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Abstract

Diverse ion channels and their dynamics endow single neurons with complex biophysical properties. These properties
determine the heterogeneity of cell types that make up the brain, as constituents of neural circuits tuned to perform highly
specific computations. How do biophysical properties of single neurons impact network function? We study a set of
biophysical properties that emerge in cortical neurons during the first week of development, eventually allowing these
neurons to adaptively scale the gain of their response to the amplitude of the fluctuations they encounter. During the same
time period, these same neurons participate in large-scale waves of spontaneously generated electrical activity. We
investigate the potential role of experimentally observed changes in intrinsic neuronal properties in determining the ability
of cortical networks to propagate waves of activity. We show that such changes can strongly affect the ability of multi-
layered feedforward networks to represent and transmit information on multiple timescales. With properties modeled on
those observed at early stages of development, neurons are relatively insensitive to rapid fluctuations and tend to fire
synchronously in response to wave-like events of large amplitude. Following developmental changes in voltage-dependent
conductances, these same neurons become efficient encoders of fast input fluctuations over few layers, but lose the ability
to transmit slower, population-wide input variations across many layers. Depending on the neurons’ intrinsic properties,
noise plays different roles in modulating neuronal input-output curves, which can dramatically impact network
transmission. The developmental change in intrinsic properties supports a transformation of a networks function from the
propagation of network-wide information to one in which computations are scaled to local activity. This work underscores
the significance of simple changes in conductance parameters in governing how neurons represent and propagate
information, and suggests a role for background synaptic noise in switching the mode of information transmission.
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Introduction

Gain scaling refers to the ability of neurons to scale the gain of

their responses when stimulated with currents of different

amplitudes. A common property of neural systems, gain scaling

adjusts the system’s response to the size of the input relative to the

input’s standard deviation [1]. This form of adaptation maximizes

information transmission for different input distributions [1–3].

Though this property is typically observed with respect to the

coding of external stimuli by neural circuits [1,3–7], Mease et al.
[8] have recently shown that single neurons during early

development of mouse cortex automatically adjust the dynamic

range of coding to the scale of input stimuli through a modulation

of the slope of their effective input-output relationship. In contrast

to previous work, perfect gain scaling in the input-output relation

occurs for certain values of ionic conductances and does not

require any explicit adaptive processes that adjust the gain through

spike-driven negative feedback, such as slow sodium inactivation

[4,9,10] and slow afterhyperpolarization (AHP) currents [10,11].

However, these experiments found that gain scaling is not a static

property during development. At birth, or P0 (postnatal day 0),

cortical neurons show limited gain scaling; in contrast, at P8,

neurons showed pronounced gain-scaling abilities [8]. Here, we

examined how the emergence of the gain-scaling property in single

cortical neurons during the first week of development might affect

signal transmission over multiple timescales across the cortical

network.

Along with the emergence of gain scaling during the first week

of neural development, single neurons in the developing cortex

participate in large-scale spontaneously generated activity which

travels across different regions in the form of waves [12–14].

Pacemaker neurons located in the ventrolateral (piriform) cortex

initiate spontaneous waves that continue to propagate dorsally

across the neocortex [13]. Experimentally, much attention has

been focused on synaptic interactions in initiating and propagating
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activity, with a particular emphasis on the role of GABAergic

circuits, which are depolarizing in early development [15,16].

While multiple network properties play an important role in the

generation of spontaneous waves, here we ask how the intrinsic

computational properties of cortical neurons, in particular gain

scaling, can affect the generation and propagation of spontaneous

activity. Changes in intrinsic properties may play a role in wave

propagation during development, and the eventual disappearance

of this activity as sensory circuits become mature.

A simple model for propagating activity, like that observed

during spontaneous waves, is a feedforward network in which

activity is carried from one population, or layer, of neurons to the

next without affecting previous layers [17]. We compare the

behavior of networks composed of conductance-based neurons

with either immature (nongain-scaling) or mature (gain-scaling)

computational properties [8]. These networks exhibit different

information processing properties with respect to both fast and

slow timescales of the input. We determine how rapid input

fluctuations are encoded in the precise spike timing of the output

by the use of linear-nonlinear models [18,19], and use noise-

modulated frequency-current relationships to predict the trans-

mission of slow variations in the input [20,21].

We find that networks built from neuron types with different

gain-scaling ability propagate information in strikingly different

ways. Networks of gain-scaling (GS) neurons convey a large

amount of fast-varying information from neuron to neuron, and

transmit slow-varying information at the population level, but only

across a few layers in the network; over multiple layers the slow-

varying information disappears. In contrast, nongain-scaling

(NGS) neurons are worse at processing fast-varying information

at the single neuron level; however, subsequent network layers

transmit slow-varying signals faithfully, reproducing wave-like

behavior. We qualitatively explain these results in terms of the

differences in the noise-modulated frequency-current curves of the

neuron types through a mean field approach: this approach allows

us to characterize how the mean firing rate of a neuronal

population in a given layer depends on the firing rate of the

neuronal population in the previous layer through the mean

synaptic currents exchanged between the two layers. Our results

suggest that the experimentally observed changes in intrinsic

properties may contribute to the transition from spontaneous wave

propagation in developing cortex to sensitivity to local input

fluctuations in more mature networks, priming cortical networks to

become capable of processing functionally relevant stimuli.

Results

Single cortical neurons acquire the ability to scale the gain of

their responses in the first week of development, as shown in

cortical slice experiments [8]. Here, we described gain scaling by

characterizing a single neuron’s response to white noise using

linear/nonlinear (LN) models (see below). Before becoming

efficient encoders of fast stimulus fluctuations, the neurons

participate in network-wide activity events that propagate along

stereotypical directions, known as spontaneous cortical waves

[13,22]. Although many parameters regulate these waves in the

developing cortex, we sought to understand the effect of gain

scaling in single neurons on the ability of cortical networks to

propagate information about inputs over long timescales, as occur

during waves, and over short timescales, as occur when waves

disappear and single neurons become efficient gain scalers. More

broadly, we use waves in developing cortex as an example of a

broader issue: how do changes in intrinsic properties of

biophysically realistic model neurons affect how a network of

such neurons processes and transmits information?

We have shown that in cortical neurons in brain slices,

developmental increases in the maximal sodium (GNa) to

potassium (GK) conductance ratio can explain the parallel

transition from nongain-scaling to gain scaling behavior [8].

Furthermore, the gain scaling ability can be controlled by

pharmacological manipulation of the maximal GNa to GK ratio

[8]. The gain scaling property can also be captured by changing

this ratio in single conductance-based model neurons [8].

Therefore, we first examined networks consisting of two types of

neurons: where the ratio of GNa to GK was set to either 0.6

(representing immature, nongain-scaling neurons) or 1.5 (repre-

senting mature, gain-scaling neurons).

Two computational regimes at different temporal
resolution

We first characterized neuronal responses of conductance-based

model neurons using methods previously applied to experimentally

recorded neurons driven with white noise. The neuron’s gain
scaling ability is defined by a rescaling of the input/output

function of a linear/nonlinear (LN) model by the stimulus

standard deviation [8]. Using a white noise input current, we

extracted LN models describing the response properties of the two

neuron types to rapid fluctuations, while fixing the mean (DC) of

the input current. The LN model [18,19,23] predicts the

instantaneous time-varying firing rate of a single neuron by first

identifying a relevant feature of the input, and after linearly

filtering the input stimulus with this feature, a nonlinear input-

output curve that relates the magnitude of that feature in the input

(the filtered stimulus) to the probability of firing. We computed the

spike-triggered average (STA) as the relevant feature of the input

[18,24], and then constructed the nonlinear response function as

the probability of firing given the stimulus linearly filtered by the

STA.

Repeating this procedure for noise stimuli with a range of

standard deviations (s) produces a family of curves for both neuron

Author Summary

Differences in ion channel composition endow different
neuronal types with distinct computational properties.
Understanding how these biophysical differences affect
network-level computation is an important frontier. We
focus on a set of biophysical properties, experimentally
observed in developing cortical neurons, that allow these
neurons to efficiently encode their inputs despite time-
varying changes in the statistical context. Large-scale
propagating waves are autonomously generated by the
developing brain even before the onset of sensory
experience. Using multi-layered feedforward networks,
we examine how changes in intrinsic properties can lead
to changes in the network’s ability to represent and
transmit information on multiple timescales. We demon-
strate that measured changes in the computational
properties of immature single neurons enable the prop-
agation of slow-varying wave-like inputs. In contrast,
neurons with more mature properties are more sensitive
to fast fluctuations, which modulate the slow-varying
information. While slow events are transmitted with high
fidelity in initial network layers, noise degrades transmis-
sion in downstream network layers. Our results show how
short-term adaptation and modulation of the neurons’
input-output firing curves by background synaptic noise
determine the ability of neural networks to transmit
information on multiple timescales.

