

Observed OH and HO2 in the upper troposphere suggest a major source from convective injection of peroxides

Citation

Jaeglé, L., D. J. Jacob, P. O. Wennberg, C. M. Spivakovsky, T. F. Hanisco, E. J. Lanzendorf, E. J. Hintsa, et al. 1997. "Observed OH and HO2 in the Upper Troposphere Suggest a Major Source from Convective Injection of Peroxides." Geophys. Res. Lett. 24 (24) (December 15): 3181–3184. doi:10.1029/97gl03004.

Published Version

doi:10.1029/97GL03004

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:14121870

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

Accessibility

Observed OH and HO_2 in the upper troposphere suggest a major source from convective injection of peroxides

L. Jaeglé,¹ D. J. Jacob,¹ P. O. Wennberg,¹ C. M. Spivakovsky,¹ T. F. Hanisco,¹ E. J. Lanzendorf,¹ E. J. Hintsa,¹ D. W. Fahey,² E. R. Keim,² M. H. Proffitt,² E. L. Atlas,³

F. Flocke,³ S. Schauffler,³ C. T. McElroy,⁴ C. Midwinter,⁴ L. Pfister,⁵ J. C. Wilson⁶

Abstract. ER-2 aircraft observations of OH and HO₂ concentrations in the upper troposphere during the NASA/STRAT campaign are interpreted using a photochemical model constrained by local observations of O₃, H₂O, NO, CO, hydrocarbons, albedo and overhead ozone column. We find that the reaction $O(^{1}D)$ + H₂O is minor compared to acetone photolysis as a primary source of HO_x (= OH + peroxy radicals) in the upper troposphere. Calculations using a diel steady state model agree with observed HO, concentrations in the lower stratosphere and, for some flights, in the upper troposphere. However, for other flights in the upper troposphere, the steady state model underestimates observations by a factor of 2 or more. These model underestimates are found to be related to a recent (< 1 week) convective origin of the air. By conducting time-dependent model calculations along air trajectories determined for the STRAT flights, we show that convective injection of CH₃OOH and H₂O₂ from the boundary layer to the upper troposphere could resolve the discrepancy. These injections of HO_x reservoirs cause large HO_x increases in the tropical upper troposphere for over a week downwind of the convective activity. We propose that this mechanism provides a major source of HO_x in the upper troposphere. Simultaneous measurements of peroxides, formaldehyde and acetone along with OH and HO₂ are needed to test our hypothesis.

Introduction

The central role of OH (hydroxyl radical) and HO₂ (hydroperoxyl radical) in the troposphere has long been recognized [*Levy*, 1972; *Crutzen*, 1973; *Logan et al.*, 1981], however it is only in recent years that direct measurements of these short-lived molecules have been made [see review by *Crosley*, 1995]. In the troposphere, OH is the key agent in the atmosphere's oxidizing capacity, regulating the lifetime of a large number of anthropogenic and natural compounds [*Thompson*, 1992]. In the upper troposphere, knowledge of the factors controlling HO_x (= OH + peroxy radicals) concentrations is critical for assessing the effects of aircraft on ozone [*Brasseur et al.*, 1996], and the resulting greenhouse radiative forcing [*Lacis et al.*, 1990].

In this paper we present a photochemical model analysis of the first measurements of OH and HO_2 concentrations in the upper troposphere. These measurements were obtained as part of the STRAT (Stratospheric Tracers of Atmospheric Transport) ER-2 mission. We compare model and observations of HO_x as a test of

¹Harvard University, Cambridge, Massachusetts.

⁵NASA Ames Research Center, Moffett Field, California.

Copyright 1997 by the American Geophysical Union.

Paper number 97GL03004. 0094-8534/97/97GL-03004\$05.00 the complex set of reactions leading to the production and loss of O_3 in the upper troposphere and contrast the upper troposphere to the lower stratosphere. Following the idea presented in *Prather* and Jacob [this issue], and previously proposed by *Chatfield and Crutzen* [1984], we examine the impact of deep convective transport of peroxides as a source of HO_x in the upper troposphere.

