

Joint myocardial T1 and T2 mapping

Citation

Akçakaya, Mehmet, Sebastian Weingärtner, Tamer A Basha, Sébastien Roujol, and Reza Nezafat. 2015. "Joint myocardial T1 and T2 mapping." Journal of Cardiovascular Magnetic Resonance 17 (1): Q1. doi:10.1186/1532-429X-17-S1-Q1. http://dx.doi.org/10.1186/1532-429X-17-S1-Q1.

Published Version

doi:10.1186/1532-429X-17-S1-Q1

Permanent link http://nrs.harvard.edu/urn-3:HUL.InstRepos:14065497

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

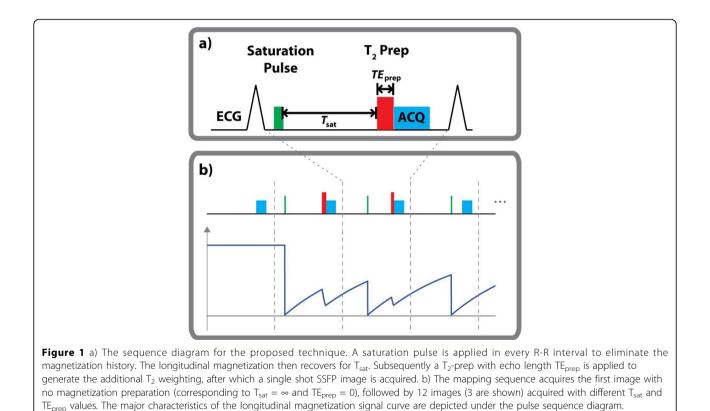
The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

Accessibility

WALKING POSTER PRESENTATION

Open Access

Joint myocardial T₁ and T₂ mapping

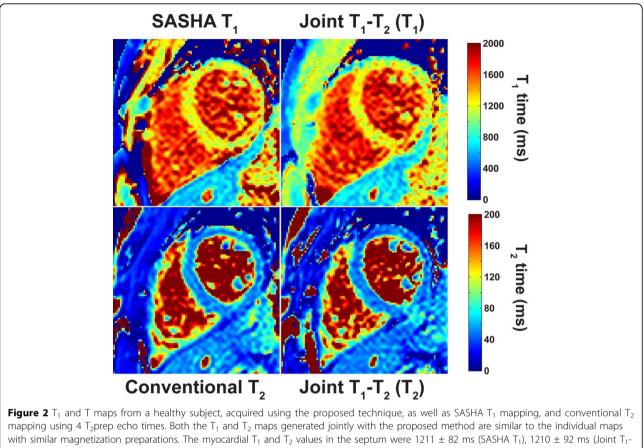

Mehmet Akçakaya^{1*}, Sebastian Weingärtner^{1,2}, Tamer A Basha¹, Sébastien Roujol¹, Reza Nezafat¹

From 18th Annual SCMR Scientific Sessions Nice, France. 4-7 February 2015

Background

Recent studies suggest that quantitative myocardial T_1 mapping allows assessment of focal and diffuse fibrosis in the myocardium [1]. Quantitative T_2 mapping has also been proposed to overcome challenges associated with T_2 weighted imaging [2]. These maps are traditionally acquired with different sequences, necessitating

image registration to evaluate them jointly. A sequence that can jointly estimate T_1 and T_2 maps has been proposed [3], but it requires multiple relaxation cycles, which necessitates a lengthy free-breathing acquisition. In [4], an alternative joint estimation sequence was proposed based on the inversion-recovery SSFP curve. In this study, we sought to develop a saturation-recovery



¹Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Full list of author information is available at the end of the article

© 2015 Akçakaya et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

with similar magnetization preparations. The myocardial T_1 and T_2 values in the septum were 1211 ± 82 ms (SASHA T_1), 1210 ± 92 ms (Joint T_1 - T_2), 49.0 ± 5.8 ms (conventional T_2) and 47.3 ± 6.5 ms (Joint T_1 - T_2) for each technique. The methods generated with the proposed method were acquired in the same time as each individual map, and are jointly registered by design.

based heart-rate independent sequence that can be acquired in a breath-hold and that allows for simultaneous estimation of quantitative T_1 and T_2 maps.

Methods

The sequence diagram is depicted in Figure 1. At every heartbeat, a saturation pulse is applied to eliminate the magnetization history. The longitudinal magnetization then recovers for T_{sat} based on the T_1 value. Subsequently a T_2 -prep pulse [5] with echo length TE_{prep} is applied to generate the additional T_2 weighting, after which a single shot SSFP image is acquired. The process is repeated for 13 heartbeats with various (T_{sat}^{k} , TE_{prep}^{k}) corresponding to heartbeat k, to sample different T_1 - T_2 weighted images. The first heartbeat is acquired with no magnetization preparation.

The T_1 and T_2 maps were estimated jointly by voxelwise least squares fitting to a 4-parameter signal model, A (1- $\exp(-T_{sat}{}^k/T_1)$) $\exp(-TE_{prep}{}^k/T_2)$ + B. Phantom imaging of 14 vials with different T_1/T_2 values were performed and compared to inversion-recovery and CPMG spin-echo references, respectively. Breath-held in-vivo imaging was performed on 5 healthy adult subjects, and the maps were compared to SASHA T_1 maps [6] and to T_2 maps [7].

Results

Phantom imaging resulted in T_1 and T_2 values not significantly different than the references (P = 0.481 and 0.479 respectively). Example in-vivo T_1 and T_2 maps are depicted in Figure 2, comparing various techniques. The T_1 and T_2 values were in good agreement (1211 ± 82 ms vs. 1210 ± 92 ms for T_1 ; 49.0 ± 5.8 ms and 47.3 ± 6.5 ms for T_2).

Conclusions

The proposed sequence allows for the simultaneous estimation of accurate and jointly registered quantitative T_1 and T_2 maps with similar accuracy and precision to saturation-based T_1 mapping and to T_2 mapping of same duration.

Funding

NIH:K99HL111410-01; R01EB008743-01A2.

Authors' details

¹Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. ²Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.

Published: 3 February 2015

References

- 1. Mewton: JACC 2011.
- 2. Giri: JCMR 2009.
- 3. Sinclair: JMRI 2009.
- 4. Santini: MRM 2014.
- 5. Brittain: MRM 1995.
- 6. Chow: MRM 2013.
- 7. Akçakaya: MRM 2014.

doi:10.1186/1532-429X-17-S1-Q1

Cite this article as: Akçakaya et al.: Joint myocardial T_1 and T_2 mapping. Journal of Cardiovascular Magnetic Resonance 2015 17(Suppl 1):Q1.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit