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ABSTRACT

The dynamics of the Atlantic meridional overturning circulation (AMOC) vary considerably among dif-

ferent climate models; for example, somemodels show clear peaks in their power spectra while others do not.

To elucidate these model differences, transfer functions are used to estimate the frequency domain re-

lationship between surface forcing fields, including sea surface temperature, salinity, and wind stress, and the

resulting AMOC response. These are estimated from the outputs of the Coupled Model Intercomparison

Project phase 5 (CMIP5) and phase 3 (CMIP3) control runs for eight different models, with a specific focus on

Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1), and the Community

Climate System Model, version 4 (CCSM4), which exhibit rather different spectral behavior. The transfer

functions show very little agreement amongmodels for any of the pairs of variables considered, suggesting the

existence of systematic model errors and that considerable uncertainty in the simulation of AMOC in current

climate models remains. However, a robust feature of the frequency domain analysis is that models with

spectral peaks in their AMOC correspond to those in which AMOC variability is more strongly excited by

high-latitude surface perturbations that have periods corresponding to the frequency of the spectral peaks.

This explains why different models exhibit such different AMOC variability. These differences would not be

evident without using a method that explicitly computes the frequency dependence rather than a priori as-

suming a particular functional form. Finally, transfer functions are used to evaluate two proposed physical

mechanisms for model differences in AMOC variability: differences in Labrador Sea stratification and ex-

citation by westward-propagating subsurface Rossby waves.

1. Introduction

TheAtlanticmeridional overturning circulation (AMOC)

carries large amounts of heat and salt to high latitudes,

therefore strongly influencing North Atlantic Ocean cli-

mate variability on a wide range of time scales. Fluctua-

tions of the AMOC are often thought to be associated

with the Atlantic decadal variability of sea surface

temperatures (SST) and atmospheric surface pressure

(Kushnir 1994; Enfield et al. 2001; Deser and Blackmon

1993; Mann and Park 1994; Sutton and Allen 1997),

sea ice extent (Mahajan et al. 2011), and carbon uptake

(Froelicher et al. 2009). The amplitude, frequency, and

mechanisms of the AMOC multidecadal fluctuations are

model dependent. For example, some, but not all, models

show statistically significant peaks in their AMOC power

spectrum at periods ranging from 20 to more than 100

years (e.g., Fig. 1; Weaver et al. 1991; Delworth et al.

1993; Dong and Sutton 2001). From a dynamical system

perspective, the AMOC variability can be explained by

several alternative scenarios. First, AMOC variability may

be due to damped ocean modes stochastically excited by

atmospheric variability: for example, a single damped

oscillatory mode producing a sharp spectral peak (e.g.,
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Delworth et al. 1993; Griffies and Tziperman 1995), red-

dening of the spectrum with no preferred frequency (e.g.,

Frankignoul and Hasselmann 1977; Cessi 1994), or the

interaction between several damped nonnormal modes

(Lohmann and Schneider 1999; Tziperman and Ioannou

2002;ZannaandTziperman2005;Alexander andMonahan

2009). Second, the variability may be due to self-sustained

oscillatory modes of the ocean (e.g., Winton and Sarachik

1993; Weaver et al. 1993; Greatbatch and Zhang 1995;

Chen and Ghil 1995). Finally, coupled ocean–atmosphere

modes may also lead to AMOC variability (e.g.,

Timmermann et al. 1998; Xiuhua and Jungclaus 2008).

The AMOC may vary on decadal time scales because

of external forcing factors such as heat and freshwater

fluxes, the North Atlantic Oscillation (NAO), or internal

factors such as deep convection, overflows, or wind-

driven gyre strength (e.g., Delworth et al. 1993;Weaver

et al. 1993; Griffies and Tziperman 1995; Delworth

and Greatbatch 2000; Bryan et al. 2006; Bjerknes

1964; Kushnir 1994; Marshall et al. 2001; Yeager and

Danabasoglu 2012). Different mechanisms are brought

forward for explaining AMOC variability in different

models and sometimes even in the same model. For ex-

ample, Zhang (2008) suggested that the decadal peak in

AMOC variability from the GFDL CM2.1 control run is

likely linked to freshwater fluxes, while Frankcombe

et al. (2009) considered the variability to be dictated by

the westward propagation of subsurface temperature

anomalies as baroclinic Rossby waves. When the same

historical forcing is applied to different models, SST

and AMOC variability are not better constrained, and a

large multimodel spread in mean and variability of the

Atlantic Ocean still remains over the twentieth century

(Solomon et al. 2007). For example, using 10 models from

the Coupled Model Intercomparison Project phase 5

(CMIP5) archive under historical forcing, Cheng et al.

(2013) found AMOC multidecadal fluctuations with

peak-to-peak amplitude varying between a few tenths of

a Sverdrup (Sv; 1 Sv [ 106m3 s21) to several Sverdrups,

depending on the model. None of the proposed AMOC

variability mechanisms can be verified or ruled out using

observations due to the short time series and sparsity of

the observational AMOC record (Cunningham et al.

2007). To date, the driving mechanisms of AMOC de-

cadal fluctuations andwhat sets their dominant period, if

any, remain largely unresolved. Whether or not aerosols

and solar forcing play a role in the Atlantic multidecadal

variability (Booth et al. 2012), it is very likely that di-

verse AMOC variability patterns and proposed mecha-

nisms in numerical simulations point toward systematic

errors in climate models.

Model errors, systematic or random, have been

identified as the primary source of uncertainty for decadal

predictions and centennial projections of climate change

(Palmer 2001; Hawkins and Sutton 2009). Griffies and

Bryan (1997) showed that the internal variability of

North Atlantic Ocean temperature and AMOC in a cou-

pled ocean–atmosphereGCM is potentially predictable up

to a couple of decades ahead, due to the enhanced power

at this frequency. However, the potential predictability

and forecast skill of the North Atlantic climate is model

dependent. Reducing uncertainties in decadal predictions

via the use of data assimilation to initialize decadal fore-

casts has been the focus of several studies (Smith et al.