Aircraft Mission and Photochemical Model

The STRAT mission took place in five successive deployments between 1995 and 1996 out of northern California and Hawaii. In the flights discussed here, NASA's ER-2 aircraft sampled the atmosphere between 4 and 21 km, the majority of observations being in the 8-21 km altitude range. Extensive measurements of OH and HO₂ were obtained in the upper troposphere and lower stratosphere using laser induced fluorescence [Wennberg et al., 1995], with a measurement uncertainty of about 30%.

In this study, we compare the observed OH and HO₂ concentrations to results from the Harvard 0-D photochemical model applied to diel steady state calculations and to initial-value calculations along trajectories. The model is constrained with local observations (averaged over 1-minute intervals) of O₃, H₂O, NO, CO, CH₄, ethane, propane, butane, aerosol surface area, ozone column, albedo, temperature and pressure along the ER-2 flight track (see Fahey et al. [1995] for a description of the ER-2 payload). "Diel steady state" is defined by reproducibility of concentrations in the model over a 24-hour solar cycle. NO. (=NO+NO₂+NO₃+2N₂O₅+HNO₂+HNO₄) is assumed to be constant during the day and is adjusted such that the model matches the observations of NO at the time of day of the observations. When no measurements are available for the hydrocarbons, observed correlations between CO and these hydrocarbons from other flights are used. Acetone was not measured during STRAT and is specified in the troposphere from its correlation with CO observed during the DC-8 mission PEM-West B [McKeen et al., this issue] over the Pacific between 4 and 12 km. In the lower stratosphere, at altitudes for which CO values are below 20 ppby, acetone is assumed to be present in negligible concentrations because of its relatively short lifetime (10-15 days).

Photolysis rates are computed using a six-stream radiative transfer model for the Rayleigh scattering atmosphere constrained with the observed ozone column and albedo. The model reproduces the on-board radiometer observations [*McElroy*, 1995] of the NO₂ photolysis rate to within 10% in all cases. Agreement with observations for photolysis of O₃ to O(¹D) is generally within 30%.

The Harvard photochemical model includes comprehensive descriptions of tropospheric and stratospheric chemistry. Bromine and chlorine chemistry are taken into account, as well as heterogeneous chemistry of N_2O_5 , BrONO₂, ClONO₂, HOCl and HCl. The chemical mechanism is described in *Jacob et al.* [1996] and *Michelsen et al.* [1996]. The photolysis of acetone is computed using recent measurements of the temperature-dependent cross-sections and pressure-dependent quantum yield [*McKeen et al.*, this issue]. The model calculates the diel steady

²Aeronomy Laboratory, NOAA, Boulder, Colorado.

³NCAR, Boulder, Colorado.

⁴Atmospheric Environment Service, Downsview, Ontario, Canada.

⁶University of Denver, Denver, Colorado.

state concentrations of 50 species, including HO₂, OH, O(¹D), CH₃O₂, NO_y species (NO₂, NO₃, N₂O₅, HNO₂, HNO₄, HNO₃, PAN), and other photochemical intermediates, in particular formaldehyde (CH₂O) and peroxides (H₂O₂ and CH₃OOH). Problems associated with the steady state assumption for peroxides will be a focus of discussion later in this paper.

HO_xBudget in the Upper Troposphere

Figure 1 compares the observed HO₂ and OH mixing ratios to diel steady state model results for 15 flights in the upper troposphere and the lower stratosphere. Tropopause heights are based on temperature profiles measured from the ER-2 (B. Gary, personal communication), and range between 12 km (mid-latitudes) and 16 km (tropics). In the lower stratosphere, the model calculations are consistently within the uncertainties of the measurements (Figure 1, panels b and d). In the upper troposphere the model generally underestimates the observed HO₂, but not always: the mean ratios of observed to simulated mixing ratios for individual flights vary from 0.9 to 2.5 (mean of 1.5 for all flights). For some individual points, the model underestimates the observations by as much as a factor of 5. The ratio of HO₂/OH is well reproduced by the model (within 10-15% of observations) both in the troposphere [Hanisco et al., manuscript in preparation, 1997] and stratosphere [Cohen et al., 1994], indicating that the rapid interchange between these short-lived radicals is well understood.

