

Jacobian matrices for absorption and scattering have to be implemented. Previous optical property

work in our lab have used frequency domain reconstructions of Fourier transformed time-domain

data where the Jacobian matrices were constructed using adjoint solutions to the diffusion equa-

tion. To ensure accuracy of our optical reconstructions even for conditions when the diffusion
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equation may not hold such as early time gates, we look to implement time domain Jacobian ma-

trices using the radiative transport equation (RTE). Two methods were implemented in this study:

an adjoint approach based on the RTE and a perturbation Monte Carlo (pMC) approach. In each

approach, an open source photon propagation Monte Carlo software, tMCimg (Boas et al., 2002)

was modified to allow for Jacobian calculation.

7.4.1 T   

e adjoint form for the RTE can be derived in the following way. First, the parameters and flu-

ence are written as a background component and a differential component:

µa = µa0 + δµa (7.15)

µs = µs0 + δµs (7.16)

G = G+ δGa + δGs (7.17)

Substituting of (7.15)-(7.17) into the RTE and neglecting first order terms results in:

δGa(rs, rd, ŝ, t) = −
∫

d3G(rd, r′, t, ŝ)
⊗

G(r′, rs, t, ŝ)δµa(r) (7.18)

δGs(rs, rd, ŝ, t) = −
∫

d3rG(rd, r′, ŝ, t)
⊗

Q(r′, rs, ŝ, t)δµa(r) (7.19)

Q(r, rs, ŝ, t) = G(r, rs, ŝ, t)−
∫

d̂s′P(̂s · ŝ′)G(r, rs, ŝ′, t) (7.20)

When compared to the Jacobian matrices derived for the diffusion equation (chapter 2), it can be

seen that the form for the absorption Jacobian for both cases is very similar. e main difference

is that in the transport based formulation, there is an additional dependence on ŝ. On the other

hand, the scattering Jacobians for transport and diffusion equations have quite different forms.

114



While the scattering Jacobian for the diffusion equation requires the computation of spatial gra-

dients and a temporal convolution, the transport based method is calculated from the difference

between the source Green’s function and the source Green’s function weighted by the scattering

phase function. It was observed that the spatial gradient term of the diffusion equation based scat-

tering Jacobian produced artifacts near boundaries and other sharp transitions which were not

present in the transport based scattering Jacobian.

In our current Monte Carlo implementation, the fluence due to a point source is stored at each

spatial location and for each time gate. is quantity is equivalent to the volume Green’s function.

From (7.20), it can be seen that Jacobian matrix calculation using the transport based adjoint

methods requires additional storage of the directions of every simulated photon. tMCimg was

modified by creation of azimuthal and deflection angle variables and assigning the photon’s direc-

tion to angle bins after every scattering event. Although the forms for the Jacobian in (7.18) and

(7.19) were reported in (Arridge, 1999) and a CW implementation was used in (Kim et al., 2006),

to our knowledge, time domain version has not previously been implemented.

7.4.2 P M C M

An alternate method for calculation of absorption and scattering Jacobians is based on the per-

turbation Monte Carlo (pMC) approach (Hayakawa et al., 2001; Sassaroli et al., 1998; Chen &

Intes, 2009). Using the photon path histories for an unperturbed medium, the pMC approach

can predict the effect on the measurement from a perturbing region. e strength of the pMC

approach is its the ability to calculate this gradient information from a single Monte Carlo sim-

ulation compared to standard methods which would require multiple Monte Carlo simulations.

(Hayakawa et al., 2001) showed that the measurement w due to a single photon in a medium with
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a perturbation can be expressed as:

w = w0

(
µ̂s/µ̂t

µs/µt

)k( µ̂t

µt

)j

exp [−(µ∗
t − µt)l] (7.21)

where w0 is the measurement in a medium with no perturbations, k is the number scattering

events in the perturbed region, l is the total pathlength inside the perturbed region and the op-

tical properties in the perturbed region are given by: µ̂s = µs +∆µs and µ̂a = µa +∆µa.

When (7.21) is extended to the case where each voxel in an imaging medium is treated as a

perturbed region and the derivative is taken with respect to ∆µa and ∆µs, we obtain the pMC

absorption and scattering Jacobians:

Jµa =

N∑
i=1

li(r)exp

(
−
∑
r

µa(r)li(r)

)
(7.22)

Jµs =

N∑
i=1

(
li(r)− ki(r)

µs(r)

)
exp

(
−
∑
r

µa(r)li(r)

)
(7.23)

where N is the total number of detect photons, li(r) is the path length and ki(r) is the number

of collisions for detected photon i inside voxel r. e time dependence of the Jacobians can be

determined by grouping detected photons by their arrival times and applying (7.22) and (7.23)

for photon detected for each time bin.

For implementation of the perturbation approach, a temporary array is used to store the path-

length and number of scattering events in each voxel for an individual photon. Values in the ar-

ray are used to contribute to the estimate of the absorption and scattering Jacobians only if the

photon is detected. e temporary array is cleared before each new photon is injected into the

medium. Most previous implementations of pMC for optical tomography have been for the gen-

eration of CW weight matrices (Sassaroli et al., 1998; Hayakawa et al., 2001). While (Chen &
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Intes, 2009) showed a time domain implementation in a simulation study, to our knowledge ex-

perimental reconstruction of both absorption and scattering using a time-domain implementation

has not been performed.

