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Lead candidates for high-performance organic
photovoltaics from high-throughput quantum
chemistry – the Harvard Clean Energy Project†

Johannes Hachmann,*ab Roberto Olivares-Amaya,ac Adrian Jinich,a

Anthony L. Appleton,d Martin A. Blood-Forsythe,a László R. Seress,a Carolina Román-
Salgado,a Kai Trepte,a Sule Atahan-Evrenk,a Süleyman Er,a Supriya Shrestha,a

Rajib Mondal,d Anatoliy Sokolov,d Zhenan Baod and Alán Aspuru-Guzik*a

The virtual high-throughput screening framework of the Harvard Clean Energy Project allows for the

computational assessment of candidate structures for organic electronic materials – in particular

photovoltaics – at an unprecedented scale. We report the most promising compounds that have

emerged after studying 2.3 million molecular motifs by means of 150 million density functional theory

calculations. Our top candidates are analyzed with respect to their structural makeup in order to identify

important building blocks and extract design rules for efficient materials. An online database of the

results is made available to the community.
I. Introduction

Organic solar cells are a promising technology for the inex-
pensive and versatile utilization of solar energy.1,2 The tradi-
tional development of new organic photovoltaic (OPV) materials
is predominantly based on empirical intuition or experience
with certain compound families. A new design idea is typically
followed by a labor-intensive synthesis, characterization, and
prototype device optimization. The obtained results are used as
feedback for the re-design and improvement of the original
candidate. This approach can result in an extended iterative
cycle, which may or may not lead to a useful material in the end.
Only a small number of structures can thus be tested; the
chemical space explored is therefore severely limited, and
progress tends to be slow.

These limitations, costs, and the high possibility of failure
lead to the idea of a virtual high-throughput prescreening of
potential candidate compounds. This approach is devised to
facilitate an accelerated development process as efforts can be
focused on promising leads while unpromising ones can be
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excluded early on. Furthermore, the survey of uncharted
domains of the molecular space may reveal compound classes
with novel and unexpected properties. This notion is inspired
by the discovery of fullerenes and carbon nanotubes, and the
transformative impact they have had on materials science.3

In a recent paper,4 we introduced the Harvard Clean Energy
Project (CEP), an automated, high-throughput framework for the
large-scale in silico study of molecular materials. It is designed
and implemented to identify lead compounds, in particular
organic semiconductors for photovoltaic applications. The CEP
framework utilizes rst-principles electronic structure theory
(augmented by techniques from cheminformatics/materials
informatics and machine learning5,6) to characterize millions of
molecular motifs and assess their potential. The massive amount
of computing time required for this research is provided by
distributed volunteer computing by means of IBM’s World
Community Grid (WCG).7,8 We note that Hutchison and co-
workers have carried out a similar computational screening,9,10

and that other studies of OPV candidates have been reported in
the literature.11,12 Large-scale initiatives such as the ones by
Ceder, Curtarolo, Jacobsen, Nørskov, and Zunger have been
successful in exploring the space of inorganic solid state
materials.13–20

In Section II A we provide an overview of our screening
procedure, the data processing, and the current status of the
project. Section II B describes our assessment of the candidates
by means of the Scharber model and the resulting ranking. In
Section II C we discuss the highest-ranked candidates from an
empirical perspective, and in Section II D we identify prevalent
structural patterns based on a statistical analysis. We investi-
gate the correlation between these patterns and the predicted
This journal is © The Royal Society of Chemistry 2014
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candidate performance in more detail in Section II E. Our
ndings are summarized in Section III.
Table 1 Statistical analysis of the calibration and averaging scheme
employed in this study. The best estimates for the HOMO and LUMO
values for each molecular motif (m-) incorporate up to 75 values from
different model chemistries and geometries. When they are computed
we obtain a mean absolute deviation (MAD) and root-mean-square
deviation (RMSD) for each motif. We then analyze these statistical
measures for the entire set of 2.3 million screened motifs (s-) and
II. Results and discussion
A. Virtual high-throughput screening

We have so far examined 2.3 million molecular motifs21 in 150
million density functional theory (DFT) calculations and
generated a data volume of more than 400 terabytes. The CEP
represents, to our knowledge, the most extensive quantum
chemical investigation ever conducted, and this paper is con-
cerned with the initial analysis of the results to date. The
screening is ongoing and we complete about 20 000 workunits
every day, each carrying out up to 15 DFT calculations on a
candidate.