Figure 2 shows the main reactions controlling production and loss of HO_x in the upper troposphere for a flight on November 7, 1995, when the diel steady state model reproduces the observations well. We have excluded from this Figure the reactions cycling HO_x with H₂O₂, CH₃OOH, HNO₂, HNO₃, HNO₄, HOCl, and HOBr, which we assume in the model to be at steady state. Primary sources of HO_x include the O(¹D)+H₂O reaction and the photolysis of acetone. Photolysis of acetone yields two HO_x molecules, and leads to production of CH₂O which can photolyze to yield additional HO_x, resulting in a total yield of about three HO₂ molecules per acetone molecule photolyzed [*Singh et al.*, 1995]. The source of HO_x from acetone photolysis shown in Figure 2 is based on this total yield as computed in the model. The secondary HO_x source from CH₂O photolysis in Figure 2 is mainly from the oxidation of CH₄ by OH; it excludes the contri-

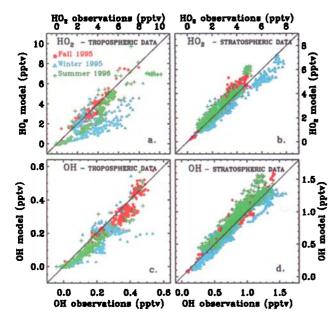


Figure 1. Simulated versus observed HO₂ and OH mixing ratios for 15 ER-2 flights between October 1995 and August 1996. The simulated values are from a diel steady state model sampled at the time of day of observations. Primary sources of HO_x in the model include $O(^{1}D)$ +H₂O and acetone photolysis.

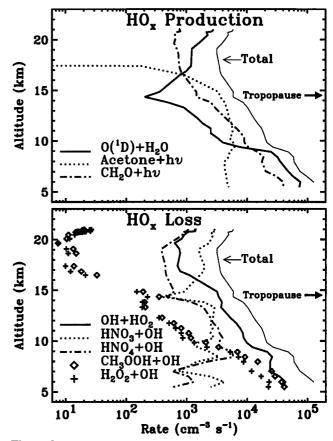


Figure 2. Production and loss rates of HO_x (24-hour averages) computed in the diel steady state model as a function of altitude for the ER-2 descent over Hawaii on November 7, 1995. See text for details on the accounting of HO_x sources and sinks. Only the major reactions are shown. All other reactions contribute individually to less than 10% of the total HO_x loss or production anywhere in the column.

bution from CH₂O produced by decomposition of acetone since this contribution is accounted for as part of the primary source from acetone photolysis. Because CH₂O originates from HO_x reactions, and is at chemical steady state in the model, we view it as a secondary source of HO_x.

A remarkable feature of Figure 2 is the relative unimportance of water vapor as a local source of HO_x in the upper troposphere. The upper troposphere is characterized by low humidity compared to the lower troposphere, and by low ozone levels compared to the lower stratosphere. As a result, the rate of O(¹D)+H₂O shows a pronounced minimum in the upper troposphere. By contrast, the source of HO_x from acetone photolysis shows little variation with altitude in the troposphere (Figure 2), and dominates over O(¹D)+H₂O as a primary source of HO_x in the upper troposphere. Loss of HO_x is dominated by the OH+HO₂ reaction and is therefore quadratic which damps the response of OH and HO₂ concentrations to changes in the HO_x sources. Not including the acetone source in the upper troposphere would result in predicted HO_x concentrations a factor of two lower than those shown in Figure 1. Further discussion of the importance of acetone is given by McKeen et al. [this issue].

