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Abstract: Three decades have passed since a series of studies indicated that the aging 

kidney was characterized by increased susceptibility to nephrotoxic injury. Data from  

these experimental models is strengthened by clinical data demonstrating that the aging 

population has an increased incidence and severity of acute kidney injury (AKI). Since 

then a number of studies have focused on age-dependent alterations in pathways that 

predispose the kidney to acute insult. This review will focus on the mechanisms that  

are altered by aging in the kidney that may increase susceptibility to injury, including 

hemodynamics, oxidative stress, apoptosis, autophagy, inflammation and decreased repair. 
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1. Introduction 

During the last century, human lifespan has increased substantially resulting in a substantial 

increase of elderly people over the next two decades [1]. Individuals aged 65 years or more represented 

12.8% of US population in 2008 [2]. By 2030, the number of elderly people is expected to be 71 million, 

accounting for 21% of US population [3]. In fact, the elderly population is the most rapidly growing 
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population segment in the western world [4]. It is estimated that by 2025, there will be over 800 million 

individuals over the age of 65 worldwide [5]. Thus, the study of age-dependent pathophysiology,  

and translation of these findings to the clinic, is a significant challenge for biomedical sciences in the 

21st century. 

Acute kidney injury (AKI), previously called acute renal failure (ARF) [6], is defined as an abrupt 

onset of renal dysfunction ranging from minor loss of function to failure [7–9]. AKI is a common 

clinical complication that develops in approximately 4%–7% of hospitalized patients each year and the 

prognosis can be poor [10,11]. While the mortality rates for AKI are decreasing, the mortality range 

remains from 20%–35% [12,13] and “nearly 2 out of 3 patients suffering from ARF will not be alive 

90 days after the onset of ARF” [14]. Thus, AKI remains a significant public health problem.  

A relationship between AKI and the elderly has long been recognized [15–17]. In 1972, studies 

suggested that 23.8% of patients with AKI were over the age of 60 [15] and the following year it was 

shown that 13.7% were older than 70 [16]. In 1987, these percentages had risen to 76% and 46%, 

respectively [17]. The increasing prevalence of elderly AKI patients is supported by additional studies; 

Turney et al. [18] showed that the median age of AKI patients was 41.25 years in the 1950s and 

increased to 60.5 in the 1980s. In a study by Rosenfeld et al., the average age of those who succumbed 

to AKI was 71.9 ± 8.8 years old, demonstrating the importance of the relationship between aging  

and AKI [17]. While this relationship has been established for four decades, interest in this area has 

dramatically increased and AKI in the elderly has been the subject of several recent reviews [19–23]. 

In this review, we will address the evidence that demonstrates the strong linkage between aging and 

AKI and the insight into mechanisms underlying this effect. 

2. Aging and AKI: Clinical Evidence 

In the past twenty-five years, a number of studies have associated aging with a higher risk for  

AKI [24,25]. Pascual et al. performed a study in Spain demonstrating that the incidence of AKI is 3.5 times 

higher in patients over 70 than those under 70; patients older than 80 years old were 5.0 times more 

likely to develop AKI [26]. Age above 65 years has also been shown to be an independent risk factor 

for AKI in a multinational, multicenter study [27]. Balardi and colleagues have shown that elderly 

patients (≥65 years) had ten times the incidence rate of AKI compared with those less than  

65 years of age in Italy [28]. Xue et al. established age as a risk factor for AKI; the incidence of AKI 

was 1.9% in patients younger than 65 and rose to 2.9% in those older than 85 [13]. Data from a 

community-based cohort in California showed that the incidence of AKI not requiring dialysis was  

79 per 100,000 person-years in patients younger than 50 and 3545 in patients over 80 [29]. Most 

recently, an increase in AKI in the elderly was seen following crush injury due to the earthquake in 

Wenchuan, China in 2008; compared to the resident population, the elderly patient with crush-related 

AKI was 2.6-fold higher than the younger patients [30]. Moreover, AKI that develops in the elderly is 

more severe and the patient is less likely to recover. Venkatachalam et al. showed that the percentage 

of elderly patients who did not recover renal function was 31.3% compared with 26% of younger 

cohorts [31]. Hospitalized AKI patients requiring dialysis are older than their counterparts who do not 

require dialysis (63.4 vs. 47.6 years) [32,33]. No increase in mortality has been consistently  
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reported [17,24,34–37]; however, studies have suggested that mortality following AKI is increased in 

the elderly [15,38]. 

