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Predicting the Electrophysiological Responses of Murine Alpha Retinal Ganglion 

Cells to Artificial and Natural Visual Stimuli 

 

Abstract 

The retina sends many parallel channels of visual information to the brain through 

the axons of  >20 retinal ganglion cell (RGC) populations. The purpose of these distinct 

circuits for vision remains an open question. Recent results suggest that each cell type 

responds selectively to a specific feature of the visual scene. These conclusions are 

derived primarily from experiments with artificial visual stimuli. It is unknown whether 

the insights gathered under such conditions extend to the natural environment in which 

the retina evolved. One can address this question by building a mathematical model of 

RGC responses to artificial stimuli and then testing how well that same model performs 

with natural visual input. For several RGC types this exercise has failed dramatically, 

indicating an imperfect understanding of their neural code.  

Here we focus on the mouse alpha RGCs, which possess large cell bodies, stout 

axons, and wide receptive fields. Three subtypes had been previously defined based on 

their responses to light steps: On-Sustained, Off-Sustained, and Off-Transient. We 

targeted these RGCs for recording using a transgenic mouse line in which GFP is 

expressed in all alpha subtypes. Quantitative analysis of the recorded light responses 

revealed four distinct physiological cell types: an On-Transient alpha RGC in addition to 

the other three type previously identified. Using both artificial stimuli and natural movies, 
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we measured the visual responses of the mouse alpha cells. We then constructed a simple 

cascade-style model to link the stimulus to the firing rate.  

Based on electrophysiological recording and modeling, we found the visual 

messages the four alpha RGCs send to the brain to be similar in that they are minimally 

processed versions of the visual scene. Spatial averaging minimally influenced the 

responses of the alpha RGCs to the natural movies. Additionally, a simple linear-

nonlinear model accounted very well for the visual responses of all four alpha RGC 

subtypes, correctly predicting at least 70% of the variance in firing. The same model 

worked for both artificial stimuli (e.g. random flicker) and natural stimuli (mouse-cam 

and simulated-mouse movies). This successful account of alpha cell function will be 

valuable as a retina model for understanding cortical vision in the behaving mouse. 
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Chapter 1: Introduction 
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 An intuitive place to begin to learn about the brain is with the sensory systems. 

The only knowledge we possess of the natural world is derived from the interpretation of 

neural signals carrying sensory information. This information stems from the 

transformation of external sensory input, such as light, by sensory neural structures, such 

as the retina, into electrical signals. This process ultimately drives our daily lives. As 

humans, vision is our primary sense and almost half of our cerebral cortex is dedicated to 

processing visual information from the retina. Partly for this reason and partly because of 

experimental considerations, the retina has been a very popular model system to study 

neural circuitry. The retina is an ideal system to study neuroscience because it is the only 

part of the central nervous system that is easily accessed, it has a stereotyped layered 

structure across vertebrates, the output is readily recorded, and the light input is both 

easily controlled and quantified.  

From the time of Ramon y Cajal in the 1800’s, we have had a reasonable idea of 

the neural layers that comprise the retina1. Over time, many details have been added to 

the schematic, but the general structure remains true. Photoreceptors, in the form of rods 

and cones at the back of the retina, absorb incoming photons to begin the process of 

phototransduction. The visual information is synaptically passed to the bipolar cells and 

from there to the retinal ganglion cells (RGCs). Lateral inhibition from horizontal and 

amacrine cells modify this primary vertical information flow. Overall approximately 50 

cell types comprise the retina2. The axons of the RGCs form the optic nerve, which is the 

sole source of visual input to the mammalian brain. We can easily monitor the activity of 

the RGCs with electrode arrays or, as in this study, patch pipettes. This allows us to 

display visual stimuli to the retina and readout the information meant for the brain. Since 
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visual input can be easily parameterized and deconstructed, the correlation between 

various aspects of the stimulus and the RGC responses can be found. This also means that 

the retina serves as an excellent system to model neural processing. Neural signals arise 

on the level of molecules and ion channels, yet the eventual readout is on the scale of 

animal behavior. Thus the study of any part of the central nervous system can focus on a 

number of different length scales. Characterizing the transformation of light into 

electrical signals that are sent to the brain provides a starting point for decoding the visual 

processing that leads to behavior. Therefore, it is important to extract the transfer 

function that the retina uses to process visual input. 

References 

1. Cajal, S.R. (1893). La retine des vertebres. Cellule 9, 17–257. 

2. Masland, R.H. (2001b). The fundamental plan of the retina. Nat. Neurosci. 4, 877–886. 
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2.1 General procedures and materials 

Mice. The detailed methods for generating the KCNG4Cre transgenic mouse line has been 

previously reported1,2. In short, the KCNG4Cre line was created by inserting cre 

recombinase into the translation start codon of the potassium channel modulator kcng4 

gene by homologous recombination. The cre-positive cells were visualized by crossing 

with either the cre-dependent Thy1-STOP-YFP or Ai3 (JAX stock number: 007903) 

fluorescent reporter lines expressing EYFP 3,4. All experiments were conducted in 

accordance with protocols approved by the Institutional Animal Care and Use 

Committees at Harvard University and the California Institute of Technology.  

 

Electrophysiology. Mice were dark adapted for at least 1 hour prior to euthanization by 

cervical dislocation. The retina was isolated under infrared illumination into Ames 

oxygenated with 95% O2, 5% CO2 at room temperature. A ~2-3 mm aperture was cut 

into nitrocelluose filter paper and the retina was mounted ganglion cells (RGCs) facing 

up. The experiment was conducted with the retina in a superfusion chamber heated to 34-

36 degrees C. A two-photon microscope was used to identify fluorescent RGCs for loose 

cell-attached recording. Data acquisition and the two-photon microscope were controlled 

using custom LabView software. Patch electrodes (2-5 MOhm) filled with Ames medium 

were used to record action potentials that were subsequently amplified with a Multiclamp 

700B amplifier (Molecular Devices). Custom programs in IGOR (Wavemetrics Inc.) 

were used for spike thresholding and analysis. 
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Stimulation. Light stimuli were created using the Psychophysics Toolbox extensions in 

Matlab5–7. A modified Texas Instruments Lightcrafter with a custom lens system focused 

the stimuli onto the retinal photoreceptors (frame rate 60 Hz, magnification 9.1 um/pixel, 

intensity 10 mW/m2). Cones mediate vision at high light levels and, in the mouse retina, 

they typically coexpress two opsins: short (S) – and middle (M) wavelength sensitive 

with peak sensitivities of 360 and 508 nm, respectively8. The average stimulus intensity 

expressed in photoisomerizations per second for each of the three mouse photoreceptors 

corresponds to 5.7 ! 103  R*/s  for rod, 2.1 ! 103 R*/s for M cone, and 4.8 ! 103 R*/s for 

S cone. The relative intensities of the LEDs were chosen such that the rods and M cones 

are each equally excited by the UV and green LEDs (Figure 2.1). Movies were acquired 

at 150 fps, or 20 fps for the mouse cam movie, and scaled to approximate the input to the 

retina. Eye movements were assumed to be negligible and not accounted for in the 

stimulus9. Movie manipulations were performed in Matlab. Blurring of the simulated 

mouse movie was performed using the modulation transfer function from Geng et al. 

(2011). 
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Figure 2.1: Emission spectra of the stimulator LEDs (filled) and absorption spectra 
of the murine photoreceptors. 
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Specific stimuli. To measure many of the receptive field properties of the A-RGCs we 

utilized a so-called growing spot stimulus. In this stimulus, spots centered over the 

receptive field are flashed “on” for 1 second and “off” to background grey for 1 second. 

Figure 2.2 shows the example stimulus for an Off-RGC. When the stimulus was “on”, it 

was of the preferred polarity to drive the current RGC. The purpose of this stimulus was 

to measure the size of the receptive field, the strength of the surround, the latency of 

response, and many other parameters. Additionally, the peak firing rate to each spot as a 

function of the spot size was used to estimate the spatial receptive field in the absence of 

a receptive field from reverse correlation with a binary checkerboard stimulus. 
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Figure 2.2 Schematic of the growing spot stimulus utilized in Chapters 3 and 5. 
Each tick mark indicates a size of spot that was displayed. The center of the 
receptive field was more finely probed. 
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Calculation of physiological parameters. Many parameters were calculated from the 

growing spot stimulus so for each cell, the stimulus was repeated 3-8 times over the 

course of the experiment (Figure 2.2). For the baseline firing rate measurement and each 

subsequent spot size, the peristimulus time histogram (PSTH) was calculated by binning 

at 25 ms. The baseline firing rate was the average firing rate over the first 2 seconds. The 

optimal size was the spot that elicited the peak firing rate. The PSTH of the optimal size 

was used to determine the latency of response, i.e. the time to peak of PSTH. The 

surround strength was calculated as 1 minus the ratio of the peak firing rate at R = 800 

µm to the absolute peak firing rate from the optimal spot size. 

 

Histology. After electrophysiological experiments, some retinas were fixed in fresh 4% 

paraformaldehyde in PBS at 4 degrees C for two hours for further characterization of the 

On-transient alpha retinal ganglion cells. After fixation, the retinas were washed and 

incubated at 4 degrees C with primary antibodies for 4-5 days. Secondary antibody 

incubation at room temperature for 2 hours preceded mounting on a glass slide with 

spacers, ganglion cell side up, with Prolong Gold. Whole mount images were obtained on 

a LSM 710 inverted NLO microscope at 20X (Zeiss). The primary antibodies used were: 

anti-green fluorescent protein (~rabbit, IgG, Life Technologies) and anti-

nonphosphoneurofilament H (~mouse [1:1000], SMI-32, Sternberger Monoclonals 

Incorporated). 

 

Response similarity to manipulated movies. The extracellular spiking responses of 

retinal ganglion cells (RGCs) were recorded under stimulation by sequential natural 
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movies. Each movie was repeated 4-8 times and the spike trains to individual repeats 

were binned at 33 ms, i.e. 2 times the frame rate of the stimulus. To assess the similarity 

of retinal ganglion cell responses under different natural movies, Pearson’s correlation 

coefficient was calculated for each combination of the binned spike trains (twice the 

stimulus frame rate; ~33 ms). The coefficients from the individual repeats were averaged. 

This analysis was performed both across the manipulated movies and within the original 

movie. The correlation between repeats of the original movie was used as an estimate of 

neural noise. Subsequent correlation values were normalized by the average neural noise 

for each cell type.  

 

Spatiotemporal receptive fields. Receptive fields were mapped using a checkerboard 

pattern, with (45.5 um)2 checkers, flickering randomly either black or white at 60 Hz10,11. 

The spike-triggered average was calculated from 600 seconds of white noise stimulation 

by standard reverse correlation methods, i.e. adding together all the chunks of stimuli 

preceding a spike and dividing by the number of spikes12. In cases where only the 

temporal receptive fields were mapped by using a flickering spot plus surround annulus 

centered over the cell, the spatial receptive field was estimated by fitting a difference of 

Gaussians to the peak firing rate verses radius curve (see Specific Stimuli). To reduce 

noise, the temporal filter calculated from the data was fit with T(t) parameterized by the 

following equation11. 

 

! 

T (t) = (t /"1)
n1 e#n1 (t /"1#1) # a(t /" 2 )

n2 e#n2 ( t /" 2#1)   (Eqn. 2.1) 
 
These five parameters also served as the initial parameters when the model fit the 

temporal kernel. 



12 

Modeling. We predicted the visual responses of the alpha retinal ganglion cells using 

cascade models composed of linear filters and static nonlinearities. For each instance of 

model fitting, we used separate training and testing datasets to prevent fitting of the noise, 

i.e. overfitting. In general, the input to the model for each frame was calculated by 

convolving the movie with the approximate spatial receptive field and the pixels 

restricted to the center averaged. Each spatially uniform stimulus channel was linearly 

convolved with the parameterized temporal filter before rectification with a log-sigmoid 

nonlinearity. The parameters for the nonlinearity and, in some cases the temporal kernel, 

were fit in IGOR using the Levenberg-Marquardt algorithm for least squares fitting 

(Wavemetrics, Inc). Initial guesses for the temporal filters were computed by fitting the 

spike-triggered average with Equation 2.1 as described above. The output of the model 

was interpreted to be the firing rate of the neuron. Model performance was assessed by 

calculating the average correlation between the predicted firing rate and the individual 

spike train to repetitions of the stimulus (see “Response similarity to manipulated 

movies.”)  

 

Fitting a model to white-noise stimuli. To fit the responses to white-noise stimuli, we 

generated a stimulus ~700 seconds long that consisted of random sequences interspersed 

every 100 second with 10 seconds of the same stimulus. The model was fit to the long, 

600 seconds, sequence responses binned at the frame rate, 17 ms, to increase the number 

of stimulus combinations encountered by the model. The parameters fit to the long 

sequence were tested by calculating the predicted firing rate to the repeated sequence. 

The goodness-of-fit was assessed as described in “Modeling.” 
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Fitting a model to natural movie stimuli. The natural movies described in the 

“Stimulation” section were of very limited length compared to the white-noise stimuli. 

Thus to fit models to 30 seconds – 1 minute of repetitions of the data we broke the data 

into ~7 second chunks and iteratively fit the model by leaving out one chunk of the data. 

The model was iteratively tested by predicting the firing rate to each excluded chunk and 

the average constituted the model performance. The goodness-of-fit measure was the 

average correlation as for the white-noise stimuli. 