The Influence of Convection

Data for some flights in Figure 1 show major discrepancies between observed HO_x concentrations and diel steady state model results. Isentropic back-trajectories using GEOS-1 assimilation data [*Schoeberl et al.*, 1991] show that the flights with the largest discrepancies sampled air a few days downstream of either deep convective complexes over the western tropical Pacific (February 8 and August 3, 1996) or mid-latitude cyclonic storms over the

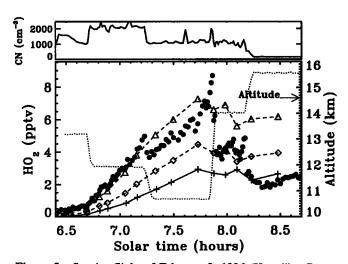


Figure 3. Sunrise flight of February 8, 1996 (Hawaii). Comparison between observations (solid circles) and diel steady state model calculations (pluses) of HO₂ mixing ratios, as a function of solar time. Also shown are results from a trajectory model assuming convective input of peroxides and CH₂O three days prior to the date of the flight with upper-bound (triangles; case A) and lower-bound (diamonds; case B) initial values for peroxides and CH₂O (see text for details). The dotted line shows the altitude of the ER-2. Observations of condensation nuclei concentrations are shown in the upper panel.

northeastern Pacific (January 29 and February 2, 1996). The presence of these systems is evident in GOES-9/GMS-5 infrared satellite images. The recent boundary layer origin of the air on these flights is also evident from high levels of condensation nuclei (CN), low levels of ozone, and enhanced concentrations of CH₃I. In contrast, for the flights where the diel steady state model reproduces observed HO_x concentrations to within measurement uncertainty (October 31, November 5, and November 7, 1995; February 13 and July 30, 1996) isentropic back-trajectories and the satellite images show no recent storm disturbances for the air sampled by the aircraft.

The largest discrepancy is found for the February 8, 1996 sunrise flight over Hawaii. Figure 3 shows the evolution of the observed concentrations of HO₂ as a function of solar time. The diel steady state model values are 3-5 times too high. Five-day isentropic back-trajectories for the February 8 flight are shown in Figure 4 together with the GOES-9/GMS-5 data. The air sampled by the ER-2 originated from a region of intense convective activity over the western equatorial Pacific about 3 days before the observation time. The low mixing ratios of ozone measured on this flight between 11 and 14 km (20 ppbv), combined with elevated concentrations of CN (1000-2000 cm⁻³, see Figure 3), relatively high levels of CH₃I (0.15 pptv) and low levels of NO_x (10-20 pptv) identify a recent marine boundary layer origin for the air. Water vapor was relatively low (30-50 ppmv), as would be expected if the air had been pumped to the tropical tropopause and then subsided over the ~ 3 days prior to sampling by the aircraft.

In a companion paper, *Prather and Jacob* [this issue] propose that convective injection of CH₃OOH, H₂O₂, and CH₂O from the boundary layer provides a major source of HO_x in the tropical upper troposphere. H₂O₂ is expected to be scavenged by precipitation during deep convection because of its high solubility in water, but CH₃OOH and CH₂O are far less soluble [*Betterton*, 1992] and should escape scavenging.

Measurements of peroxides over the western equatorial Pacific were taken in February 1994 during the PEM-West B mission, which used a DC-8 aircraft with a ceiling of 12 km altitude [*Heikes et al.*, 1996]. These data at 15°N-10°S show mean concentrations at 8-12 km altitude (CH₃OOH: 90 pptv; H₂O₂: 230 pptv) much lower than in the marine boundary layer (CH₃OOH: 1010 pptv; H₂O₂: 810 pptv). Enhanced concentrations of perox-

ides at 8-12 km altitude (mean values of 530 ± 120 pptv for CH₃OOH and 445 ± 145 pptv for H₂O₂) were observed in air of recent convective origin, as diagnosed by elevated concentrations of dimethyl sulfide (> 3 pptv). CH₂O was not measured during PEM-West B, but data collected in the marine tropical boundary layer indicate levels of 100-400 pptv [*Arlander et al.*, 1990]. Assuming a dilution factor for CH₂O in deep convection similar to that for CH₃OOH, we estimate typical CH₂O concentrations of 50-200 pptv in outflow from deep convection in the tropics.

