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ABSTRACT: Nanowire nanoelectronic devices have been exploited as highly sensitive subcellular resolution detectors for
recording extracellular and intracellular signals from cells, as well as from natural and engineered/cyborg tissues, and in this
capacity open many opportunities for fundamental biological research and biomedical applications. Here we demonstrate the
capability to take full advantage of the attractive capabilities of nanowire nanoelectronic devices for long term physiological
studies by passivating the nanowire elements with ultrathin metal oxide shells. Studies of Si and Si/aluminum oxide (Al2O3)
core/shell nanowires in physiological solutions at 37 °C demonstrate long-term stability extending for at least 100 days in
samples coated with 10 nm thick Al2O3 shells. In addition, investigations of nanowires configured as field-effect transistors
(FETs) demonstrate that the Si/Al2O3 core/shell nanowire FETs exhibit good device performance for at least 4 months in
physiological model solutions at 37 °C. The generality of this approach was also tested with in studies of Ge/Si and InAs
nanowires, where Ge/Si/Al2O3 and InAs/Al2O3 core/shell materials exhibited stability for at least 100 days in physiological
model solutions at 37 °C. In addition, investigations of hafnium oxide-Al2O3 nanolaminated shells indicate the potential to
extend nanowire stability well beyond 1 year time scale in vivo. These studies demonstrate that straightforward core/shell
nanowire nanoelectronic devices can exhibit the long term stability needed for a range of chronic in vivo studies in animals as well
as powerful biomedical implants that could improve monitoring and treatment of disease.
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Nanoelectronic devices based on bottom-up synthesized
nanowires have demonstrated unique capabilities for

probing and interfacing to biological systems with high
sensitivity and spatial-temporal resolution.1−17 For example,
silicon nanowire FETs have been used for real-time in vitro
detection of disease markers proteins and even single virus
particles,5−9 recording extracellular action potentials from cells
and acute brain tissue slices with subcellular spatial
resolution,10−13 recording intracellular action potentials from
beating cardiac cells,14−16 and the development of electronically
innervated three-dimensional cyborg tissues.17 Some of the
directions being pursued with nanowire nanoelectronic devices,
such as in vitro sensing, do not require long-term stability and
biocompatibility, yet applications focused on chronic in vivo
cell-recording, implantable cyborg tissues, and more general
implantable devices do require long-term nanowire stability in
physiological environments.
Previous studies of cultured neurons with silicon nanowire

devices10,17 have demonstrated functional stability on at least a

2−3 week time scale, although other work18 has reported
dissolution of nanoscale silicon under physiological conditions
on a shorter times. Taking silicon nanowires as a prototypical
nanoelectronic system, it is interesting to consider possible
degradation pathways as well as methods for stabilization.
Silicon nanowires and FETs will have a native SiO2 surface
passivation layer under standard fabrication conditions due to
oxidation in air.19 The SiO2 layer is stable in the dry state but
can dissolve by hydrolysis in aqueous solutions20,21 with a rate
accelerated at higher ionic strengths typical of physiological
environments.22,23 Dissolution of silicon structures can occur
by a cycle in which the silicon surface is reoxidized and
dissolved. The fact that previous studies have reported different
stabilities10,17,18 may reflect the complexity of inorganic
nanostructure/cell interfaces where protein adsorption24 and/
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or lowered oxygen concentrations could substantially slow
dissolution steps.
Hence, it should be straightforward to enhance the stability

of silicon (or silica) and other nanowires in a rational manner
by introducing a stable conformal shell material. Here we
demonstrate this concept for improving the intrinsic long-term
stability of nanowire nanoelectronics in physiological environ-
ments using a core/shell architecture, where the shell is a metal-
oxide such as Al2O3. Our overall experimental strategy (Figure
1A) involves direct comparison of the stability of Si and Si/

Al2O3 core/shell nanowires alone or configured as FET devices
in biologically relevant solutions at 37 °C and room
temperature. Al2O3 was chosen as the nanowire shell material
in the majority of our studies for several reasons. First, Al2O3
has excellent chemical stability in the physiological environ-
ments, and moreover, has been explored as a material for
implanted dental and orthopedic applications.25,26 Second, the
Al2O3 shells should not adversely affect the performance of
nanowire FETs since Al2O3 is a high dielectric constant gate
material.27 Third, it is easy to achieve high-quality, pinhole free,
conformal shells of Al2O3 on nanowires with accurate control of
thickness in the nanometer scale by atomic layer deposition
(ALD) technique.28,29