 

4-by-4 subunit model. In Matlab, the two natural movies were multiplied by a mask of R 

= 250 um and the remaining pixels split into an even 4-by-4 grid. The pixel intensities 

within each of the 16 squares were summed for each frame in time producing a 16-by-“# 

of frames” matrix that served as the input to the model. The model consisted of 16 

identical subunits. Each subunit filtered the 1-dimensional stimulus input with a temporal 

kernel and passed that filtered stimulus through a log-sigmoid static nonlinearity. The 

parameters for the temporal kernel and static nonlinearity were shared across all subunits. 

All the rectified subunit outputs were individually scaled and added together before being 

passed through a final log-sigmoid nonlinearity. Initial guesses for the temporal filters 

were computed by fitting the spike-triggered average with Equation 2.1 as described 

above. The rest of the parameters were set to unity except for the maximum firing rate for 

the last nonlinearity stage, which was set to a reasonable value (~100). Least-squares 

fitting was used to find the optimal parameters by allowing the Levenberg-Marquardt 

algorithm in IGOR (Wavemetrics Inc) to minimize chi-square. From the initial guess the 
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model looped through fitting subspaces of parameters. Each set of parameters was fit 5 

times and the model was allowed to loop through all parameter subspaces until 

convergence. In practice, less than 5 loops were required. The model output was 

interpreted as the predicted firing rate. The goodness-of-fit was calculated by the average 

correlation as described in “Modeling.” 
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Chapter 3: Discovering the Physiological Receptive Field Properties of the Mouse 
Alpha Retinal Ganglion Cells 
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3.1 Introduction: The Mouse Alpha Retinal Ganglion Cells  

Though complexity in the retina has been documented since Ramon y Cajal’s 

(1893) report cataloguing the diversity of RGCs of the vertebrate retina, types of RGCs 

were not recognized until the 1970s when receptive field size differences due to 

eccentricity were taken into account1,2. Of the approximately 20 types of retinal ganglion 

cells (RGCs) that have subsequently been morphologically identified in the mammalian 

retina, one class of cells called the alpha RGCs (A-RGCs) has arguably been studied the 

most extensively 3–5. The A-RGCs were among the first to be classified based on 

possessing the largest soma and dendritic arbor of all the neurons in the ganglion cell 

layer6,7. The same neurons were found to be labeled by the reduced-silver method that 

stains for neurofilaments8. Over the past few decades, RGCs with large somas and 

dendritic fields have been found in over 20 mammalian species by the reduced-silver 

method and, more recently, neurofilament staining with antibodies has revealed A-RGC 

analogs in the human retina5,6,9–11. Therefore, due to their conservation across species and 

easily identifiable morphology, the A-RGCs have often served as “model ganglion cells” 

to study computations in the retina12–20. From these efforts, many specific synaptic 

mechanisms have been elucidated, but the fundamental properties of the A-RGC message 

that is conveyed to the brain are not known. We aimed to map the physiological receptive 

field properties of the mouse A-RGCs to better understand their visual message. 

It is important to emphasize that the A-RGC classification is morphological. The 

defining elements are staining positive for markers of neurofilament while possessing 

large cell bodies and dendritic fields. A number of secondary characteristics have also 

been attributed to the A-RGCs. The cells typically possess roughly circular dendritic 
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arbors that are unistratified within the inner plexiform layer (IPL). In general, 2-6 

primary dendrites stem from the soma of the A-RGCs with radial branches that rarely 

overlap. They also possess the thickest axons and make up less than 10% of the overall 

ganglion cell population5,6. The physiology of the A-RGCs across species is less clearly 

defined. The A-RGCs in the cat retina were found to correspond to the previously 

identified Y-cell population21. The Y-cells were classified based on their brisk-transient, 

i.e. rapid and short, responses to light stimuli and their spatially nonlinear receptive fields 

as assessed by responses to inverting gratings. Two types of Y-cells were defined based 

on having either On- or Off-center receptive fields. On cells across the retina respond to 

an increase in light intensity and are inhibited by a decrease in intensity whereas Off cells 

respond in the opposite manner. The physiology of cells with A-RGC morphology has 

been reported in a few mammals other than the cat including the rabbit, mouse, guinea 

pig, primate, and gerbil22–28. Some of these A-RGCs have been found to differ 

substantially in their physiology from their cat analogs. 

Recently, the mouse has become a common model system for studying 

mammalian vision. Besides the many advantages of working with a mammal smaller than 

a primate or cat, the crucial factor has been the widespread availability of transgenic 

mice29. Before now, studies on the mouse A-RGCs have not taken advantage of 

transgenic technology and instead relied upon rough morphological criteria for cell 

selection. By recording from mouse RGCs with the largest somas (~20 µm) at random 

and filling the cells with fluorescent dye for morphological reconstruction, three types 

were defined: Off-Transient, Off-Sustained, and On-Sustained3,20,25,30–32. The Off-

Transient cells were the most similar to the feline brisk-transient analogs and responded 
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to a decrease in light intensity with a brief increase in firing rate. The Off- and On-

Sustained cells displayed maintained responses to their preferred light stimuli. Cells in 

these original reports were not stained with a marker for neurofilament and thus were not 

verified to be A-RGCs. Recently, the KCNG4-cre transgenic mouse line was shown to 

selectively label the A-RGCs in the ganglion cell layer when crossed with the Thy1-

STOP-YFP fluorescent reporter33. With this tool, we can specifically examine A-RGC 

physiology in the mouse retina to complement previous reports25,30,31.  

For the first time, the entire mouse A-RGC population can be reliably targeted. 

We probed their receptive field properties by recording extracellular action potentials to 

visual input to ask, what physiological properties are shared across the mouse A-RGC 

population? Specifically, we wondered whether the Off A-RGCs could be quantitatively 

separated into two classes based on their physiology alone. We also assessed the diversity 

in the On A-RGCs with the same criterion. In addition, we looked for other criteria by 

which to recognize the cells when randomly patching or during extracellular array 

recording. Ultimately, we aimed to delineate the receptive field properties of the mouse 

A-RGCs to better understand their visual message conveyed to the brain. 
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3.2 Physiological Classification of the Off and On Alpha RGCs 

Pang, Gao, and Wu (2003) were the first to perform voltage-clamp recordings and 

subsequent morphological reconstruction on alpha retinal ganglion cells (RGCs) in the 

mouse. Similar to studies in other mammals, they chose to target the RGCs with the 

largest somas (20-25 µm diameter) for consistency. Based on that morphological 

criterion, they identified three types of mouse alpha-RGCs (A-RGCs): Off-Transient, 

Off-Sustained, and On-Sustained25. Other labs have conducted similar experiments by 

randomly patching large, RGCs in the mouse and all have agreed with this original 

classification20,30,31,34. 

 

3.2.1 Separating the Off Alpha Retina Ganglion Cells into Sustained and Transient Types 

We have confirmed the existence of two populations of mouse Off A-RGCs, 

corresponding to the transient and sustained types, and we developed a quantitative 

criterion by which the types can be classified based on their spiking responses. Using the 

KCNG4Cre transgenic mouse line from the lab of Dr. Joshua R. Sanes that selectively 

expresses a fluorescent protein in the A-RGCs when crossed with the cre-dependent 

Thy1-STOP-YFP reporter mouse line, we recorded the extracellular spiking responses of 

the Off A-RGCs to a sequence of dark spots of increasing radius flashed at 1 Hz35. The 

purpose of this stimulus was to probe the properties of the circular center-surround 

receptive fields. We defined the spot size that elicited the peak firing rate to be the size of 

the receptive field center and we quantified the surround strength as the decrease in firing 

rate from the peak due to the addition of the inhibitory surround. As in previous reports, 

some cells responded with a brief burst of action potentials before returning to the 
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baseline firing rate and others maintained a steady, elevated discharge for most or all of 

the stimulus20,31. Surprisingly, it was difficult to classify all cells as either transient or 

sustained while recording because many of the cells were transiently excited to some 

degree and possessed high baseline firing rates. To quantify the time course of the 

responses, we fit the average response to the optimal spot size, i.e. the radius that elicited 

the peak firing rate, with an exponential function. The exponential fit gave the decay time 

constant, tau, and the steady state firing rate, Y0, of the neural response. Intuitively, one 

would expect a transient cell to have a short time constant and a low steady state response 

while a sustained cell should have a longer time constant and higher steady state 

response. In a plot of the steady state response (Y0) normalized by the peak firing rate 

versus the exponential decay time constant, we saw the two clusters predicted by intuition 

(Figure 3.1, n = 56). The transient cells clearly formed a discrete cluster in the bottom left 

corner with exponential time constants <150 ms and normalized steady state response < 

0.1. 
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Figure 3.1: Steady state firing rate / Peak firing rate as a function of exponential 
decay time constant for all recorded Off A-RGCs (top, n = 56). Example exponential 
fits and light responses from an Off-Transient (left) and Off-Sustained (right) cell 
marked in the top graph with stars. 
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3.2.2. On Alpha Retinal Ganglion Cells Separate into Sustained and Transient Types 
 

I also recorded from On A-RGCs in the KCNG4-cre mouse line and analyzed 

their spiking responses to a sequence bright spots of increasing radius flashed at 1 Hz. 

When the On cells were run through the same analysis as the Off cells, we were surprised 

to find a cluster of On-Transient cells (Figure 3.2, green). All reports mentioning mouse 

A-RGCs cite the existence of only On-Sustained cells, yet based on the same quantitative 

criterion developed for the Off RGCs, the On population also separated into two clusters. 

The less numerous transient cells possessed normalized steady state responses < 0.1 with 

exponential time constants <100 ms, 50 ms faster than the Off-Transient population. 

Unexpectedly, the On-Sustained population also had fast decay time constants (< 200 

ms), but their normalized steady state responses fell into the same range as the Off-

Sustained RGCs (~ 0.1 – 0.4). Fitting the On population with a double exponential did 

not reveal a different separation of the two types (data not shown). 
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Figure 3.2: Steady state firing rate / Peak firing rate as a function of exponential 
decay time constant for all recorded On A-RGCs (top, n = 29). Example exponential 
fits and light responses from an On-Transient (left) and On-Sustained (right) cell 
marked in the top graph with stars. 
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To confirm the On-Transient cells to be alpha RGCs, two KCNG4Cre retinas were 

stained with a neurofilament heavy-chain marker, the SMI32 antibody, after recording. 

This antibody has been shown to label A-RGCs in the mouse4,34. The same On-Transient 

cells that were targeted on the electrophysiology rig were located post-fixation. All tested 

cells were both YFP and neurofilament positive and thus meet the classic definition of A-

RGCs (Figure 3.3, n=2). Therefore, the mouse On A-RGCs are not only sustained as 

claimed in previous reports, but display a diversity of light responses. 
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Figure 3.3: On-Transient RGCs fluorescently labeled in the KCNG4Cre line are 
neurofilament positive (n=2). A screenshot from the 2-photon rig of the fluorescent 
RGCs with a single RGC targeted (top left) with On-Transient responses (bottom 
left). Post-experiment histology (center and right) shows the recorded cell to be 
positive for neurofilament marker SMI32 (red). 
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We compared the exponential fit parameters used to classify the Off and On 

populations across the entire A-RGC population. The sustained and transient cells were 

statistically different (p < 10-10) in their steady state normalized by peak firing rates. The 

exponential decay time constants were statistically indistinguishable for the Off-

Transient, On-Transient, and On-Sustained populations. The response decay time for the 

Off-Sustained RGCs was significantly longer (p < 10-7) from the rest of the A-RGCs 

(Figure 3.4). 
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Figure 3.4: Steady state firing rate normalized by peak firing rate (left) and 
exponential decay time constant (right) for all A-RGCs. 
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Crucially, the light responses to the optimal spot for each of the four clusters 

found from the quantitative exponential decay analysis also qualitatively match (Figure 

3.5). When comparing the time course of the Off (red) and On (green)-Transient cells by 

eye, they look almost identical. The majority of the On-Sustained (black) cells appear to 

briskly respond to the bright spot and then quickly decay to roughly one quarter of the 

peak firing rate. We next compared the receptive field parameters of these 

physiologically defined cell types. 
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Figure 3.5: Peristimulus time histograms (PSTH) of the Off (top) and On (bottom) 
A-RGCs to the flashed optimal spot size of the preferred contrast. The polarity of 
the stimulus is shown in the background. The populations have been split based on 
the exponential fit analysis.  
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3.3 The Receptive Field Properties of the Mouse Alpha Retinal Ganglion Cells 

Based on the physiological cell types defined by the exponential fit, we looked at 

a number of properties of the alpha RGCs to investigate the similarity of the entire alpha 

population. 

To measure the spatial acuity of the A-RGCs, we showed a contrast-reversing 

stimulus that is commonly used to assess the degree of linear intensity summation across 

the receptive field36. A linear cell will not respond to such a stimulus with a maintained 

mean light intensity where light is simultaneously added and subtracted from the 

receptive field, but a cell that nonlinearly sums light will respond to each change (Figure 

3.6). This kind of frequency-doubled response came to define the Y-cells of the cat 

retina37–39. Given that Y-cells were later identified to be the cat alpha cells based on 

morphological similarity, we expected all of the mouse alpha cells to have nonlinear 

spatial receptive fields21,40. By inverting high contrast gratings of increasing spatial 

frequency over the receptive field of an A-RGC, we asked whether we saw the 

frequency-doubled response indicative of nonlinear summation. If so, we assessed the 

spatial frequency limit of the frequency-doubled response as defined by the grid of 

highest spatial frequency that elicited a response 2 standard deviations above baseline. 