7.4.3 C  A  P M C 

Both implementations of the time dependent Jacobian matrices for absorption and scattering are

compared in this section. e fundamental difference between these two methods is that in the

transport adjoint method every photon that is simulated contributes to the estimate of Jacobians

while for the pMC method, only photons which hit detectors contribute to the estimate. is re-

sults in lower SNR for the pMC estimate compared to the transport adjoint estimate. To show

the difference in SNR, the absorption Jacobian matrices were calculated for both methods us-

ing the same number of photons (100 million). e medium was a 2 cm thick slab with a single

source and detector at the center of the slab. Contour plots of the Jacobians for both methods at

the time gate corresponding to the peak of the TPSF (t = 0.4 ns) are plotted in Fig. 7.3(a). It can

be seen while both Jacobian matrices have similar features, the photon noise is more apparent in

the pMC estimate.

To compare the accuracy of time profiles of both methods, the perturbed measurement due to

an inclusion was calculated in three ways. First, the difference of the measured signal at the sur-

face between a homogeneous medium and a medium containing either an absorption or scattering

inclusion was calculated through two Monte Carlo forward simulations. is was used as the ref-

erence measurement to compare to the two Jacobian methods. e perturbed measurement was

also obtained using the pMC and transport adjoint Jacobian matrices by taking the sum of the

Jacobian for voxels corresponding to the known inclusions. A comparison of the three perturbed

measurements for both kinds of inclusions are shown in Fig. 7.3(b). While both methods pro-

duced temporal profiles which are similar for the absorption inclusion, the pMC method showed
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a) 

b) 

Figure 7.3: Comparison of time dependent Jacobianmatrices for absorption and scattering generated using the transport

adjoint and perturbationMonte Carlo (pMC)methods. (a) Contour plots of the absorption Jacobian for a single time point

demonstrating the lower SNR of the pMC estimate compared to the transport adjoint. (b) Forward data due to an absorp-

tion inclusion (left) and scattering inclusion (right). Red corresponds to simulated forward data based on the photon history

file, green is the pMC predicted forward data and blue is the transport adjoint predicted forward data.

a better match than the transport adjoint method to the shape of the temporal profile of the per-

turbed measurement in the case of a scattering perturbation. e time dependent Jacobians for

simulations and experimental reconstructions in later sections were generated using the pMC

method. Due to lower SNR of the pMC estimate for the Jacobian, the number of simulated pho-

tons was set to a high number (3 billion) to compensate for this effect.
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7.5 C O S

Simulations were performed to test the constrained optimization algorithm compared to a stan-

dard reconstruction algorithm. A diffuse 2 cm × 2 cm × 2 cm slab was used for both optical

property and fluorescence tomography reconstruction problems. 49 sources and 49 detectors cov-

ered the z = 0 cm and z = 2 cm planes respectively. Separate background optical properties were

chosen for both types of problems.

7.5.1 A  S

We consider reconstruction of mediums containing both absorption and scattering inclusions. A

background medium with µa = 0.1 cm−1 and µ′
s = 10 cm−1 was assumed. Absorption ∆µa =

0.2 cm−1 and scattering ∆µ′
s = 20 cm−1 inclusions were placed at the z = 8 mm plane separated by

1 cm. Forward data was generated by taking the path history of photons and applying the Beer-

Lambert law. To obtain the difference data ∆y, path histories were simulated for both the ho-

mogeneous medium and the medium containing the two perturbations. Since the data contains

Monte Carlo noise, additional noise was not added. Also it should be noted that the measurement

data was not generated by multiplication of the Jacobian with the optical property perturbation

but was instead generated using the difference of two forward simulations so that any inaccuracies

due to linearization of the nonlinear forward function is included in the simulations results.

For reconstruction, the time dependent Jacobian matrices for absorption and scattering were

generated using the pMC approach. Figure 7.4 shows reconstruction results for both a con-

strained optimization approach and a DTD approach. In the DTD reconstruction, there is signif-

icant absorption cross-talk at the location of the scattering inclusion. is cross-talk is of similar

magnitude to the reconstructed value of absorption at the location of the absorption inclusion. In

the constrained optimization reconstruction, the absorption cross-talk is much reduced and there
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Figure 7.4: Optical property reconstruction (with a pure absorption inclusion on the left and a pure scattering inclusion

on the right) using a standard DTD approach (top row) and constrained optimization approach (bottom row). XY plots are

shown on the left at the plane of the inclusion (z = 8mm). Line plots are shown on the right for both reconstructionmethods

with absorption in red and scattering in green.
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is a clear separation between the two inclusions.

7.5.2 L T  S L

We also consider the problem of separating fluorescent yields in the case where either the condi-

tion for asymptotic measurement of lifetimes (τ > τD) does not hold or the condition that the

completed evolution of the background diffusive term (t ≫ τBD) does not hold. In both cases,

an ATD approach for reconstruction cannot be applied. Using the constrained optimization ap-

proach developed in this chapter, we look to obtain solutions similar to the ATD solution.

e background medium was chosen to be µa = 0.01 cm−1, µ′
s = 35 cm−1 resulting in an

intrinsic diffuse time scale, τD = 0.6 ns. We look to separate inclusions that are 6 mm, 4 mm and

2 mm apart with lifetimes τ1 = 0.60 ns and τ2 = 0.80 ns. e lifetimes were chosen such that

τ1 does not meet the asymptotic condition and the τeffectve = 2.4 ns for τ2 is sufficiently large that

measurement data will not be within the asymptotic regime. e inclusions are embedded in the

center of the medium at the z = 1 cm plane. For reconstruction, 16 time gates, 100 ps apart were

used from the decay portion of the fluorescence TPSF.