Intrinsic Properties Govern Network Transmission
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types (Figure 1A). While the linear feature is relatively constant as

a function of the magnitude of the rapid fluctuations, s, the

nonlinear input-output curves change, similar to experimental

observations in single neurons in cortical slices [8]. When the input

is normalized by s, the mature neurons have a common input-

output curve with respect to the normalized stimulus (Figure 1B,

red) [8] over a wide range of input DC. In contrast, the input-

output curves of immature neurons have a different slope when

compared in units of the normalized stimulus (Figure 1B, blue).

Gain scaling has previously been shown to support a high rate of

information transmission about stimulus fluctuations in the face of

changing stimulus amplitude [1]. Indeed, these GS neurons have

higher output entropy, and therefore transmit more information,

than NGS neurons (Figure 1E). The output entropy is approxi-

mately constant regardless of s for a range of mean (DC) inputs –

this is a hallmark of their gain-scaling ability. The changing shape

of the input-output curve for the NGS neurons results in an

increasing output entropy as a function of s (Figure 1E). With the

addition of DC, the output entropy of the NGS neurons’ firing

eventually approaches that of the GS neurons; this is accompanied

with a simultaneous decrease in the distance between rest and

threshold membrane potential of the NGS neurons as shown

previously [8]. Thus, GS neurons are better at encoding fast

fluctuations, a property which might enable efficient local

computation independent of the background signal amplitude in

more mature circuits after waves disappear.

The response of a neuron to slow input variations may be

described in terms of its firing rate as a function of the mean input

I through a frequency-current (f –I ) curve. This description

averages over the details of the rapid fluctuations. The shape of

this f –I curve can be modulated by the standard deviation (s) of

the background noise [20,21]. Here, the "background noise’’ is a

rapidly-varying input that is not considered to convey specific

stimulus information but rather, provides a statistical context that

modulates the signaled information assumed to be contained in the

slow-varying mean input. Thus, a neuron’s slow-varying responses

can be characterized in terms of a family of f –I curves

parameterized by s.

Comparing the f –I curves for the two neuron types using the

same conductance-based models reveals substantial differences in

their firing thresholds and also in their modulability by s
(Figure 1C,D). NGS neurons have a relatively high threshold at

low s, and the f –I curves are significantly modulated by the

addition of noise, i.e. with increasing s (Figure 1C). In contrast,

the f –I curves of GS neurons have lower thresholds, and show

minimal modulation with the level of noise (Figure 1D). This

behavior is reflected in the information that each neuron type

transmits about firing rate for a range of s (Figure 1F). This

information quantification determines how well a distribution of

input DC can be distinguished at the level of the neuron’s output

firing rate while averaging out the fast fluctuations. The

information would be low for neurons whose output firing rates

are indistinguishable for a range of DC inputs, and high for

neurons whose output firing rates unambiguously differ for

different DC inputs. The two neuron types convey similar

information for large s where the f –I curves are almost invariant

to noise magnitude. For GS neurons, most information is

conveyed about the input rate at low s where the f –I curve

encodes the largest range of firing rates (0 to 30 Hz). The

information encoded by NGS neurons is non-monotonic: at low s
these neurons transmit less information because of their high

thresholds, compressing the range of inputs being encoded.

Information transmission is maximized at s for which the f –I
curve approaches linearity, simultaneously maximizing the range

of inputs and outputs encoded by the neuron. For both neuron

types, the general trend of decreasing information as s increases is

the result of compressing the range of outputs (10 to 30 Hz).

These two descriptions characterize the different processing

abilities of the two neuron types. GS neurons with their s-

invariant input-output relations of the LN model are better suited

to efficiently encode fast current fluctuations because information

transmission is independent of s. However, NGS neurons with

their s-modulatable f –I curves are better at representing a range

of mean inputs, as illustrated by their ability to preserve the range

of input currents in the range of output firing rates.

The ratio of GNa and GK is sufficient for modulating a
neuron’s intrinsic computation

To characterize the spectrum of intrinsic properties that might

arise as a result of different maximal conductances, GNa and GK,

we determined the f –I curves for a range of maximal

conductances in the conductance-based model neurons (Figure 2).

Mease et al. [8] previously classified neurons as spontaneously

active, excitable or silent, and based on the neurons’ LN models

determined gain-scaling ability as a function of the individual GNa

and GK for excitable neurons. Models with low GNa=GK had

nonlinear input-output relations that did not scale completely with

s, while models with high GNa=GK had almost identical nonlinear

input-output relations for all s [8]. Therefore, gain scaling ability

increased with increasing ratio, independent of each individual

conductance.

We examined the modulability of f –I curves by s in excitable

model neurons while independently varying GNa and GK

(Figure 2). Like gain scaling, the modulability by s also depended

only on the ratio GNa=GK, rather than either conductance alone,

with larger modulability observed for smaller ratios. To further

explore the implications of such modulability by s, we computed

the mutual information that each model neuron transmits about

mean inputs for a range of s (Figure 2). Neurons with GNa=GKw1
behaved like GS neurons in Figure 1F, while neurons with

GNa=GKv1 behaved like NGS neurons.

These results suggest that the ability of single neurons to

represent a distribution of mean input currents by their

distribution of output firing rates can be captured only by

changing the ratio of GNa and GK. Therefore, we focused on

studying two neuron types with GNa=GK in the two extremes of

the conductance range of excitable neurons: GS neurons with

GNa=GK~1:5 and NGS neurons with GNa=GK~0:6.

Population responses of the two neuron types
Upon characterizing single neuron responses of the two neuron

types to fast-varying information via the LN models and to slow-

varying information via the f –I curves, we compared their

population responses to stimuli with fast and slow timescales. A

population of uncoupled neurons of each type was stimulated with

a common slow ramp of input current, and superimposed fast-

varying noise inputs, generated independently for each neuron

(Figure 3A). The population of NGS neurons fired synchronously

with respect to the ramp input and only during the peak of the

ramp (Figure 3B), while the GS neurons were more sensitive to the

background noise and fired asynchronously during the ramp

(Figure 3C) with a firing rate that was continuously modulated by

the ramp input. This suggests that the sensitivity to noise

fluctuations of the GS neurons at the single neuron level allows

them to better encode slower variations in the common signal at

the population level [25–27], in contrast to the NGS population

which only responds to events of large amplitude independent of

the background noise.

Intrinsic Properties Govern Network Transmission
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During cortical development, wave-like activity on longer

timescales occurs in the midst of fast-varying random synaptic

fluctuations [13,14,28,29]. Therefore, we compared the popula-

tion responses of GS and NGS neurons to a slow-varying input

(500 ms correlation time constant) common to all neurons with

fast-varying background noise input (1 ms correlation time

constant) independent for all neurons (Figure 3D). The distinction

between the two neuron types is evident in the mean population

responses (peristimulus time histogram, i.e. PSTH). The NGS

population only captured the stimulus peaks (Figure 3E) while the

GS population faithfully captured the temporal fluctuations of the

common signal, aided by each neuron’s temporal jitter caused by

the independent noise fluctuations (Figure 3F). Although not an

exact model of cortical wave development, this comparison

supports the hypothesis that the intrinsic properties of single

neurons can lead to different information transmission capabilities

of cortical networks at different developmental time points, and

the transition from wave propagation to wave cessation.

Transmission of slow-varying information through the
network

The observed difference between the population responses of

the GS and NGS neurons to the slow-varying stimulus in the

presence of fast background fluctuations (Figure 3D–F) suggested

that the two neuron types differ in their ability to transmit

information at slow timescales. Therefore, we next examined how

the identified single neuron properties affect information trans-

mission across multiple layers in feedforward networks. Networks

consisted of 10 layers of 2000 identical neurons of the two different

types (Figure 4A). The neurons in the first layer receive a common

Figure 1. LN models and f –I curves for gain-scaling (GS) and nongain-scaling (NGS) neurons. A. The nonlinearities in the LN model
framework for a GS (red) (GK~1000 pS/mm2 and GNa~1500 pS/mm2) and a NGS (blue) (GK~1000 pS/mm2 and GNa~600 pS/mm2) neuron simulated
as conductance-based model neurons (Eq. 2). The nonlinearities were computed using Bayes’ rule: T(s)~P(spikeDs)=r~P(sDspike)=P(s), where r is
the neuron’s mean firing rate and s is the linearly filtered stimulus (see also Eq. 7 in Methods). B. The same nonlinearities as A, in stimulus units scaled
by s (magnitude of stimulus fluctuations). The nonlinearities overlap for GS neurons over a wide range of s. C–D. The f –I curves for a NGS (C) and a
GS neuron (D) for different values of s. E. The output entropy as a function of the mean (DC) and s (amplitude of fast fluctuations). F. Information
about the output firing rate of the neurons as a function of s.
doi:10.1371/journal.pcbi.1003962.g001

Intrinsic Properties Govern Network Transmission
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Figure 2. f –I curves and information as a function of individual maximal Na and K conductances. A. The f –I curves for different maximal Na and
K conductances, GNa and GK , in pS/mm2 (compare to Figure 1C,D). B. The information for the different models as a function of s (compare to Figure 1F).
doi:10.1371/journal.pcbi.1003962.g002

Intrinsic Properties Govern Network Transmission
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temporally fluctuating stimulus with a long correlation time

constant (1 s, see Methods); neurons in deeper layers receive

synaptic input from neurons in the previous layer via conductance-

based synapses. Each neuron in the network also receives a rapidly

varying independent noise input (with a correlation time constant

of 1 ms) to simulate fast-varying synaptic fluctuations. The noise

input here is a rapidly-varying input that sets the statistical context

for the slow-varying information; it does not transmit specific

stimulus information itself. The GS and NGS networks have

strikingly different spiking dynamics (Figure 4B). The GS network

responds with higher mean firing rates in each layer, as would be

expected from the f –I curves characterizing intrinsic neuronal

properties (Figure 1C,D). While the GS neurons have a baseline

firing rate even at zero input current, the NGS neurons only fire

for large input currents, with a threshold dependent on the level of

intrinsic noise; thus, the two neuron types have different firing

rates. To evaluate how the networks transmit fluctuations of the

slow-varying common input signal, independent of the overall

firing rates, we evaluated the averaged population (PSTH)

response of each layer, normalized to have a mean equal to 0

and a variance equal to 1 (Figure 4C).