The 2.3 million compounds characterized up to this point
are part of our primary candidate library for OPV donor mate-
rials.4 It was combinatorially generated from 26 basic building
blocks according to predetermined rules regarding possible
connections. The fragments and connectivity rules were chosen
with promise and synthetic feasibility in mind. They are
inspired by established moieties from the literature but also
include modied ones. Further details about the basic building
blocks are given in the analysis section below. We point out that
despite these design choices, not all resulting candidates will
indeed be accessible for synthesis.

For each of the candidates we generate up to ve low-energy
conformers using molecular mechanics. These are subse-
quently subject to geometry optimizations at the DFT level. By
considering multiple conformers we attempt to capture
possible deviations from the optimum geometry due to inter-
actions in a polymer or bulk material. As detailed in ref. 4, we
perform a series of DFT single point calculations on the
different geometries using an array of model chemistries (i.e.,
functional and basis set combinations). The results are empir-
ically calibrated to correct for some of the systematic errors in
each theoretical model and account for the situation in a real
material. The calibration is based on linear regressions between
a training set of known experimental data and the corre-
sponding computational results, i.e., it aligns the predictions of
the latter to the former.4 Details are given in the ESI.† In order to
obtain more robust values and reduce random errors intro-
duced by failures of individual model chemistries or calibra-
tions for particular data points, we average over all the
independently acquired results. We also average over the
different geometries for each candidate. The overall averages
can include up to 75 values. The calibrated and averaged results
are our best estimates for the quantities of interest.
obtain the average (avg), MAD, and RMSD values given in the table
rows.28 All results are in eV

HOMO LUMO

m-MAD m-RMSD m-MAD m-RMSD

s-avg 0.07 0.09 0.09 0.12
s-MAD 0.02 0.03 0.02 0.03
s-RMSD 0.06 0.25 0.07 0.26
B. Analysis and ranking via the Scharber model

In the following analysis we employ the Scharber model,22,23 a
specialized version of the Shockley–Queisser model for OPVs.24

The only inputs it requires are the energies of the highest
occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO). We previously proposed the use of
calibrated Kohn–Sham eigenvalues25–27 in this context and this
This journal is © The Royal Society of Chemistry 2014
approach has since been adopted by other groups as well.11 The
statistical analysis of our DFT post-processing is summarized in
Table 1, and it reveals a small spread in the values.28

We emphasize that the predictions from the Scharber analy-
sis are subject to the limitations of this relatively simple model,
its various assumptions, and the quality of the input data
provided by the approach described above. The resulting power
conversion efficiency (PCE) values should be interpreted as the
potential performance that may be achieved, if the assumptions
used in the Scharber model can be met. These assumptions
implicitly incorporate a number of additional requirements – in
particular related to the complicated bulk and interface
behavior as well as to the exciton and charge-carrier dynamics –
that have to be achieved in order to obtain a high-performance
material. The standard parameters which reect these
assumptions (e.g., the ll factor of 65%, the uniform external
quantum efficiency of 65%, the required LUMO offset of 0.3 eV
between donor and acceptor, and the empirical loss parameter
of 0.3 eV) can in principle be further improved, but their prac-
tical realization already poses challenges. The PCE values
reported in this paper correspond to a standard phenyl-C61-
butyric acid methyl ester (PCBM) acceptor counterpart. While
the Scharber model is clearly too simplistic to account for all the
complex physics of an OPV, it nonetheless provides a valuable
indication about the inherent promise of a candidate
compound. A good PCE value is thus a necessary condition for a
successful donor material (based on the principal energy levels
of its molecular constituent), but not a sufficient one. It offers a
guideline as to whether development efforts geared towards
realizing the other material features have a chance of being
worthwhile. However, there is no guarantee that the top
candidates will indeed perform as well as indicated since they
may fail for factors not captured in the employed analysis.
Pharmaceutical screening efforts are a good analogy to the work
presented here: our study reveals insights into new and poten-
tially successful molecular motifs, which can then be further
explored by experiment and more detailed calculations.