3. Aging and AKI: Experimental Models 

A number of animal studies in the 1980s indicated that the aging kidney has a greater susceptibility 

to both ischemic and toxic injuries. Many of these studies used rats and it must be noted that due to the 

progressive nephropathy in senescent rats, they may not represent the optimal model to investigate 

xenobiotic-induced injury [39]. Beierschmidt et al. demonstrated an age-related increase in acetaminophen 

nephrotoxicity in male Fischer 344 rats, comparing rats at 2–4, 12–14 and 22–25 months of age [40]. 

Interestingly, baseline BUN, urine osmolality and urine volume were similar in all groups, suggesting 

that a major component of aging was increased sensitivity to insult as opposed to an overt loss of renal 

function. The nephrotoxicity of gentamicin is increased in the aging rat with no alteration in the 

pharmacokinetics of the antibiotic [41]. These findings were verified with female rats, but suggested 

that the lack of a relationship between the loss of renal function (decreased glomerular filtration rate 

(GFR)) and tubular injury (necrosis or casts) indicated that age-related changes reflected alterations in 

renal hemodynamics, rather than differences in the tubular susceptibility to injury [42]. In contrast, 

however, Miura et al. [43] demonstrated that slices of kidney from old rats were more susceptible to  

in vitro anoxia (100% nitrogen) than slices from young counterparts as assessed by organic anion 

transport in the proximal tubules, leading the authors to conclude that a component of the increased 

sensitivity to injury involves age-dependent alterations in the proximal tubules. Previous studies in our 

laboratory also showed similar results that renal slices from aged Fischer 344 rats fed ad libitum, but 

not aged caloric-restricted male animals, were more susceptible to ischemic injury (100% nitrogen) when 

compared with slices from young animals as assessed by histological and biochemical evaluations [44]. 

These ex vivo studies again demonstrated that the proximal tubular epithelial cells had an inherent 

increase in susceptibility to injury. Aged Wag/Rij rats (23–26 months) are more sensitive to tobramycin, 

an aminoglycoside antibiotic, as evidenced by tubular necrosis and urinary NAG levels [45]. More 

recent studies have extended age-dependent AKI models to the mouse. The aging (46–49 weeks) male 

C57Bl/6 mice exhibited prolonged elevation of plasma creatinine and greater mortality after bilateral 

renal ischemia-reperfusion (I/R) induced AKI compared to the young (8–10 weeks) [46]. Star and 

colleagues [47] developed a sepsis-induced AKI model by cecal ligation puncture (CLP) using aged 

(10.5–11 months) mice. Lipopolysaccharide (LPS) induced an increase in BUN and creatinine in the 

aged, but not young mice, setting the stage for the development of the more complex, clinically 

relevant CLP model. These results indicate that laboratory models recapitulate the clinical scenario of 

age-related AKI in humans and allow for the elucidation of specific mechanisms. 

4. Aging and AKI: Causes 

4.1. Chronic Kidney Disease (CKD) 

It is well established that aging is associated with structural and functional renal changes (Figure 1) [48]. 