The first few layers of the GS network robustly propagate the

slow-varying signal as a result of the temporally jittered response

produced by the sensitivity to fast fluctuations at the single neuron

level, consistent with the population response in Figure 3F.

However, due to the effects of these same noise fluctuations, this

population response degrades in deeper layers (Figure 4C, left, see

also Figure S1 for GNa=GK~1). In contrast, the NGS network is

insensitive to the fast fluctuations and thresholds the slow-varying

input at the first layer, as in Figure 3E. Despite the presence of

fast-varying background noise, the NGS network robustly

transmits the large peaks of this stimulus to deeper layers without

distortion (Figure 4C, right).

This difference in the transmission of information through the

two network types is captured in the information between the

population response and the slow-varying stimulus in Figure 4D.

The GS network initially carries more information about the slow-

varying stimulus than the NGS network; however, this information

degrades in deeper layers when virtually all the input structure is

lost, and drops below the NGS network beyond layer four

(Figure 4D, bottom). While the information carried by the NGS

network is initially lower than the GS network (due to signal

thresholding), this information is preserved across layers and

eventually exceeds the GS information.

The observed differences in the propagation of slow-varying

inputs between the two network types resemble changes in wave

propagation during development. While spontaneous waves cross

cortex in stereotyped activity events that simultaneously activate

large populations of neurons at birth, these waves disappear after

the first postnatal week [13,16]. We have demonstrated that

immature neurons lacking the gain-scaling ability can indeed

propagate slow-varying wave-like input of large amplitude as

population activity across many layers. As these same neurons

acquire the ability to locally scale the gain of their inputs and

Figure 3. Stimulus encoding varies with the intrinsic properties of neurons. A. Noise fluctuations (black) superimposed on a short ramping
input stimulus (red) with rise time of 50 ms were presented to two separate populations of 100 independent conductance-based model neurons with
different gain-scaling properties. B,C. Voltage responses of (B) 100 NGS (GK~1000 pS/mm2 and GNa~600 pS/mm2) and (C) 100 GS neurons
(GK~1000 pS/mm2 and GNa~1500 pS/mm2) to the ramp input in A. The different colors indicate voltage responses of different neurons. D. Noise
fluctuations with a correlation time constant of 1 ms (black) superimposed on a Gaussian input stimulus low-pass filtered at 500 ms (red) for a
duration of 10 seconds were also presented to the two neuron populations. E,F. Population response (PSTH) of NGS (E) and GS (F) neurons to the
input in D.
doi:10.1371/journal.pcbi.1003962.g003

Intrinsic Properties Govern Network Transmission
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efficiently encode fast fluctuations, they lose the ability to

propagate large amplitude events at the population level,

consistent with the disappearance of waves in the second postnatal

week [13]. While many parameters regulate the propagation of

waves [14,29], our network models demonstrate that varying the

intrinsic properties of single neurons can capture substantial

differences in the ability of networks to propagate slow-varying

information. Thus, changes in single neuron properties can

contribute to both spontaneous wave generation and propagation

early in development and the waves’ disappearance later in

development.

Dynamics of signal propagation
The layer-by-layer propagation of a slow-varying signal through

the population responses of the two networks can be qualitatively

predicted using a mean field approach that bridges descriptions of

single neuron and network properties. Since network dynamics

varies on faster timescales than the correlation timescale of the

slow-varying signal, the propagation of a slow-varying signal can

be studied by considering how a range of mean inputs propagate

through each network. The intrinsic response of the neuron to a

mean (DC) current input is quantified by the f –I curve which

averages over the details of the fast background fluctuations; yet,

the magnitude of background noise, s, can change the shape and

gain of this curve [20,21]. Thus, for a given neuron type, there is a

different f –I curve depending on the level of noise s, Fs

(Figure 1C,D). One can approximate the mean current input to a

neuron in a given layer Lw1, SIL(t)T, from the firing rate in the

previous layer RL{1 through a linear input-output relationship,

with a slope a dependent on network properties (connection

probability and synaptic strength, see Eq. 15). Given the estimated

mean input current for a given neuron in layer L, SIL(t)T, the

resulting firing rate of layer L, RL, can then be computed by

evaluating the appropriate f –I curve, Fs, which characterizes the

neuron’s intrinsic computation

RL~Fs(SIL(t)T)~Fs(aRL{1): ð1Þ

Thus, these two curves serve as an iterated map whereby an

estimate of the firing rate in the Lth layer, RL, is converted into a

mean input current to the next layer, SILz1(t)T, which can be

further converted into RLz1, propagating mean activity across

multiple layers in the network (Figures 5, 6). While for neurons in

the first layer, the selected f –I curve is the one corresponding to

Figure 4. Information transmission through GS and NGS networks. A. Feedforward network with a slowly modulated time-varying input
(magenta) presented to all neurons in the first layer, each neuron receiving in addition an independent noisy signal (black). B. Spike rasters for GS
neurons (GK~1000 pS/mm2 and GNa~1500 pS/mm2) show the rapid signal degradation in deeper layers, while NGS neurons (GK~1000 pS/mm2 and
GNa~600 pS/mm2) exhibit reliable signal transmission of large-amplitude events. The spiking responses synchronize in deeper layers. C. PSTHs from
each layer in the two networks showing the propagation of a slow-varying input in the presence of background fast fluctuations. PSTHs were
normalized to mean 0 and variance 1 to illustrate fluctuations (in spite of different firing rates) so that the dashed lines next to each PSTH denote 0
and the scalebar 2 normalized units. D. Information about the slow stimulus fluctuations conveyed by the population mean responses shown in C.
doi:10.1371/journal.pcbi.1003962.g004
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the level of intrinsic noise injected into the first layer, s, for

neurons in deeper layers, the choice of f –I curve depends not only

on the magnitude of the independent noise fluctuations injected

into each neuron, but also on the fluctuations arising from the

input from the previous layer (see Eq. 16 in Methods). The

behavior of this iterated map is shaped by its fixed points, the

points of intersection of the f –I curve Fs with the input-output

line SI(t)T~aR, which organize the way in which signals are

propagated from layer to layer. The number, location and stability

of these fixed points depend on the curvature of Fs and on a
(Figure 5). When the slope of Fs at the fixed point is less than 1=a,

the fixed point is stable. This implies that the entire range of initial

DC inputs (into layer 1) will tend to iterate toward the value at the

fixed point as the mean current is propagated through down-

stream layers in the network (Figure 5, left). Therefore, all

downstream layers will converge to the same population firing

rate that corresponds to the fixed point. In the interesting case that

Fs becomes tangent to the linear input-output relation, i.e. the f –I
curve has a slope equal to 1=a, the map exhibits a line attractor:

there appears an entire line of stable fixed points (Figure 5,

middle). This ensures the robust propagation of many input

currents and population rates across the network. Interestingly, the

f –I curves of the GS and NGS neurons for different values of s
fall into one of the regimes illustrated in Figure 5: GS neurons with

their s-invariant f –I curves have a single stable fixed point

(Figure 5, left), while the NGS neurons have line attractors with

exact details depending on s (Figure 5, middle and right). The

mechanics of generating a line attractor have been most

extensively explored in the context of oculomotor control (where

persistent activity has been interpreted as a short-term memory of

eye position that keeps the eyes still between saccades) and decision

making in primates (where persistent neural activity has been

interpreted as the basis of working memory) [30].

Indeed, Figure 6A,B shows that the f –I curves for GS neurons

at two values of s, one low and one high, are very similar. The

mean field analysis predicts that all initial DC inputs applied to

layer 1 will converge to the same stable fixed point during

propagation to downstream layers. Numerical simulations corrob-

orate these predictions (Figure 6A,B, bottom). A combination of

single neuron and network properties determine the steady state

firing rate through a (Eq. 15). Activity in the GS networks can

propagate from one layer onto the next with relatively weak

synaptic strength even when the networks are sparsely connected

(5% connection probability), as a result of the low thresholds of

these neurons (Figure 1D). The specific synaptic strength in

Figure 6A,B was chosen arbitrarily so that the f –I curve intersects

the input-output line with slope a, but choosing different synaptic

strength produces qualitatively similar network behavior (Figure

S2). The parameter a can be modulated by changing either the

connectivity probability or the synaptic strength in the network; as

long as their product is preserved, a remains constant and the

resulting network dynamics does not change (Figure S2).