The theoretical PCE limit within the standard Scharber
model with a PCBM acceptor is 11.1%, and it requires a LUMO
energy of�4.00 eV and a gap of 1.41 eV (i.e., the HOMO level has
Energy Environ. Sci., 2014, 7, 698–704 | 699
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Fig. 2 Example structures from the top candidates list (each with
potential modifications marked in red). (a) shows the candidate ranked
#77 that has multiple inter-monomer nitrogen-sulfur interactions.
These can facilitate a highly planarized structure in the solid-state, and
thus potentially enhance the electronic coupling. (b) is the candidate
ranked #5. It has a very rigid 5-ringed, heterocyclic co-monomer
structure, which may reduce reorganization and relaxation energies.
(c) displays the candidate ranked #1 that, after minor modifications
marked in red, contains Yu’s highly efficient thienothiophene co-
monomer.31 This co-monomer has been utilized in organic photo-
voltaic materials that have consistently surpassed 7.0% power
conversion efficiency.
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to be at �5.41 eV) as the optimum parameter combination.
Candidates with this HOMO level should also be stable towards
oxidation in the air, as they remain below the threshold of �5.3
eV. Of the 2.3 million screened compounds, only about 1000
(i.e., 0.04%) show a PCE of 11% and higher, and 35 000 (i.e.,
1.5%) a value of over 10%. Fig. 1(c) shows the predicted PCE
distribution for the candidates. Most of them are estimated to
have a PCE below 4%. The list of the top 10 000 candidates from
our current analysis is provided in the ESI.†

The CEP results are also compiled in the Harvard Clean
Energy Project Database (CEPDB),30 which is made available as
an open resource. It is designed for the storage and analysis of
data on organic electronics. It allows to readily identify candi-
dates with specic property combinations. The CEPDB also
provides a simple interface to employ other, potentially more
advanced device performance models. It will feature regularly
updated lists of the most promising OPV candidates as more
data becomes available, as we improve the calibration scheme,
and augment the data analysis capability. The CEPDB was
released to the public in June 2013 under a Creative Commons
Attribution ShareAlike license.
C. Empirical assessment of the top candidates

A visual survey of the highest ranked candidates (examples are
shown in Fig. 2) immediately reveals the prevalence of moieties
(e.g., benzothiadiazole), which are known to be extremely useful
in polymeric OPV materials and which appear in numerous
high-performance devices reported in the literature. The candi-
dates also possess attributes thought to be imperative for effi-
cient electronic materials: The inherent stiffness of fused multi-
ring systems lends itself to reducing energy loss mechanisms by
minimizing reorganization and relaxation energies. The
heteroatom substitutions on the periphery of these ring systems
may allow for through-space interactions that could enhance
electronic coupling and provide morphological control during
device fabrication. Loss mechanisms and the lack of morpho-
logical control can result in poor performance of even
Fig. 1 Screening results and analysis. Dynamic gap range plot of the 2.3 m
(b) scale. The available combinations of HOMO and LUMO values span a
space for high-performance materials (marked by the white circle) is sm
worth noting that the screened structures cluster around LUMO values th
gap of many candidates is too large for the efficient harvesting of the sol
(PCE) histogram according to the Scharber model with respect to a pheny
photovoltaic activity (i.e., PCE ¼ 0%29) have been excluded in this graph

700 | Energy Environ. Sci., 2014, 7, 698–704
exceptional materials. These empirical observations lend con-
dence to our predictions. The top candidates feature some
relatively complicated multi-ring patterns and tetramer repeat
units, which are seldomly approached by experimentalists.
Although fused-ring systems have been reported, multi-
heteroatom substituted ring structures and tetramer repeat
units are very rare due to synthetic challenges (most OPV poly-
mers have trimer repeat units). Advances in the available
synthetic tools justify the hope that the reported lead candidates
may broaden the range of experimental target compounds.