We conducted time-dependent 0-D model calculations for individual air parcels traveling along the isentropic trajectories of Figure 4, using as initial conditions for peroxides and CH₂O the concentrations previously mentioned for convective outflows. Concentrations of O₃, H₂O, NO_t, CO, and acetone were conserved along the trajectories and assigned on the basis of the ER-2 observations. We considered an upper-bound case (A) with initial concentrations of 650 pptv CH₃OOH, 590 pptv H₂O₂, and 200 pptv CH₂O; and a lower-bound case (B) with initial concentrations of 410 pptv CH₃OOH, 50 pptv H₂O₂, and 50 pptv CH₂O. Case B assumes quantitative scavenging of H2O2 in deep convection. Results in Figure 3 show factors of 2-5 enhancement of HO_x concentrations in the trajectory model relative to the diel steady state model values after 3 days of aging in the upper troposphere. The trajectory calculations for cases A and B bracket the observations and capture the steep rise in HO₂ after sunrise, in contrast to the diel steady state calculation. The improved simulation of the early morning rise of HO₂ reflects the enhanced concentrations of peroxides, which photolyze at longer wavelength than $(O_1 \rightarrow O(^1D))$ or acetone. Note that even if H_2O_2 were efficiently scavenged during convective pumping (case B), we find that CH₃OOH photolysis can still sustain high levels of OH and HO₂. In either case, A or B, the convected CH₂O is relatively insignificant as a source of HO_x, in accord with the calculations of Prather and Jacob [this issue].

Once the aircraft climbs above 14 km (after 8 solar time), water vapor, CN (top panel in Figure 3) and CH_3I decrease sharply and the diel steady state calculations are in better agreement with the observations while the trajectory calculations overpredict HO_2 . The very different tracer levels suggest a different origin for the air above 14 km, not affected by convection.

The potential importance of convective injection of peroxides as a global source of HO_x in the upper troposphere depends on the characteristic decay time for the HO_x perturbation following a convective event. This characteristic time is defined by the lifetime of the chemical family HO_y (= HO_x + HNO₄ + HNO₂ + peroxides) which accounts for HO_x recycling from its short-lived reservoirs including peroxides. Figure 5 shows the evolution of HO₂, peroxides and formaldehyde obtained by the trajectory cal-

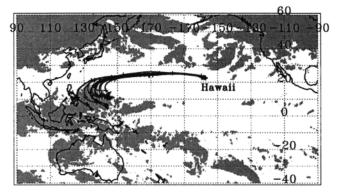


Figure 4. Five-day isentropic back-trajectories for the air sampled by the ER-2 over Hawaii on February 8, 1996. 14 trajectories are shown which were initialized along the flight track for potential temperatures between 345 and 360 K. Each tick mark represents one day. The shaded areas indicate the presence of high-altitude clouds (>11 km) based on satellite infrared brightness temperatures for the time period between February 3 and 6, 1996. In the tropics the presence of high clouds is generally associated with the occurrence of deep convection.

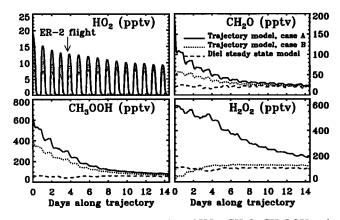


Figure 5. Simulated mixing ratios of HO₂, CH₂O, CH₃OOH and H_2O_2 in the trajectory model calculation at 11 km altitude initialized with tropical convective outflow on February 4, intercepting the ER-2 flight track 3.5 days later on February 8, and extended another 10 days at the latitude of Hawaii. Simulations assuming upper-bound (solid line; case A) or lower-bound (dotted line; case B) enhancements of peroxide in the outflow are compared to a simulation where the peroxides are in diel steady state (dashed line).