Furthermore, as a result of the lack of modulability of GS f –I
curves by s (Figure 1D), the network dynamics remains largely

invariant to the amplitude of background noise.

In contrast, the amplitude of background noise fluctuations, s,

has a much larger impact on the shape of NGS f –I curves

(Figure 1C) and on the resulting network dynamics (Figure 5).

When the combination of sparse connection probability and weak

synaptic strength leads to the slope 1=a being too steep (weak

connectivity in GS networks, Figure 6A,B), there may be no

point of intersection with the NGS f –I curves: all DC inputs

are mapped below threshold and activity does not propagate

to downstream layers. Keeping the same sparse connection

probability of 5% and increasing synaptic strength enables the

propagation of neuronal activity initiated in the first layer to

subsequent layers in NGS networks. For a particular value of s,

there is an entire line of stable fixed points in the network

dynamics (Figure 5, middle), so that a large range of input currents

are robustly transmitted through the network. More commonly,

however, the map has three fixed points: stable fixed points at a

high value and at zero, and an intermediate unstable fixed point

(Figure 6C,D). In this case, mean field theory predicts that DC

inputs above the unstable fixed point should flow toward the high

value, while inputs below it should iterate toward zero, causing the

network to stop firing. However, the map still behaves as though

the f –I curve and the input-output transformation are effectively

tangent to one another over a wide range of input rates (green box

in Figure 6C,D), creating an effective line of fixed points for which

a large range of DC inputs is stably propagated through the

network; this is generically true for a wide range of noise values,

although the exact region of stable propagation depends on the

value of s (Figure 5, middle and right, Figure S3). The best input

signal transmission is observed when the network noise selects the

most linear f –I curve that simultaneously maximizes the range of

DC inputs and population firing rates of the neurons (Figure 5,

middle). This is approximately the noise value selected in

Figure 6C,D. We call this a stable region of propagation for the

network since a large range of mean DC inputs can be propagated

across the network layers so that the population firing rates at each

layer remain distinct. Our results resemble those of van Rossum

et al. [31] where regimes of stable signal propagation were

observed in networks of integrate-and-fire neurons by varying the

DC input and an additional background noise. The best regime

for stable signal propagation occurred for additive noise that was

large enough to ensure that the population of neurons indepen-

dently estimated the stimulus, as in our NGS networks (Figure 5,

middle and right, Figure S3).

Figure 5. Fixed points of the iterated map dynamics. Top: An
illustration of three f –I curves (colors) and the corresponding linear
input-output relation (black dashed) with slope 1=a derived from the
mean field. Bottom left: The dynamics has a single stable fixed point
and all input currents are attracted to it (indicated by small arrows
converging to the fixed point). This corresponds to f –I curves of GS
neurons at all values of s. Middle: The dynamics has a line of stable
fixed points that allow robust transmission of a large range of input
currents in the network. NGS neurons with high values of s have such
dynamics. Right: The stable line of fixed points is smaller for f –I curves
that are more "thresholding,’’ corresponding to NGS neurons with low
s.
doi:10.1371/journal.pcbi.1003962.g005
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Figure 6. Firing rate propagation through networks of gain-scaling and nongain-scaling neurons. A,B. Top: The f –I curves (green) for
GS neurons (GK~1000 pS/mm2 and GNa~1500 pS/mm2) at two levels of noise, s~25 pA (low noise) and s~50 pA (high noise). The linear input-
output relationships from the mean field (black) predict how the mean output firing rate of a given network layer can be derived from the mean
input current into the first layer with the standard deviation of the prediction shown in gray. Dashed arrows show the iterated map dynamics
transforming different mean input currents into a single output firing rate determined by the stable fixed point (green star). Bottom: The network
mean firing rates for a range of mean input currents (to layer 1) as a function of layer number, with a clear convergence to the fixed point by layer 5.
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The emergence of extended regions of stable rate propagation

implies that the NGS mean field predictions (Figure 6C,D,

bottom) are less accurate than for the GS networks where the

convergence to the stable fixed points is exact (Figure 6A,B).

However, the NGS mean field predictions show qualitative

agreement with the simulation results, in particular in the initial

network layers where the approach to the nonzero stable fixed

point is much slower than in the GS networks, i.e. occurs over a

larger number of layers. Along with the slow convergence of firing

rates toward a single population firing rate, the ability of network

noise to modulate the NGS f –I curves suggests that multiple f –I
curves can be used to predict network dynamics by combining

added and intrinsically generated noise (see Eq. 16). As a result, for

some input currents (e.g. arrow in Figure 6C) the firing rate goes

down in the first three layers where network dynamics predicts

convergence to the zero stable fixed point. The initial decrease of

firing rate is due to the disappearance of weak synaptic inputs that

cannot trigger the cells to spike. Network noise then selects a

different f –I curve that shifts the dynamics into the rate

stabilization region (Figure 6C, green box) where firing rates are

stably propagated. The onset of synchronous firing of the neuronal

population in each layer also contributes to rate stabilization.

Population firing rates in deeper layers increase to a saturating

value lower than the mean field predicted value. Similar results

have been observed experimentally [32] and in networks of

Hodgkin-Huxley neurons [33]. We find similar network dynamics

for a more weakly connected NGS network using the smallest

possible synaptic strength that allows activity to propagate through

the network (Figure S2). As for the GS networks, as long as the

product of connection probability and synaptic strength is

constant, the slope of the input-output linear relationship 1=a,

and the network dynamics remain unchanged, even if these

network parameters change individually (Figure S2).

An exception to this result is observed at very sparse

connectivity (v2%), where network behavior is more similar to

the GS networks (Figure S2, bottom right). At this sparse

connectivity, independent noise reduces the common input across

different neurons and synchrony is less pronounced. This argues

that the emergence of synchrony plays a fundamental role in

achieving reliable propagation of a range of DC inputs (and

correspondingly population firing rates) in the NGS networks.

Although experimental measurements of the connectivity proba-

bility in developing cortical networks are lacking, calcium imaging

of single neurons demonstrates that activity across many neurons

during wave propagation is synchronous [34]. Intracellular

recordings of adult cultured cortical networks also demonstrate

that synchronous neuronal firing activity is transmitted in multiple

layers [32].

To examine network behavior for comparable connectivity

strength, we repeated the network simulations and mean field

predictions of mean DC input propagation in GS networks with

the same increased synaptic strength needed for propagation of

activity in the NGS networks. We found that the behavior was

similar to the weakly connected GS network: Regardless of the

initial input current, the network output converged to a single

output firing rate by layer 5 (Figure 6E,F), making these networks

incapable of robustly propagating slow-varying signals without

distortion. As for the strongly connected NGS networks, neurons

across the different layers in these strongly connected GS networks

developed synchronous firing. This synchrony led to a small

difference (several Hz) between the final firing rate approached by

each network compared with the firing rate predicted from the

mean field analysis. Although both the strongly connected GS and

NGS networks developed synchronous firing, the behavior of the

two types of networks remained different (Figure 6).

The results in this section indicate that firing rate transmission

depends on the details of single neuron properties, including their

sensitivity to fast fluctuations as characterized by the LN models

(Figure 1A,B). Firing rate transmission also depends on the

modulability of the f –I curves by the noise amplitude s
(Figure 1C,D). Because of these differences in intrinsic computa-

tion, the GS and NGS networks show distinct patterns of

information transmission (Figure 5): firing rate convergence to a

unique fixed point, or a line of fixed points ensuring stable

propagation of firing rates which can be reliably distinguished at

the output, respectively. In the latter case, even when a line of

fixed point is not precisely realized as in Figure 5 (middle),

competition between the slow convergence of firing rates to the

mean field fixed point and the emergence of synchrony enable the

propagation of firing rates through the different network layers,

aided by the range of f –I curves sampled by network noise with

amplitude s.

Implications of single unit computational properties for
information transmission

Given the predicted signal propagation dynamics, we now

directly compute the mutual information between the mean DC

input injected into layer 1 and the population firing rates at a given

layer for each magnitude of the independent noise s (Figure 7).

This measures how distinguishable network firing rate outputs at

each layer are for different initial mean inputs. The convergence of

population firing rates across layers to a single value in the GS

networks leads to a drop in information towards zero for both the

weakly (Figure 6A,B) and strongly connected GS networks

(Figure 6E,F) as a function of layer number and for a wide range

of network noise s (Figure 7A,C). NGS networks can transmit a

range of mean DC inputs without distortion (Figure 6C,D); thus,

the information between input DC and population firing rate

remains relatively constant in subsequent layers (Figure 7B). The

information slightly increases in deeper layers due to the

emergence of synchronization, which locks the network output

into a specific distribution of population firing rates. As noise

amplitude increases, the selected f –I curve becomes tangent to the

linear input-output relationship over a larger range of input firing

rates (Figure 6C,D); hence, a larger range of inputs is stably

The results from numerical simulations over 10 second-long trials are shown as full lines (mean +s from 2000 neurons in each layer) and mean field
predictions are shown in dashed lines with a shaded background in the same color (for each different input) illustrating the standard deviation of the
prediction. Other network parameters: connection probability E~5%, synaptic strength gsyn~0:016 and range of mean input currents 0–22 pA. C,D.