D. Structural analysis of the top candidates

Following the ranking of the molecular motifs and their
empirical assessment, we now analyze the structural composi-
tion of the top candidates (i.e., the list of candidates with a PCE
of more than 10%) more systematically. Our goal is to identify
illion molecular motifs screened to date on a linear (a) and logarithmic
wide range, as is particularly apparent in (b). However, the parameter
all and only contains a relatively sparse distribution of candidates. It is
at would be more suitable for different acceptor materials, but that the
ar spectrum. Panel (c) shows the resulting power conversion efficiency
l-C61-butyric acidmethyl ester (PCBM) acceptor.22 Candidates without
.

This journal is © The Royal Society of Chemistry 2014
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Table 2 Z-scores of the most amplified and depleted fragments for
the lists of candidates with power conversion efficiency (PCE) $ 10%.
The other columns show the mean and median PCE value (in %) for all
motifs containing the respective building block

Building Block
ID

Z-score
PCE $ 10% Mean PCE Median PCE

26 438.5 6.3 8.1
17 138.5 4.4 3.8
15 62.2 5.8 5.8
3 34.6 4.7 4.5
24 34.6 5.5 5.6

5 �123.6 3.0 2.4
22 �80.3 2.7 2.2
7 �60.2 3.7 3.3
11 �53.1 2.7 2.3
25 �51.4 3.8 3.5
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patterns and hints towards structure–property relationships in
these most promising compounds.32

In a rst step we perform a statistical analysis with respect to
the occurrence of the molecular building blocks that were used
in the library generation. We employ a hypergeometric distri-
bution analysis to assess the prevalence of the 26 basic frag-
ments in the top candidates.33 The hypergeometric distribution
gives the probability of nding k observations in a subpopula-
tion of size n, given that there are K observations in the entire
population of size N. This translates to counting, for each
building block, the number of molecular motifs that contain it
in the high-PCE subset and in the entire library, respectively.
Enrichment or depletion relative to a random distribution is
reected in the resulting Z-score of each building block. The Z-
score is given by z ¼ (k � hki)/s(k). Here, k is the observed
number of molecules in the top set containing the building
block of interest; hki is its expectation value given by hki ¼ n$K/
N; and s(k) is the standard deviation of the hypergeometric
distribution. A positive Z-score indicates that a building block is
found more oen than is statistically expected in a random
distribution, and a negative Z-score registers the opposite. We
nd that certain building blocks are very common in the top
candidates while others are underrepresented. Fig. 3 and Table
2 show these ndings in detail. We conclude that the perfor-
mance of the best candidates can at least in part be traced back
to their structural composition.

The following building blocks (termed enriched monomer
motifs) are strongly overexpressed in the top PCE set: [1,2,5]-
thiadiazolo[3,4-C]pyridine (26), pyridine (17), benzothiadiazole
(15), silacyclopenta-2,3-diene (3), and 2H-2-silaindene (24).
Other building blocks (depleted monomer motifs) are signi-
cantly underrepresented. The ve most depleted fragments are
pyrrole (5), isoindole (22), cyclopentadiene (7), 1H-thieno[3,4-b]-
Fig. 3 Z-scores of the top candidates with power conversion effi-
ciency (PCE)$ 10%. We see a number of building blocks with elevated
appearance while others are depleted. The inlay shows a random
sample, which does not exhibit any significant enrichment or deple-
tion. The PCE $ 11% list gives qualitatively the same result as the one
for PCE $ 10%, i.e., this analysis of the high-performance candidates
appears to be robust to the cutoff.

Fig. 4 The 26 building blocks (including chemical handles indicated
by ‘X’) of the molecular candidate library. Moieties with the most
amplified occurrence in the top candidates (relative to the statistical
expectation) are highlighted in green, and red indicates the ones with
the most decreased occurrence.