From the Off alpha population, we found a wide range of responses to this stimulus that 

ranged from a response to every grating to no response at all. The degree of nonlinear 

summation spanned from highly nonlinear, with a spatial acuity of 10 µm, to linear, with 

the cell summing across the entire 40 0 µm receptive field (Figure 3.6). The transient and 

sustained cells also tended to respond to fine gratings or thick gratings, respectively, 

supporting their classification by the exponential fit. By comparison, the On A-RGCs all 
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had nonlinear spatial receptive fields. With the exception of two On cells they were all 

sensitive to gratings with bars of 20 or 50 µm. In fact the Off-Transient, On-Transient, 

and On-Sustained cells had statistically indistinguishable acuities. Thus, the majority of 

the mouse A-RGCs possessed nonlinear receptive fields, with the exception of the Off-

Sustained population. 
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Figure 3.6: The majority of the A-RGCs in the mouse retina, with the exception of 
the Off-Sustained RGCs, have nonlinear receptive field centers with responses to 
each inversion of gratings down to ~ 30 um bars (~ 1 cycle per degree).  
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From the same growing-spot sequence stimulus described earlier, we quantified 

the baseline firing rate, strength of the surround, peak firing rate, latency to peak, and 

receptive field size. The baseline firing rate was calculated as the average firing rate 

before the growing spot stimulus began. Unsurprisingly the transient RGC types tended 

to have lower baseline firing rates than their sustained counterparts. The On-Transient 

firing rate was significantly lower than the rest of the A-RGCs (Figure 3.7, see Figures 

3.1 & 3.2). 
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Figure 3.7:  Average baseline firing rate measured before the beginning of each 
growing spot sequence repetition for the four A-RGC types. *** indicates at least p 
< 10-4. The Off-Transient (red) baseline firing rate is also significantly less (p < 10-3) 
than the On-Sustained (black) baseline. 
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 To visualize the responses to the growing spot stimulus, we plotted the average 

peak firing rate to each spot size versus the radius of the stimulus for each of the A-RGC 

types (Figure 3.8, top). From this representation of the data, it is easy to gain a qualitative 

sense of the A-RGC responses. Most of the curves intersect the y-axis above zero 

indicating a non-zero baseline firing rate. The responses grow quickly with increasing 

spot size and all curves peak at approximately the same radius. At the largest spot sizes, 

the Off-Transient RGCs still respond with ~75% of their peak firing rate while the 

response from the On-Transient RGCs is reduced to about half the peak.  

The decrease in firing rate to larger spot sizes was quantified by calculating a 

surround index. The surround index was computed as one minus the ratio of the response 

from the largest spot size (R=800 µm) to the response from the optimal spot (R~125 µm). 

Largely, we found the surround strength of the mouse A-RGCs to be weak, < 0.6, 

compared to non-alpha RGCs whose response often decreases to zero36,41. The Off-

Transient and On-Transient had weaker and stronger surrounds, respectively, compared 

to the Off-Sustained RGCs (p <0.01). The On population had slightly distinguishable 

surround strengths (p < 0.05) giving the On-Transient cells the strongest surrounds. We 

estimated the receptive field size to be the diameter of the spot that produced the peak 

firing rate of those tested. The receptive field sizes of the four alpha RGC types were 

statistically indistinguishable, except for the Off-Transient cells (p < 0.01). The Off-

Transient cells had consistently smaller receptive fields by ~50 µm.  
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Figure 3.8: Average normalized peak response versus spot radius to the growing 
spot stimulus for the A-RGCs (top). Surround strengths and receptive field 
diameters calculated from the data in the top graph. Surround: 1-
FR(R=800)/FR(R=peak R). Receptive field diameter: Radius of spot that 
corresponds to peak firing rate. All p-values (Student’s 2 tailed t-test) were greater 
than 0.001. 
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The latency for each cell was calculated as the time to peak for the maximum 

response (Figure 3.9, left). The Off-Sustained cells were statistically slower than the Off-

Transient cells (p<0.01) and the rest had equivalent latencies. Similarly, the average peak 

firing rates did not differ across the alpha population (Figure 3.8, right). 
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Figure 3.9: The time to peak (left) of the response to the optimal spot size that 
elicited the peak firing rate (right, 25 ms bins) during from the growing spot series. 
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We also checked for direction selectivity in the responses of the alpha RGCs. We 

found the cells to respond to spots of the preferred intensity moving over their receptive 

field (700 µm/s) any direction. This confirms previous reports that state alpha cells to be 

responsive to motion, but not direction selective5 (Figure 3.10).  
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Figure 3.10: The A-RGCs respond to moving spots over their receptive fields, but 
they are not selective to motion in a particular direction. 
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Overall a number of receptive field parameters were shared by the alpha RGCs 

under our particular stimulus conditions (see Chapter 1: Methods). The Off-Sustained 

cells differ the most dramatically from the rest of the A-RGCs with a slower response 

decay and lower acuity. The On-Transient cells distinguish themselves with a very low 

baseline firing rate and the strongest surrounds. The Off-Transient cells have a slightly 

smaller receptive field diameter and the On-Sustained cells share all parameters with the 

other types.   

 

3.4 The Unique Alpha Retinal Ganglion Cell Spike Shape with Prepotential 

For the majority of extracellular recordings from A-RGCs, we saw a unique spike 

shape. In addition to sharp spikes, particularly at physiological temperatures, a fast 

prepotential was found to precede every spike (Figure 3.11). This spikelet was found in 

recordings from all four of the A-RGC types and thus did not correlate with the polarity 

or temporal dynamics of the RGC. In practice, this spike shape came to confirm the 

correct RGC had been patched with the electrode and, an experimenter randomly 

patching should be able to use this spike shape as an additional criterion for targeting 

mouse A-RGCs. It should be noted that we did not systematically rule out the possibility 

of other RGCs having the same shape, but we did not see the spikelet in any of the cells 

we randomly patched. The spikelet persisted during visual stimulation and thus appears 

to be part of the normal function of the A-RGCs.  
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Figure 3.11: The spike shape with a prepotential (red arrow) is common to the class 
of A-RGCs. 
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Figure 3.12: Spikelet before somatic spike fires with regularity, even in the absense 
of a full action potential. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



45 

For some recordings, the prepotential was seen to occur at regular intervals even 

in the absence of a somatic spike (Figure 3.12). This indicates that the spikelet may be the 

origin of the high baseline firing rate and regularity of the A-RGC action potentials25,31. 

From personal experience and previous work in the Meister lab (Y. Zhang, unpublished 

data), the distance between the prepotential and the somatic spike was seen to change 

according to temperature. While recording from an A-RGC and systematically varying 

the temperature, the time between the prepotential and the large spike increased on the 

order of 1 ms (Figure 3.13). The same behavior was not seen for a non-alpha RGC 

indicating this phenomenon is not common to all RGCs. The same expected changes in 

spike amplitude and duration were seen for the alpha and the non-alpha RGC suggesting 

the lack of prepotential in the non-alpha cell was not due to experimental error in 

temperature adjustment.  
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Figure 3.13: The time between the prepotential and the somatic spike on A-RGC 
action potential depends on bath temperature (top). The same trend in spike shape 
versus temperature is seen for a non-alpha RGC, but no prepotential becomes 
obvious at low bath temperatures (bottom). 
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Figure 3.14: Schematic of A-RGC action potential. We propose the action potential 
originated in the dendrites. 
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The regularity of the prepotential and the indication it always precedes a full 

somatic spike led us to believe multiple spike generating mechanisms were at work in the 

A-RGCs. It is known that for some neurons, including RGCs, the actual site of somatic 

spike initiation lies away from the cell body at the axon initial segment (AIS)42,43. This 

region has the highest density of sodium channels and often possesses special channels 

not present in the soma44–47. However, the timing of the spikelet and the somatic spike 

suggests involvement of the dendrites. In the brain, fast prepotentials have been linked to 

spike initiation by dendritic spikes48,49. Additionally, some mammalian RGCs such as the 

On-Off direction selective and likely the A-RGCs, have been shown to be capable of 

dendritic spikes50,51. Considering the above properties of the A-RGC spike shape, we 

hypothesized that an active spike triggered in dendrites is passively conducted through 

the soma to the AIS to initiate a somatic spike. To test the hypothesis that both the 

dendrites and AIS play an active role in A-RGC spike initiation, we performed a rough 

calculation. The patch electrode should record current from the dendritic spike as it 

passes to the AIS and the somatic spike. Therefore the time between recording the small 

dendritic spike and the large action potential should match the time it takes for current to 

travel from the soma to the AIS and back. In mammals, including mice, the AIS has been 

shown to be 20-35 um down the axon from the cell bodies of RGCs45,47,52. This same 

work has also shown the size of the AIS to vary depending on the soma size with the 

largest somas possessing the longest AIS. Considering the A-RGCs should have the 

longest AIS and the point of lowest threshold may lie anywhere along that region, an 

estimate of 20 um for the distance from the soma to the point of action potential initiation 

is conservative. Estimating 3.5 m/s for the conduction velocity at 24 degrees C it should 
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take ~0.1 ms for the current to travel from the soma to the AIS and back53. This time 

scale is consistent with timing between the prepotential and full action potential from 

extracellular recordings from the mouse A-RGCs (Figure 3.13).  

 

3.5 Discussion 

3.5.1 Finding On-Transient Alpha Retinal Ganglion Cells in the Mouse 

All earlier reports on mouse A-RGCs had agreed with the original finding of three 

physiological types corresponding to an Off-Transient, Off-Sustained, and On-

Sustained20,25,30,31,34. We also agree with these earlier studies, but with the help of the 

KCNG4Cre transgenic mouse line, we confirmed the existence of an On-Transient A-RGC 

type. Considering we found the On-Transient cells to be a slight minority of the On 

population (7/29 of On A-RGCs), they would be easier to miss in general. Therefore is it 

likely that during random patching experiments from other labs, occasional On-Transient 

responses from cells with large somas were discarded as anomalous. As opposed to some 

prominent differences in acuity and exponential decay time of the Off A-RGC, the entire 

On A-RGC population shares the majority of the receptive field parameters examined 

here. Their receptive field size, peak firing rate, acuity, latency, surround strength, and 

exponential decay time constant are all statistically indistinguishable. This hints that the 

computations performed by the On-Transient and -Sustained types are similar. The only 

striking difference is in comparing their baseline and the ratio of their steady to peak 

firing rates. These firing rate properties allow On-Transient cells to be clearly 

distinguished during the experiment (Figure 3.2, bottom). Further work is required to 

define the similarity in the visual messaged conveyed to the brain by the two On types.  
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It is still an open question whether the On-Transient RGCs are morphologically 

distinct from the On-Sustained RGCs via their lamination in the inner plexiform layer 

(IPL) or dendritic branching pattern. Evidence in the literature exists for both 

morphological and physiological diversity. All morphological studies of the mouse RGCs 

find multiple cells in the On sublamina with large somas and A-RGC-like 

morphology3,4,54,55. For example, Sun et al. (2002) claimed to find three morphological 

types of A-RGCs: two in the inner IPL and one in the outer IPL. The two On cells were 

distinguished by the density of their dendrites and not their stratification layer in the IPL. 

Kong et al. (2005) found four large RGC types through morphological clustering analysis 

and specifically questioned whether clusters 8 or 11 were the On A-RGCs. Unfortunately, 

it is as difficult to draw conclusions from these studies as it is to completely reconcile 

them with each other. We should be particularly careful in light of the recent report on 

the nasal-to-temporal gradient of the On-Sustained A-RGCs that was not taken into 

account in this earlier morphological work34. Our findings distinguish On-Transient from 

On-Sustained A-RGCs based on physiology alone and thus we do not address the 

morphology of these two types. 

In addition to morphological diversity, physiological diversity was also noted in 

the mouse A-RGCs since the beginning of their characterization. In figure 2, Pang et al. 

(2003) shows a histogram of the measured inhibitory chloride current amplitudes and 

comments on how it varied across the tested population (n=23). The only difference they 

noticed was in the frequency of light-evoked spikes. It is possible the On-Transient and -

sustained cells we see possess the same morphology, but receive different levels of 

inhibition.  
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Many reports provide evidence for morphological and physiological diversity in 

the mouse A-RGCs. Unfortunately, none of those reports except one verify the targeted 

RGCs as alpha by staining for neurofilament34. The decisive answer will come from 

patching On-Transient cells, filling them with dye, staining for neurofilament, and 

reconstructing their morphology in relation to the stratification pattern of the starburst 

amacrine cells. A thorough comparison of lamination and dendritic branching patterns 

with matching data from On-Sustained cells will resolve any morphological differences. 

Ultimately one would like a transgenic mouse line specific to the individual On-Transient 

and On-Sustained populations. Then it could be assessed whether each population evenly 

tiles the retina in a mosaic, as shown for the Off-Transient A-RGCs, to constitute separate 

types of RGCs28. Here we provided the starting point for future work by presenting 

diversity in the On A-RGCs. Our unexpected finding of On-Transient A-RGCs 

reestablishes symmetry in the mouse A-RGC population. 

 

3.5.2 Unique Spike Shape of the Alpha Retinal Ganglion Cells 

No previous reports have made mention of the irregular spike shape of the A-

RGCs. This is in part due to few studies of the A-RGC extracellular responses. Our 

observations from recording the extracellular action potentials of the A-RGCs to light 

stimuli indicate unique spike-generation machinery of these cells. We claim that the 

mouse A-RGCs make dendritic action potentials during normal function. Based on the 

periodicity of the prepotentials, even in the absence of a full spike, we believe the origin 

of regular firing for the A-RGCs may reside in the dendrites. A number of experiments 

can be done to check our hypothesis that the prepotential is of dendritic origin. Blocking 
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somatic spikes with QX-314 added to patch pipette or hypolarization of the soma during 

voltage clamp can test whether the prepotential persists without somatic spiking51. 

Multiple sites of spike generation can be investigated by calculating the interspike 

interval histograms to look for the absence of a refractory period50. Interestingly, the 

existence of the prepotential on all of the A-RGCs suggests the process of spike 

generation is shared across the four types. 