Same as A,B but for NGS neurons (GK~1000 pS/mm2 and GNa~600 pS/mm2) with stronger synaptic strength gsyn~0:1 and range of mean input

currents 0–70 pA. The network dynamics show a region of stable firing rate propagation (green box) where the f –I curve behaves like it is tangent to
the input-output line for a large range of mean input currents (to layer 1). The size of the region increases with noise (until s~50 pA). Bottom panels
show the transmission of a range of input firing rates across different layers in the network. The arrow denotes a case where the firing rate first
decreases towards 0 and then stabilizes. E,F. Same synaptic strength as C,D but for GS neurons (GK~1000 pS/mm2 and GNa~1500 pS/mm2). Bottom
panels show the convergence of firing rates to a single fixed point similar to the weakly connected GS network in A,B. As for the NGS networks in C,D,
the mean field analysis predicts convergence to a slightly higher firing rate than the numerical simulations.
doi:10.1371/journal.pcbi.1003962.g006
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transmitted across network layers. Counterintuitively, this suggests

that increasing noise in the NGS networks can serve to increase

the information such networks carry about a distribution of mean

inputs.

Origins of firing rate modulability by noise magnitude
The differential ability of GS and NGS networks to reliably

propagate mean input signals is predicted by the modulability of

the f –I curves by the network noise s. To understand the

dynamical origins of this difference, we analytically reduced the

neuron model (Eq. 2) to a system of two first order differential

equations describing the dynamics of the membrane potential V
and an auxiliary slower-varying potential variable U (Methods)

[35]. We analyzed the dynamics in the phase plane by plotting U
vs. V . The nullclines, curves along which the change in either U
or V is 0, organize the flows of U and V (Figure 8); these lines

intersect at the fixed points of the neuron’s dynamics. We studied

the fixed points at different ratios of GNa and GK, with a particular

focus on the values discussed above (GNa=GK~1:5 and

GNa=GK~0:6). These exhibit substantial differences in the type

and stability of the fixed points, as well as the emergent

bifurcations where the fixed points change stability as one varies

the mean DC input current into the neuron (Figure 8).

For a large range of DC inputs, the NGS neuron

(GNa=GK~0:6) has a single stable fixed point (either a node or

a focus) (Figure 8A). In this case, the only perturbation that can

trigger the system to fire an action potential is a large-amplitude

noise current fluctuation. The s of the current then determines the

number of action potentials that will be fired in a given trial and

strongly modulates the firing rate of the neuron. We show two

trajectories at s~25 pA and 50 pA and at two different DC values

of 0 and 30 pA (Figure 8A), at which the f –I curves are strongly

noise-modulated (Figure 1C). As the DC increases beyond 62 pA,

the fixed point becomes unstable and a stable limit cycle emerges

(not shown). In this case, any s will move the trajectories into the

stable limit cycle and the neuron will continuously generate action

potentials, with a firing rate independent of s. Indeed, Figure 1C

shows that the f –I curves become less effectively modulated by s
for DC values greater than 62 pA.

As the conductance ratio GNa=GK increases, the range of DC

values for which the system has a single fixed point decreases

(Figure 8B). Indeed, the GS neuron (GNa=GK~1:5) has a stable

limit cycle for the majority of DC values (Figure 8C). This implies

that GS neurons are reliably driven to fire action potentials for any

s and their firing rate is not very sensitive to s. For low DC values,

the stable limit cycle coexists with a stable fixed point, so in this

case s of the noise can modulate the firing rate more effectively, as

is seen in Figure 1D.

This analysis highlights the origins for the differential modula-

bility of firing rate in NGS and GS neurons. Although the model

reduction sacrifices some of the accuracy of the original model, it

retains the essential features of action potential generation: the

sudden rise of the action potential which turns on a positive inward

sodium current, and its termination by a slower decrease in

membrane potential which shuts off the sodium current and

initiates a positive outward potassium current hyperpolarizing the

cell. Although simpler neuron models (e.g. binary and integrate-

and-fire [36–38]) allow simple changes in firing thresholds, the

dynamical features inherent in the conductance-based neurons

studied here are needed to capture noise-dependent modulation.

Discussion

The adult brain exhibits a diversity of cell types with a range of

biophysical properties. Organized into intricate circuits, these cell

types contribute to network computation, but the role of intrinsic

properties is unclear. Recently, we have shown that during early

development, single cortical neurons acquire the ability to

represent fast-fluctuating inputs despite variability in input

amplitudes by scaling the gain of their responses relative to the

scale of the inputs they encounter [8]. Before these intrinsic

properties shift, the developing cortex generates and propagates

spontaneous waves of large-scale activity [13,22,39,40], which

regulate developmental changes in ion channel expression,

synaptic growth and synaptic refinement processes [29,41,42].

How do experimentally observed biophysical properties affect

ongoing network dynamics at this time? Using model neurons with

conductance properties chosen to reproduce this developmental

change in gain scaling, we investigated the implications of this

change on the ability of feedforward networks to robustly transmit

slow-varying wave-like signals. The conductance-based models

that we considered are not intended as an exact biophysical model

for developing cortical neurons; rather they allow us to study the

more fundamental question of the role of single neuron

Figure 7. Mutual information about the mean stimulus transmitted by GS and NGS networks. The mutual information as function of
layer number for A. weakly connected GS (GK~1000 pS/mm2 and GNa~1500 pS/mm2), B. strongly connected NGS (GK~1000 pS/mm2 and GNa~600
pS/mm2) and C. strongly connected GS networks (GK~1000 pS/mm2 and GNa~1500 pS/mm2) as shown in Figure 6 for different noise levels indicated
by the shade of gray.
doi:10.1371/journal.pcbi.1003962.g007
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computation on network behavior in a case with a well-defined

and physiologically relevant network level property.

We add to previous studies by considering first, the fidelity of

propagation of temporally varying patterns by biophysically

realistic neurons, basing our work in a biological context where

the brain naturally enters a state of wave propagation. Second, our

work highlights a role of cellular processes in large-scale network

behavior that has rarely been studied. Our results implicate

intrinsic conductance change as a way to switch between global

synchronization and local responsiveness, rather than synaptic

plasticity, which is typically used to evoke such a global network

change [17]. Related changes in excitability that accompany the

cessation of spontaneous activity have been observed in the mouse

embryonic hindbrain, where they have been ascribed to

Figure 8. Analysis of the reduced Mainen model. A. Top: Fixed points and their stability for the dynamics of a NGS neuron with GK~1000 pS/
mm2 and GNa~600 pS/mm2 (GNa=GK~0:6) as a function of the input current DC. Bottom: The phase planes showing the nullclines (black) and their
intersection points (fixed points) together with the flow lines indicated by the arrows. A single trajectory is shown in red. The inset shows a zoomed
portion of the phase plane near the fixed point. Below we show trajectories for two values of s and two DC values. B. The fixed points for different
ratios GNa=GK , while keeping GK~1000 pS/mm2 and varying GNa , as a function of the DC. C. Same as A but for a GS neuron with GK~1000 pS/mm2

and GNa~1500 pS/mm2 (GNa=GK~1:5). Note that the abscissa has been scaled from A and B.
doi:10.1371/journal.pcbi.1003962.g008
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hyperpolarization of resting membrane potential and increased

resting conductance of Kz channels [43]. Finally, we analyze

network information transmission on two different timescales (local

fluctuations and network-wide wave-like events) and thereby

generalize previous classification of feedforward network propa-

gation into either synchrony-based coding [32,44], and rate-based
coding [31,45].

We use two different descriptions of neuronal properties to

characterize the neuron’s ability to propagate information at these

different time- and lengthscales. The processing of fast input

fluctuations can be characterized using LN models [8,46–48].

While single neuron properties affect the linear feature [46,48,49],

here we focus on the scaling of the nonlinearity in the LN model to

stimuli of different amplitudes. Information about slowly modu-

lated input is described using noise-modulated f –I curves

[20,21,50]. This ability of developing neurons to transmit distinct

information at two different timescales is an example of a

temporally multiplexed code [3,51–53]. Here, GS neurons perform

temporal multiplexing as they simultaneously convey distinct

information about fast and slow fluctuations, reliably encoding

slowly varying stimuli, albeit only for a few network layers. The

NGS neurons also implement a multiplexed code because of their

dual role to transmit firing rates while maintaining synchrony.

The above characterizations predict the success of global

information propagation across multiple network layers [49,50].