2007; Keenlyside et al. 2008). However, there is disagree-

ment on the magnitude and sign of temperature anomaly

changes in the North Atlantic. The difference may involve

model drift due to the initialization shock (Doblas-Reyes

et al. 2011), uncertainty in ocean observations, and most

likely model error (Zanna et al. 2011, 2012). A similar

spread between model-simulated AMOC and SST under

future scenarios is observed (Gregory et al. 2005). Re-

cently, for the representative concentration pathway

(RCP4.5) scenario, Cheng et al. (2013) showed that a

weakening of the AMOC by the end of twenty-first

century is predicted to vary frombetween 5%and 40%of

each individual model’s historical mean state. Given the

lack of agreement between models in their Atlantic de-

cadal variability, one wonders if systematic errors are the

cause for discrepancies in AMOC and SST variability

under different forcing scenarios (Solomon et al. 2007).

To further understand the spread between model var-

iability patterns, we explore the response of the AMOC

FIG. 1. Power spectrum of AMOC variability, with the AMOC

index computed as the amplitude of the first EOF of themeridional

overturning streamfunction (see section 2 for the motivation for

this definition; note that the scaling of AMOC index here depends

on the EOF normalization described in the text). The two models

considered here in more detail, CCSM4 and GFDL CM2.1, are

shown with thicker lines.
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to surface forcing in the frequency domain. By exam-

ining specific processes within models, one hopes to

point to specificmodel problems.While the causes of the

Atlantic multidecadal variability are still debated (Booth

et al. 2012; Ting et al. 2009), atmospheric forcing is ex-

pected to play a role in the AMOC variability either di-

rectly or indirectly. In the present study, we therefore

focus primarily on the relationship, in the frequency

domain, between AMOC and surface forcing fields,

specifically sea surface temperature, sea surface salinity

(SSS), and wind forcing. These fields represent heat,

freshwater, and momentum fluxes in and out of the

ocean.We investigate the relationship using a number of

control runs from state-of-the-art climate models from

the CMIP5 and Coupled Model Intercomparison Pro-

ject phase 3 (CMIP3) archive. Frequency domain anal-

ysis is the key to understanding critical differences in

AMOC spectra in different models. The specific meth-

odology used in this study, borrowed from control en-

gineering (e.g., Astrom and Murray 2008), is transfer

function analysis, which describes a dynamic process

that relates two variables in the frequency domain. Re-

cently, MacMynowski and Tziperman (2010, 2012, man-

uscript submitted toPhilos. Trans. Roy. Soc.) used transfer

function analysis to estimate process dynamics of ENSO

in models and observations. Transfer functions relating

surface fields to AMOC are calculated here for eight

coupled climate models. More detailed analysis is pro-

vided for two models, namely CCSM4 (see Table 1 for

complete list of model expansions), which has no sharp

peak in the power spectrum of AMOC variability, and

GFDL CM2.1, which has a significant peak at around

a 20-yr period. For these two models, additional anal-

ysis of subsurface temperature anomalies is used to

evaluate specific proposed physical mechanisms for

AMOC variability.

The paper is organized as follows. The next section

describes AMOC variability in all models considered,

followed by an introduction to the transfer function

methodology in section 3. Results highlighting frequency-

dependent differences between processes in the models

are shown in section 4, and an evaluation of two proposed

physical mechanisms for AMOC variability is shown in

section 5.

2. AMOC variability

We compare the response of AMOC variability to

surface forcing of eight state-of-the-art climate model

preindustrial control simulations fromCMIP5 (Table 1),

for which the zonally averaged meridional overturning

streamfunction is available. We consider only the Eu-

lerian flow and not the bolus velocity associated with the

eddy-induced Gent–McWilliams component.

We are concerned here with AMOC variability on

decadal time scales. A commonly used index for AMOC

variability is the maximum amplitude of the zonally av-

eraged streamfunction at a given latitude. Power spectra

of this index at 26.58N [the latitude of the Rapid Climate

Change (RAPID) array; Cunningham et al. 2007; Kanzow

et al. 2008; McCarthy et al. 2012] and at 458N [near the

West Atlantic Variability Experiment (WAVE) array;

TABLE 1. Models used, full expansion, and number of simulation years used from their preindustrial control run. CCSM4 data were

downloaded directly from the National Center for Atmospheric Research (NCAR) computers, GFDL CM2.1 was downloaded directly

from GFDL web portal, and the remaining models were downloaded from CMIP5.

Model Model expansion Modeling center

Simulation

length in years

CCSM4 Community Climate System Model, version 4 National Center for Atmospheric Research 1000

GFDL CM2.1 Geophysical Fluid Dynamics Laboratory

Climate Model, version 2.1

Geophysical Fluid Dynamics Laboratory 500

CanESM2 Second Generation Canadian Earth System Model Canadian Centre for Climate Modeling

and Analysis

996

CNRM-CM5 Centre National de Recherches M�et�eorologiques
Coupled Global Climate Model, version 5

Centre National de Recherches

Meteorologiques

850

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory Earth

System Model with Modular Ocean Model 4

(MOM4) component (ESM2M)

Geophysical Fluid Dynamics Laboratory 500

MPI-ESM-LR Max Planck Institute Earth System Model,

low resolution

Max Planck Institute for Meteorology 1000

MRI-CGCM3 Meteorological Research Institute Coupled

Atmosphere–Ocean General Circulation

Model, version 3

Meteorological Research Institute 500

NorESM1-M Norwegian Earth System Model, version 1

(intermediate resolution)

Norwegian Climate Centre 500
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Elipot et al. 2013; Bingham et al. 2007] from each of

the eight models considered in this study are shown in

Fig. 2. At 26.58N, both of the Geophysical Fluid Dy-

namics Laboratory (GFDL)models, CM2.1 andESM2M,

exhibit very large peaks in their power spectrum around

15–20-yr periods, setting them apart from all other

models. At 458N, NorESM1-M also exhibits a spectral

peak at a 20-yr period whereas MRI-CGCM3 has a

narrow peak at an 8-yr period. While the presence or

absence of strong spectral peaks is the most obvious

qualitative difference between the models, there are

significant differences in the predicted amplitude of

AMOC variability even among the models that do

not have any statistically significant spectral peak.