culations starting on February 4 (3.5 days before the intercept with the ER-2) and ending 14 days later. The relaxation time for the HO_y family is limited by the rate at which HO_y is lost via the $OH+HO_2$ and H_2O_2+OH reactions, which provide its main sinks. It takes more than 10 days after the injection of peroxides for HO_x to return to its steady state level, corresponding to the lifetime of the HO_v family (6 days) which is much longer than the individual lifetimes of the peroxides (1-3 days). Because this long relaxation time is comparable to the ten-day overturning rate of the tropical upper troposphere [Prather and Jacob, this issue], we conclude that convective injection of peroxides is globally important as a source of HO_x in the upper troposphere. In addition to tropical deep convection, synoptic storms at mid-latitudes can play a similar role in supplying peroxides to the upper troposphere. Although the frequency of such disturbances would be lower than in the tropics, the perturbation to the HO_x budget in the upper troposphere would take a longer time to decay at midlatitudes reflecting the longer lifetime of the HO_v family.

Further support for our hypothesis of a major convective contribution of peroxides to HO_x levels in the upper troposphere is offered by previous observations of H_2O_2 and CH_3OOH concentrations over the south tropical Atlantic during TRACE-A [*Jacob et al.*, 1996]. Diel steady state model calculations underestimated these two peroxides in the upper troposphere (8-12 km) by mean factors of 1.8 and 3.6 respectively, while agreement was much better at lower altitudes. A convective source for peroxides could account for this discrepancy. As in PEM-West B, particularly high concentrations of peroxides were measured during TRACE-A in deep convective outflows [*Pickering et al.*, 1996].

Analysis of STRAT observations for OH and HO₂ thus indicates that convection can affect ozone production in the upper troposphere not only through the injection of NO_x and hydrocarbons [*Dickerson et al.*, 1987; *Pickering et al.*, 1993], but also by the transport of peroxides, in particular CH₃OOH. Our study points to the need for future aircraft missions to include measurements of OH, HO₂, peroxides, CH₂O and acetone in order to obtain a highly constrained analysis of the HO_x budget in the upper troposphere.

Acknowledgments. This work was supported by the National Aeronautics and Space Administration (NASA-NAG5-2688; NASA-NAG2-1100) and the National Science Foundation (NSF-ATM-9612282). We thank the ground crew and pilots of the ER-2 for their efforts in obtaining the data set. STRAT was sponsored by NASA's Upper Atmosphere Research Program, the Atmospheric Effects of Aviation Project, and the Atmospheric Chemistry Modeling and Analysis Program. The project scientists for STRAT were Paul Newman, NASA Goddard, and Steven Wofsy, Harvard University.