In integrate-and-fire network models with a fixed f –I curve,

different network dynamics has been achieved by varying

connectivity probability and synaptic strength [31,45,54,55]. Here,

in addition we considered the modulation of the f –I curves by the

combined effects of injected independent noise and measured

correlated noise from network interactions, permitting a descrip-

tion of network responses dependent on the input statistics,

intrinsic single neuron properties and network connectivity

(Figure 6). The role of s-modulated f –I curves has also been

fundamental in understanding how intrinsic neuron properties

affect correlation transfer and encoding of rate- and synchrony-

based signals in reduced networks of two neurons stimulated with

a common input signal and independent noise [48,49,52,53,56].

We expect that generalizations of these methods will enable

improved theoretical predictions for firing rate and correlation

transfer beyond mean field, by computing the effects of temporal

correlations such as we observe.

Firing rate transmission in our NGS networks co-occurs with

the development of precise spike-time synchronization over a wide

range of stimulus statistics and network connectivity (Figure 6).

This synchronization might be a feature of biologically inspired

networks because similar patterns were reported in experimentally

simulated feedforward networks in vitro [32] and Hodgkin-

Huxley-based simulations [33], but not in networks of threshold

binary neurons [36,57], nor integrate-and-fire neurons [55].

Several manipulations to single neuron or network properties

might reduce this synchrony. These include: introducing sparse

connectivity with strong synapses [17,37], increasing independent

noise input [31,36], or embedding the feedforward into recurrent

networks with inhibition to generate asynchronous background

activity [37,38,55,58]; but these typically result in signal degrada-

tion or implausible assumptions in our models. We did not find a

regime supporting reliable asynchronous rate propagation, con-

sistent with other studies [32,33,36,44].

We identified the biophysical basis of the single-unit properties

that underlies our results. The change in gain scaling is

accompanied by a difference in the distance from rest to threshold

membrane potential [8]: GS neurons have a smaller distance to

threshold and are more likely to fire driven by noise fluctuations,

while NGS neurons have a larger distance to threshold and must

integrate many coincident inputs to fire. Indeed, a change in

spiking threshold in simpler model neurons has been shown to

modulate the mode of signal transmission in a feedforward

network [36,59,60]. However, our mean-field and phase-plane

dynamical analyses together show that threshold is not the only

factor at work: the nature of rate propagation is intimately

connected with the bifurcation properties of the neuron model.

While we focused on two representative contrasting cases, these

properties vary systematically with the conductance ratio of the

neuron and we have mapped out the spectrum of possible

behaviors of this model.

The robustness of information propagation across network

layers is likely to have important implications for how develop-

mental information contained in wave propagation patterns is

transmitted across the cortex. We have previously shown that

cortical waves are initiated in a pacemaker circuit contained within

the piriform cortex [12–14], which is likely to provide the strong

input necessary to drive NGS neurons. The waves propagate

dorsally across the neocortex so that throughout the developmen-

tal period of wave generation, the neocortex acts as a follower

region in the sequence of wave propagation. The reliability with

which firing patterns of piriform neurons are retained as waves

propagate into the neocortex will determine the nature of

developmental information that the neocortex receives from those

waves during its development. As gain scaling develops, more

mature neurons can support efficient coding of local fluctuations

and discard information about network-wide events. Therefore,

the alteration of a single developmentally regulated conductance

parameter can shift cortical neurons from synchrony-based

encoders of slow inputs to noise-sensitive units that respond with

high fidelity to local fluctuations independent of the overall scale.

The growing sensitivity to noise of cortical neurons in the first

postnatal week might help to prevent large-scale wave activity

from dominating adult neural circuits, thus discouraging epilep-

tiform patterns of network activity. At the same time, the

emergence of gain scaling supports a transition to a state in which

cortical circuits, rather than participating in network-wide events,

can respond optimally to appropriately scaled local information,

breaking up the cortical sheet into smaller information-processing

units.

The mature cortex is also capable of generating spontaneous

activity that propagates over large distances in the absence of

sensory stimulation [61–63]. Such wave activity is postulated to be

involved in short-term memory and the consolidation of recent

transient sensory experience into long-lasting cortical modifica-

tions. For example, recent in vivo experiments proposed that

synaptic plasticity is enforced by slow waves that occur during

sleep [64, 65]. Spontaneous propagation activity patterns emerge

from the interplay of intrinsic cellular conductances and local

circuit properties [63]; our results raise the possibility that

modulation of intrinsic properties through slow Na+ inactivation

or neuromodulation could have multiple short-term effects on

cortical information processing.

While we have examined the effect of gain scaling as a specific

form of adaptation emerging during development, other adapta-

tion mechanisms also likely play an important role in information

transmission in feedforward networks. For instance, spike

frequency adaptation has been shown to have effects that

accumulate across multiple layers of feed-forward networks [31].

This widely observed form of adaptation can arise from calcium-

dependent potassium conductances which generate AHPs

[21,66,67]. Indeed, we and others have found that AHP-

generating conductances can also support gain scaling behavior
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by single neurons [9,68]. Independent of AHP conductances, slow

sodium channel inactivation can also contribute to spike frequency

adaptation [69,70]. Incorporating such slow-timescale channel

dynamics will require taking into account temporal aspects of the

coding of mean (or variance) [71] that are presently ignored in our

mean-field analysis based on modulated f –I curves. These slow

dynamics may contribute to successive layers of filtering that affect

information transmission [10]. An analytical characterization of

the impact of slow neuronal dynamics on networks is likely to

require novel theoretical approaches beyond those used here.

Similarly, other factors beyond the specific changing intrinsic

neuronal properties addressed here contribute to the generation of

spontaneous cortical waves with complex spatio-temporal proper-

ties. During the same developmental time period, the cortex

undergoes substantial changes in information processing capacity

that are beyond the scope of the present study [72–74]. Activity-

dependent modification of synaptic connections driven by

developmental cues contained in spontaneous wave patterns are

likely to refine cortical networks into their mature state

[14,16,39,42,73]. Furthermore, the emergence of synaptic inhibi-

tion as GABA becomes more hyperpolarizing contributes to

diminishing the wave-like activity generated by the immature

excitatory network [14,73]. Thus, synaptic plasticity and intrinsic

neuronal properties interact to modulate the emergence, propa-

gation and the eventual disappearance of spontaneous waves in

the developing cortex, and also to endow spatially-distinct regions

at different time points with different information processing

capabilities.

Materials and Methods

Single neuronal models
We studied a modified version of a Hodgkin-Huxley style model

adapted by Mainen et al. [75] for spike initiation in neocortical

pyramidal neurons. The model consists of a leak current,

mammalian voltage-gated transient sodium and delayed-rectified

potassium currents with maximal conductances GL, GNa and GK,

and reversal potentials EL~{70 mV, ENa~50 mV and

EK~{77 mV:

C
dV

dt
~

I(t)=A{GL(V{EL){gNam3h(V{ENa){gKn(V{EK)

ð2Þ

where C~1 mF/cm2 is the specific membrane capacitance and

I(t) is the input current with A denoting the area of the membrane

patch with radius of 30 mm. The leak conductance was set to

GL~0:25 pS/mm2 such that the membrane time constant at the

resting potential was 40 ms (any values between 25 and 50 ms

were consistent with experimental data) [8]. The active conduc-

tances can be expressed via the gating variables m, h and n such

that gNa(t)~GNam3(t)h(t) and gK(t)~GKn(t). We used

GK~1000 pS/mm2 and GNa~1500 pS/mm2 for the maximal

conductances of the GS neurons, so that their ratio was

GNa=GK~1:5; and GK~1000 pS/mm2 and GNa~600 pS/mm2

for the maximal conductances of the NGS neurons, so that their

ratio was GNa=GK~0:6. We also studied a larger range of

these maximal conductances in Figure 2. The gating variables

have the following kinetics: tz(V )dz=dt~z?{z with tz(V )~
1= az(V )zbz(V )ð Þ where z can be m, n or h, and:

m?(V )~
am(V )

am(V )zbm(V )
ð3Þ

h?(V )~
1

1z exp
V{Vh

Kh

� � ð4Þ

n?(V )~
an(V )

an(V )zbn(V )
: ð5Þ

The rate coefficients, az(V ) and bz(V ) are of the form

az(V )~
Aaz

V{Vaz
ð Þ

1{ exp {
V{Vaz

Kz

� � and bz(V )~
{Abz

V{Vbz

� �
1{ exp {

V{Vbz

KZ

� �
and the kinematic parameters are provided in Table 1.

The equations were numerically solved using a first-order Euler

method with an integration time step of dt~0:01 ms. We used a

threshold of 220 mV to detect spikes, although our results did not

depend on the exact value of this parameter.

Fitting linear-nonlinear models
For spike-triggered characterization we injected Gaussian noise

current, I(t), with mean, m~0, and standard deviation, s, to elicit

spike trains in ten 1000-second long trials. All input current traces

were realizations of the Ornstein-Uhlenbeck process [76]

expressed as:

I(t)~mzsj(t), ð6Þ

where j(t) has unit variance and correlation time of 1 ms to match

experimental conditions [8].