Analternateway to characterize variability is to consider

the time series associated with the empirical orthogonal

functions (EOFs) of the overturning streamfunction

over the North Atlantic, shown in Fig. 3 for GFDL

CM2.1. To focus on the patterns associated with vari-

ability on decadal time scales, we low-pass filter the

streamfunction before computing the EOFs, using

a noncausal second-order filter with a cutoff frequency

corresponding to a 5-yr period. All EOFs are normal-

ized to unit average mean-square value integrated over

depth and over latitude from 08 to 758N; this deter-

mines the scaling of our AMOC index. The first EOF

captures more than 50% of this low-frequency variance

in all models and 80% of the variance in CCSM4 and

CNRM-CM5. The EOF patterns are broadly similar

for all eight models, with the first EOF corresponding

to a change in overall strength (Fig. 3a); the sign of

the first EOF is chosen so that the projection of the

streamfunction onto this EOF is positive. The second

EOF pattern reflects a north–south shift (Fig. 3b), and

the third (not shown) characterizes a shift in the depth

of the peak overturning (for CCSM4 and CNRM-CM5,

the order of the second and third EOFs is reversed, al-

though neither contains significant power for these two

models).

The second EOF of the GFDL CM2.1 model, which

reflects the north–south shift in the overturning circu-

lation, only captures roughly 15% of the total variance,

but almost all of its spectral energy is contained in

a narrow frequency band between 15- and 20-yr periods.

In contrast, the first EOF spectral peak at a 20-yr period

is much less pronounced. Thus, the pronounced GFDL

streamfunction spectral peaks at either 26.58 or 458N are

largely due to the projection onto the second EOF and

are therefore associatedmorewith a north–south shift of

the cell and to a lesser degree with a change in circula-

tion strength. Such a result is consistent with recent

studies suggesting observed opposing decadal changes

of subtropical and subpolar circulation (Lozier et al.

2010).Wewill adopt the amplitude of the projection onto

the first EOF of the meridional overturning stream-

function, reflecting changes in the circulation amplitude,

as our definition of the AMOC index for the remainder

of the paper, with the power spectra for this index shown

in Fig. 1. Similar to the GFDL models, the narrow peak

near the 8-yr period in MRI-CGCM3 is associated with

both amplitude changes (first EOF) and a shift in lati-

tude (second EOF). On the other hand, the peak in the

power spectrum for NorESM1-M is associated pri-

marily with a change in the overturning amplitude (first

EOF).

Having better understood the nature of the

frequency-dependent variability in Figs. 1 and 2, we now

turn to the frequency domain in order to understand

some of the responsible processes.We first introduce the

concept of a transfer function to be used in section 4

in order to analyze processes influencing AMOC

variability.

FIG. 2. Power spectrum of AMOC variability at (a) 26.58 and (b) 458N.
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3. Transfer function methodology

Transfer functions describe the linear frequency-

dependent response of an output variable to perturba-

tions in an input variable (e.g., Astrom and Murray

2008). Given a differential equation describing the re-

lationship between input variable x and output variable

y, the transfer function can be defined using the Laplace

or Fourier transforms of these variables. For example, if

dy/dt 5 ax 2 by for some a and b, ŷ( f ) is the Fourier

transform of y(t) given the frequency f and s5 2pif, then

the transfer function T(s) is T(s)[ ŷ(s)/x̂(s)5 a/(s1 b)

[i.e., ŷ(s)5T(s)x̂(s)]. In general, the transfer function

describes how a scalar output signal (e.g., AMOC

strength or y above) depends on perturbations in any

input (e.g., the amplitude of some particular spatial

pattern of SST or of wind stress or x above).

Two other simple transfer functions forms are shown

in Fig. 4, corresponding to the differential equations

€y1 b _y1 b2y5 abx 0 T(s)5
ab

s21 bs1 b2
and (1)

_q5 ax2 bq, y5q2 cx 0 T(s)5
a

s1b
2c. (2)

These are useful in interpreting the results of GCM

analyses in section 4b (see, e.g., Fig. 8), as they illustrate

two possible differential equations that are consistent

with a 1808 phase shift between low and high frequencies

while the transfer function magnitude decreases with

frequency.

The analysis here estimates the frequency-dependent

transfer function directly from the time series of the

chosen input and output (e.g., section 6.2, Swanson

2000). Given input and output time series x(t) and y(t)

and their Fourier transforms x̂( f ) and ŷ( f ), the transfer

function can be estimated as the ratio of cross correla-

tion to the autocorrelation in the frequency domain:

Txy( f )5
hx̂*( f )ŷ( f )i
hx̂*( f )x̂( f )i5

Sxy( f )

Sxx( f )
. (3)

The autocorrelations and cross correlations Sxx( f) and

Sxy( f) are estimated by (i) dividing the time series for x

FIG. 3. EOFs of meridional overturning streamfunction for GFDL CM2.1: (a) first and (b) second EOF pattern with

contour intervals equal to 13 1023 (blue shading if,213 1023, red shading if.13 1023; thick line for the zero contour).