Figure 7.5 shows the reconstruction for both methods with τ1 = 0.60 ns component in red and

τ2 = 0.80 ns. component in green. It can be seen that there is significant cross-talk in the DTD

reconstructions. Also, the locations of the recovered inclusions are incorrect for all separations. In

the constrained optimization reconstructions, the inclusions are significantly better separated. Al-

though the recovered location of the lifetime component for τ1 for the 6 mm separation is shifted

relative to the true position, the localization is still much better than the direct TD approach. e

constrained optimization approach was also able to correctly localize the inclusions for 4 mm and

2 mm separations.
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Figure 7.5: Comparison of reconstructions obtained from applying constrained optimization and direct TD approach to non

asymptotic time gates. Red and green corresponds to the yield distributions for 0.60 ns and 0.80 ns, respectively. The true

locations of the inclusions are shown in gray. In the first two rows, the X–Z plots are generated by assigning the recovered

yields to the red (0.60 ns) and green (0.80 ns) components of the RGB colormap. The bottom two row shows line plots for

constrained optimization and direct TD along the x-axis at the depth of the inclusion.
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7.6 E V

7.6.1 P C

To verify the validity of the proposed algorithm, an optical phantom containing both absorption

and scattering inclusions was constructed. Both gel and liquid based phantoms were explored

for this study. Gel phantoms were created using agar powder dissolved in water with Intralipid

as the scattering agent and nigrosin as the absorber. Liquid phantoms were created from water,

Intralipid and nigrosin. rough preliminary measurements it was determined the gel phantoms

performed better than the liquid phantoms due to two main problems associated with using liq-

uid phantoms. First, the use of both plastic and glass tubes to hold liquid inclusions resulted in

artifacts in the reconstruction that did not appear when using the gel phantom. Second, homoge-

neous nature of the background medium could not be maintained in the liquid phantom as the

Intralipid formed aggregates in a short amount of time (< 10 minutes). e structure of the ag-

gregates was also observed to changed with time. In many instances, it was found that the hetero-

geneities caused by the aggregates were of a greater magnitude than the inclusions themselves. A

gel-based phantom resulted in a stable background medium for the duration of the measurement.

Next, the procedure to create the gel phantom is outlined.

A gel phantom with an absorption and a scattering inclusion were made inside an 88 mm di-

ameter dish. Agar powder (1%) was dissolved in water heated to 90◦C. After the solution was

cooled down to 65◦C, Intralipid and nigrosin was added to achieve µa = 0.1 cm−1 and µ′
s =

10 cm−1. After mixing, the solution was poured into a dish to form the base of the phantom. Two

additional solutions were made from the stock gel solution. In one, the nigrosin concentration

was increased by a factor of 5 while in the other the Intralipid concentration was increased by a

factor of 5. Both solutions were poured into separate smaller dishes up to a height 8 mm and al-

lowed to solidify. Inclusions were cut from these dishes and placed on the base of the phantom
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Figure 7.6: A gel phantomwith absorption (left dark rectangle) and scattering (right light rectangle) inclusions placed on top

of a solidified base. To complete the construction of the phantom, a stock gel solution is poured on top of the dish, covering

the two inclusions.

in the large dish such that their center to center separation was 1 cm. e stock gel solution was

allowed to cool to 30◦C before it was poured into the large dish to cover the absorption and scat-

tering inclusions. Prior to imaging, the phantom was removed from the dish so that the dish ma-

terial would not influence the measurement. Fig. 7.6 shows a picture of the 88 mm dish with the

absorption and scattering inclusions placed on top of the solidified gel, before the inclusions were

covered with the background medium.

7.6.2 M M

A tomography scan was performed using the time-domain optical tomography system described

in chapter 3. Due to the sensitivity to timing jitter of optical property reconstructions, a refer-

ence laser source was incorporated into the system so that an instrument response function (IRF)

measurement and the TPSF through the medium could be taken simultaneously. At each source,

the IRF was compared against a reference IRF and if the norm of the difference between the two

IRF’s was above a certain predefined threshold, the measurement was reacquired. is procedure
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reduced the amount of overall jitter in the measurements at the cost of increased acquisition time.

34 Source were split in two rows with coverage over the area of the inclusions. Adjacent sources

were separated by 1.84 mm and the two rows were separated 3.68 mm. For reconstruction, detec-

tors were chosen to be at the same x-y locations as the sources at the top surface of the phantom.

e TPSF was recorded for 26 times gates with a 100 ps step size. Measurements of two samples

were performed. e first measurement was the phantom containing an absorption and a scatter-

ing inclusion. e second was a homogeneous phantom created using the same stock gel solution

in a separate dish.

7.6.3 R

Fig. 7.7 shows the reconstructed absorption and scattering maps in the X-Z plane normalized

to their maximum intensities. e white box in the X-Z plots marks the true location of the ab-

sorption and scattering inclusions. For the direct TD approach, it can be seen from the X-Z plots

there is significant cross-talk for both absorption and scattering reconstructions. e line plots

show that the amount of reconstructed absorption in the place of the scattering perturbation is

0.84 of the maximum absorption and the amount of reconstructed scattering in the place of the

absorption perturbation is 0.75 of the maximum scattering. Using the constrained optimization

approach, the X-Z plots show a significant reduction of the cross-talk term. e absorption cross-

talk is reduced to 0.60 while the scattering cross-talk is reduced to 0.14. It can be seen that the

amount of the reduction in cross-talk differs for absorption and scattering. is can be attributed

to the better isolation of the absorption signal from the scattering signal in the temporal profile of

their responses. Although the constrained algorithm showed a significant reduction in cross-talk

for the experimental phantom, the cross-talk in simulations was found to be further reduced. is

mismatch may result from different sources of modeling error including the assumption of pure

absorption and scattering perturbations.
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Figure 7.7: Experimental reconstruction of an absorption (left) and a scattering (right) inclusion embedded in a gel phan-

tom. The first two rows showX-Z plots for the constrained optimization and direct TD reconstructions. The bottom two

rows show line plots for bothmethods with absorption in red and scattering in green.