Intrinsic computation in these neuron types was previously

characterized in experiments and model neurons [8] using a one-

dimensional Linear-Nonlinear (LN) cascade model of output spike

times to the input Gaussian current stimulus with standard

deviation s [23]. The first component of the LN model is a feature

which linearly filters the stimulus producing the amplitude of the

feature present in the input; the second component is a nonlinear

function which gives the instantaneous firing rate for each value of

the filtered stimulus. We take the feature to be the spike-triggered

average (STA) [18,24], and obtain the expression for the nonlinear

response function from Bayes’ law:

T(s)~P(spikeDs)=r~P(sDspike)=P(s) ð7Þ

where r is the mean firing rates for fixed input mean and standard

deviation s, P(s) is the prior distribution which is a Gaussian with

mean zero and variance s2, P(sDspike) is the spike-triggered

stimulus distribution obtained from the histogram of filtered

stimulus values when the spikes occur.

We refer to the neurons with GNa=GK~1:5 ratio equal to 1.5 as

gain-scaling, because scaling the stimulus by s produces a

nonlinearity in the LN model that is independent of s, i.e.
T(s=s1)~T(s=s2) for inputs with two different standard devia-

tions s1 and s2 (mean fixed to zero in Figure 1A,B, red) [8]. The

neurons with GNa=GK ratio equal to 0.6 are termed nongain-
scaling, because nonlinearities in the LN model vary with different
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values of the standard deviation when the stimulus is scaled by s
(Figure 1A,B, blue). The gain-scaling properties of single neurons

hold for all GNa=GK§1 [8].

Network dynamics
We considered a feedforward network architecture with L

layers, each layer consisting of N neurons (Figure 4A). We

considered networks of N~2000 neurons (the results remain the

same as long as N§1000). A common temporally fluctuating

input current was injected to all neurons in the first layer. The

common input was generated using

I0(t)~
X1Hz

v~1=2T

cos (2pvtzwv) ð8Þ

where wv is a random phase in ½0,2p�, and T is the total length of

the stimulus. The exact properties of this stimulus (size of the

window T , the cutoff frequency of 1 Hz) were not important, as

long as the correlation timescale of this stimulus was much longer

than the correlation timescale of the fast fluctuations (1 ms)

independently injected into each neuron.

Instead of I0(t), neurons in deeper layers (beyond the first)

received synaptic input from neurons in the previous layer via

conductance-based synapses. In contrast to current-based synap-

ses, conductance-based synapses have been shown to support the

stable propagation of synfire chains [38] and a larger range of

firing rates [37]. The synaptic input current into a neuron in layer

j in the network (which receives inputs from a subset of neurons in

the previous layers) is given by

Isyn(t)~u(t)(Eex{V (t)) ð9Þ

where Eex~0 mV is the excitatory reversal potential and V (t) is

the membrane potential of the neuron. The synaptic conductance

u(t) is a continuous variable which increases with the spike times of

each input tk by the excitatory postsynaptic potential (EPSP)

scaled by the corresponding synaptic strength g(k)
syn. We used

exponentially decaying EPSPs with a time constant tsyn~5 ms.

Then we can write the synaptic conductance as

u(t)~
X
k[J

g(k)
syn

ð?
0

a(r)xk(t{r)dr ð10Þ

where xk(t)~
P

tk
d(t{tk) is the delta spike train of the k-th

neuron in the previous layer with spikes at times tk and

a(r)~1=tsyne{r=tsyn when rw0 is the EPSP. J denotes a random

subset of the 2000 neurons in the previous layer providing synaptic

input into the given neuron.

There were no recurrent connections among the neurons. Each

neuron in the network also received an independent noise input

with mean 0 and standard deviation s that fluctuates on a

timescale significantly shorter than the timescale of the common

input to represent random synaptic input that cortical networks

experience during early development [28]. In all models, the noise

stimulus added to each neuron was independent from the mean

stimulus and correlated with a correlation time of 1 ms. Note that

for the mean field analysis (see below), simulations were performed

with a constant mean m (Figure 6), rather than the time-dependent

I0(t) (Equation 8). The range of stimulus standard deviations s was

chosen to produce firing rates larger than 3 Hz and such that

voltages were not hyperpolarized below {120 mV to match the

corresponding experiments [8].

Mean field analysis
Given an input current I(t), the output firing rate can be

expressed by the s-dependent f –I curve: Rout~Fs(I(t)). We

computed the f –I curves for the GS and NGS neurons for a range

of mean inputs m and fluctuation amplitudes s (Figure 1C,D) from

100 second long simulations. The mean current ranged from 0 to

120 pA in steps of 2.5 pA and the standard deviation from 5 to 150

pA in steps of 2.5 pA.

The mean field analysis was used to predict firing rate

transmission across the network (Figure 6). Given the synaptic

current into a neuron in layer j in the network (which receives

inputs from a subset of neurons in the previous layers connected

with weights of strengths g(k)
syn), the average synaptic current

received by a neuron in one layer from a subset (or all) of neurons

in the previous layer can be written as:

SIsyn(t)T~Su(t)(Eex{V (t))T ð11Þ

where the angle brackets denote average over time. In the limit

that u(t) and V (t) are uncorrelated, then

SIsyn(t)T~Su(t)T Eex{SV (t)Tð Þ: ð12Þ

Table 1. Kinetic parameters of the biophysical model.

variable equation Az [10{3] Vz [mV] Kz [mV]

m am 182 235 9

bm 124 235 9

h ah 24 250 5

bh 9.1 275 5

h? – 265 6.2

n an 20 20 9

bn 2 20 9

doi:10.1371/journal.pcbi.1003962.t001
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The average synaptic conductance can be written as

Su(t)T&
X
k[J

g(k)
synR(k) ð13Þ

where R(k) is the average firing rate of neuron k. We let E denote

the connection probability between neurons in two consecutive

layers; therefore, the subset J has approximately EN~N|E
neurons. We examined connectivity probability ranging between

0.5%, 5% and 10% while keeping the product of the connectivity

probability E and synaptic strength gsyn fixed, and observed no

differences in how effectively firing rates were propagated across

different layers in the network (Figure S2). The main results use

E~5%. For the two network types, we chose synaptic strength

sufficiently strong to allow for activity to be maintained in each

network. For the NGS network we used gsyn~0:1, while for the

GS network we explored in addition weaker synaptic strength of

gsyn~0:016; although the exact values used were not too

important as long as the iterated map dynamics predicting the

mean firing rates across the network had the same structure (for

example, number of fixed points) (Figure S2). Since all synapses in

our network are identical to gsyn, we can approximateP
k[J g(k)

syn~ENgsyn; similarly, all the neurons in a given layer are

identical so R(k)~R. Then the average synaptic current into a

neuron in a given layer can be approximated as

SIsyn(t)T&ENgsyn R Eex{SV (t)Tð Þ: ð14Þ

From the f –I relationship, the firing rate RL in layer L can be

expressed as a function of the firing rate of the neurons in the

previous layer RL{1 (see Eq. 1) where the scaling coefficient is

given by

a~ENgsyn Eex{SV (t)Tð Þ: ð15Þ

When computing SV (t)T we used only subthreshold voltage

fluctuations.

The input-output relationship plotted in Figure 6 (black line)

corresponds to the line of slope 1=a. We also computed the

standard deviation of the subthreshold voltage fluctuations

sV~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SV2(t)T{SV (t)T2

q
and thus estimated a+sa where sa

was obtained using Equation 15 with sV instead of SV (t)T.

Figure 6 text shows this as a gray boundary around the line with

slope a, which was used further to interpret the variability of

propagation of firing rates.

Furthermore, we note that when predicting the propagation of

firing rates across subsequent layers in this mean field analysis, the

f –I curve Fs in Equation 1 was chosen such that s was obtained

by combining the standard deviation of the independent noise

fluctuations added in each layer sindep, and the standard deviation

of the synaptic current recorded in each layer s~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

indepzs2
syn

q
,

where

ssyn~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SI2

syn(t)T{SIsyn(t)T2
q

: ð16Þ

Information transmission
We first measured information transmission in the network

about slow variations in the input (Figure 4). The mutual

information of stimulus and response was computed by testing a

particular encoding model (Figure 4D). Typically, this method

assumes a model for estimating the stimulus and provides a lower

bound on the information transfer because the model does not

capture all aspects of the information [77]. We chose the stimulus

reconstruction to be a simple population average of the neuronal

response (the PSTH), so that the stimulus estimate in layer L, Sest
L ,

is given by the mean neuronal response obtained from many

repetitions of the identical slow stimulus, but different realizations

of the fast fluctuations. We computed the information in the L-th

layer using the equation for a dynamic Gaussian channel [24]

I(S(t),RL(t))?I(S(t),Sest
L (t))

~
X1Hz

v~1=2T

log2 1zSNRL(v)ð Þ ð17Þ

where the signal-to-noise ratio can be written as

SNRL(v)~
SS S � T
SNL N�LT

: ð18Þ

Assuming Gaussian probability distributions, the noise is

NL(t)~Sest
L (t){S(t): ð19Þ

This quantity computes the information between stimulus and

response by taking into account how similar the response

(reconstructed stimulus) is to the original stimulus. Due to the

different firing rates evoked in the different networks, when

computing the information we normalized the reconstructed

stimulus (the PSTH) to have zero mean and unit variance.