(c) Power spectrum of streamfunction projected onto first three EOFs. (d) Fraction of variance captured by each EOF.
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and y into n possibly overlapping segments of smaller

length, xk(t) and yk(t); (ii) computing the Fourier

transforms x̂k( f ) and ŷk( f ) of each of the windowed

signals xk(t) and yk(t) in the kth segment and calculating

their products in each segment; and (iii) averaging these

products over the segments to calculate the correlations

in Fourier space:

Sxy( f )5
1

n
�
n

k51

x̂k*( f )ŷk( f ) . (4)

With sufficient averaging, only the contribution due to

the part of the output signal that is correlated with the

input signal will remain. The error in estimating Txy due

to the uncorrelated component of the output can be es-

timated from the coherence [Eq. (6.2.21) and (6.2.22) of

Swanson (2000); see also MacMynowski and Tziperman

(2012,manuscript submitted toPhilos. Trans. Roy. Soc.)]:

g2xy( f )5
jSxy( f )j2

Sxx( f )Syy( f )
. (5)

Increasing the averaging by dividing the signal intomore

but shorter segments results in a smaller resolved fre-

quency range. To resolve this, we use a different number

of data segments to estimate the transfer function at

different frequencies, allowing us to increase the aver-

aging at high frequencies while still estimating the re-

sponse at low frequencies.

The transfer function is in general complex and both its

magnitude and phase, F(f), provide useful information:

Txy(f )5 jTxy(f )jeiF(f ) . (6)

The magnitude describes the strength of the relation-

ship, while the phase indicates the lead or lag between

the input and output variables as a function of frequency,

providing clues about causality. Lag correlations can

also be used to estimate an average time lag between

two signals, although they are unable to do so for each

frequency separately. If both signals are first passed

through a narrow bandpass filter, then the lag-correlation

plot yields similar information to the transfer function

phase: zero phase lag corresponds to a correlation plot

having a peak at zero time lag, while a negative transfer

function phase corresponds to a delay, that is, a peak in

the correlation corresponding to the output signal hav-

ing a positive time lag relative to the input. A positive

transfer function phase is thus often due to the input

signal being caused by the output. Of course, all of the

processes we are interested in involve influences in both

directions: for example, variations in surface salinity

influence AMOC and variations in AMOC due to other

mechanisms also influence the salinity. We use the

transfer function phase to suggest which direction of

influence is dominant in any given frequency band, al-

though this is not definitive (e.g., a 908 phase lag might

indicate the output lagging the input or could also result

from an opposite lag but with a sign change). An explicit

fit of the transfer function to the underlying differential

equation would be required to fully interpret the dy-

namical relationship, although this is neither straightfor-

ward for the relationships examined here nor necessary to

gain insight here into AMOC variability.

Linear inversemodeling (LIM; Penland Sardeshmukh

1995) can also describe the input–output relationship.

However the functional form of the relationship is as-

sumed a priori in LIM (typically a first-order differential

equation relating inputs and output), while the transfer

function approach is model free and thus provides fur-

ther insight into the actual frequency dependence of the

relationship.

4. Transfer function analysis of the relation
between surface forcing and AMOC

We consider the influence of SST, SSS, and the mag-

nitude of wind stress (TAU) on AMOC variability. It is

possible to analyze the influence of freshwater and heat

fluxes on the AMOC. However, a difference between

two models could then be attributed to either the effects

FIG. 4. Example illustrating transfer function characteristics for

the two systems in Eqs. (1) and (2) that both have a 1808 phase shift
between low and high frequencies and amagnitude decreasingwith

frequency (cf. with Fig. 8).
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of, say, heat fluxes on SST or to the effects of the SST on

the AMOC. This could potentially complicate the in-

terpretation of the results. In addition, we found that the

transfer functions from surface fluxes of freshwater and

heat to AMOC have a small signal-to-noise ratio and

that the direction of causality was not clear. We have

therefore opted to use SST and SSS fields instead of the

surface fluxes.

We start with an in-depth comparison of two models:

GFDL CM2.1, which has a clear peak in the AMOC

variability power spectrum, and CCSM4, which does not.

These two models therefore capture opposite ends of the

range of AMOC variability on decadal time scales.

a. Spatial analysis via regression patterns

We first need to identify the spatial patterns of varia-

tions in SST, SSS, and TAU that are related to AMOC

variability. We will use these spatial patterns to create

a scalar index for the frequency domain transfer function

analysis. Consider the regression pattern of the three

surface fields onto the AMOC for CCSM4 and GFDL

CM2.1 shown in Fig. 5. One striking feature is the tongue

appearing in all forcing fields around 458N, starting from

the North American coast. This latitude is significant

to theAMOCvariability, being both the boundary between

the subtropical and subpolar gyre and the zero-crossing

FIG. 5. Regression patterns for (left) CCSM4 and (right) GFDLCM2.1, for (top) SSS, (middle) SST, and (bottom)

wind stress magnitude. The EOFs for SSS for these two models are compared in Fig. 7. The regression patterns for

SSS for the remaining six models considered here are shown in Fig. 6.
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latitude for the second EOF, possibly indicating that it is

a region where the variability may be excited (Tulloch

and Marshall 2012; Buckley et al. 2012; Zanna et al.

2012). The similarity between SST and SSS patterns

indicate that density is the important factor in forcing

AMOC variability in the models. Moreover, the pres-

ence of an anomaly near the 458N latitudinal band seen

in the wind regression pattern maymean that the wind is

able to excite density variability in this area. While the

regression patterns are similar for the two models ana-

lyzed above, this does not hold across all models, as seen

in the SSS regression patterns for the remaining six

models shown in Fig. 6.

It is especially interesting that the regression patterns

R(x, y) are similar to the first EOF of the surface fields,

E(x, y), shown for example for SSS in Fig. 7 (after low-

pass filtering to focus on low-frequency variability). Note

that the normalized correlation between the EOF and

regression pattern [i.e.,
Ð
AE(x, y)R(x, y) dA integrated

over the plotted region of the North Atlantic, then nor-

malized by the root-mean-square ofE andR] is;0.75 for

either model, while a similar normalized correlation of

either the EOFs or regression patterns between these two

models is only about 0.4. That is, the EOF for each model

is quantitativelymore similar to the regression pattern for

that model than it is to the EOF of the other model.

Nonetheless, it is the qualitative agreement that we are

concerned with here.