Regardless of the origin, the prepotential on the action potential provides further 

validation that the On-Transient cells are part of the A-RGC class. Additionally, the spike 

shape is another criterion for determining whether a randomly patched cell is an A-RGC. 

Previous work from our lab on other genetically identified cell types, including the W3, 

J-RGC, and all four types of On-Off direction selective RGCs, did not see the A-RGC 

spike shape with a prepotential36,56. All of the RGCs we randomly patched during the 

course of these experiments also did not have such a spike shape (n ! 10). It is worth 

noting that the exact size and position of the prepotential varied from cell to cell. This 

may be due to a number of reasons including the absolute temperature of the bath, but 

one possibility in particular may be the relative location of the patch pipette. Considering 

the large size of the A-RGC somata, if the pipette is further from the axon initial segment 

(AIS), and therefore closer to the dendritic input, the prepotential should be more clear. It 

will be interesting to see whether further investigation into the spiking machinery of the 

A-RGCs provides additional insight into their biophysics or criterion for their 

classification within and outside of the A-RGCs. 
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Chapter 4: The Responses of Mouse Alpha Retinal Ganglion Cells to Manipulated 
Natural Movies 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



59 

4.1 Introduction 
 

Much of what we know about the visual system has been discovered by driving 

neural responses with artificially produced visual stimuli. Such laboratory-generated 

stimuli, such as drifting gratings, are common in part because they are easily 

parameterized. By varying one parameter at a time and repeating the stimulus, the neural 

responses driven by specific stimulus features can be readily isolated. While such routine 

laboratory stimuli are useful to understand response properties of the retina, the majority 

of visual stimuli we personally encounter in our day-to-day interactions with the world 

are fundamentally different. Natural scenes tend to be more complex and they are 

dominated by high-order correlations in space and time. Only in rare cases can natural 

movies be reproduced with simple stimuli, such as a dark bird against a bright sky is 

approximated by a black dot on a white background. The complex structure of natural 

scenes makes it difficult to interpret the origin of neural responses unlike in the case of 

parameterized laboratory stimuli. Therefore, instead of directly driving neural responses 

with natural movies, some studies have drawn inspiration from natural vision, such as by 

reproducing saccadic eye movements, to probe visual responses1–5. Other studies have 

focused on specific features of visual scenes, such as the prevalence of dark contrasts or 

scale invariance, to explain response properties6–12. To investigate the responses of the A-

RGCs to natural scenes, we chose to “parameterize” natural stimuli by performing spatial 

manipulations on movies motivated by the center-surround organization of retinal 

receptive fields. We could then compare the A-RGC responses to the original and 

manipulated movies to gain a sense of the relative importance of various components of 

the natural movie to the neural output. 
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The choice of what constitutes a natural stimulus is unfortunately somewhat 

arbitrary because the characteristics of visual environments vary. Some effort has been 

made to standardize stimuli, but for now the field of visual neuroscience has no defining 

rigorous criterion13. We chose to use two movies: a human simulation of what a mouse 

may see outdoors and a recording in an indoor arena from a small camera attached to a 

mouse’s head. Both are meant to closely approximate the input to the photoreceptors 

under self-motion with the former at higher spatial and temporal resolution with the latter 

incorporating natural movements of the mouse. This approach to use movies from 

“critter-cams” has been utilized to study the retina at least once before with the so-called 

W3 RGCs14. The W3 cells, the smallest RGCs in the mouse retina, showed markedly 

different responses to artificial and natural stimuli. The cells responded robustly to the 

standard moving spot experimental stimulus, but rarely responded to movies of retinal 

input dominated by global-motion14. Examples such as this are a reminder that to fully 

understand the function of the retina, it is important to test responses to stimuli that 

mimic ones in the natural world.  

We took advantage of the recently reported KCNG4Cre transgenic mouse line that 

selectively labels the A-RGCs in the ganglion cell layer when crossed with the Thy1-

STOP-YFP fluorescent reporter15–17. Importantly, all A-RGCs recorded responded 

robustly to our chosen natural movies that were dominated by global motion. 

Additionally the On-Sustained and Off-Sustained responses nearly perfectly mirrored 

each other indicating the A-RGCs continuously encode natural scenes. We also found the 

visual responses, across the A-RGC population, to change surprisingly little when 
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stimulated with the manipulated movies. Based on this, we propose that the A-RGCs may 

perform simple spatial processing on visual input under natural conditions. 

 
4.2 Comparison of alpha retinal ganglion cell responses to original and manipulated 

natural movies 

Using the KCNG4Cre transgenic mouse line, we targeted the fluorescently labeled 

A-RGCs with patch electrodes for cell-attached recording of extracellular action 

potentials. After a brief characterization of the cell type, we began to stimulate the cells 

with natural movies. We chose two movies to show to the retina: one a human 

approximation of what a mouse may experience in the outside world and the second a 

“mouse cam” recording from a mouse’s head while moving freely in an arena (Figure 

4.1). The mouse cam movie differs from the so-called simulated mouse movie by 

containing the natural statistics of mouse head movement. 
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Figure 4.1: The first frames from the simulated mouse (left) and mouse cam (right) 
natural movies covered with a 1000 µm circular mask. For clarity, the area outside 
of the movie is shown in black in the figure, but in the experiment it was grey. The 
mouse cam movie was recorded at lower spatial and temporal resolution due to 
weight constraints limiting the choice of camera. 
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Our general approach was to manipulate these movies and calculate how much 

the A-RGC responses changed under the new stimulus conditions. The similarity of the 

responses allowed us to gain a sense for the relative importance of altered components of 

the visual scene in shaping the output of the cell. We determined the A-RGC spiking 

responses by showing multiple (6-8) repetitions of both movies and calculating the 

peristimulus time histogram (PSTH) by binning at twice the stimulus frame rate. To 

assess the degree of similarity under the two conditions, we calculated the average 

correlation coefficient across single trials. This gave us an unbiased, quantitative way to 

assess the similarity of the alpha RGC responses under the two stimulus conditions. 

We performed four primary manipulations to each frame of the natural movies. 

The first was to blur the movie to replicate the effect of the optics of the mouse eye. The 

second was to rotate the movie by 180 degrees. The third was to partly, or completely, 

remove spatial information in the RGC surround. The last manipulation was to average 

the pixels in the receptive field center (Figure 4.2). 

 

 

 

 

 

 

 

 

 



64 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.2: Example frames from each of the manipulated simulated mouse natural 
movies. The original stimulus with a mask of R = 500 µm is on the far left. Moving 
to the right, the stimuli become progressively less similar to the original. The second 
stimulus is blurred to approximate mouse optics and the third is the original movie 
rotated by 180 degrees. The fourth and fifth stimuli have manipulated surrounds 
while keeping the center the same as the original (R = 125 µm). The surround is 
either averaged for each frame or removed entirely, respectively. The last stimulus 
on the far right is the average of the central pixels for each frame. For clarity, the 
area outside of the movie is shown in black in the figure, but in the experiment it 
was grey. 
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4.2.1 A-RGC responses to original natural movies 
 

To assess the degree of similarity between the original and manipulated movies, 

we first needed to measure the responses to the original movie. It is well known that 

RGCs, and neurons in general, respond to stimuli with a certain level of stochasticity. 

Thus, repeats of the same stimulus will elicit slightly different neural responses. To 

quantify the similarity of the responses to the original movie, we compared single spike 

trains from multiple repetitions of the same stimulus. In practice, the spike trains were 

binned at twice the stimulus frame rate, 33 ms, and the average Pearson’s correlation 

coefficient was calculated across repetitions. We chose the bin width to be of the same 

order of magnitude as the A-RGC response latency. By correlating the individual spike 

trains, rather than the average response, we captured the intrinsic noise of the cell. Thus 

when we compared spike trains from different stimulus conditions, we could assess how 

much of the variation resulted from the change in stimulus and how much resulted from 

innate neural noise. On average, individual spike trains from a single cell to the original 

movies were between 80 – 90% correlated across trials under both the simulated mouse 

and mouse cam movies. This indicated a baseline 10-20% decrease in correlation 

comparing any two spike trains, of the same cell, due to intrinsic neural noise. We 

visualized the level of noise by plotting the standard error of the mean along with the 

average firing rate (Figure 4.3). Each graph was color coded to indicate the A-RGC type; 

Red = Off-Transient, blue = Off-Sustained, green = On-Transient, and black = On-

Sustained. The average correlation across cells to trials of the same stimulus for the Off-

Transient, Off-Sustained, On-Transient, and On-Sustained A-RGC were 81±5%, 86±4%, 

85±6%, and 89±4%, respectively. For example, we could not expect the average 
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correlation coefficient between spike trains from different stimuli to be more than 86% 

for the Off-Sustained A-RGCs. Therefore, we assessed the response similarity under 

different stimuli by the ratio of the correlation between different stimuli to the correlation 

within the same stimulus, i.e. 86% for the Off-Sustained, rather than by the absolute 

correlation values (see Chapter 2 for more detail). 
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Figure 4.3: Example responses from each of the A-RGCs to the same portion of the 
simulated mouse natural movie. A raster graph for each repeat of the stimulus is at 
the top with the average response histogram at the bottom (33 ms bins) 
 
 
 
 
 
 
 
 
 
 



68 

 
 
 
 
 
 
 
 

 

 
 
Figure 4.4: Example responses from each of the A-RGCs to the same portion of the 
“mouse cam” natural movie for the Off and On cells, respectively. A raster graph 
for each repeat of the stimulus is at the top with the average response histogram at 
the bottom (33 ms bins). The Off-Transient responses are subtly more transient 
than the Off-Sustained.  
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Figure 4.5: Off-Sustained (blue) and On-Sustained (black) A-RGCs responses to the 
simulated mouse movie mirror each other.  
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4.2.2 Movie blurred to approximate distortion by mouse optics 
 

Recognizing that the spatial resolution of our natural movies taken with cameras 

and shown to the retina in vitro may deviate from actual stimuli that fall on the retina, we 

blurred the simulated mouse movie to account for the optics of the mouse eye. Though 

the literature claims that mice are both myopic and hyperopic, the reported modulation 

transfer functions of the mouse eye in all reports are similar18,19. We chose to filter the 

movie based on the worst possible estimate of mouse optics. The modulation transfer 

function we used included all aberrations, such as defocus and astigmatism (Figure 4.6). 

50% modulation transfer amounted to 6.3 cycles per alpha RGC receptive field. Thus, the 

movie was blurred on the scale of 20 um.  
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Figure 4.6: Modulation transfer function used to filter the simulated mouse natural 
movie (top). The curves were reproduced from Geng et al. (2011) and the purple 
used as the “worst case” to approximate the blur of the mouse optics. Examples 
frame from the blurred movie (bottom, left) and the original movie are shown below 
(bottom, right). 
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The responses of the A-RGCs to the blurred movie were highly correlated to the 

responses of the unmodified movie. For each RGC type, the correlation was above 70%. 

The responses to the original and blurred movies for the Off- and On-Transient A-RGCs 

were each 75±10%. For the Off-Sustained and On-Sustained A-RGCs, the correlations 

were 99±3% and 98±5%, respectively. It is unsurprising that removing high frequency 

information had little effect on the Off-Sustained cells considering they have receptive 

fields with the lowest spatial resolution. It is less expected that the responses of the On-

Sustained cells, with robust responses to gratings with ~30 um bars, were equally 

unaffected. This may be because the blurring of the movie was on the scale of 20 um and 

thus at the limit of their spatial resolution. The same is true for the transient A-RGCs. 

Therefore, the “worst case” blur of the image on the retina either had no effect, in the 

case of the sustained cells, or a minimal effect leaving the majority of the light responses 

intact, for the transient cells. 
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Figure 4.7: Comparison of average responses to original and blurred simulated 
mouse movie. The correlation between the original and blurred movies for the 
particular data in each panel is given in the upper left hand corner. Red = Off-
Transient, blue = Off-Sustained, green = On-Transient, and black = On-Sustained. 
Dark grey are the responses from each cell to the manipulated movie. 
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4.2.3 Movies rotated by 180 degrees 
 

Based on their responses to moving spots, we claimed the A-RGCs to be 

responsive to motion, but not direction selective (see Chapter 3, Figure 3.10). Therefore, 

we expected the responses of the A-RGCs to be mostly unaffected by rotation of the 

natural movies. To test this, we recorded the responses of the A-RGCs to both movies 

rotated by 180 degrees.  

As predicted from the moving spot stimuli, the majority of the alpha responses 

were shared between the responses to the original and manipulated movies. On average, 

the responses to the original and rotated movies were 70-99% correlated for both the 

simulated mouse and mouse cam movies. 
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Figure 4.8: Example responses to the original and 180 degree rotated simulated 
mouse movie for each A-RGC type. The correlation between the original and 
rotated movies for the particular data in each panel is given in the upper left hand 
corner. Red = Off-Transient, blue = Off-Sustained, green = On-Transient, and black 
= On-Sustained. Dark grey are the responses from each cell to the manipulated 
movie. The significant deviation of the rotated response magnitude for the Off-
Sustained example was not systematic. Sometimes the magnitude of the A-RGC 
responses would change over time and the change was particularly dramatic for 
some Off-Sustained cells. 
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Figure 4.9: Comparison of average responses to original and 180 degree rotated 
mouse cam movie. The correlation between the original and rotated movies for the 
particular data in each panel is given in the upper left hand corner. Red = Off-
Transient, blue = Off-Sustained, green = On-Transient, and black = On-Sustained. 
Dark grey are the responses from each cell to the manipulated movie. 
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Across all A-RGC types, the Off-Transient responses were the least effected by 

the stimulus rotation with average response correlations of 89±2% and 91±7%, 

respectively, to the simulated mouse and mouse cam movies (Figures 4.8 & 4.9). The 

similarity in responses for the Off-Sustained RGCs was more variable depending on the 

stimulus. Again to the simulated and mouse cam movies, the responses were 78 and 

99±3% correlated with the original. The significant deviation of the rotated response 

magnitude in Figure 4.8 for the Off-Sustained example was not systematic. Thus, both 

the Off-Transient and Off-Sustained cells were largely unaffected by the rotation of the 

movie. This suggests that our claim from moving spots, that the A-RGCs are not 

direction selective, is also true under more natural stimuli. The same trend holds for the 

On A-RGCs. The On-Sustained cells were 88±6% and 82±8% correlated, respectively, 

for the simulated and mouse cam movies. The On-Transient cells were the least 

correlated, ~70%, but with fewer examples.  