This journal is © The Royal Society of Chemistry 2014
pyrrole (11), and isoindene (25). All the basic building blocks are
shown in Fig. 4.

There has been much work related to successful OPV donor
compounds based on thiadiazole moieties, such as 15 and 26,
and they have been popular in the development of OPV donor
materials for some time. Our ndings about the inherent
promise of these two building blocks are thus supported by a
substantial amount of empirical evidence. Thiadiazole moieties
can act as electron-withdrawing groups in co-polymers. Benzo-
thiadiazole (15) for instance has successfully been coupled with
electron-donating moieties (e.g., uorene and carbazoles) to
lower the donor bandgap.34–37 Following this approach, Blouin
et al.38 devised a small molecular library from which the
thiadiazolo-pyridine co-polymer emerged with a very promising
Scharber PCE. This nding gives an interesting context to the
Energy Environ. Sci., 2014, 7, 698–704 | 701
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Fig. 5 Box-and-whisker plot for the distribution of Scharber power
conversion efficiency (PCE) values associated with each library
building block. The moieties are sorted by their mean PCE. The dotted
and dashed red lines represent the median PCE and the 25/75th
percentile over all candidates, respectively. The limits of each box
represent the 25/75th percentile distribution for molecules that
contain the corresponding building block, and the median value is
shown as a black line. The whiskers extend to the extreme data points.
Themoieties with the five highest and lowest Z-scores are represented
in green and red, respectively.
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observed prevalence of 17 (in addition to 15 and 26) in our top
candidates. Recently, there have also been developments
towards using the combination of thiadiazole and pyridine in
optoelectronic materials.39,40 The thiazole unit (19) is an
electron-withdrawing group as well, and it has been employed
in the scaffold of semiconductor materials for both photovol-
taics41,42 and light-emitting diodes.43 Si-containing building
blocks – 2H-2-silaindene (24) and silacyclopenta-2,3-diene (3) –
are also amongst the ve monomer motifs with the largest
Z-scores. It was shown that modifying an electron-donating
moiety such as uorene to a silauorene can successfully
increase the photovoltaic efficiency of an organic semi-
conductor.44 Recent work along those lines has focused on
benzosiloles.45,46 It has also been suggested that silauorenes
provide an advantage in solution processing. Corey notes that
despite these successes and the apparent potential of Si-based
moities, the application of silaindenes (such as 24) has not
been pursued in the development of new OPV materials.47 The
fact that 24 is notably overrepresented in our top candidates
underscores that these moieties hold great prospects.

We also mention the ve fragments that have the most
negative Z-score, which means that nding them in a top
compound with a large PCE is much less likely than would be
statistically expected. Two of these (isoindole and isoindene,
i.e., 22 and 25) are analogous to the high Z-score silaindene
moiety mentioned above. Their lack of promise compared to the
Si-analogue further supports our conjecture concerning the
untapped potential of Si-heterocyclic OPV designs. The simple
fragments pyrrole (5) and cyclopentadiene (7) also show less
promise than most of the other building blocks. The latter was
only chosen for a homologue comparison in the rst place.
E. Correlations between building blocks and performance

Aer having identied the structural patterns that can be linked
to the most promising candidates, we now address the question
of how decisive these individual building blocks are for the
overall performance of a candidate. For that we compute the
mean and median PCE of all compounds that contain a
particular fragment.29 Since a compound is constructed from
several fragments with different Z-scores, the effect of each
individual fragment will in principle average out. However, if
the inuence of a building block is dominant for the overall
performance, then we should still nd a discernible structure in
the results. In a follow-up study we will address the question of
moiety combinations and the impact of their joint occurrence,
as well as that of generalized structural patterns.