126



7.7 D

In this chapter, we have shown a novel method for separation of multiple parameters in time do-

main optical tomography. e methods developed in this chapter differ from those applied in

the previous chapters due to significant differences in the underlying model. For lifetime multi-

plexing in the asymptotic regime, the weight matrix factorization allowed intuitive methods to

improve separation by allowing a fitting step to time domain basis functions unaffected by regu-

larization. In a general time-domain multiparameter problem such as separation of absorption and

scattering, this type of fit cannot be performed. is is readily apparent from in Fig. 7.8 where the

normalized time profiles of the absorption/scattering Jacobian calculated using the pMC approach

are shown for various voxels. While the ATD basis functions consist of the same exponential basis

function for each voxel, it can be seen that the temporal basis function for absorption or scatter-

ing are voxel dependent. Despite the lack of unique basis functions, the general behavior of the

absorption and scattering time profiles are still distinct with the scattering time profiles lagging

behind the absorption time profiles. e methods developed in this chapter were able to exploit

this difference and provide better separation of two parameters than standards methods.

Even though the constraints explored in this chapter were based on minimization of cross-talk,

the presented methods should have more general applications for other types of constraints. Dif-

ferent performance measures are often sought for in optical tomography reconstructions. Two ex-

amples of such measures include localization of an object or spatial uniformity of the point spread

function. Although these measures are related to the error in the reconstruction, like cross-talk

they may not be optimized when only error is considered. Historically, achieving performance im-

provements for such measures involved incorporation of different types of regularization matrices.

For example, the use of a spatial regularization matrix in spatially variant regularization has been

shown to achieve constant image resolution throughout the medium (Pogue et al., 1999). How-
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Figure 7.8: Normalized temporal profile of TD Jacobianmatrices for absorption (blue) and scattering (red) at various voxels

in themedium.

ever, assuming a particular measure can be framed as a suitable constraint, applying a constrained

optimization approach may be advantageous since it can produce the optimal linear estimator for

a given constraint. Also, unlike methods which involve incorporation of regularization matrices,

the constrained optimization approach does not assume a particular form for the inverse opera-

tor. Despite any potential gains in performance of a particular measure, the increase in MSE for a

given constraint should also be considered.

Any constraint on the MSE functional will increase the overall error of the reconstructed solu-

tion. In the case of minimizing cross-talk where the goal was to shape the resolution matrix, the

overall sensitivity to noise will also increase. is presents a unique challenge for these types of al-

gorithms as the constraints cannot be too strict. Otherwise, the total error will make the estimator

impractical to use. More analysis is required comparing the effect of constraints on the total error

to gain a better understanding of the trade-offs inherent in these methods.
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8
In Vivo Lifetime Multiplexing of Organ

Targeted Dyes

8.1 I

Fluorescence tomography is becoming an increasingly important in vivo imaging modality for

tracking the 3D distribution of specific biomarkers and providing functional information in both
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small animal (Ntziachristos et al., 2005) and human subjects (Corlu et al., 2007). e ability of

the technology to image multiple fluorophores simultaneously (multiplexing) is especially useful

for tracking distinct but parallel biological processes in vivo. Multiplexing is commonly achieved

by taking spectral measurements and unmixing the contribution of individual fluorophores by

their emission spectra. However, fluorophores in the near-infrared (NIR) frequently have highly

overlapping and broad spectra, requiring complex unmixing algorithms for efficient multiplexing.

Fluorescence lifetime (FLT) provides an additional contrast mechanism by which fluorophores

with similar spectra can be multiplexed. To image FLT, a time-resolved approach such as fre-

quency domain (FD) or time domain (TD) must be employed. In this chapter, we will present

experimental and theoretical methods for in vivo tomographic lifetime multiplexing using TD

measurements. Also measurements are conducted to validate the accuracy of the technique using

embedded fluorophore phantoms, fluorophores implanted in sacrificed mice and organ targeted

fluorophores in living mice.

8.2 M

8.2.1 F  

e fluorescence tomography forward problem for fluorophores with lifetimes τn and yield distri-

butions ηn(r) embedded in a diffuse medium of support Ω can be modeled as a linear equation

relating the yields ηn and the time dependent measurement U at all source/detectors pairs (rs, rd):

U(rs, rd, t) =
N∑
n=1

∫
Ω
Wn(rs, rd, r, t)ηn(r)d3r (8.1)

where Wn is a sensitivity function expressed as the double convolution of source and detector

Green’s functions and the fluorescence decay term: Wn = Gx(rs, r, t)
⊗

exp(−t/τn)
⊗

Gm(r, rd, t).
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We have shown (Kumar et al., 2006) that when τn > τD (τD is the intrinsic diffuse time scale),

Wn can be decomposed into a spatial and temporal term: Wn(rs, rd, r, t) = Wn(rs, rd, r)exp(−t/τn)

where Wn is the continuous wave (CW) reduced absorption sensitivity function. is allows the

yield reconstruction to be performed using an Asymptotic TD (ATD) approach (Kumar et al.,

2006) as follows. First, a set of decay amplitudes can be determined through linear fit of the

asymptotic portion of the measured data using exponential basis functions. In matrix form, the

amplitudes aijn (source i, detector j) can be expressed in terms of the yield through a block diagonal

matrix: 
aij1
...

aijN

 =


W1 0 0

0
. . . 0

0 0 WN



η1

...