Consider some limiting cases to understand the

expected relationship between the SSS regression and

FIG. 6. Regression patterns for SSS for (a) CanESM2, (b) CNRM-CM5, (c) GFDL-ESM2M, (d) MPI-ESM-LR,

(e) MRI-CGCM3, and (f) NorESM1-M.
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EOF patterns. Suppose first that SSS anomalies in-

fluence AMOC variability but that they are not affected

by the AMOC. Because salinity is forced by other fac-

tors, there is no reason to expect SSS variability patterns

(EOFs) to project strongly onto the pattern that forces

the AMOC (represented by the regression pattern in

this scenario). If, on the other hand, SSS anomalies are

forced mostly by AMOC variability, then one expects

SSS variability patterns (EOFs) to be similar to re-

gression pattern of SSS and AMOC. The agreement

between regression and EOF patterns in the models

analyzed here (cf. Figs. 5 and 7) is thus an indication that

AMOC variability likely affects SSS anomalies and that

the opposite relation cannot be ruled out. The first EOF

for SST (not shown) is also similar to the corresponding

regression pattern, while the first EOF of variability in

the wind stress magnitude (not shown) does not show

any similarity to the regression pattern in Fig. 5, sug-

gesting that the wind stress variability influencesAMOC

variability but is not strongly influenced by it. Therefore,

AMOC does not feed back onto the atmospheric wind

patterns (such as the NAO) in the model considered.

The regression patterns in Fig. 5 indicate the pattern

of each variable that is most likely to be related to

AMOC variability. Given the spatial regression patterns

of SST, SSS, and wind stress magnitude, we project the

full fields onto these patterns to create three scalar in-

dices for eachmodel. The scalar indices can then be used

as the input for the transfer function, with the output

being theAMOC index previously defined. Note that we

can either project each model SST onto its own re-

gression field or on a common regression field obtained,

for example, from the average of the different patterns.

The two approaches test different questions, and each

has its own advantages. Using individual model patterns,

a difference in the transfer function between models

might result from the different spatial regions being

considered, yet each transfer function more accurately

reflects the relation between surface forcing andAMOC

for a given model. Using a common pattern provides

consistency across models, but a model may have a dif-

ferent transfer function not because the underlying

processes differ but simply because the processes occur

at a different spatial location.

For CCSM4 and GFDL CM2.1, the SST and SSS re-

gression patterns are sufficiently similar so that we can

use the average regression pattern (Fig. 8). We find that

the conclusions from transfer function analysis are

similar if the individual or averaged regression patterns

are used, and thus only the results from the average

pattern are shown. However, the regression patterns for

the wind stress are too different for the average pattern

to be meaningful, as are the regression patterns for SST

and SSS when considering all eight models (Fig. 6). We

note that many of the regression patterns are dominated

by northern latitudes (Figs. 5a–d), and so we consider

input indices based on a simple average over 508 to 708N
and from 3008 to 3508E (Fig. 9c). This index is used for

wind regression patterns for all eight models and for SSS

and SST when all eight models are considered (Fig. 10;

this choice will be described further below.)

b. Transfer functions

We first project the surface fields onto the average

(model independent) SST and SSS regression patterns

as described above and consider the transfer function to

AMOC. The average regression pattern and correspond-

ing transfer functions are shown in Fig. 8 forGFDLCM2.1

and CCSM4. For these processes, these two models are

reasonably consistent at very low frequencies (periods

of 40 years and longer). However, differences between

the transfer functions for these two models are imme-

diately apparent in the frequency range of 10–30 years,

where theGFDLmodel has a significant spectral peak in

the AMOC variability. This is a critical observation,

indicating that the different AMOC variability between

the two models may be related to differences in how

strongly AMOC responds to perturbations in the surface

FIG. 7. First EOF of low-frequency SSS variability for (a) CCSM4 and (b) GFDL CM2.1.
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fields in this frequency regime. We note that the uncer-

tainty in the transfer function estimates at high frequen-

cies (periods shorter than 10 years) that are not our focus

here can be significant, as indicated by the error bars.

Nonetheless there is arguably better agreement between

the models in periods shorter than 10 years than for pe-

riods of 10–30 years.

A few additional observations can be made regarding

the transfer functions. First, the error bars are smaller

for the GFDL model than CCSM4, despite the shorter

simulation, because the variance is much higher, and the

coherence between the signals is much higher (a larger

fraction of the AMOC variability is correlated with the

surface variability). Second, the 1808 phase shift be-

tween low and high frequencies observed in bothmodels

could result either from exciting an ocean oscillatory

mode [e.g., Eq. (1)] or from different physical processes

with opposite signs being dominant at low frequencies

versus high [e.g., Eq. (2), with the two physical processes

being a/(s 1 b) and the term 2c with its opposite sign].

The excited oscillatory mode mechanism implies that

the transfer function amplitude drops rapidly with fre-

quency (Fig. 4), but this does not seem to be the case in

the GCM transfer functions shown in Fig. 8. A time

FIG. 8. CCSM4 and GFDL CM2.1 transfer functions to AMOC index from the average regression pattern (shown

at bottom) for SSS (a) magnitude and (b) phase and for SST (c) magnitude and (d) phase. The 62-s error bars are

estimated from the coherence. Average regression pattern for (e) SSS and (f) SST.
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delay would also give a frequency-dependent phase, but

the magnitude would be uniform with frequency, again

not consistent with the GCM results. However, the dy-

namic relationship between SST and AMOC and SSS

and AMOC is likely more complicated than the simple

differential Eqs. (1) and (2), limiting our ability to deter-

mine precisely the reason for the 1808 transfer function
phase range across frequencies. But as we show here,

transfer function differences between models are a useful

diagnostic, even when the precise underlying equations

are not known.