References

- Arlander, D.W., et al., Gaseous oxigenated hydrocarbons in the remote marine troposphere, J. Geophys. Res., 95, 16391-16403, 1990.
- Betterton, E.Â., Henry's law constants of soluble and moderately soluble organic gases: Effects on aqueous phase chemistry, Adv. Environ. Sci. Technol., 24, 1-50, 1992.
- Brasseur, G.P., et al., Atmospheric impact of NO_x emissions by subsonic aircraft: a three-dimensional model study, J. Geophys. Res., 101, 1423-1428, 1996.
- Chatfield, R.B., and P.J. Crutzen, Sulfur dioxide in remote oceanic air: cloud transport of reactive precursors, J. Geophys. Res., 89, 7111-7132, 1984.
- Cohen, R.C., et al., Are models of catalytic removal of O₃ by HO_x accurate? Constraints from in situ measurements of the OH to HO₂ ratio, *Geophys. Res. Lett.*, 21, 2539-2542, 1994.
- Crosley, D.R., The measurement of OH and HO₂ in the atmosphere, J. Atmos. Sci., 52, 3299-3314, 1995.
- Crutzen, P.J., A discussion of the chemistry of some minor constituents in the stratosphere and troposphere, *Pure Appl. Geophys.*, 106-108, 1385-1399, 1973.
- Dickerson, R.R., et al., Thunderstorms: an important mechanism in the transport of air pollutants, Science, 235, 460-465, 1987.
- Fahey, D.W., et al., Emission measurements of the Concorde supersonic aircraft in the lower stratosphere, Science, 270, 70-74, 1995.
- Heikes, B., et al., Ozone, hydroperoxides, oxides of nitrogen, and hydrocarbon budgets in the marine boundary layer over the South Atlantic, J. Geophys. Res., 101, 24,221-24,234, 1996.
- Jacob, D.J., et al., Origin of ozone and NO_x in the tropical troposphere: a photochemical analysis of aircraft observations over the South Atlantic basin, J. Geophys. Res., 101, 24,235-24,250, 1996.
- Lacis, A.A., et al., Radiative forcing of climate by changes in the vertical distribution of ozone, J. Geophys. Res., 95, 9971-9981, 1990.
- Levy, H., II, Photochemistry of the lower troposphere, *Planet. Space Sci.*, 20, 919-935, 1972.
- Logan, J.A., et al., Tropospheric chemistry: a global perspective, J. Geophys. Res., 86, 7210-7254, 1981.
- McElroy, C.T., A spetroradiometer for the measurement of direct and scattered solar irradiance from on-board the NASA ER-2 high-altitude research aircraft, *Geophys. Res. Lett.*, 22,1361-1364, 1995.
- McKeen, S.A., et al., The photochemistry of acetone in the upper troposphere: a source of odd-hydrogen radicals, Geophys. Res. Lett., this issue.
- Michelsen, H.A., et al., Stratospheric chlorine partitioning constraints from shuttle-borne measurements of [HCI], [CINO₃], and [CIO], Geophys. Res. Lett., 23, 2361-2364, 1996.
- Pickering, K.E., et al., Upper tropospheric ozone production following mesoscale convection during STEP/EMEX, J. Geophys. Res., 98, 8737-8749, 1993.
- Pickering, K.E., et al., Convective transport of biomass burning emissions over Brazil during TRACE-A, J. Geophys. Res., 101, 23,943-24,012, 1996.
- Prather, M.J., and D.J. Jacob, A persistent imbalance in HO_x and NO_x photochemistry of the upper troposphere driven by deep tropical convection, *Geophys. Res. Lett.*, this issue.
- Schoeberl, M.R., et al., The dynamics of the stratospheric polar vortex and its relation to springtime ozone depletion, *Science*, 251, 46-52, 1991.
- Singh, H.B., et al., High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere, Nature, 378, 50-54, 1995.
- Thompson, A.M., The oxidizing capacity of the Earth's atmosphere: Probable past and future changes, *Science*, 256, 1157-1165, 1992.
- Wennberg, P.O., et al., In situ measurements of OH and HO₂ in the upper troposphere and stratosphere, J. Atmos. Sci., 52, 3413-3420, 1995.

- D.W. Fahey, E.R. Keim, and M.H. Proffitt, Aeronomy Laboratory, NOAA, Boulder, CO 80303.
- T.F. Hanisco, E.J. Hintsa, E.J. Lanzendorf, and P.O. Wennberg, Department of Chemistry, Harvard University, Cambridge, MA 02138.

D.J. Jacob, L. Jacglé (corresponding author), and C.M. Spivakovsky, Department of Earth and Planetary Sciences, Harvard University, 29 Oxford Street, Pierce Hall, Cambridge, MA 02138. (e-mail: lyj@io.harvard.edu)

- C.T. McElroy, and C. Midwinter, Atmospheric Environment Service, Downsview, Ontario M3H 5T4, Canada.
 - L. Pfister, NASA Ames Research Center, Moffett Field, CA 94035.
 - J.C. Wilson, University of Denver, Denver, CO 80208.

(Received June 30, 1997; accepted September 16, 1997)

E.L. Atlas, F. Flocke, and S. Schauffler, NCAR, Boulder, CO 80307.