ηN

 (8.2)

e yield can then be recovered from the amplitudes using standard Tikhonov regularization.

We have shown that the ATD method results in significantly less cross-talk than inverting the full

TD sensitivity matrix. Also, initially performing a linear fit in the time domain before applying a

regularized inverse on CW weight matrices can significantly reduce the reconstruction time and

memory requirements compared to a direct inversion.

8.2.2 I S

A detailed description of our imaging system can be found in chapter 3. Briefly, a Ti-Sapphire

femtosecond laser is used for excitation in the near-infrared. Time resolved measurements are ac-

quired using a voltage gated image intensifier attached to a cooled CCD camera. A HRI delay

unit is used to control the voltage-gating relative to the laser pulse. For 3D surface capture, a stan-

dard camera is used to take multiple white-light images centered on the mouse at various angles

and a photo-stitching technique is applied using the Autodesk 123D Catch software.
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8.3 E V  L T

In this section, we present three experimental measurements to show the ability of lifetime based

methods to reconstruct complex shapes in a simple medium, to accurately localize the location

of fluorescent inclusions in a sacrificed mouse and to reconstruct organs specific dyes in a living

mouse.

8.3.1 E F P

To demonstrate the ability of ATD to recover fluorescence yield distributions with complex shapes,

a phantom was created by embedding a tube inside a cuvette. e cuvette was then secured to the

bottom of an 88 mm culture dish and covered with a scattering medium: 1% Intralipid (µ′
s =

10 cm−1) and nigrosin at 4.34 µg / mL (µa = 0.1 cm−1). e cuvette acts as the background

medium and contains IRDye 800cw with lifetime τ1 = 0.4 ns while the tube contains IRDye

800RS with lifetime τ2 = 1.0 ns. e phantom was imaged in transmission geometry with 104

sources below the dish and 104 detectors directly above the sources at the surface of the phantom.

A schematic of the phantom is shown in Fig. 8.1.

e slice in the reconstructions corresponding to the center of the tube (z = 0.8 cm inside the

scattering medium) is plotted in Fig. 8.2 for both ATD and CW. It can be seen that ATD is not

only able to correctly distinguish the dye in the tube from the dye in the cuvette, the shape of the

tube is also revealed in the reconstruction. On the other hand, the CW reconstruction is not able

to identify the presence of an inclusion inside the background medium.

8.3.2 E D  S M

We next studied the ability of the TD tomography system to accurately localize inclusions with

lifetime contrast in a complex medium. Two NIR dyes (IRDye 800CW, τ1 = 0.5 ns and DTTC
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µ’s = 10 cm-1 

Figure 8.1: Schematic of an embedded fluorophore phantom. A tube containing a scatteringmediumwith τ2 = 1.0 ns is

embedded inside a cuvette with τ1 = 0.4 ns. Both objects are submerged inside a 88mm culture dish.

X (mm)

Y
 (

m
m

)

10 30 50

10

20

30

X (mm)
10 30 50

Figure 8.2: CWand ATD reconstructions for the embedded fluorophore phantom. X-Y slices are taken at the height of the

center of the tube (z = 0.8 cm from the bottom of the dish). In the ATD reconstruction, the lifetime components for τ1 = 0.4

ns and τ2 = 1.0 ns are shown as green and red respectively.
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in ethanol, τ2 = 1.3 ns) in the form of pellets were embedded 4 mm apart in a polypropylene tube

of diameter 1 mm. e tube was implanted into the esophagus of a sacrificed mouse. Both dyes

were excited at λx = 740 nm and emission was collected with an 800 nm long-pass filter. A pla-

nar reflection measurement of the tubes were taken before implantation. Full TD measurements

were taken at 45 source positions covering the brain and neck regions of the mouse. 128 detector

positions were selected in a dense grid over a wide region surrounding the sources. A CT image

was taken just prior to the optical measurement.

Fig. 8.3 shows in vitro amplitude maps for the tubes showing separation of the two lifetime

components. For emission data through the sacrificed mouse, the yield distributions for each

dye was obtained using both an ATD approach on the TD data and an intensity based CW re-

construction. e reconstructed yields were co-registered with a CT image that shows the true

locations of the tube and dyes. From Fig. 8.3, it can be seen that while the CW reconstruction

results in a single distribution located in between the two dye locations, the ATD reconstruction is

able to accurately localize both the short lifetime (red) and long lifetime (green) dyes. It should be

noted CT was not used to provide prior information for the optical reconstruction and only used

for verification of the accuracy of the localization.

8.3.3 L M  O S D  L M

We next applied the system and algorithms to tomographically recover multiple organ targeting

dyes in vivo. First, the lifetime distributions and organ specificity of various NIR dyes were char-

acterized in vivo. e screened dyes included both commercially available dyes and those provided

by our collaborator, Dr. Hak Soo Choi. e objective of the screening was to find dyes which

have relatively narrow lifetime distributions in vivo. ese dyes could then be used with the life-

time multiplexing algorithms we have developed. In the case of dyes with broad in vivo lifetime

distributions, more general nonlinear reconstruction techniques would need to be employed for
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Figure 8.3: Fluorescence yield reconstruction of tubewith NIR dyes (IRDye 800CW, τ1 = 0.5 ns andDTTC, τ2 = 1.3 ns)

implanted in sacrificedmouse. In vitro lifetimemeasurement of tube is shown at top. The bottom row shows CW (left) and

ATD (right) reconstructions overlaid on the CT image of mouse.

the joint recovery of lifetime and yield distributions.