It has been stated that “with the possible exception of the lung, the changes in kidney function with 

normal aging are the most dramatic of any human organ or organ system” [49,50]. The normal kidney 
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loses about 20%–25% of its mass during aging, with the loss involving both cortical glomeruli and 

tubules [51]. Age-dependent decline in kidney volume was not detectable by imaging, possibly  

due to the compensatory hypertrophy of functional nephrons [52,53]. In addition to nephron loss, 

glomerulosclerosis and tubulointerstitial fibrosis define the aging kidney [54,55]. There is also an 

increasing incidence of nephrosclerosis with aging from 2.7% for people aged 18–29 years to 73% for 

people aged 70–77 years [56]. Functionally, the aging kidney has a parallel decline in both glomerular 

and tubular function [57]. The seminal Baltimore longitudinal study demonstrated an average of  

0.75 mL/min yearly decline in GFR in 254 men without hypertension or kidney disease [58]. A similar 

rate of decline (0.63 mL/min/year) was reported in a recent study based on 1203 living kidney  

donors [56]. The GFR loss rate is tripled in subjects over 40 as compared with those under 40 in the 

Baltimore study [58]. A more recent study in healthy Chinese people described similar results [59]. 

Figure 1. Causes of increased incidence of acute kidney injury (AKI) with aging. 

 

Approximately 35% of the elderly US population has stage 3 CKD [3] and an increasing number of 

elderly with CKD developed the end-stage kidney disease (ESKD) which requires dialysis [60]. There 

is a growing recognition that AKI most often occurs on a background of CKD [12,61]. Elderly patients 

who developed AKI on a background of CKD are less likely to recover from AKI and more likely to 

progress to more advanced stage or even ESKD which contributes to the higher mortality rate [62,63]. 

The hazard ratio of developing ESKD for patients with both AKI and CKD is 13.0 relative to those 

only with AKI [64]. The two-year mortality rate is higher for those with AKI and CKD (64.3%)  

than those with AKI alone (54.3%) [64]. On the other hand, AKI also predisposes patients to CKD 

after tubular regeneration due to inflammatory responses, paracrine stimulation of myofibroblasts, 

epithelial cell senescence, and loss of cellular plasticity, all of which promote a pro-fibrogenic 

phenotype [65,66]. 
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4.2. Medications 

Older individuals more commonly develop diabetes mellitus, hypertension, atherosclerosis, and 

heart failure, each of which can directly increase the risk of AKI [32]. These comorbidities can also 

increase the risk of AKI indirectly by leading to increased medication use (Figure 1) in elderly patients 

as compared with younger patients [63]. Around 20% of the episodes of AKI are induced by 

nephrotoxic drugs and the incidence of drug-induced nephrotoxicity leading to AKI among elderly in 

the hospital can be as high as 66% [67,68]. 

Potassium homeostasis is regulated, in part, by excretion of potassium into the urine via active 

secretion by principal cells in the collecting tubule; aldosterone is an important part of this control 

system. The direct aldosterone response to a potassium load is diminished in aging patients which 

increases vulnerability to hyperkalemia [69]. As a result, drug-induced hyperkalemia is more prevalent 

in aging patients [70]. 

AKI secondary to non-steroidal anti-inflammatory drugs (NSAIDs) is more common in the  

elderly [71]. More than 80% of patients with NSAID induced AKI are over the age of 60 [72]. In a 

study with patients aged 50–84 years, the relative risk (RR) for AKI was 3.2 in NSAID users and was 

increased dramatically when NSAIDs were used in combination with diuretics (RR 11.6) and calcium 

channel blockers (RR 7.8) [73]. The combination of NSAIDs and angiotensin-converting enzyme 

(ACE) inhibitors was also demonstrated to be associated with nephrotoxicity in elderly patients  

(>75 years) [74]; The incidence of aminoglycoside-induced nephrotoxicity is also elevated in the 

elderly [75,76] and increased injury in response to aminoglycosides in combination an ACE inhibitor 

in elderly patients has been reported [77]. While contrast-induced nephropathy (CIN) is a significant 

cause of AKI in hospitalized elderly patients [68,78], age per se may not be an independent predictor 

of contrast nephropathy [79]. It is expected that CIN will remain an important cause of AKI in the 

elderly due to the increased use of contrast media in this population [80]. 