As noted above, the average regression pattern of SST

and SSS cannot be used for considering all other models

nor for the wind stress.We therefore consider the spatial

average over 508 to 708N and from 3008 to 3508E (shown

in Fig. 9c). As a first step, we verify that the resulting

transfer functions for CCSM4 and GFDL CM2.1 using

the high-latitude index (Fig. 9) are similar to the transfer

functions computed with the average regression pattern

(Figs. 8a–d). This confirms that the northern region

considered captures most of the dynamically relevant

coupling between the surface fields and AMOC vari-

ability identified through the regression analysis.

Figure 9d shows the lag correlation for CCSM4 after

bandpass filtering the signals in different frequency re-

gions. At very low frequencies (long periods), SSS and

AMOC perturbations are roughly in phase, consistent

with the zero phase lag in the transfer functions. At

higher frequencies (shorter periods, 10–30 years), there

is a clear lag of a few years between SSS perturbations

and AMOC variation, again consistent with the transfer

function phase shown in Fig. 9b at periods of 10–30 years.

The use of the transfer function phase lag to suggest

causality relationships is thus consistent with the lag-

correlation information. Note that lag correlation based

on the full signal without bandpass filtering combines the

effects of all frequency bands, making it more difficult to

assess the direction of causality. The zero phase lag at low

to midfrequencies (10–30 years in particular, Fig. 9b) for

the SSS toAMOCGFDL transfer function indicates that

FIG. 9. Transfer function from high-latitude SSS to AMOC index for CCSM4 and GFDL CM2.1. (a),(b) The mag-

nitude and phase with62-s error bars estimated from the coherence. (c) The SSS is averaged over the shaded region.

(d) The lag correlation from the SSS to AMOC index for CCSM4, with different bandpass filters to highlight the

delay in different frequency regimes: a phase of zero in (b) corresponds to zero time delay, while a phase lag in (b)

corresponds to the peak correlation in (d) occurring at positive time lag (SSS anomalies leadingAMOCanomalies). For

GFDL CM2.1, the correlations are maximized near zero lag for all frequency bands, consistent with the phase in (b).
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perturbations in SSS and AMOC are in phase, making

the direction of influence more difficult to assess. It is

likely (as suggested earlier by the similarity betweenEOF

and regression patterns) that both directions of influence

are active in this model for SSS. Again, the 1808 phase lag
at high frequencies, consistent between models, indicates

that SSS and AMOC perturbations are out of phase with

each other; this might result from different physics with

a different sign effect or from exciting an ocean mode

above its resonant frequency.

For SST, the phase (Fig. 10d) suggests that AMOC

variability in the 10–30-yr band leads the corresponding

SST perturbations (confirmed by a lag-correlation plot

similar to Fig. 9d, not shown). However, the phase (and

lag-correlation plot) indicates that wind stress pertur-

bations at periods of 10–30 years (Fig. 10f) lead

FIG. 10. Transfer function (left) magnitude and (right) phase for all models, from high-latitude (a),(b) SSS, (c),

(d) SST, and (e),(f) wind stress to AMOC. Error bars are omitted for clarity; poor transfer function estimates

(where a 2-s error exceeds the magnitude) are shown with open symbols. (Note in the final panel that23608 is the
same as 08).

8334 JOURNAL OF CL IMATE VOLUME 26



variability in AMOC in all models, by as much as 7 years

for GFDL CM2.1. SST transfer function results should

thus be interpreted with some caution regarding cau-

sality, while the wind stress results are unambiguous in

this regard.

The results for the lead–lag relations between SST,

SSS, and AMOC are consistent with those of Delworth

et al. (1993), who found salinity in their previous ver-

sion of the GFDLmodel to be in phase with the AMOC

and temperature to lag by a few years. Griffies and

Tziperman (1995) showed these results to be consistent

with the excitation of a single oscillatory mode in the

GFDL models. For the CCSM4 model (which does not

show a significant spectral AMOC peak), the temper-

ature also lags AMOC but, more significantly, salinity

leads by a few years rather than being in phase; the

difference in phase relations might thus provide some

clues as to the nature of the oscillatory behavior.

Let us now consider all eight of the models in Table 1

in order to assess whether the differences in the transfer

functions between GFDL CM2.1 and CCSM4 are ro-

bust. The transfer functions are plotted in Fig. 10 for

SSS, SST, and TAU. The discrepancy between models

in representing these processes is substantially larger

than the transfer function error estimates (not shown in

Fig. 10 for clarity; shown for two models in Fig. 9). Even

ignoring obvious outliers, the spread in transfer function

magnitude between models (left column of Fig. 10) is

about a factor of 2 at very low frequencies and much

larger, a factor of 10 and above, for periods of 10–30

years. There is not even an agreement on the sign of the

transfer function estimate, as indicated by phase differ-

ences as large as 1808 (right panels of Fig. 10). For ex-
ample, the phase indicates that for 10–30-yr periods, sea

surface salinity perturbations lead AMOC perturba-

tions in most models but occur roughly in phase for the

two GFDL models, while AMOC perturbations lead

salinity perturbations in NorESM1-M. This is poten-

tially a consequence of both SSS influencingAMOC and

AMOC influencing SSS, with the relative strength of

these two relationships depending on the model and de-

pending on frequency. Note that the significantly smaller

amplitude of the transfer functions for CanESM2 results

from this model predicting the region of maximum cor-

relation between the surface fields and AMOC much

farther south than the other models (see Fig. 6).

This large spread between model representations of

process dynamics (using a common definition of spatial

patterns) suggests the presence of very large systematic

errors in describing how AMOC responds to variability

in high-latitude surface forcing. Recognizing the discrep-

ancy is not sufficient to identify specific model parameters

or parameterizations responsible for the differences. In

the next section, we use transfer functions to evaluate

two proposed physicalmechanisms thatmay be involved

in these differences. A more thorough analysis beyond

considering individual mechanisms would require break-

ing the pathway to AMOC from SST, SSS, or TAU into

more detailed subcomponents, such as evaluating the

effect of surface forcing on meridional or latitudinal

density gradients, velocities at different levels, and so

on. This is beyond the scope of this paper as the number

of possible transfer function increases rapidly when

looking at more detailed processes.