Nude mice were injected with 0.1-1 mg / mL of each dye intravenously. After injection, planar

fluorescence images were taken with the field of view covering the entire mouse body. Time points

for multiplexing were chosen for each dye based on specificity of organ labeling, clearance time

of the dye and the suggested imaging time for commercial dyes. Lifetime maps were generated at

this time point for all dyes. Table 8.1 summarizes the mean in vivo lifetimes and the variances for

each dye. It can be seen from the small variances in the lifetimes that the dyes displayed a nearly

monoexponential behavior across the entire mouse.

For in vivo lifetime multiplexing, we consider two dyes with sufficiently separated lifetimes

Osteosense 800 (τ = 0.53 ns) and ZE-169-E (τ = 0.65 ns). Osteosense 800 binds to bone

in several hours and its fluorescence signal is detectable for days. ZE-169-E selectively targets the

kidneys and achieves a strong localized fluorescence signal in 4 hours.

To demonstrate localization of multiple dyes, we simultaneously imaged both organ targeting

dyes. For our measurement, a nude mouse is injected with Osteosense 800 and after 24 hours

is injected with ZE-169-E. Planar images were taken 4 hours after the second injection. After
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Table 8.1: List of screenedNIR fluorophores with their associated organ specificity, excitation/emissionmaxima and in vivo

lifetime distributions.

tomography measurements, the mouse was sacrificed and the skin was removed. In situ planar

images were then taken. In Fig. 8.4, it can be seen that amplitude maps for both in vivo and in

situ measurements showed that Osteosense 800 was confined to bony structures while ZE-169-

E was localized to the kidneys indicating multiexponential fits of surface measurements could

delineate the structure of targeted organs.

Full tomographic reconstruction of the yield distributions for kidney and bone targeting dyes

was performed in vivo. 97 sources positions, in a grid configuration were scanned from below the

mouse and 319 detector positions were selected from the dorsal surface of the mouse. e ATD

method using surface decay amplitudes was used for the reconstruction. Both the reconstructed

yield distributions for the kidney targeting dye (green) and bone targeting dye (red) matched

closely with the expected locations and known shapes of the organs being targeted (Fig. 8.5). e

in vivo reconstructions also showed similarities with the Digimouse reconstructions of the same

organs presented in chapter 5.
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Figure 8.4: In vivo and in situ images of two organ targeting dyes. Decay amplitudes for the bone targeting dye are shown in

red (τ = 0.65 ns) and the kidney targeting dye in green (τ = 0.50 ns). In situ images are takenwith the skin removed.

Horizontal 

Sagittal 

Figure 8.5: In vivo tomographic reconstruction of two organ targeting dyes. Maximum intensity projection for both the

horizontal and sagittal planes are displayed. Fluorescence yield for the bone and kidney targeting dyes are shown in red and

green respectively.

137



8.4 S

We have developed tomographic lifetime multiplexing methods to allow the resolution of multiple

fluorophores simultaneously present in a mouse using lifetime contrast. To validate the localiza-

tion accuracy for reconstructing point-like sources, we imaged tubes containing fluorescent pellets

implanted in a sacrificed mouse and used co-registered CT images to verify localization accuracy.

Ongoing work is focused on the imaging of organ targeted dyes with lifetime contrast in living

mice. Quantitation and localization accuracy will be evaluated using ex-vivo imaging of organs as

well as CT imaging. Although the present work was restricted to two fluorophores, we are explor-

ing lifetime multiplexing of up to four fluorophores with distinct lifetimes in vivo. e method-

ology developed here can allow the simultaneous monitoring of parallel biological processes us-

ing multiple targeted fluorophores in mice. Future work will focus on validating localization and

quantitation accuracy of the reconstruction with coregistered CT images and fluorescence lifetime

images of crysosections.
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9
Conclusion

In this chapter, the theoretical developments and experimental results of this dissertation are sum-

marized. In addition, we briefly discuss some potential extensions of our work.
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9.1 C S

9.1.1 I  E T

In chapter 3, a description of our imaging system was presented. Novel experimental techniques

were implemented including the adaptation of photo-stitching methods for 3D surface recon-

struction of mice, incorporation of a spatial filter in the form of a mechanical mask for improved

SNR performance and the addition of an IRF reference measurement for jitter reduction in op-

tical property tomography. Also, a custom Matlab based acquisition software was written and

used for all experimental measurements reported in this dissertation. System calibration measure-

ments were performed including camera flat field measurements and pixel dependent instrument

response function measurements.

9.1.2 T A TD A

Previously, (Kumar et al., 2005) had shown that in TD fluorescence tomography, the time scale

for the diffusive and the fluorescence responses can be analyzed separately. Also, when the time

constant for the decay of the fluorescence response is greater than the time constant for the decay

of the diffuse response, the fluorescence term can be measured asymptotically. In the asymptotic

regime, the TPSF can be reduced to a form identical to lifetime microscopy where the measure-

ment can be written as a sum of multiexponential decay functions. Simulations using asymptotic

time gates showed better separation than time gates on the rising portion of the TPSF where there

is little lifetime contrast. It was also verified experimentally that asymptotic time gates could sepa-

rate fluorescent inclusions 6 mm apart in a mouse shaped phantom (Kumar et al., 2008b).