5. Aging and AKI: Mechanisms 

The impact of kidney aging on pharmacokinetics has long-been recognized and is the subject of 

many reviews [76,81]. Importantly, the T1/2 of a number of drugs with potential adverse effects on  

the kidney, including NSAIDs and antibiotics, is increased in elderly patients [82]. As such, the 

increased nephrotoxicity of cephaloridine, a broad spectrum antibiotic, in aging male Fischer 344  

rats (27–29 and 10–12 months compared to 2.5 months) is associated with increased serum and  

cortical concentrations of the antibiotic [83]. However, the cortical concentrations were similar in the 

10–12 and 27–29 month rats, while proximal tubule dysfunction, as assessed by tubular transport, was 

worse in the older rats, suggesting that there is an increased sensitivity of the aging proximal tubular 

epithelium to injury. This highlights the fact that AKI in the elderly is multifactorial, involving a 

number of potential mechanisms that we will attempt to delineate (Figure 2). 
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Figure 2. Mechanisms of increased incidence of AKI with aging. 

 

5.1. Hemodynamics 

Hypovolemia, both true (dehydration, bleeding, vomiting, diarrhea) and functional (cardiac impairment, 

liver disease, nephrotic syndrome) is common in elderly patients [84]. Until about the fourth decade, 

renal blood flow is maintained at approximately 600 mL/min. It then drops by approximately 10% 

every decade due to the activation of sympathetic nervous system, renin-angiotension-aldosterone 

system and vasopressin secretion [62,85]. The aging rat kidney is characterized by focal loss of 

peritubular capillaries spatially associated with tubulointerstitial injury [86,87], which contributes to 

chronic hypoxia in the aging kidney [88]. 

A role of nitric oxide (NO) in the increased sensitivity of the aging kidney to injury has been 

established. Reduced NO in peritubular capillaries in the aging kidney has been demonstrated  

which contributes to increased vasoconstriction, sodium retention, mesangial fibrosis and matrix 

production [86,89]. Increased I/R injury in aged (18 months) rats as compared to young (3 months) rats 

was associated with a dramatic increase in vasoconstriction in the aged rats. L-arginine, the precursor 

of NO synthesis, attenuated injury in aged rats to a greater extent than the young ones [90]. Taken 

together, these results suggest that the aging is associated with decreased NO levels which exacerbate 

I/R injury. Later studies demonstrated that NO levels, as well as acetylcholine-induced vasodilation, 

are reduced in the aging rat kidney [91]. These results were strengthened when it was shown  

that atorvastatin which enhances NO bioavailability in the aging rats afforded protection against I/R 

injury [92]. Another factor in the diminished NO-mediated responsiveness is the increased levels of  

the endogenous nitric oxide synthase (NOS) inhibitor, asymmetric dimethylarginine, in aging rats [93] 

and humans [94]. The increased nephrotoxicity of gentamicin has also been postulated to involve 

decreased NO production, as glomerular nitrate levels are decreased in aged rats (12 months) as compared 
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to young controls [95]. In elderly patients (81–96 years), NO did not increase after vasodilatory  

stimuli [96]. 

In addition, the aging kidney has diminished responsiveness to vasodilators and increased  

sensitivity to vasoconstrictors [97]. Vasodilators, including pyrogen and acetylcholine [98], ANP [99], 

dopamine [100] and amino acids [100,101], have decreased functionality in the aging kidney.  

This decreased vasodilatation is coupled with increased vasoconstrictive response to sympathetic 

activation [102] or AngII [103]. Clinically, prolonged vasoconstriction due to contrast administration 

is associated with acute renal dysfunction in elderly patients [78]. Taken together, these data suggest 

the normal vascular response is impaired in the aging kidney, and this contributes to the increased AKI. 