By comparison, responses of non-alpha direction selective RGCs showed no 

similarity (0% correlation) under the original and rotated simulated mouse movie (Figure 

4.10). Even the responses of a non-direction selective, non-alpha Off RGC were only 

50% similar under the two stimuli (data not shown). Therefore compared to other types 

of RGCs, the responses of all the A-RGCs seem to be less sensitive to stimulus rotation. 

As found using moving binary spot stimuli, the A-RGCs are not selective to motion in a 

particular direction and this property holds under more natural stimulus conditions. 
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Figure 4.10: Responses from two non-alpha, direction selective cells to the original 
and rotated simulated mouse movie. Example responses to flashing spots are in the 
lower raster graphs. The responses of the On-Off DS-RGC (left) and On DS-RGC 
(right) to the rotated movie are 0% correlated with the original (n=3). 
 
 
 
 
 
 
 
 
 
 



79 

4.2.4 Movies with averaged or removed surrounds 
 

Encouraged by the similarity between the original and rotated movie responses, 

we started gauging the importance of various regions of the A-RGC receptive fields in 

generating the output to natural movies. We started by manipulating the surround. 

Considering the comparatively weak surrounds of the A-RGCs to flashing binary spots 

(Chapter 3, Figure 3.8, top), we wondered how much the stimulus in the surround 

influenced the responses to more natural stimuli14. To test this we used two stimuli: one 

with an averaged surround and one with the movie restricted to the center of the receptive 

field (D = 200 - 250 um). In the first stimulus, we took a flat average of the classical 

surround (i.e. the entire masked movie) for each frame. The values for the average we 

obtained when weighting the surround based on the difference of Gaussian fit to the 

spatial receptive field were essentially the same across cells (data not shown). In the 

second stimulus, the movie in the surround was replaced with solid grey (Figure 4.2).  

The first stimulus tests the computation of spatial information in the surround. If spatial 

summation in the surround is highly nonlinear, averaging the surround should greatly 

affect the responses from the A-RGCs. Alternatively, the responses should also vary if 

the neurons average the surround differently than our estimate. We found the responses to 

the original movie and the movie with the averaged surround to be very similar across the 

population of A-RGCs. This indicates either that the spatial summation of light across the 

receptive field surround is fairly linear, or that the surround has little influence on the 

overall responses. The responses of all the A-RGCs to the manipulated simulated mouse 

movie, with the exception of the On-Transient that were not tested, were 86-99% 

correlated with the original. Under the mouse cam stimulus, the entire Off population was 
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essentially unaffected by the manipulation with correlations of 99±3% to the original. 

The On-Sustained responses to both the simulated and mouse cam movies changed by the 

same amount (86±8% correlated to the original). In general, averaging the surround 

affected the A-RGC responses by less than 15%.  

The second manipulation to the surround, removing it entirely, directly tested how 

much the stimulus in the surround influenced the neural output under these two natural 

movies. With both the simulated mouse and the mouse cam movies restricted to the 

center of the receptive field (D = 200 - 250 µm), the correlation to the original data was 

above 70% for each A-RGC type. The responses of Off- and On-Sustained cells were the 

least affected by removing the surround and were 80-90% correlated with the original. 

The Off- and On-Transient cells were more variable. Under the simulated mouse movie, 

the Off-Transient responses were only 74±3% similar, but under the mouse cam they 

were 93±7% similar. The opposite trend was true for the On-Transient responses that 

were 82% and 72% correlated, respectively. In general, the surround seemed to have a 

relatively minor influence on the final responses of the A-RGCs to these natural movies. 

By comparing the difference in responses between the two stimuli with 

manipulated surrounds, we could speculate on the computation performed by the A-RGC 

surround. If the similarity in responses dropped between these two manipulations, it 

suggested that a linearly summed surround shaped the output of the A-RGCs. On the 

other hand, if averaging and removing the surround decreased the response similarity by 

the same amount, this indicated the input in the surround was nonlinearly summed or that 

we did not capture the actual A-RGC surround weighting with our estimate. The 

responses of the Off- and On-Sustained A-RGCs were equally influenced by both 
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manipulations. This result suggested any drop we saw in response correlation was due to 

a non-linearly summed or poorly estimated surround. Again, the surround stimulus was 

calculated by a flat average, but no difference was seen when using the weighting for the 

surround obtained by the difference of Gaussian fit to the spatial receptive field. 

Specifically, the sustained A-RGCs were 85% correlated, or higher, to the original 

responses when the surround was manipulated, suggesting the surround influenced ~15% 

of the responses to these movies. The two stimulus conditions cannot be compared for the 

On-Transient A-RGCs, but their responses were comparable to the On-Sustained 

suggesting nonlinear surround computation for the majority of the A-RGCs. The results 

were different for the Off-Transient cells. Under both natural movies the correlation 

across the two surround manipulations dropped by 7%. This correlation drop indicated 

that two surround mechanisms might have been active in the Off-Transient A-RGCs to 

both linearly and nonlinearly average the surround. Overall, A-RGC nonlinear subunits 

primarily drove the influence from the surround, or our understanding of the underlying 

computation was lacking, with the exception of the Off-Transient cells that appeared to 

be more complicated. 
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Figure 4.11: Comparison of average responses to original and simulated mouse 
movie with an averaged surround. The correlation between the original and 
manipulated movies for the particular data in each panel is given in the upper left 
hand corner. Red = Off-Transient, blue = Off-Sustained, green = On-Transient, and 
black = On-Sustained. Dark grey are the responses from each cell to the 
manipulated movie. 
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Figure 4.12: Comparison of average responses to original (R = 500 um) and 
simulated mouse movie in the center of the receptive field (R = 125 um). The 
correlation between the original and central movies for the particular data in each 
panel is given in the upper left hand corner. Red = Off-Transient, blue = Off-
Sustained, green = On-Transient, and black = On-Sustained. Dark grey are the 
responses from each cell to the manipulated movie. 
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The responses of non-alpha RGCs to the simulated mouse movie with a removed 

surround were less correlated to their original responses than the A-RGCs (Figure 4.12). 

The correlations ranged from 0-49% similarity with the original. Therefore, the similarity 

in the A-RGC responses to the original and manipulated movies were consistently higher 

than randomly selected murine RGCs (Figure 4.13). 
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Figure 4.13: Example responses from non-alpha RGCs to the original (R = 500 µm) 
and center only (R = 200-250 µm) simulated mouse movie. These are the same On-
Off (left) and On (right) cells from Figure 4.10. 
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4.2.5 Movies obtained by averaging the central pixels of the original movie  
 

Since removing the surround from the movies left over 70% of the A-RGC 

responses to the original movie intact, we tested the final and most extreme of the movie 

manipulations: averaging the movie pixels in the receptive field center. Specifically, we 

took a flat average of the pixels in the center, within a 250 µm mask, for each frame 

(Figure 4.2). This manipulation discarded nearly all the spatial information in the 

stimulus considering the surround had already been replaced by a grey annulus. In this 

new stimulus, the average luminance across the receptive field center remained 

unchanged from the original, but the fine spatial information was lacking. Based on an 

earlier finding that A-RGCs nonlinearly sum light input across their receptive field 

centers (see Chapter 3, Figure 3.6), we expected that removing the fine spatial 

information from the stimulus would dramatically change their responses. 

Comparing the original responses of the A-RGCs to those from these extremely 

simplified versions of the natural movies, we were surprised to find them quite similar. 

Each RGC type had a correlation with the original responses above 65%. Consistent with 

their spatially low-resolution receptive fields, the responses of the Off-Sustained RGCs 

under the new stimulus were the most similar. Their responses to the simulated mouse 

and mouse cam movies were 79% and 99% correlated, respectively. Unexpectedly, the 

response correlations for the other three alpha RGC types were no less than 65% (Figure 

4.14). The On population showed roughly the same response similarity with ~82% and 

~70% correlated responses to the simulated mouse and mouse cam movies, respectively. 

This result was unanticipated considering the On A-RGCs were shown to have spatially 

nonlinear receptive fields down to ~30 µm bars. The similarity of the Off-Transient cell 
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responses differed across the two movies with either an average 68% or 99% correlation, 

respectively, depending on stimulating with the simulated mouse or mouse cam movie. In 

general, the time course and gain of the responses changed under stimulation with the 

averaged central pixel movies. The timing of each peak in firing rate was later by one bin 

(~33 ms), the peak firing rates were higher, and firing rate dropped off at the same rate 

making the peaks under the average central pixel movies sharper (Figures 4.14 & 4.15). 

The sharper peaks were seen across all A-RGC types and for both the simulated mouse 

and mouse cam natural movies regardless of the order of presentation of stimuli during 

the experiment (Figure 4.16).   
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Figure 4.14: Comparison of average responses to original and simulated mouse 
movie with the central pixels of each frame averaged. The correlation between the 
original and manipulated movies for the particular data in each panel is given in the 
upper left hand corner. Red = Off-Transient, blue = Off-Sustained, green = On-
Transient, and black = On-Sustained. Dark grey are the responses from each cell to 
the manipulated movie. 
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Figure 4.15: Comparison of average responses to original and “mouse cam” movie 
manipulated by averaging the central pixels of each frame. The correlation between 
the original and averaged center movies for the particular data in each panel is 
given in the upper left hand corner. Red = Off-Transient, blue = Off-Sustained, 
green = On-Transient, and black = On-Sustained. Dark grey are the responses from 
each cell to the manipulated movie. 

 
 
 
 
 
 
 
 
 
 



90 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4.16: Off-Transient A-RGC responses to the averaged center movie are 
sharper and slightly delayed relative to the original movie responses. 
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Figure 4.17: Example responses of an On-Off direction selective cell to the original 
(black) and averaged center (gold) simulated mouse movies. The responses to the 
original movie are sparser than those of the A-RGCs and they disappear entirely for 
the averaged center movie (top). In general, this cell performs computations 
different from the A-RGCs as seen in the On-Off (bottom left) and direction 
selective (bottom right) responses. 
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For all the A-RGCs, the similarity in responses to the manipulated versions of the 

original movies was greater than the similarity in responses for non-alpha RGCs under 

the same stimulus conditions (Figure 4.18). This indicated that the A-RGCs performed 

more simple computations on these natural movies than other RGC types. Additionally, 

the decrease in correlation between the responses to differing movies was often roughly 

the same as the correlation within repeats of the original movie (Figure 4.18, y-axis).  

Overall, based on the high degree of similarity between the responses to the original and 

averaged center movies, the majority of the responses of the entire A-RGC population to 

the simulated mouse and mouse cam natural movies depended on the average stimulus in 

the receptive field center.  
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Figure 4.18: Summary of the single trial correlations across stimulus conditions for 
the original simulated mouse (top) and mouse cam (bottom) movies. The stimuli on 
the x-axis are organized such that the ones further from the origin have less in 
common with the original movie. 
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4.3 Discussion 
 

The two principal results from this work are that the alpha retinal ganglion cells 

(A-RGCs) respond well to movies of self-motion and that those responses predominantly 

persist under stimulation with movies that have been crudely manipulated.  

The entire population of A-RGCs responded robustly to the simulated mouse and 

mouse cam movies. Though these movies differed in important ways, they were both 

mainly dominated by self-motion rather than motion of external objects in the visual 

field. All the A-RGCs responded roughly 50% of the time during both movies. When 

considering the combined firing rate of the Off- and On-Sustained A-RGCs, they 

essentially contributed to the encoding of the visual stimulus at every point in time 

(Figure 4.5). By comparison, the non-alpha RGC responses to the same movie were far 

less frequent (Figure 4.10). This comparison suggests that the A-RGCs are very active 

during natural mouse vision and that upstream computations in the brain may involve 

combining input from multiple of the A-RGC types. 

We probed the important aspects of various spatial elements of the stimulus to the 

alpha RGC responses by comparing the responses to original and manipulated movies. 

The correlations across stimulus conditions reported here were likely underestimates. The 

movie repetitions were not interleaved and thus responses may also have become less 

correlated due to changes in time and not only due to the change in stimulus. The first 

blurring manipulation suggested that distortions from the optics of the mouse eye were 

not the limiting factor in A-RGC driven natural vision, particularly when considering the 

blurring we performed overestimated the optical distortions. We included defocus and we 

did not consider the distance of objects when performing the manipulation, meaning all 
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detail on the order of 20 µm, or 0.66 degrees, was blurred.  The Off- and On-Sustained A-

RGCs were completely unaffected by the blurring of the stimulus and over 74% of the 

Off- and On-Transient A-RGC responses remained. The minimal influence of the 

blurring on the neural responses was consistent with spatial summation of areas greater 

than 20 µm as seen previously (see Chapter 3, Figure 3.6).  