The Si nanowires (30 nm diameter) were grown by our
previously reported gold nanoparticle catalyzed vapor−liquid−
solid (VLS) method.30−32 Calibrated thickness Al2O3 shells
were deposited on the Si nanowires by ALD at 150 °C and then
annealed (1 min, rapid thermal annealing (RTA)) at 400 °C.33

A transmission electron microcopy (TEM) image of a
representative Si nanowire (Figure 1B) reveals a typical <0.5
nm thick amorphous layer on the surface, which can be
attributed to the silicon oxide,19 and a crystalline Si structure

for the nanowire core. In contrast, a TEM image of a Si/Al2O3
core/shell nanowire (Figure 1C) shows a uniform 5−6 nm
thick amorphous Al2O3 shell on a crystalline Si nanowire core.
The thickness of the shell is consistent with that expected for
the 50 ALD cycles used for deposition, and moreover, the
amorphous structure post 400 °C/1 min RTA is consistent
with previous studies showing that >650 °C temperatures are
required to initiate the crystallization of amorphous Al2O3.

34

We initially investigated the stability of Si and Si/Al2O3 core/
shell nanowire under different aqueous solution conditions
using the method shown schematically in Figure 2A.35 In brief,
we patterned 4 μm pitch photoresist stripes on the nanowires
so that only regions not covered by photoresist were exposed to
solutions (Supporting Information, Figure S1). Samples were
immersed in either 1× PBS (pH 7.4) or 1× Neurobasal
solutions36 (pH 7.3) at either 37 °C in an incubator or at a
room temperature for fixed time periods, and after removal
from solution the photoresist was removed and the nanowire
substrates were imaged by dark-field optical microscopy. Dark-
field imaging provides a sensitive assessment of dissolution
since the Rayleigh scattering intensity depends on nanowire
diameter to sixth power (i.e., Iscattering ∝ d6) on the nanometer
scale.37

Dark-field images recorded from Si nanowire samples have 0,
5, and 10 nm Al2O3 shell thicknesses following immersion in
1× PBS at 37 °C 10, 50, and 100 days (Figure 2B) show several
key features. First, Si nanowires without Al2O3 shells exhibited
dissolution in the nanowire regions not protected by photo-
resist after 10 days, although the nanowire structures remain
continuous. Second, Si nanowire samples exposed for 50 or 100
days showed complete dissolution of the Si in regions exposed
to solution and not protected by photoresist. In contrast, the Si
nanowires with 5 and 10 nm thick Al2O3 shells, where all Al2O3
shells were annealed for 1 min at 400 °C, exhibited substantially
greater stability in 1× PBS at 37 °C. For example, Si nanowires
with 5 nm shells showed little dissolution at 50 days, and
nanowires with 10 nm shells were similar at 100 days.
In addition, we have investigated stability of these different

core/shell Si nanowires at room temperature since many
sensing and diagnostic applications nanowire FET detectors are
carried out under ambient conditions. Dark-field images
recorded from similar Si nanowire samples having 0, 5, and
10 nm Al2O3 shell following immersion in 1× PBS at room
temperature (Figure 2C) showed substantially greater stability.
For example, the Si nanowires without Al2O3 shells do not
show obvious signs of dissolution until ca. 40−50 days and are
still continuous structures at this point. This corresponds to
∼4−5 times slower rate and is consistent with expectations for
an activated process (at lower temperatures). Moreover, the Si/
Al2O3 core/shell nanowires with 5 and 10 nm shell thicknesses
did not show any obvious dissolution after even 100 days in
solution.
We also carried out stability studies in 1× Neurobasal neuron

cell culture media36 as a closer analog (than PBS) to in vivo
environments, where this medium contains amino acids and
other organic components in addition to inorganic ions.36

Dark-field images recorded at different times from nanowire
samples having 0, 5, and 10 nm Al2O3 thick shell following
immersion in this medium at 37 °C (Figure 2D) show similar
behavior as 1× PBS at 37 °C. The comparable dissolution
behavior for the two media is consistent with their similar ionic
strength and pH values. Significantly, these studies show the Si/

Figure 1. Core/shell stabilization of nanowire devices in physiological
environments. (A) Schematic illustration of long-time evolution of Si-
nanowire FET devices with and without Al2O3 protective shell in
physiological mimicking 1× PBS (pH 7.4) at 37 °C. TEM images of
(B) a Si nanowire with native surface oxide, and (C) a Si nanowire
with a 5 nm thick Al2O3 shell. The Al2O3 was annealed at 400 °C for 1
min prior to sample preparation.