5.2. Oxidative Stress 

The data regarding the role of antioxidants in age-dependent AKI is ambiguous. Although glutathione 

S-transferase (GST) activity is lower (45% of control) in aged rat kidneys compared to middle-aged 

and young rats, renal glutathione (GSH) levels are not decreased in the aging rat kidney [40]. We have 

confirmed that basal GSH levels are not lower in the aging kidney, but levels are depleted more rapidly 

when challenged with acute stress [44]. Several studies suggest that deficiencies within the antioxidant 

defense systems may play a role in the aging kidney. A decrease in catalase levels (41% of young) was 

seen in male Wistar rats at 15 months as compared to 10 and 2.5 month rats; no difference was seen at 

10 months as compared to 2.5 [104]. Total plasma antioxidant potential is reduced in aging rats; this 

may explain the marked increase in oxidative stress (8-hydroxy-2'-deoxyguanosine levels) in the kidney 

following I/R injury in aged animals [105]. In a study comparing young (3 months), middle-aged  

(12 months) and aged male (24 months) Wistar rats, I/R injury (as assessed by inulin clearance as  

a measure of GFR) was more severe in the middle-aged and aged rats [106]. Interestingly, lipid 

peroxidation was elevated at baseline in middle-aged and aged rats and 30 days supplementation  

with vitamin E attenuated I/R injury in these rats [106]. The vitamin E supplementation, however, 

could represent a sub-chronic adaptation, rather than a direct protective effect against acute injury. 

Furthermore, superoxide dismutase (SOD) attenuated I/R injury in aged rats to a greater extent than the 

young ones [90]. The induction of hemeoxygenase-1 (HO-1) was blunted in aging mice (12 months old) 

following I/R injury and the injury was worse in the aging mice [107]. Interestingly, HO-1 was localized 

to interstitial macrophages, suggesting that they may have a renoprotective role. Overexpression of Sirt1, 

a NAD-dependent protein deacetylase, in the proximal tubule cell maintains peroxisome number and 

reduces renal reactive oxygen species levels which rescued cell apoptosis induced by cisplatin [108]. 

Downregulation of Klotho gene, an anti-aging gene expressed in the distal convoluted tubules, was 

observed in aging kidney. This was associated with increased susceptibility to oxidative stress via 

activation of the insulin growth factor-1(IGF-1) pathway [31]. Taken together, these data suggest that 

decreased antioxidants and increased oxidative stress may play a role in age-dependent AKI; however, 

significant work remains to elucidate the specific pathways, as well as potential cell-specific effects. 

5.3. Mitochondria/Apoptosis 

Increased cell death due to apoptosis is an intriguing hypothesis for enhanced cell injury with aging, 

as it represents a convergence between chronic renal dysfunction due to tubular loss and increased AKI 
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in the aging kidney. As such, an increase in salicylate-induced nephrotoxicity was seen in 12 month 

old rats, as compared to young controls (3 months) [109]. Interestingly, there was evidence of an 

increased sensitivity of the mitochondria in the proximal tubular epithelial cells to injury. Further 

evidence for a role of the mitochondria comes from a study of I/R injury in aged (27 months) Wistar 

rats [110]. Tubular cell apoptosis was increased in aged rats as compared to young controls; basal 

levels of cytosolic cytochrome C, active caspase-3/9 were elevated in the aging kidney and the  

up-regulation following I/R injury of caspase-3/9 was increased in aged rats [111]. Increased 

expression of Bax, a pro-apoptotic protein, caspase-3/9 and cytochrome C in the aging kidney have 

been observed in other studies [112,113]. The expression of Bcl-2, which is an apoptosis inhibitor, 

however, is decreased in aged rat kidney [112]. Moreover, the expression of p21, a cyclin-independent 

kinase (CDK) inhibitor, which induces apoptosis is increased in aged rats [114]. Higher levels of  

p53 and p21 were expressed in the aging male C57Bl/6 mice after bilateral renal I/R-induced  

AKI [46]. Therefore, increased apoptotic cell death could account, in part, for the increased AKI in  

the aging kidney. 

5.4. Autophagy 

Autophagy is an evolutional conserved process to recycle damaged organelles [115,116]. Recent 

literature suggests a protective role for autophagy in both I/R-induced and toxicant-mediated AKI [117]. 