Similar to our results suggesting a small role of optical blurring in the visual 

responses of the A-RGCs, we found a relatively minor influence of the A-RGC surround 

on neural output. This claim is based on finding the majority of the A-RGC responses 

remained after the surround manipulations. Additionally, with the exception of the Off-

Transient cells, the A-RGCs perform a weighting of the surround other than flat or 

Gaussian, or nonlinear subunits drive the influence from the surround. This claim is 

based on the findings that averaging the surround and removing it entirely influenced the 

A-RGC responses by the same magnitude. The lower correlations often found for the On-

Transient cells may be due to having fewer samples. Our experience places the On-

Transient A-RGCs as a minority of the On population (25%) and therefore we recorded 

from fewer of them in general. Overall, these results suggest that the A-RGC surround is 

nonlinearly summed and that the role of the surround is relatively minor compared to the 

receptive field center for the neural responses to these two natural movies. 

Not only did the A-RGCs respond robustly to manipulated movies, unlike some 

non-alpha RGCs, they retained the bulk of their responses under the most crude of 

manipulations: averaging the pixels in the receptive field center. Though this finding 

suggested that fine spatial information in the receptive center was not the primary 

component of these natural movies driving the A-RGCs, eliminating this information did 
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have noticeable effects on the neural outputs. Across all four A-RGC types, the same 

general peaks in firing rate were present under both conditions, but under the averaged 

center movie, the peaks were often later by ~10 ms and sharper (Figure 4.16). This 

suggested that nonlinear summation within the receptive field was important to the 

absolute timing and magnitude of the responses. The importance of the nonlinear 

subunits can be imagined by considering the responses of an Off-Transient A-RGC, 

assuming identical subunits tiling the receptive field center, under stimulation with the 

original movie and averaged center movie. Under the original movie, local nonlinear 

subunits likely drove RGC firing when only the local intensity of interest resembled the 

preferred stimulus. In the case of the averaged center movie, a dark object moving into 

the center would more slowly change the local intensity. This “blurred” entry of the dark 

object would result in a delay in the subunit response. Additionally, for the same subunit 

response as to the original movie, the entire stimulus would need to resemble the 

preferred stimulus and would likely drive the entire center at the same time to result in a 

larger overall response. Therefore, local nonlinear subunits may slightly speed up and 

broaden responses from the A-RGC. 

We have established a baseline level of understanding for the neural responses of 

A-RGCs to natural movies. This study was limited to stimulating with two movies at a 

single light level. It is known that the statistics of natural movies can change drastically 

depending on the environment and recently it was reported that the surround strength of 

the sustained A-RGCs changes depending on the background light level20. Under the 

conditions tested, the surround had a relatively weak influence on the overall A-RGC 

responses. This left the bulk of the responses driven by the center that appears to perform 
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simple computations on our two natural movies. Overall, we found the A-RGCs to 

respond robustly to movies of self-motion and for those responses to be primarily driven 

by coarse spatial information in the receptive field center. These results will better inform 

further studies of RGCs under more natural stimuli by allowing a comparison with the A-

RGCs. 
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Chapter 5: Simple Models Successfully Predict the Responses of the Alpha Retinal 

Ganglion Cells to Natural Movies and Artificial Stimuli 
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5.1 Introduction 
 

A central goal of visual neuroscience is to delineate the relationship between 

sensory input and neural output. The ultimate target is to correctly predict the neural 

activity to any visual stimulus. One way to achieve this goal is to build a model that 

specifies the mathematical relationship between visual input and neural output. Visual 

processing begins at the retina where photoreceptors convert photons to electrical signals. 

Considerable computations are then performed on the stimuli by the circuitry of the retina 

before the visual information is sent to the brain through the axons of the retinal ganglion 

cells (RGCs)1–4. Therefore if we hope to extract the neural computations performed at 

each stage of the visual system, we need a complete description of the relationship 

between visual input and ganglion cell neural output. A number of approaches to 

modeling the retina have been successful over decades of research and we chose one 

particular modeling formalism for predicting RGC output called the linear-nonlinear 

(LN) model. The two key components in this approach are a linear filter and a nonlinear 

transformation5–10. The linear filter replicates the spatio-temporal receptive field of the 

cell and the nonlinearity typically mimics the process of spike generation. Models 

combining these components, LN cascade models, are the most commonly used models 

for describing the early areas of the visual system (Figure 5.1). Therefore, in an effort to 

understand retinal transformations between visual input and neural output, we utilized LN 

modeling techniques to predict the responses of one of the most thoroughly studied 

RGCs, the alpha retinal ganglion cells (A-RGCs). 

For the retina in particular, a successful modeling approach has been to package 

the individual computations of the LN model into plausible circuit elements. This is 
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reasonable because the general retinal circuitry is known. In this context, each element in 

the model represents a specific computation performed by neurons in the retina. There are 

three main building blocks typically utilized for such schematic circuits. First, the raw 

stimulus is fed to bipolar subunits that represent the linear, spatiotemporal filter of the 

neuron (Figure 5.1: “B”). Moreover, the bipolar-to-ganglion and ganglion-to-brain 

synapses are static nonlinearities that often describe how the output is transformed into a 

firing rate (Figure 5.1: “Oval rectifying function”). Lastly, the pooling of synaptic inputs 

in the RGC is mimicked by a weighted summation of the rectified bipolar subunit signals 

(Figure 5.1: Input to “G”). This circuit element approach produced models that were easy 

to interpret, realistic, and captured the mathematical transformation performed by the 

retinal wiring. Crucially, a number of computations in the retina have already been 

successfully explained using this approach4,11,12. We designed our models of the A-RGCs 

using the circuit element framework of the LN model to tie the components of successful 

models to their potential biological implementations. 
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Figure 5.1: Schematic for the linear-nonlinear (LN) cascade model drawn using 
circuit elements. In this formalism specific computations are assigned to particular 
neurons within retinal circuitry. The input stimulus is filtered in space and time by 
the bipolar cell (“B”). The filtered stimulus is rectified by synaptic transmission of 
the signal to the RGC (“G”) represented by a static nonlinearity (“Piecewise 
function inside oval”). The bipolar cell represents the full spatio-temporal filter. 
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One reason for the popularity of the LN model has been its ease of use when 

paired with white noise stimulation 7. White noise stimuli include no spatiotemporal 

correlations and are often generated by pulling independent values from a Gaussian 

distribution. This kind of stimulus is useful for calculating receptive field parameters of a 

cell because of its fairly flat spatial and temporal spectrums7,13,14. Thus, the parameters 

for the LN model including the spatio-temporal receptive field and, in simple cases, the 

static nonlinearity can be directly calculated from neural data to greatly reduce the 

number of free parameters and enhance ease of analysis. We utilized white-noise stimuli 

to probe the receptive field properties of the A-RGCs and to ask the level of model 

complexity required to successfully predict their responses. By calculating the typical 

spatio-temporal filters along with nonlinearities across spatial components of the 

receptive field, we informed the structure of our models. This approach allowed us to 

assemble the LN model from the A-RGC responses and build up further models based on 

spatial receptive field properties. 

To address the question of where on the spectrum of complexity models 

successfully predicting A-RGC responses fall, we started from the most simple model for 

RGCs: the LN model. We chose to bypass the simpler model for visual responses 

consisting of only a linear filtration stage. Purely linear models of neural responses to 

visual stimuli have been successful in rare cases when predicting the graded output of 

cone photoreceptors6,15, but when modeling downstream neurons, like RGCs, it is 

necessary to include a nonlinear stage after the linear filter. At the most fundamental 

level, a rectification of the RGC input is required because the neural output is in the form 

of action potentials. The RGC firing rate cannot fall below zero and cells typically 
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possess baseline firing rates < 20 Hz with maximal firing rates exceeding a few hundred 

Hertz. An explanation of this behavior requires a nonlinear transformation. Beyond the 

simplicity and biological underpinnings of the LN model, many other RGC modeling 

studies found the framework to successfully reproduce neural responses1,9,16–18. 

Therefore, we chose the LN model as our standard model for explaining A-RGC visual 

responses. 

Thus far, we have only mentioned white noise stimuli because when paired with 

the LN model, the approach has proven very useful to probe the computations performed 

by the early stages of the visual system. Unfortunately, many of the properties of white-

noise stimuli that make them computationally attractive are not true of more natural 

stimuli. In the end, it is important to remember an ultimate goal is to link neural activity 

to naturally occurring stimuli. Thus, a sufficient model of visual processing should 

correctly predict the responses to natural stimuli in addition to the typical stimuli used in 

the laboratory. Very few models of the early visual system, including the retina, lateral 

geniculate nucleus (LGN), and primary visual cortex (V1), have been subjected to this 

ultimate test13. To date there are no reports of models successfully predicting retinal 

responses to natural movies. The closest instance was in modeling the output of primate 

RGCs to spatially uniform natural light sequences19. All other models of retinal 

processing have been tested on artificial stimuli such as white noise, textures, high-

contrast gratings, and moving spots 3,6,7,16,20–25. In the feline LGN and primate V1, some 

linear-nonlinear models derived from artificial stimuli have been successfully tested on 

natural movies26–28. If we hope to fully connect naturalistic visual input with brain 

activity, successful models for predicting the output of the retina to natural movies must 
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be established. Therefore after developing models for the A-RGC responses to white-

noise stimuli of increasing complexity, we fit those same models to responses from 

natural movies (Figure 5.2).  By comparing the receptive field parameters optimized 

during the model fitting and the final firing rate prediction, we assessed both the 

similarity of A-RGC visual stimuli processing under the two stimulus conditions and 

whether the same models were sufficient to describe responses under multiple stimulus 

environments.  

To systematically build and assess models of increasing complexity in predicting 

A-RGC responses to stimuli of growing spatial intricacy, we created a table of stimuli 

verses models (Figure 5.2). Some compartments of the table were not filled in and other 

compartments were expanded to include various simplifications. By utilizing the models 

and experimental stimuli in Figure 5.2, we found the A-RGC processing of visual input to 

remain fairly constant across the stimulus conditions and that the simple models could 

successfully predict responses to white-noise and natural movie stimuli. 
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Figure 5.2: Diagram of the experimental stimuli and computational models used to 
assess the computations performed by the A-RGCs. When moving along the 
modeling axis from left to right, the number of model components increases, but the 
type of components remains unchanged. Similarly, the number of spatial 
components in the stimuli shown to the A-RGCs increases from top to bottom. 
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5.2 Definitions of model terminology 
 
Receptive field: The region of visual field over which a visual neuron responds to 

stimuli29,30 

Spatio-temporal receptive field: An estimate of how the neuron weights different spatial 

and temporal components of the stimulus. The spatio-temporal receptive field is a linear 

filter that describes the preferred stimulus of a visual neuron. An image that closely 

matches the filter will produce a large response. Often the receptive field is assumed to be 

separable in space and time and thus approximated by the multiplication of a spatial 

receptive field and temporal kernel: 

  

! 

F(x,t) " X(x)T ( t)      (Eqn. 1) 

Reverse-correlation: An umbrella term for calculating receptive fields by correlating 

recorded spike trains with the white-noise stimulus sequence31. 

Spike triggered average (STA): A reverse-correlation method that calculates the average 

stimulus that produced a spike. Receptive fields can be calculated as the STA from a 

random noise stimulus that is constructed to have zero mean32. 

Difference of Gaussians: The typical parameterization of the spatial receptive field for a 

retinal ganglion cell is by a difference of Gaussian functions. The first term embodies the 

excitatory center and the second gives the inhibitory surround. Acen sets the amplitude, 

!cen determines the width, and ro defines the coordinates of the center Gaussian. 

Equivalent parameters specify the surround Gaussian. 
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Temporal kernel: A linear filter that represents the impulse response function for a 

neuron. The duration of the kernel reflects the memory of a neuron. In practice, the kernel 

is the temporal weighting function plotted in reverse. 

“2 hump model”: The parameterization of the temporal kernel is by a difference of 

gamma functions. Temporal kernels are typically biphasic and so each term sets one of 

the “humps” by specifying the shape n and decay time ! with amplitude ratio a. 

 

! 

T (t) = (t /"1)
n1 e#n1 (t /"1#1) # a(t /" 2 )

n2 e#n2 ( t /" 2#1)        (Eqn. 3) 

Linear-nonlinear model: A common formalism for modeling the responses of retinal 

ganglion cells. The stimulus input is first filtered by a linear stage then passed through a 

static nonlinearity. The average firing rate of the neuron is specified by the nonlinear 

transformation of the filtered stimulus. 

Filtering/Convolution: The first stage of the linear-nonlinear model is to convolve, or 

filter, the stimulus by the receptive field. For our models, we only convolve in the 

temporal domain. The time-dependent filtered stimulus is calculated by weighting the 

spatially weighted stimulus with the temporal kernel at each point in time. The filtering 

stage is important because the firing rate at any point in time depends not only on the 

current stimulus, but the stimulus in the recent past as determined by the length of the 

temporal kernel.  

Nonlinearity: An instantaneous function that transforms the filtered stimulus into a firing 

rate. The nonlinearity can be approximated from the data by plotting the neural firing rate 

versus the filtered stimulus and fitting a smooth function7,17. The nonlinearity can also be 

calculated from Bayes rule as the frequency of spike-triggered stimuli divided by the 

frequency of all stimuli32. The simplest nonlinearity parameterization is by piecewise 
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rectification, but in model fitting it is often preferred to use a smooth function such as a 

log-sigmoid (Eqn. 4). In equation 4, the nonlinear output is a function of the linear 

prediction and the maximum firing rate K, gain g, and threshold ". 

! 