We have built on this previous work in the following ways. First experimentally we showed

in liquid dish phantoms that the ATD method could separate inclusions closer than the diffuse
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point spread function for CW (which was found to be 5-6 mm for our set of experimental param-

eters). We verified ATD could even correctly localize targets with center to center separation of

1.4 mm. is was the smallest separation that was attempted and the minimum separation could

be shorter. We also compared the ATD approach with the DTD approach for separation of life-

time components. We first showed the full time dependent weight matrix can be factored into a

product of a basis function matrix and a spatially dependent block diagonal weight matrix. is

allowed us to explicitly write the inverse operators for ATD and DTD and show they are math-

ematically distinct. In addition, when both operators were applied to the same asymptotic time

gates, we found that ATD performed better than DTD for separation of closely spaced inclusions.

Further insights were gained into the connection between ATD and DTD when we showed

that both inverse operators could be written in two forms, one form operating on the raw TD

data and the other form operating on the decay amplitudes resulting from a linear fit of the raw

TD data to exponential basis functions. We showed the form operating on decay amplitudes was

more computationally efficient than the form operating on the raw TD data since both the DTD

and the ATD solutions could be obtained from first fitting for decay amplitudes, a step that can

be computed quickly for any number time gates and then inverting the CW weight matrices. We

also showed that when the DTD inverse problem is interpreted using the Bayesian formalism,

the ATD inverse operator can be obtained from the DTD inverse operator by replacing the actual

data covariance matrix with a matrix containing terms from the exponential basis functions.

However, despite these results it was still unclear why ATD performed better than DTD for the

problem of separating fluorophores. Even though, image reconstruction fidelity can be measured

in a standard way using reconstruction error, to our knowledge, a general method to quantify

cross-talk between different lifetime components for all voxels in a medium has not previously

been investigated. We proposed to measure cross-talk for a linear inverse operator by evaluating

terms on the off-diagonal blocks of its resolution matrix. is measure for cross-talk made intu-
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itive sense as it represents the response of one lifetime to a true object of another lifetime. When

the resolution matrices for DTD and ATD were calculated, it was found that for ATD, the basis

function matrix was canceled out and resolution matrix was block diagonal while the resolution

matrix for DTD was not generally block diagonal. Hence, we concluded that DTD is the estima-

tor which produced solutions with lower reconstruction error while ATD produced solutions with

higher reconstruction error but with zero cross-talk.

We have also shown results pertaining to asymptotic analysis of the decay portion of the fluo-

rescence response. It was shown previously that the condition for asymptotic detection of lifetimes

is based on a comparison between the intrinsic fluorescence lifetime and the diffuse time scale.

We extend this previous analysis by introducing a new time constant based on both time scales

which determines the time after the peak of the TPSF that marks the beginning of the asymptotic

regime. is allows standardization of the fitting procedure for decay amplitudes.

For future work, one question which remains unanswered when DTD and ATD are inter-

preted using the Bayesian formalism is the error performance of the ATD estimator relative to

other estimators with similar properties. Is the ATD estimator the minimum mean square error

estimator with the constraint that the resolution matrix is block diagonal? We have performed

preliminary simulations (not shown in this dissertation) which indicates this to be true but have

not shown this result analytically.

9.1.3 H A  L T)

In chapter 5, we consider how to utilize the entire TPSF for image reconstruction. We showed in

chapter 4 that for time points in the asymptotic regime, separation of lifetimes with zero cross-talk

can be achieved using the ATD method. However, there are time points prior to the asymptotic

regime that cannot be used in such an approach. In addition, studies using early photon tomogra-

phy have shown that reconstruction with minimally scattered photons are higher resolution than
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CW reconstruction and reconstructions using late arriving photons (Niedre et al., 2008). We de-

veloped two hybrid methods to combine the resolving power of early time gates with the lifetime

separation power of late time gates.

In the first hybrid method, the ATD reconstruction was used as a spatial prior for the early

time gate reconstruction. In the second, the ATD and early time gate weight matrices were com-

bined into a single weight matrix for inversion. Separate regularization was applied to the decay

amplitudes and early time gates and a positivity constraint was imposed to reduce cross-talk. Sim-

ulations compared reconstructions using ATD and early time gates alone with hybrid reconstruc-

tions to show the improvements in both resolution and separation using the hybrid approaches.

Simulation phantoms including point inclusions, complex shapes of varying degrees of overlap

and a digital mouse atlas with different organ targets were used to validate the hybrid approaches.

Finally, experimental data showed the application of the technique for separating closely spaced

inclusions in a liquid phantom.

Future work would focus on demonstrating the hybrid approach in more complicated phan-

toms experimentally and ultimately for in vivo applications. A technique that could provide high

resolution (1-2 mm) reconstructions for multiple biological processes simultaneously in a living

mouse would have direct applications for many important biological problems.