Nano Letters Letter

dx.doi.org/10.1021/nl500070h | Nano Lett. 2014, 14, 1614−16191615



Al2O3 core/shell nanowires with 10 nm thick shells remain
stable for at least 100 days in both media at 37 °C.
To assess the long-term stability of nanowire bioelectronic

sensor devices we fabricated FETs with Si and Si/Al2O3 core/
shell nanowires and monitored the device characteristics when
immersed in 1× PBS solutions at 37 °C for extended time
periods. The source/drain contacts on the nanowires were
fabricated using standard procedures and passivation with SU-8
photoresist.38 Device conductance and transconductance versus
time data recorded39 for Si nanowires (Figure 3A) revealed
several key features. First, the normalized average (N = 30)
conductance decreased to less than 3% of the initial value at day
7. The transconductance initially exhibited an increase at day 1
but then decreased as observed for the conductance. However,
the decrease in transconductance was much slower than
conductance and at day 7 was still 13% of the initial value.

For this reason, it is possible to utilize the Si nanowire FET
devices until nearly the point of complete failure.
Similar measurements carried out for Si/Al2O3 core/shell

nanowire (10 nm thick shell) FET devices (Figure 3B)
demonstrate long-term stability as expected based on our
nanowire dissolution studies. Specifically, we found that the
normalized average (N = 30) conductance of Si/Al2O3
nanowire FET devices was constant for ca. 20 days, and then
decreased slowly until ca. 3% of the initial value at day 120. In
addition, the normalized average transconductance of the Si/
Al2O3 nanowire increased over during the first 50 days and then
decreased to ca. 50% the initial value at day 120. These data
demonstrate clearly that the Al2O3 shell can open chronic
studies on a 4-month time-scale with functional nanowire
nanoelectronic devices. Moreover, we believe that the observed
changes in conductance and transconductance (Figure 3B)

Figure 2. Nanowire stability in solution. (A) Schematic illustrating the experiment methodology. (B−D) Dark-field microscope images showing
morphology evolution of Si nanowires with different Al2O3 shell thickness in (B) 1× PBS at 37 °C, (C) 1× PBS at room temperature, and (D)
Neurobasal at 37 °C.
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indicate that defects in the Al2O3 shells may play an important
role in the device changes, and hence that efforts focus on
improving the shell quality could further improve the nanowire
stability. Indeed, preliminary studies of HfO2/Al2O3 nano-
laminated shells show greatly enhanced endurance in
accelerated tests in 10× PBS with stable structures expected
for ca. 2 years.40

Last, we have explored the generality of Al2O3 shells to
stabilize nanowires by exploring Ge/Si core/shell41−43 and InAs
nanowires,44−46 which have been shown to exhibit higher hole
and electron mobilities, respectively, than Si nanowires. Dark-
field images recorded from Ge/Si and Ge/Si/Al2O3 nanowires
(Figure 4a) as well as InAs and InAs/Al2O3 nanowires (Figure
4b) following immersion in 1× PBS at 37 °C for 10, 50, and
100 days show similar features to silicon nanowires described
above. The Ge/Si and InAs nanowires exhibited relatively rapid
dissolution with areas exposed to solution completed removed
within 10 days at 37 °C. In contrast, our data show that the
Al2O3 shells improve substantially the long-term stability to
over 100 days for both Ge/Si and InAs nanowires. Therefore,
by using this oxide shell strategy it is possible to extend the use
of nonsilicon nanoelectronic devices to chronic biomedical
applications in physiological conditions.
In conclusion, we have demonstrated the capability to take

full advantage of the attractive capabilities of nanowire
nanoelectronic devices for long-term physiological studies by
passivating the nanowire elements with ultrathin metal oxide
shells. Studies of Si and Si/Al2O3 core/shell nanowires in
physiological solutions at 37 °C show long-term stability
extending for at least 100 days in samples with 10 nm thick
Al2O3 shells. In addition, investigations of nanowires configured
as field-effect transistors (FETs) demonstrate that the Si/Al2O3
core/shell nanowire FETs exhibit good device performance for
at least 4 months in physiological model solutions at 37 °C.

The generality of this approach was also tested with in studies
of Ge/Si and InAs nanowires, where Ge/Si/Al2O3 and InAs/
Al2O3 core/shell materials exhibited stability for at least 100
days in physiological model solutions at 37 °C. In addition,
investigations of hafnium oxide/Al2O3 nanolaminate shells
indicate the potential to extend nanowire stability well beyond
1 year time scale in vivo. These studies demonstrate that
straightforward core/shell nanowire nanoelectronic devices can
exhibit the long-term stability needed for a range of chronic in
vivo studies in animals as well as powerful biomedical implants
that could improve monitoring and treatment of disease.
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