N(r ) = K /(1 + e"g(r "# ) )        (Eqn. 4) 

Optimization: Each model was fit to the data by finding parameters that calculated a 

firing rate prediction that most closely matched the average firing rate of the RGC. The 

spike trains were binned at twice frame rate of the stimulus (33 ms). The parameters were 

found using the Levenberg-Marquardt algorithm for least squares fitting in IGOR 

(Wavemetrics, Inc). In practice we always started fitting the model from reasonable 

initial guesses for the parameters. When fitting the temporal kernel, the initial parameters 

were calculated from equation 3. 

Goodness-of-fit: The model performance was assessed by calculating the similarity 

between the model prediction and RGC responses. A number of metrics can be used to 

make this comparison and we chose to evaluate the correlation between the data and the 

fit. 

Correlation: Pearson’s correlation coefficient was calculated to assess the goodness-of-fit 

of the model prediction. The correlation we quote is the average correlation of the 

prediction of the model with each binned spike train repetition of the stimulus. We also 

calculated the intrinsic noise of the RGC by correlating the same individual repetitions to 

the same stimulus. 

Overfitting: A common concern when fitting a model to any kind of data is the possibility 

of having too many parameters such that you end up fitting the noise along with the 

signal. To guard against this possibility, the standard method is to the fit the model to one 
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set of data, i.e. the training dataset, and test the model on a separate set of data, i.e. the 

testing dataset. We followed this method and all correlation values quoted are comparing 

the model prediction to the testing dataset. 

 

5.3 The first stage of the linear-nonlinear model: The linear filter  

As described above, the basic LN model consists of a linear filter and a static 

nonlinearity (Figure 5.1). To begin modeling using this framework, we first needed a 

measure of the A-RGC’s linear spatio-temporal filters. Below are the results of 

experiments, without specific definitions of terms, probing these receptive field 

properties. (See section 5.2. for details on terminology and methods Chapter 2 for further 

explanation.) 

 

5.3.1 Raw spatio-temporal receptive fields 

The spatio-temporal receptive field was calculated for each neuron using the 

standard reverse-correlation technique7. The A-RGCs displayed temporally biphasic 

behavior and showed center-surround antagonism typical of ganglion cells17. The 

biphasic time course for an Off-Transient A-RGC can be clearly seen in Figure 5.3, left. 

Approximately 33 ms before time zero, i.e. the time of the spike, the temporal receptive 

field negatively peaks, as expected for an Off cell. Before that time, there is a positive 

peak in the receptive field. Thus this neuron responds most strongly for a stimulus that 

transitions from light to dark. The spatial extent of the preferred stimulus can be seen on 

the y-axis. The receptive field center, i.e. the negative peak in time, is ~230 µm across. 

Flanking both above and below the blue center are red regions indicative of surround 
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antagonism. The same pattern is seen for an On-Sustained A-RGC, but with reversed 

polarity of preferred stimulus (Figure 5.3, right). These spatio-temporal receptive fields 

represent the linear filters of the A-RGCs. 
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Figure 5.3: Sample spatio-temporal receptive fields for an Off-Transient (left) and 
On-Sustained (right) A-RGC. The receptive fields were measured with 
checkerboard white-noise and calculated as the spike-triggered average stimulus. 
They were spatially integrated over one dimension to display the center-surround 
antagonism and the biphasic time course. 
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For the purposes of modeling and noise reduction, it was useful to describe 

receptive fields in terms of a few parameters. We assumed the spatio-temporal receptive 

fields to be separable in space and time and thus mathematically described by a direct 

product of a purely spatial receptive field and temporal kernel. We chose to parameterize 

the spatial portion with the standard 2-dimensional difference of Gaussians model33–35 

and the temporal kernel using the “2-hump model” comprised of a difference of gamma 

functions17,36. The next sections specify our procedure of receptive field parameterization 

to provide intuition for the linear stage in our models of A-RGC responses. 

 

5.3.2 Spatial receptive field parameterization 

We calculated spatial receptive fields from the same data in Figure 5.3 by plotting 

the spike-triggered average stimulus as a function of space for each time frame preceding 

the spike. By averaging the frames corresponding to the temporal peak, we obtained nice 

center-surround receptive fields for each A-RGC type (Figure 5.4). We parameterized 

these images using a difference of Gaussians to reduce noise in the estimate of the spatial 

receptive field (Figure 5.5).  
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Figure 5.4: Raw spatial receptive fields for the A-RGCs calculated by averaging the 
frames of the temporal peak. The color scale is the same as in Figure 1: Red = +1, 
White = 0, Blue = -1. 
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Figure 5.5: Example fits of checkerboard spatial receptive fields from Figure 5.4 
with a difference of Gaussians for an Off-Transient (left) and On-Sustained (right) 
A-RGC.  
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When checkerboard STAs were not available, we approximated the spatial 

receptive field by fitting a difference of Gaussians to the peak firing rate vs radius curve 

(Figure 5.6). The A-RGC responses to spots of increasing radius contained the same 

essential spatial information as the checkerboard STAs except for the exact coordinates 

of the cell’s position. In practice the exact coordinates were not required because all 

stimuli were centered over the RGC at the beginning of the experiment. The receptive 

field size was calculated from Figure 5.6 as the radius where the curve reached a 

maximum value. The influence of surround suppression was visualized by how much that 

maximum value decreased as the radius increased. In Figure 5.6 an Off-Transient and 

On-Transient A-RGC show the different extremes for center receptive field size and 

surround strength. The difference of Gaussian parameterization of the spatial receptive 

field produced good fits in both cases. The final spatial filter was obtained by rotating the 

center and surround Gaussian curves around the y-axis. 

 

 

 

 

 

 

 

 

 

 



117 

 

 

 

 

 

 

 
 
Figure 5.6: Difference of Gaussian fit to receptive field mapping curve via the 
growing spot sequence (Top; Black = Normalized firing rate; Red = Difference of 
Gaussian fit). The calculated center (blue) and surround (red) Gaussian curves 
captured the spatial receptive field properties for centers of varied size and 
surrounds of different strengths. 
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By fitting either the checkerboard spatial receptive field or the responses to spots 

of increasing diameter, we obtained an estimate of the spatial receptive field for every A-

RGC. We next needed to define the temporal receptive field to completely parameterize 

the linear portion of the LN model. 

 

5.3.3 Temporal receptive field parameterization 

As described above, we parameterized the spatial receptive field by assuming the 

spatio-temporal receptive field to be separable in space and time. In reality, the spatio-

temporal receptive fields were not truly separable because the spatial center and surround 

possessed different temporal dynamics. Therefore to properly estimate the time course of 

a neural response, it was necessary to consider the center and surround kernels 

independently. The temporal kernels represented the impulse response function of a cell 

and were calculated by reverse correlation with a white-noise stimulus (Figure 5.7). The 

A-RGCs showed center-surround antagonism typical of RGCs by their surrounds 

preferring stimuli of opposite polarity the center (Figure 5.7). The surrounds also tended 

to peak later than the center by ~20 ms. It should be noted that the temporal kernels could 

also explain a number of response properties of the A-RGCs. For example, the Off-

Transient cells had the weakest surround, which was reflected in the magnitude of their 

surround filter (Figure 5.7, upper left). Also, the two kernels for the transient cells were 

more biphasic than the sustained cells as was expected by their brief light responses. 

 
 
 
 
 
 



119 

 
 
 
 
 
 
 

 
 
Figure 5.7: Raw temporal kernels for the A-RGCs calculated by reverse-correlation 
of the spike train with a white-noise stimulus. The stimulus consisted of a spot over 
the receptive field center (200-250 um diameter) and an independently flickering 
annulus in the surround (Inner diameter = 200-250 µm; Outer diameter = 1000 µm). 
Similar filters could also be obtained by averaging the time course for the pixels in 
the checkerboard spatial receptive field center and surround. 
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Figure 5.8: The “2 hump” model was sufficient to fit the A-RGC temporal kernels 
and reproduce the filter shape. The fitting equation was provided in section 5.2. 
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To reduce noise and the number of model parameters, we fit the calculated 

temporal spike-triggered averages (STAs) with a “2 hump” model. We consistently 

obtained satisfactory fits of the original center and surround kernels with this 

parameterization (Figure 5.8). By using the accepted methods of reverse-correlation, 

spatial difference-of-Gaussian parameterization, and temporal “2 hump” 

parameterization, we successfully estimated the spatio-temporal receptive fields of the A-

RGCs by separately fitting the spatial and temporal components independently. The 

parameterization allowed for the reduction of noise in our approximation of the linear 

filter and, in later models for natural movie responses, was used to determine starting 

parameters for fitting the first stage of the LN model. 

 

5.4 Completing the linear-nonlinear model with the threshold nonlinearity 

The second stage of the LN model was a thresholding nonlinearity that 

transformed the linear prediction into a firing rate (Figure 5.1). The form of this 

nonlinearity was determined in previous work either through direct calculation or during 

model fitting. The nonlinearity was often calculated by plotting the firing rate as a 

function of the filtered stimulus, i.e. the input to the ganglion cell. The resulting curve 

gives the lookup table for the RGC output given any value of the range of stimuli tested. 

This simple LN model with a single calculated nonlinearity was typically sufficient to 

predict RGC responses to a spatially uniform stimulus9,16. For consistency across all 

models of increasing spatial complexity, we parameterized and fit the nonlinearity to the 

data. We chose to use a log-sigmoidal parameterization (Eqn 4) of the nonlinearity with 

three parameters: maximum firing rate (K), gain (g), and threshold ("). Our standard LN 
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model kept the parameters calculated for the linear filter fixed and fit the three 

nonlinearity parameters (Figure 5.2). We referred to this model with three parameters as 

the LN model and it served as the standard to which all subsequent models were 

compared. Therefore with our above estimation of the linear filter, we were prepared to 

fit the LN model to A-RGC responses to spatially uniform white-noise stimuli and begin 

filling in the stimuli versus model table in Figure 5.1. 

 

5.4 Predicting neural response to uniform white-noise stimuli using the linear-nonlinear 

model 

Our first test of the standard LN model was to predict the responses of the A-

RGCs to a spatially uniform spot flickering over the receptive field center. This kind of 

simple, uniform visual stimulus was standard for modeling the responses of RGCs6,18,37. 

Thus, we expected this first modeling attempt to predict the A-RGC responses fairly well 

and that was indeed what we found. The average correlation between the model 

prediction and single spike trains from repeats of the stimulus were, on average, above 

80% for all the A-RGCs. Figure 5.9 (left) gives an example of the single spike trains (top 

raster), the average firing rate (bottom, black, peristimulus time histogram (PSTH)), and 

the model prediction (bottom, red, PSTH) for an On-Sustained A-RGC. The goodness of 

fit for this particular dataset was 90% as assessed by the average correlation between the 

fit and the single trial repetitions. The fit (red) captures the fluctuations in A-RGC firing 

rate very well by overestimating and underestimating the peak firing rates roughly 

equally. This can be more easily visualized by plotting the actual nonlinearity from the 

data (black) with the nonlinearity found by the model (Figure 5.9, right, red). The red 
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model output nicely follows the mean of the data, which indicates a proper 

parameterization of the A-RGC nonlinearity and therefore description of the firing rate. 

Additional fits to Off-Sustained and Off-Transient A-RGC responses to a spatially 

uniform stimulus by the LN model display the same behavior illustrating a successful 

match between cell type, model, and stimulus (Figure 5.10).  
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Figure 5.9: Responses, model prediction, and fitting parameters for an On-
Sustained A-RGC to a spatially uniform spot (250 µm diameter) centered over the 
receptive field. A raster graph and summary PSTH (black) are plotted for a 
segment of the 10 second repeated stimulus. The grey is the standard error of the 
mean (SEM) of the visual responses. The average correlation between the model and 
individual spike trains is 90% (top). The nonlinearity found by the model closely 
approximates the thresholding used by the cell (bottom). 
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Figure 5.10: Example responses and standard LN model predictions for Off-
Sustained (top) and Off-Transient (bottom) A-RGCs to the same segment of the 
spatially uniform white-noise stimulus. The black curve is the summary PSTH of 
the data, the grey is the standard error of the mean (SEM) calculated from the 
stimulus repeats, and the red is the model prediction. Off-Sustained: 92% average 
correlation. Off-Transient: 85% average correlation.  
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5.4.2 Split spot white-noise, 2-dimensional nonlinearities, and the “split” 2-filter model 
 

To build upon our understanding of the A-RGC computations of visual stimuli, 

we continued to increase the complexity of the stimulus (Figure 5.1). When increasing 

the complexity and size of the stimulus, other nonlinearities may exist between different 

spatial components of the receptive field. We probed for these kinds of complex spatial 

processing of the A-RGCs by designing white-noise stimuli to force out any additional 

nonlinearities. We then used the information to design models of the A-RGCs to extend 

to spatially complex stimuli. 

We first probed for nonlinear computation in the A-RGC receptive field center by 

stimulating with a white-noise spot that was split down the center into two halves (Figure 

5.11). Each half flickered in a binary fashion independently at 60 Hz. We tested the 

nonlinear computation in the A-RGC center because the structure of the computation on 

spatially segregated visual input is important for building an appropriate model. If we 

were to find that the A-RGCs summed visual input linearly across their receptive field 

centers, the LN model would be sufficient to capture their visual responses. If instead the 

A-RGCs performed spatially nonlinear computation, a more suitable model would have 

local summation and rectification of visual input. We expected the latter scenario because 

A-RGC analogs in other mammals were found to locally sum and rectify visual input 

across their receptive fields. By stimulating with temporally independent, split spot 

white-noise of high contrast, we extracted any local nonlinear computations of that 

nature. 