Beyond simply indicating model differences, the large

scatter between models also contains some key insights

on the oscillatory AMOC behavior seen in some models

but not in others. Recall from Fig. 1 that both of the

GFDL models and NorESM1-M had spectral peaks

near 20-yr periods, andMRI-CGCM3 has a narrow peak

at roughly an 8-yr period. The threemodels with spectral

peaks near a 20-yr period correspond to the models with

the largest AMOC response to all three surface fields

(SST, SSS, and TAU) in this frequency region. Fur-

thermore, while MRI-CGCM3 does not have an un-

usually large response to SSS at an 8-yr period, it has the

largest response of any model to either SST or TAU at

this frequency (red circles in Figs. 10c,e). This multi-

model result is consistent with the differences described

above in comparing CCSM4 and GFDL CM2.1, sug-

gesting that this is a robust result across models. We

conclude that a key reason for the difference in the ex-

istence or lack of AMOCoscillations (spectral peak) lies

in the discrepancy in capturing how variability at high

latitudes in these surface fields leads to perturbations in

AMOC. These intermodel differences (and hence model

errors) occur in a relatively narrow frequency range and

might not be as evident without an explicit frequency

domain approach.

5. Evaluating AMOC variability mechanisms

We next turn to exploring the physical mechanisms

underlying model differences in AMOC variability, fo-

cusing again on CCSM4 and GFDL CM2.1. Several

mechanisms and factors have been suggested to influence

AMOC variability, and we focus on two in particular: the

effect of stratification in the Labrador Sea, which is im-

pacted byNordic Sea overflows (Yeager andDanabasoglu

2012; Zhang et al. 2011), and the westward propagation of

a subsurface (thermal) Rossby wave (Frankcombe et al.

2009; Te Raa and Dijkstra 2002).

The inclusion of a Nordic Sea overflow parameteri-

zation has been shown to reduce AMOC variability

in CCSM4; Yeager and Danabasoglu (2012) showed

that the overflow parameterization results in increased
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stratification in the Labrador Sea and reduces the pen-

etration of surface variability to depth, hence leading to

a weaker AMOC variability. We find a stronger AMOC

variability in the GFDL CM2.1 model, and there is in-

deed less stratification in the Labrador Sea region in this

model compared to CCSM4. In particular, in CCSM4

the potential density increases slightly below 2000m as

described in Yeager and Danabasoglu (2012), while this

denser layer is not observed in GFDL CM2.1. The

GFDL model also has higher interannual density vari-

ations both below 2000m and in the upper 1000m of the

Labrador Sea. Between 1000 and 2000m the overall

density variance is similar for the two models.

To evaluate whether differences between the penetra-

tion of surface disturbances to depth are responsible for

the differences in the characteristics of AMOC variability

between these two models, we evaluate the transfer

function between surface forcing and the temperature

at increasing depth, averaged over 508–608N and 3008–
3208E. Figure 11 displays the transfer function quanti-

fying the ocean temperature response to wind stress

forcing over the northern region in Fig. 9c. The tem-

perature response is examined for the upper 250, 250–

1000, 1000–2000, and 2000–3000m (the SST response is

similar to the upper 250-m response). The figure shows

that in the CM2.1 model, wind stress perturbations with

periods around 20 years in particular result in higher

subsurface temperature variability in the upper 1000m

than in CCSM4. However, in the upper 2000m, the re-

sponse to surface forcing is more strongly attenuated

with depth in GFDL CM2.1 than in CCSM4, with at-

tenuation of the variability at the dominant 20-yr pe-

riod in particular. A second striking difference is that in

CCSM4, the temperature response is significantly at-

tenuated below 2000-m depth, while this deepest layer

remains excited by surface perturbations in the GFDL

model. Unlike the upper 1000m, however, there is no

preferential 20-yr period evident in the response of the

sub-2000-m layer to surface forcing. This suggests that

changes in Labrador Sea stratification may indeed con-

tribute to the overall broadband increase in the GFDL

AMOC spectrum seen in Fig. 1, consistent with the

observation in Yeager and Danabasoglu (2012) for

CCSM4. However, our frequency-resolved method shows

no indication that the spectral peak in AMOC variability

in GFDL CM2.1 is the result of deeper penetration of

anomalies that result from surface forcing.

Note that the results in Fig. 11 are broadly similar if

considering density at depth rather than temperature or

for other surface forcing fields than wind forcing.

Another physical mechanism that has been proposed

to explain the oscillatory AMOC behavior is the east–

west propagation of a subsurface thermal Rossby wave

(Frankcombe et al. 2009; Te Raa and Dijkstra 2002). The

phase of this wave influences the strength of the over-

turning, thus resulting in AMOC variability at a period

associated with the east–west propagation time across the

Atlantic. If this mechanism is indeed responsible for the

observed behavior, we expect an east–west subsurface

temperature difference to have a stronger influence on

AMOC than a comparable temperature anomaly that is

in phase across the Atlantic, particularly at the frequency

associated with the peak in the AMOC spectrum.

To test this hypothesis, we construct two temperature

indices by averaging over the upper-1000-m ocean depth,

over 408–508N, and over eastern (3308–3508E) and west-

ern (3008–3208E) regions of the north Atlantic. Note that

the regression pattern between AMOC and SST has

a different sign between these two regions for both

models (Fig. 5); a similar pattern holds if the regression

FIG. 11. Transfer function from surface wind stress over northern region to Labrador Sea temperature at depth for

(a) CCSM4 and (b) GFDL CM2.1. Temperature is averaged over 508–608N and 3008–3208E and upper 250m (blue),

250–1000m (red), 1000–2000m (magenta), and 2000–3000m (black).
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is performed for the average temperature over the upper

1000m. The temperature difference between these two

regions is taken as indicative of the east–west subsurface

temperature gradient associated with the westward-

propagating thermal Rossby wave. We compare this

temperature difference with the sum of temperature

averaged over these two regions.