The autophagic removal of damaged mitochondria in the mitochondria-rich proximal tubule cells  

plays a critical role in protecting against AKI [117]. In the aging male Fischer 344 rat, Atg7 was 

downregulated, as was LC3, indicating that autophagic function is decreased [118]. In the aging male 

C57Bl/6 mice, autophagic activity was also diminished [116]. Cui et al. demonstrated that autophagy 

is not induced during ischemic stress by renal proximal tubule cells in the aging kidney, and argued 

that this contributes to the development of AKI [118]. Pharmacologic induction of autophagy by 

administrating the mTOR inhibitor, rapamycin or temsirolimus, facilitated renal recovery from AKI 

during endotoxemia in aged mice [116,119] and pharmacologic inhibition of autophagy with either 

bafilomycin or 3-methyladenine enhanced cisplatin-induced renal tubular cell death [120]. More 

severe morphologic derangements and greater elevation in serum creatinine levels were observed in 

proximal tubule-specific autophagy-deficient mice in response to I/R or cisplatin injury [117,119,121]. 

These data suggest that autophagy, and its role in AKI, represent a novel and fruitful area to be 

explored in the aging kidney. 

5.5. Inflammation 

Aging is associated with chronic inflammation [122,123] which is characterized by progressive 

accumulation of lymphocytes and macrophages in renal interstitium [121]. Since inflammation is a 

well-established mediator of AKI [124,125], a role for inflammation in age-related AKI is highly 

plausible. A higher influx of lymphocytes and macrophages was detected, accompanied by an increase 

in tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein-1 (MCP-1) mRNA 

expression in aged kidney following transient ischemic injury [46]. In microarray-based analyses of 

the aging kidney, both human [126], and rat [44], a large percentage of the up-regulated genes were 

linked to inflammation. In another microarray-based study, the aging kidney was shown to be marked 



Int. J. Mol. Sci. 2014, 15 15366 

 

 

by inflammatory cell infiltration, as demonstrated by the dramatic increase in expression of B- and  

T-cell specific genes [127]. In both the human and rat microarrays, MMP-7 was shown to be 

significantly up-regulated; in addition to its proteolytic function, MMP-7 has a pro-inflammatory  

role [128]. The role of specific pro-inflammatory mediators in the aging kidney, and their relationship 

to AKI, is an area that will demand future attention. Importantly, AKI-induced inflammation can also 

promote renal senescence. AKI induces inflammatory cytokines that enhance extracellular matrix 

deposition, fibrosis and cell apoptosis [65,129]. Recently, a transcriptomics study unveiled AKI 

induces TWEAK engagement of Fn14 which promotes inflammation via secretion of CXCL16 in renal 

tubular cells and suppression of anti-aging hormone Klotho through an NF-κB dependent manner, 

thereby mechanistically linking AKI with aging [130]. 

5.6. Repair 

Given that the clinical evidence suggests that AKI is associated with delayed, or decreased, repair  

in the elderly, there has been a recent surge of work examining aging and kidney repair [31,112].  

Baraldi et al. suggested that complete recovery was reduced in the elderly patients [28]. Arora et al. 

demonstrated that recovery from AKI, as determined by time to normalization of serum creatinine,  

was three-times as long in elderly (mean 67.1) compared to young (32.3) patients (32 vs. 11.4 days, 

respectively) [37]. Schmitt et al. examined data from 17 studies of AKI and found that a higher 

percentage of surviving elderly (>65 years) patients did not recover renal function as compared to 

younger patients; the RR was 1.28 (95% confidence interval of 1.06–1.55) [112]. Fortunately, data 

from animal studies are in agreement with the clinical findings. In a seminal study, Cantley and 

coworkers demonstrated that zinc-α(2)-glycoprotein (Zag), an inhibitor of epithelial cell proliferation, 

is elevated (6.4-fold) in proximal tubular epithelial cells from aged mice (19–24 months) [131]. 