9.1.4 S 

Multiplexing of multiple fluorophores is more commonly performed in the spectral domain than

the time domain. In chapter 6, the observation was made that both spectral and lifetime methods

can be expressed as a product of a block diagonal spatial weight matrix containing CW weight

matrices and a basis functions matrix. Due to this factorization, both methods allow for two types

of reconstructions, one in which the full weight matrix is directly inverted and one in which the

spatial weight matrix and the basis functions matrix are inverted separately with the spatial weight
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matrix inverted with regularization and the basis functions matrix inverted without regulariza-

tion. However, a fundamental difference between spectral and lifetime multiplexing is that the

order of the spatial weight matrix and basis functions matrix product is switched relative to each

other. We interpret this difference from a physical point of view. In spectral multiplexing, multi-

ple fluorophores are combined at the voxel level and then propagated through the medium while

in lifetime multiplexing, each lifetime component is first propagated through the medium and

then combined at the measurement level. We also found that this difference in ordering meant

that lifetime methods provided an inherent advantage in separating fluorophores over spectral

methods. is was shown by calculation of the resolution matrices for both spectral and lifetime

methods. For spectral methods, neither direct nor indirect reconstruction methods produced a

block diagonal resolution matrix while as we showed in chapter 4, the ATD method for lifetime

multiplexing does produce a block diagonal resolution matrix. is reversal in order also makes

the spectral methods more sensitive to incorrect modeling of optical properties. We also showed

for spectral methods, the dependence of cross-talk on the amount of variation in the optical prop-

erty spectrum of the medium. To show the better separation performance of lifetime compared to

spectral methods, we consider the problem of separating the relative yields of three fluorophores in

a digital mouse model with optical property spectra obtained from literature. We showed that the

ATD method could accurately reconstruct relative yields while the spectral method could not.

Future work would develop algorithms which combine spectral and lifetime methods into a

single inverse problem. Such a method would be especially suited for multiplexing applications

where some subsets of the fluorophores have unique spectral basis functions but have little lifetime

contrast while other subsets have well separated lifetimes but highly overlapping spectral basis

functions.
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9.1.5 C O

It has been shown that due to non-uniqueness, absorption and scattering cannot be separated us-

ing CW data (Arridge & Lionheart, 1998). Time domain data results in better separation but a

significant cross-talk component remains (Gao et al., 2002). In chapter 7, we use concepts de-

veloped in chapter 4 and apply them to general multi-parameter inverse problems. We seek to

find inversion methods which produce better separation of parameters at the expense of higher

reconstruction error. Previous attempts to improve separation have taken advantage of the differ-

ent temporal profiles of the absorption and scattering weight matrices. Absorption is known to be

more heavily weighted towards late time gates while scattering is more heavily weighted towards

early time gates. In (Nouizi et al., 2011), a method using time points at the tail of the TPSF for

absorption only reconstruction and time points on the rising portion of the TPSF for scattering

only reconstruction was found to reduce inter-parameter cross-talk. We look to develop a more

general method which can use all time gates simultaneously to reconstruct for both absorption

and scattering while achieving better separation than standard techniques.

We first implemented two methods for calculation of time domain Jacobian matrices for ab-

sorption and scattering. We compared a transport equation adjoint implementation with a pertur-

bation Monte Carlo (pMC) implementation. For single absorption and scattering inclusions, we

found that the forward data predicted by the pMC approach better matched the true forward data

for the inclusions than the forward data predicted by the transport adjoint approach. We next de-

fined cross-talk in a statistical manner as the correlation between a true object of one parameter

type and the reconstructed object for another parameter type. Next, we solved for the estimator

that has minimum mean square error while placing constraints on the total cross-talk. We applied

this estimator derived from constrained optimization to a simulation phantom which contains

both an absorption and a scattering inclusion and found it shows better cross-talk performance
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than a standard direct TD approach. We also apply the constrained optimization approach to the

problem of lifetime multiplexing for time points not in the asymptotic regime. For inclusions 2

mm, 4 mm and 6 mm apart, we showed the constrained optimization approach could produce

reconstructions with separation performance similar to an ATD approach applied to asymptotic

time gates. Finally, we applied a constrained optimization approach in an experimental phantom

made from agar gel, with embedded absorption and scattering inclusions and found significant

reduction in cross-talk using the constrained optimization approach compared to a standard direct

TD approach

While better separation of optical parameters was the goal of the present study, future work

could use a similar approach for optimization of other properties of a reconstructed image. For

example, it has been shown that the point spread function throughout the medium using stan-

dard inversion methods is non uniform. A constrained optimization approach could be used to

find a solution which minimizes for mean squared error while placing a constraint on the spatial

uniformity of the the point spread function at all voxels in the medium.

9.1.6 I V L M

In chapter 8, three multiplexing experiments were conducted to demonstrate the feasibility of life-

time multiplexing in vivo. A phantom with a complex geometry was constructed using a cuvette

and tube to demonstrate the retrieval of complex shapes in a turbid medium. Full tomographic

scan was performed and the asymptotic reconstructions showed recovery of the embedded cuvette

while CW reconstruction could not detect existence of an embedded object. To test the localiza-

tion accuracy of lifetime multiplexing in vivo, fluorescent pellets were inserted into the esophagus

of a sacrificed mouse. Reconstructions showed accurate localization using ATD methods while

CW reconstruction could only recover a single object between the two pellets. Finally, organ tar-

geted dyes were screened for their in vivo lifetimes and two were chosen for multiplexing, one
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targeting the bone and the other, the kidneys. Planar in vivo and ex vivo imaging showed the dyes

showed good specificity to the organs of interest. Full 3D reconstruction showed recovery of life-

time components matched expected locations for the targeted organs.

9.2 C

In this thesis, we have presented various improvements in experimental technique and novel re-

construction algorithms for optical molecular imaging using fluorescence and optical property

contrast. We have also shown experimental validation of the different reconstruction techniques

in simple optical phantoms and in the living mouse.
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