To quantify the information about fast fluctuations as a function

of the mean and s of the input current injected into single neurons

(Figure 1E), we used the output entropy of the predicted firing rate

probability in the LN model, H½T(s)�, using the nonlinear

response function expression from Equation 7.

When examining the fidelity of firing rate transfer in networks

composed of the two neuron types, we wanted a measure of how

distinguishable is a discrete set of output firing rates in each layer

given a set of input currents in the first layer (see Figure 7, note

that Figure 1F is like the data in Figure 7 layer 1). This was the

information conveyed by the network response of each layer

about a stationary mean input S~m, in the presence of

background noise s (Figure 7). We obtained the firing rate

response of strongly connected NGS and GS networks (synaptic

strength gsyn~0:1) and weakly connected GS networks

(gsyn~0:016) for different layers, noise conditions and ranges of

input. For the strongly connected NGS and GS networks, we

used a range of 28 input currents uniformly distributed between 0

and 70 pA, and for the weakly connected GS networks, the same

number of input currents uniformly distributed in the range of 0
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to 22 pA. The noise values that we examined spanned the range

of s from 15 to 75 pA–which produced biologically relevant

output firing rates and subthreshold voltage fluctuations in a valid

regime w{120 mV. The output firing rates were obtained using

2 second long bins (total length of the trial was 20,000 seconds).

Qualitative trends in the information curves were maintained for

1, 5 and 10 second long bins. Then, given the set of firing rate

responses fRi
Lgi,L of the neurons of the L-th layer for the

i~1,2, . . . ,28 input currents, we constructed P(RLDS) by

computing histograms of the output firing rates binned into the

same 28 bins. We computed the mutual information for each

layer

IL(RL,S)~
X

S

P(S)P(RLDS) log2

P(RLDS)

P(RL)
ð20Þ

where P(RL)~
P

S P(RLDS)P(S) is the probability distribution of

the output firing rates [77]. P(S) denotes the prior probability of

input stimuli which we took to be a uniform distribution so that

each stimulus had the same probability 1/28 of occurrence.

Although the exact value of the information will depend on the

binning choice (here into 28 bins), the contrast in performance of

the GS and NGS neurons (which was our goal) was preserved for

other binning choices.

Dynamical systems analysis
To reduce the full conductance-based model (Eq. 2) that

depends on four variables, V , m, n and h, to a system of two first-

order differential equations, we followed the procedure described

by Abbott and Kepler [35] for the Hodgkin-Huxley model.

Although the neuron’s membrane potential V is affected by the

three dynamic variables, m, h and n, these three do not directly

couple to each other but only interact through V . This property

allows us to approximate their dynamics by introducing an

auxiliary potential variable. Since the time constant that governs

the behavior for m is much smaller than the time constants for h

and n, then m will reach its asymptotic value m? more rapidly

than other changes in the model. Therefore, we lose some

accuracy in the generation of spikes, but can write m&m?(V ).
Because of their longer time constants, h and n lag behind m and

reach their asymptotic values more slowly. This can be

implemented by introducing an auxiliary voltage variable U

and then replacing h and n by h?(U) and n?(U), since the

functions h? and n? are well separated as a function of the

dependent variable, in this case U . To choose U , we ask for the

time dependence of U in f and the time dependence that the

slowly changing h and n induce into F in the full model to match

– this is achieved by equating the time derivatives of F at

constant V in the full and reduced models. Hence, we convert the

full model (Eq. 2) into the following system of first-order

differential equations:

C
dV

dt
~{f (V ,U)zI ð21Þ

dU

dt
~g(V ,U) ð22Þ

where

f (V ,U)~{GL(V{EL){gNa(V{ENa){gK(V{EK)

~F (V ,m,h,n)&F (V ,m?(V ),h?(U),n?(U))
ð23Þ

and g(V ,U)~
A

B
where

A~
LF

Lh

h?(V ){h?(U)

th(V )

� �
z

LF

Ln

n?(V ){n?(U)

tn(V )

� �
and

B~
Lf

Lh?

dh?(U)

dU
z

Lf

Ln?

dn?(U)

dU

ð24Þ

where LF=Lh and LF=Ln are evaluated at h?(U) and n?(U).

To study the dynamics of this system in Figure 8, we plotted the

nullclines, i.e. the curves where dV=dt~0 and dU=dt~0. The

points where these two curves intersect are the fixed points of the

two-dimensional dynamics. In Figure 8 we use arrows in the phase

planes to denote the flows around the nullclines.

Supporting Information

Figure S1 Information transmission through networks
with gain-scaling neurons GNa=GK~1:0 (GK~1000 pS/

mm2 and GNa~1000 pS/mm2). A. PSTHs from each layer in

two networks with different connectivity: left, weak synaptic

strength gsyn~0:016; right, stronger synaptic strength gsyn~0:03.

The PSTHs demonstrate that the propagation of a slow-varying

input in the presence of a background of fast fluctuations degrades

in deeper layers, similar to the gain-scaling networks in Figure 6 of

the main text, where GNa=GK~1:5. PSTHs were normalized to

mean 0 and standard deviation 1 so that the dashed lines next to

each PSTH denote 0 and the scalebar 2 normalized units. B. Spike

rasters for the PSTHs in A. C. Information about the slow stimulus

fluctuations conveyed by the population mean responses shown in

A, compare to Figure 4D of the main text.

(EPS)

Figure S2 Firing rate transmission for different con-
nection probability and synaptic strength. Top: The f –I

curves (green) for gain-scaling network with GNa=GK~1:5
(GK~1000 pS/mm2 and GNa~1500 pS/mm2) and nongain-

scaling networks with GNa=GK~0:6 (GK~1000 pS/mm2 and

GNa~600 pS/mm2) with a noise level of s~50 pA. The black

lines denote the linear input-output relationships (slope 1=a)

derived from the mean field which predict how the mean output

firing rate of a given network layer can be derived from the mean

input current into that layer, with the standard deviation of the

prediction shown in gray. Note that within each of the four

columns the slope of the linear prediction is identical, despite

individual changes in the connectivity probability E and the

synaptic strength gsyn. Three bottom row panels show the

transmission of mean firing rates for a range of mean input

currents as a function of layer number–each row of panels

illustrates the outcome for different connection probability,

E~f0:5,5,10g%, while also varying the strength of synaptic

connectivity (gsyn) to preserve their product. Network parameters
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in each case: (weak, gain-scaling) E~0:5%, gsyn~0:16; E~5%,

gsyn~0:016, and E~10%, gsyn~0:0016, (strong, gain-scaling)

E~0:5%, gsyn~0:5; E~5%, gsyn~0:05, and E~10%,

gsyn~0:005, (weak, nongain-scaling) E~0:5%, gsyn~0:7; E~5%,

gsyn~0:07, and E~10%, gsyn~0:007, (strong, nongain-scaling)

E~0:5%, gsyn~1:0; E~5%, gsyn~0:1, and E~10%, gsyn~0:01.

Although the firing rate profiles remain identical for 10% and 5%

connectivity, as connectivity becomes sparser (E~0:5%) and

stronger, the nongain-scaling network exhibits more asynchronous

spiking and slow convergence to the fixed point of the mean field

dynamics (bottom right panel). Compare to Figure 6 of the main

text.

(EPS)

Figure S3 Firing rate transmission for a range of noise
amplitudes s. Top: The f –I curves for gain-scaling and

nongain-scaling networks with different GNa=GK and for different

levels of noise (s~15,25,35,50, and 75 pA). We considered gain-

scaling networks with GNa=GK~1:5 and A. weak vs B. strong-

connectivity, C. gain-scaling networks with GNa=GK~1:0 and

strong connectivity, and D. nongain-scaling networks with

GNa=GK~0:6 and strong connectivity (as weak connectivity was

insufficient to drive activity in these networks). The black lines

denote the linear input-output relationships derived from the

mean field, which predict how the mean output firing rate of a

given network layer can be derived from the mean input current

into that layer with the standard deviation of the prediction shown

in gray. The remaining panels show the transmission of mean

firing rates across layers for a range of mean input currents–each

row of panels illustrates the outcome for a different level of noise s.

The results from numerical simulations over 10 second-long trials

are shown as full lines (mean +s from 2000 neurons in each layer)

and mean field predictions are shown in dashed lines with a

shaded background in the same color (for each different input)

illustrating the standard deviation of the prediction from the

standard deviation in the linear input-output relationship in the

top panels. Other network parameters: connection probability

E~5%, synaptic strength gsyn~0:016 (weakly connected) and

gsyn~0:1 (strongly connected) and range of mean input firing rates

0–22 (for weakly connected) and 0–70 (for strongly connected).

Compare to Figure 6 of the main text.

(EPS)
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