Overexpression of Zag decreased proliferation of proximal tubular epithelial cells in vitro and, 

importantly, knockdown of Zag in the kidneys of aged mice using siRNA increased proliferation 

following I/R injury in vivo. Additionally, Zag knockdown increased peritubular deposition of collagen 

IV which was hypothesized to attenuate recovery. 

Several mechanisms may underlie the decreased repair potential of the aging kidney. Miya et al. 

have shown that decrease in DNA synthesis was seen following I/R injury in the aging kidney [87]. 

The expression of P16INK4A, a CDK4/6 inhibitor that can block cell-cycle, is increased in epithelial and 

interstitial cells of aging human and mouse kidneys [132,133]. Ablation of P16INK4A resulted in 

proliferation and improved regeneration following ischemic injury [134]. Moreover, the expression of 

p21, another CDK inhibitor which inhibits cell proliferation, is increased in aged rats [114]. The 

increased expression of p21 and P16INK4A can be accompanied by the accumulation of Cyclin D1 

which might reflect an abnormal G1-S transition [135,136]. Furthermore, both p21 and P16INK4A 

enhance telomere shortening, promoting the senescence of renal tubules [137]. Telomere shortening 

was also observed in the aging human kidney and is more pronounced in cortex [138]. 

Growth factors are critical mediators in kidney repair [139]. The expression of factors promoting 

angiogenesis, cell proliferation and cell recruitment such as vascular endothelial growth factor 

(VEGF), epidermal growth factor (EGF) and insulin-like growth factor (IGF)-1, decline in the aging 

kidney [140–142]. By contrast, the expression of pro-fibrotic growth factors, including TGF-β1, 
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connective tissue growth factor (CTGF) and integrin-linked kinase (ILK) are increased in the aging 

kidney [114,143]. These data demonstrate an imbalance of growth factor expression which favors the 

development of tubulointerstitial fibrosis and an anti-angiogenic environment which could result in a 

deficient repair process in the aging kidney [144]. 

Another factor in the decreased ability of the aging kidney to repair following injury may be the 

decreased expression of components of the cadherin/catenin complex that mediates cell-cell adhesion 

in the proximal tubule. Our laboratory has demonstrated that the expression of α(E)-catenin is 

decreased in the aging kidney [145,146]. Given the importance of this complex in establishing cell 

polarity and regulating the actin cytoskeleton, this deficiency may inhibit the complete recovery of the 

tubular epithelium in the aging kidney. This was supported by our recent study which demonstrated 

that loss of α(E)-catenin expression leads to down-regulation of BMP-7 and N-cadherin, decreasing 

repair in renal tubule epithelial cells due to alterations in cell migration [145,146]. 

Finally, Bonventre and coworkers have shown that a G2/M cell cycle arrest shifts the outcome from 

repair to fibrosis following AKI [147]. Mechanistically, the G2/M arrest is associated with activation 

of JNK, which then upregulates profibrotic cytokines, including TGF-β1 and CTGF; interestingly 

these are overxpressed in the aging kidney [114,143]. Rescue from this arrest, using pharmacological 

approaches, attenuates the fibrotic response. These results demonstrate a definitive link between 

deficient repair and progression to CKD in the kidney. 

6. Conclusions 

Renal aging is a complex multifactorial process which predisposes to AKI in the elderly population. 

Unfortunately, there is no effective therapy currently available for AKI. It is clear, however, that the 

increased susceptibility of the aging kidney to injury is complex and, most likely, cannot be accounted 

for by a single mechanism. This is highlighted by the findings that injury is increased, while repair is 

decreased in the aging kidney, and within each of these pathways there are many converging 

mechanisms at play. Hopefully, the deeper understanding of all the mechanisms underlying AKI in 

elderly patients will lead to progression in the development of preventive and protective interventions 

that decrease the dialysis-requiring AKI and potentiate the resolution of AKI. 
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