The transfer functions between these two sum and

difference indices on the one hand and the AMOC on

the other are shown in Figs. 12a,b for CCSM4 and

GFDLCM2.1. There are two clear conclusions from this

plot: first, there is no significant difference between the

models for these two transfer functions, and second,

there is no significant difference in how strongly vari-

ability in either of these temperature indices results in

AMOC variability. However, there is a striking differ-

ence in the power spectrum of these two temperature

indices, shown in Figs. 12c,d. Not only is the overall

upper-ocean temperature variability higher for theGFDL

model compared with CCSM4 (evident in both the sum

of east and west and the difference), but there is also

a marked increase in energy in the east–west temperature

difference at a 20-yr period in the GFDL model. This

suggests that there may be a connection between the

thermal Rossby wave and the spectral peak of AMOC

in GFDL CM2.1, as suggested by Frankcombe et al.

(2009); although this Rossby wave is not necessarily

a dominant excitationmechanism of AMOC variability.

This is seen by the fact that the difference in temperature

pattern is not more efficient at exciting AMOC than the

comparable meridionally coherent temperature anom-

aly. This Rossby wave is itself preferentially excited at

20-yr periods in the GFDL model but not in CCSM4,

although it is still not clear what leads to this model

difference.

6. Conclusions

There is a considerable spread between different

models in the nature and amplitude of interannual to

decadal variability in theAtlantic meridional overturning

circulation (AMOC). The model differences imply a sig-

nificant uncertainty in the decadal variability of the cli-

mate system more broadly. We analyze the response of

FIG. 12. Evaluation of thermal Rossby wave mechanism for exciting AMOC oscillations in (left) CCSM4 and

(right) GFDLCM2.1. The temperature in the upper 1000m is averaged over 408–508N and over eastern (3308–3508E)
and western (3008–3208E) regions of the North Atlantic, and (a),(b) transfer functions to AMOC are evaluated from

the average over these two regions (blue) and difference (red). (c),(d) The power spectrum of these variables.
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the AMOC to surface forcing (sea surface temperature,

salinity, and wind forcing) in eight Intergovernmental

Panel on Climate Change (IPCC) models. The analysis is

performed in the frequency domain, using transfer func-

tions, allowing us to concentrate on the frequency band of

10–30 years in which several models exhibit significant

peaks in the power spectrum, while others show no peak

at all. The existence of such spectral peaks implies a higher

predictability (Griffies and Bryan 1997) and is therefore

important to understand.We show that frequency domain

analysis using transfer functions can be used to under-

stand these (frequency dependent) differences.

As a first step in this analysis, we find by examining

EOFs of the AMOC streamfunction that AMOC vari-

ability at a single latitude may overemphasize differences

between models, since there are significant peaks in the

power spectrum associated with variability of the latitude

where the peak overturning exists. Nonetheless, signifi-

cant differences between models remain even when

considering the overall amplitude of the overturning

circulation (which we find to be reflected by the first EOF

of the streamfunction) rather than that at a given latitude.

Previous studies of AMOC oscillations found that the

SSS is nearly in phase with AMOC oscillations, while the

SST lags significantly, and used this to explain the oscil-

latory behavior (Delworth et al. 1993; Griffies and

Tziperman 1995). However, we find here that these

lead–lag relations exist regardless of whether the model

AMOC has a significant oscillatory signal. This high-

lights the fact that our understanding of AMOC oscil-

lations is still lacking.

We show that model differences in the relationship

between AMOC and surface salinity, surface tempera-

ture, and wind stress magnitude are consistent with dif-

ferences in the power spectra of AMOC variability.

Specifically, we find that models with a larger sensitivity

of the AMOC to surface fields (i.e., larger transfer func-

tion magnitude) at decadal periods are also characterized

by clear oscillatory AMOC variability and corresponding

spectral peaks at these periods. Models where the trans-

fer function amplitude is smaller show no AMOC spec-

tral peaks. This suggests that model representation of the

connection between surface forcing and AMOC is a key

component in understanding the different nature of

AMOC oscillatory behavior across models.

While intriguing, this insight cannot lead directly to

specific model improvement and to resolving the ques-

tion of whether AMOC variability should be charac-

terized by spectral peaks because it is not obvious which

model parameters or parameterizations are responsible

for the strength of the model AMOC response to surface

forcing fields. This can hopefully be resolved by future

work examining transfer functions involving the response

of interior density gradients to surface forcing and the

effects of such density gradient on AMOC variability.

We consider here two specific mechanisms that have

been proposed to explain AMOC variability. First, in-

creased stratification in the Labrador Sea has been shown

to decrease AMOC variance in CCSM4 by reducing the

penetration of surface perturbations to depth (Yeager

and Danabasoglu 2012). We find that there is indeed

a stronger penetration of surface forcing to below 2000m

in the GFDL model, which also has a stronger AMOC

variability. However, because this penetrating signal does

not peak at 20-yr periods, it is not clear that this mecha-

nism is responsible for the spectral peak at 20 years of the

AMOC. Second, subsurface thermal Rossby waves have

been proposed as a mechanism for inducing a 20-yr pe-

riod in AMOC variability. We find that an east–west

subsurface temperature gradient related to such propa-

gating waves is not more effective at exciting AMOC

variability than a comparable temperature anomaly not

related to such waves, nor more effective at exciting

AMOC in GFDL CM2.1 than in CCSM4. However, the

power spectrum of the east–west subsurface temperature

gradient has a peak at a 20-yr period, indicating that this

mechanism may indeed play a role.

It is important to emphasize that these process-based

analyses again rely on the ability to separate out effects

occurring at different frequencies; we hope that the

transfer function tool used here may be more broadly

useful in further clarifying the mechanisms underlying the

spectral characteristics of AMOC variability in models.
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