As can be seen in Fig. 5 and Table 2, the assessment of the
fragment quality based on the Z-scores is essentially conrmed
by the PCE statistics. The enriched monomer motifs are asso-
ciated with higher PCEs compared to most other fragments,
while the depleted monomer motifs underperform signi-
cantly. 17 shows a lower PCE than anticipated based on its
Z-score, which suggests that its prevalence in the high-
performance candidates is conditional and subject to being
paired with certain conterparts. This interpretation aligns very
well with the design of push-pull-copolymers as discussed
702 | Energy Environ. Sci., 2014, 7, 698–704
above.38 Two additional fragments of interest emerge from the
PCE analysis, i.e., thieno[3,4-b]pyrazine (14) and 1,3,5-triazine
(18). Candidates based on either of these two fragments tend to
perform very solidly, but their modest Z-scores indicate that this
does not extend into the highest PCE region. All fragments with
the exception of 26 show a relatively narrow PCE window into
which the majority of the derived candidates fall. 26 in contrast
covers amuch larger variance. That means, that its performance
is essentially hit-or-miss. It is remarkable that the 75th
percentile is over 9% PCE, and the 50th percentile is over 8%,
but then the 25th percentile is at 0% PCE. This feature can
probably be traced back to the fact that a LUMO offset of $ 0.3
eV is required in the Scharber model. Compounds that do not
fulll this requirement are predicted to show no charge sepa-
ration and their PCE drops to 0%. Finally, it also emerges that a
majority of fragments never reach the theoretical maximum of
the Scharber model.
III. Conclusions

We can conclude that the Harvard Clean Energy Project with its
virtual, high-throughput, rst-principles quantum chemical
characterization of candidate compounds and its big data
approach provides a framework for the rational, systematic, and
accelerated development of new organic electronic materials.
We present the top candidates that have emerged aer inves-
tigating 2.3 million molecular motifs and performing 150
million DFT calculations. By analysing these and the candidate
pool in its entirety, we identied building blocks such as thia-
diazoles and silaindenes, that are related to the ideal energy
level alignment for high-performance OPV donor materials.
Consequently, these are of particular interest for the design of
future materials, while less promising fragments may not have
This journal is © The Royal Society of Chemistry 2014
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to be considered in future searches. These insights will aid in
the transition from a brute-force screening approach towards
the active design and engineering of new molecular materials.

In upcoming publications, we will discuss other correlations
between the top candidates and their topological and physico-
chemical features. We will utilize our insights into the under-
lying structure–property relationships in the creation of second
generation screening libraries and as a starting point for the
construction of new candidates via genetic algorithms.48–50 In
addition to expanding and improving our candidate character-
ization and data analysis capability, we will also employ other
OPV performance models in order to advance the quality and
robustness of our predictions. Finally, we will generalize our
work to materials for multi-junction devices. In the spirit of
open science we have made the CEPDB available to the public
and hope that other research groups will use the released data
for their own scientic pursuits.
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15 W. F. Maier, K. Stöwe and S. Sieg, Angew. Chem., Int. Ed.,

2007, 46, 6016–6067.
16 A. Jain, G. Hautier, C. J. Moore, S. P. Ong, C. C. Fischer,

T. Mueller, K. A. Persson and G. Ceder, Comput. Mater.
Sci., 2011, 50, 2295–2310.

17 S. Curtarolo, W. Setyawan, G. L. Hart, M. Jahnatek,
R. V. Chepulskii, R. H. Taylor, S. Wang, J. Xue, K. Yang,
O. Levy, M. J. Mehl, H. T. Stokes, D. O. Demchenko and
D. Morgan, Comput. Mater. Sci., 2012, 58, 218–226.

18 D. D. Landis, J. S. Hummelshøj, S. Nestorov, J. Greeley,
M. Dułak, T. Bligaard, J. K. Nørskov and K. W. Jacobsen,
Comput. Sci. Eng., 2012, 14, 51–57.

19 L. Yu and A. Zunger, Phys. Rev. Lett., 2012, 108, 068701.
20 J. K. Nørskov, T. Bligaard, J. Rossmeisl and

C. H. Christensen, Nat. Chem., 2009, 1, 37–46.
21 In our previous paper we used the term ‘connectivities’ for

‘molecular motifs’ and ‘molecular motifs’ for ‘geometries’,
but believe that the terminology chosen here is more
suitable.
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