To differentiate between the described linear and nonlinear options, we plotted the 

2D-nonlinearity of the neural responses. The 2D-nonlinearities for the split center white-
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noise responses were analogous to the 1D-nonlinearity described above for a spatially 

uniform stimulus (Figure 5.9). In brief, we plotted the filtered stimulus from both spot 

halves on the x- and y-axes, respectively, and the firing rate on the z-axis (Figure 5.11). 

Thus, the color-coded surface plot served as the 2D-lookup table to estimate the output 

firing rate given any two inputs to the RGC from the split spot stimulus.  
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Figure 5.11: Diagram outlining the calculation of the 2D-nonlinearity from 
responses to the split spot white-noise stimulus. Here the LN model is shown with 
local spatial summation and the two visual channels are filtered and summed prior 
to rectification by the RGC. 
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The 2D-nonlinearity for each type of A-RGC tested displayed nonlinear spatial 

processing in the receptive field center (Figure 5.12). Nonlinear summation was clear 

because the signature of linear summation, straight contour lines across the 2D-

nonlinearity, was missing. The shapes of the contours in the 2D-nonlinearities were all 

curved to some degree. Additionally, the shape of the nonlinearity was mostly symmetric 

around the diagonal indicating equivalent stimulus processing of each receptive field half. 

By stimulating with split spot white-noise, we confirmed our previous finding that the 

receptive field centers of the A-RGCs nonlinearly sum visual input (see Chapter 3, Figure 

3.6). 
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Figure 5.12: 2D-nonlinearites for the A-RGCs calculated from responses to split 
spot white-noise stimulation. The stimulus consisted of 600 sec of a split randomly 
flickering binary spot (200-250 µm diameter) centered over the receptive field. The 
x- and y-axes each represent a separate channel of the split spot stimulus that has 
been filtered by the respective temporal kernel. The temporal kernels were 
calculated through standard reverse-correlation techniques from the same data. The 
color scale for the z-axis indicates the firing rate that resulted from simultaneous 
input from the x and y stimulus channels. 
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Based on the indication of nonlinear spatial processing, we expanded the standard 

LN model to include local nonlinear subunits. To match the split center stimulus, we used 

a 2-filter model (Figure 5.13). This model possessed an additional filter and nonlinearity 

such that each half of the stimulus was separately filtered and rectified before summation 

within the RGC. This was in contrast to the LN model where the filtered stimuli were 

combined before rectification. Given the symmetry of the 2D-nonlinearities, we assumed 

processing of each stimulus half by equivalent bipolar cell types. This was reflected in 

the model by constraining the two bipolar terminal nonlinearities to be the same. A 

weighted sum of the stimulus channels was implemented through independent 

nonlinearity scaling factors. A final nonlinearity, representing the spike thresholding of 

the RGC, transformed the summed bipolar input into a firing rate. The performance of the 

new “split” 2-filter model was compared to the performance of the standard LN model to 

complete the second row for the split spot white-noise stimulus in Figure 5.1. 
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Figure 5.13: Two-filter “split” model designed to predict A-RGC responses to the 
split spot white-noise stimulus. The receptive field center is locally summed, filtered, 
and rectified (“B”) before final summation and rectification within the ganglion cell 
(“G”). 
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Overall, both the LN and “split” 2-filter models predicted the responses of the A-

RGCs to repetitions of the split spot white-noise quite well. All model predictions for 

each cell type were over 70% correlated to the neural responses, but the 2-filter model 

consistently out performed the LN model by at least 2%. Even though the increase in 

model performance could potentially be explained by the 4 additional free parameters of 

the 2-filter model, the influence of the local rectification on the computation performed 

by the model was reflected in the 2D-linearities for the Off-Sustained responses in Figure 

5.14. The LN model linearly summed light over the receptive field center to predict the 

neural output was whereas the 2-filter model independently rectified and summed the two 

stimulus channels. The former resulted in a linear transformation and the latter closely 

approximated the actual 2D-nonlinearity from the data. Therefore, the success of the 

“split” 2-filter model over the LN model was judged by both the replication of the 2D-

nonlinearity and the similarity of the firing rate prediction. Similar successful firing rate 

predictions were also made for the other A-RGCs tested as seen by the additional 

example fits for the Off-Transient and On-Sustained cells (Figure 5.15). 
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Figure 5.14: LN and 2-filter “split” model predictions of an Off-Sustained A-RGC’s 
responses to split center white-noise. The correlation between the data and the fit 
improves by 5% from the LN to the split model (84% to 89%). The increased 
performance of the 2-filter model can be attributed to a closer approximation of the 
original 2D-nonlinearity (lower right) versus the LN model (lower left).  
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Figure 5.15: Examples of LN (blue) and “split” 2-filter (red) model predictions for 
Off-Transient (black, top) and On-Sustained (black, bottom) responses to split spot 
white-noise. For both examples, the correlation between the data and the fit 
improves by a few percent from the LN to the split model. Off-Transient: 77% to 
80%. On-Sustained: 82% to 84%. 
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After successfully fitting the A-RGC responses to uniform and split-center white-

noise, we have completed the top half of the proposed modeling in Figure 5.1. Thus far 

the LN model predictions to both sets of data have been 75-90% correlated, on average, 

with the single trial responses. Considering the average correlations across the A-RGC 

single trial responses fell between 88-94%, the LN model predictions were at most 20% 

less correlated than the data. We continued to probe the spatial nonlinearities of the A-

RGCs by moving to the third stimulus: center-surround white-noise. 

 

5.4.3 Center-surround white-noise, 2D-nonlinearities, and the “center-surround” 2-filter 

model 

In a similar manner to probing the A-RGC visual processing in the receptive field 

center, we designed a stimulus to drive the center and surround components 

independently. Aware of nonlinear processing in the center, we were investigating the 

influence of the surround on the final firing rate. Analogous to the split center analysis, 

we plotted the 2D-nonlinearities calculated from the responses to the center-surround 

stimulus. The x-axis was the stimulus filtered by the center and the y-axis was the 

stimulus filtered by the surround (Figure 5.11). Due to the opposite polarity of the 

temporal kernels in the center and surround, the negative portion of the y-axis represented 

the preferred stimulus for the surround. Our convention was to keep the maximum firing 

rate in the top right corner.  

We studied the shape of the 2D-nonlinearities to assess the level of influence of 

the surround as well as the mechanism. For example, if the surrounds were to have no 

influence and the firing rate was only driven by the stimulus in the center, the contours of 
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the 2D-nonlinearity would be parallel to the y-axis. Such behavior is similar to the 2D-

nonlinearity for the Off-Transient cell type in Fig. 5.16. This finding agreed with our 

earlier result that the Off-Transient cells have the weakest surrounds of all the A-RGCs 

(see Chapter 3, Figure 3.8). For the rest of the A-RGCs, the shapes of the 2D-

nonlinearities illustrated an impact of the surround (Figure 5.16). The shape of the On-

Sustained 2D-nonlinearity suggested the surround input to the RGC was independently 

rectified because the center threshold increased during preferred stimuli in the surround, 

yet remained unchanged during non-preferred surround stimuli. The action of the 

surround was less clearly defined for the other two cell types: Off-Sustained and On-

Transient. The surround could either be linearly or nonlinearly influencing the responses 

to the stimulus in the center. Based on these results, we designed a model to suit the 

center-surround white-noise responses. 
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Figure 5.16: 2D-nonlinearites for the A-RGCs under center-surround white-noise 
stimulation. The stimulus consisted of 600 sec of random binary flicker centered 
over the receptive field center. One channel was restricted to the center (200-250 µm 
diameter) and the other to the surround (1000 µm diameter). No annulus separated 
the spatial components. The x- and y-axes represent a separate channel of the split 
spot stimulus that has been filtered by the respective temporal kernel. The temporal 
kernels were calculated through standard reverse-correlation techniques. The color 
scale for the z-axis indicates the firing rate that resulted from simultaneous input 
from the x and y stimulus channels. 
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Based on the shape of the 2D-nonlinearities from the center-surround white-noise 

responses, we implemented a modified version of the “split” 2-filter model (Figure 5.17). 

The structure and components of the model were same, but we adjusted the constraints on 

the parameters. In the case of the split-center stimulus, the two nonlinear channels in the 

center were assumed to be representing the computations performed by identical bipolar 

cells. Thus the subunit nonlinearities were constrained to have the same gain and 

threshold to minimize free parameters. To model the center-surround white-noise 

responses we allowed completely separate parameters for the two bipolar channel 

nonlinearities. To fill out the third row of Figure 5.1, we compared the predictive power 

of the LN model and the “center-surround” 2-filter model on the A-RGC responses to 

center-surround white-noise. 
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Figure 5.17: Diagram of the “center-surround” 2-filter model utilized to describe 
responses to the center-surround white-noise stimulus. The structure of the model is 
identical to the “split” 2-filter model in Figure 13 without any constraints on the 
parameters. 
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As with the previous responses to white-noise stimuli, the center-surround 

stimulus was reasonably predicted by the standard LN model that linearly summed the 

weighted center and surround (Figure 5.11). The average correlations between the 

predictions and the single trial repetitions were above 70% for all A-RGC types. 

Additionally, the 2-filter model that allowed the center and the surround to independently 

rectify their respective filtered stimuli, performed better than the LN model by ~8% 

average correlation (Figure 5.18). The computation of the “center-surround” 2-filter 

model also mimicked that of the On-Sustained A-RGC as illustrated in the similarity of 

the predicted 2D-nonlinearity with the one calculated from the data. The LN model 

poorly approximated the same center and surround computation. Similar behavior of the 

“center-surround” 2-filter model was seen for all of the A-RGCs (Figure 5.19). 

Therefore, the 2-filter model successfully reproduced the 2D-nonlinearity and improved 

upon the LN model prediction by including the nonlinear influence of the surround 

during the center-surround white-noise. 
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Figure 5.18: On-Sustained responses (black, top) to center-surround white-noise 
were well predicted by the 2-filter “split” model with independent center and 
surround nonlinearities (red). The 2-filter split model with nonlinearities forced to 
be the same (blue) predicted the peaks in the response reasonably well, but failed to 
reproduce the 2D-nonlinearity (bottom, left). Correlation improved from 81 to 84%. 
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Figure 5.19: Average responses and model predictions by the LN and “center-
surround” 2-filter model to center-surround white-noise stimuli for all A-RGCs. 
Both the LN model prediction (blue) and split model prediction (red) reasonably 
follow the data (black) within the SEM (grey). By eye, the LN model appears to 
deviate more from the data as verified by the average correlation to the data. Off-
Transient: LN = 70%; Cen-surr = 76%. Off-Sustained: LN = 81%; Cen-surr = 
88%. On-Transient: LN = 78%; Cen-surr = 87%. On-Sustained: LN = 74%; Cen-
surr = 85%. 
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5.4.4 Summary of predicting responses to white-noise stimuli 
 

We built models to explain the responses of the A-RGCs to white-noise stimuli of 

increasing complexity. These models increased in intricacy to match the spatial nonlinear 

computation of the A-RGCs and their performance was assessed by comparison with the 

standard LN model. The standard LN model consisted of a single linear filter, calculated 

by reverse correlation, and nonlinearity that approximated linear spatial summation. For 

all white-noise stimuli tested, this standard LN model predicted the neural responses 

quite well (Figure 5.20).  The Off-Sustained A-RGC responses were the most 

consistently predicted by the LN model with no decrease in correlation as the stimulus 

complexity increased. On average, the Off-Transient A-RGC responses were the least 

well described by the standard LN model across all stimuli, but each model output was at 

least 70% correlated with the data. As expected from all the 2D-nonlinearities, allowing 

rectification of each independent stimulus channel with the 2-filter model increased the 

model performance to both the split center and center-surround white-noise stimuli 

(Figure 5.20). These models also had either 4 or 6 more free parameters than the LN 

model, but there was no chance of overfitting for any model because in each case the 

parameters were optimized on one portion of the dataset and tested on another (Figures 

5.14 & 5.18). The 2-filter models also better replicated the spatial nonlinearities of the A-

RGCs. The improved firing rate and nonlinearity predictions over the LN model showed 

the 2-filter models more correctly modeled the A-RGC computation on visual input. 

Overall, we found the responses of the mouse A-RGCs to white-noise stimuli to be well 

replicated by simple models of linear filters and sigmoidal nonlinearities. 
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Figure 5.20: Summary of model performance in predicting A-RGC responses of 
white-noise stimuli of increasing complexity. The solid bars illustrate the 
performance of the LN model and the shaded bars show the increase in prediction 
correlation for the 2-filter model. 
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Figure 5.21: Summary of correlation values between data and model fit for 
responses of the A-RGCs to white-noise stimuli. The range under the linear-
nonlinear model indicates the span of correlation values for the standard LN model 
across all 4 A-RGC types. The percent improvement indicated under the 2-filter 
model states the improvement in the two range values to fit the same data. 
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5.5 Predicting natural movie responses from models based on white-noise response 
properties 
 

A sufficient model for the A-RGCs should predict their responses to any arbitrary 

visual input within the range of neural noise. In particular, we were interested in 

predicting natural movie responses to eventually link visual input, RGC pre-processing, 

brain activity, and motor output. We subjected our models built for responses to white-

noise to the ultimate test of predicting responses to natural movies.  

Our approach was to fill out the last row of the table in Figure 5.2. This consisted 

of applying models of increasing complexity to the same neural responses to establish the 

minimal number of components required to successfully reproduce the A-RGC responses 

to natural movies. The neural responses consisted of responses to two movies (~30 sec – 

1 min long) in the receptive field center and surround (mask diameter = 1000 um). The 

same two movies, i.e. the simulated mouse and mouse cam movies, were used previously 

to investigate the relative importance of stimulus components to the A-RGC firing rate 

(see Chapter 4, Figure 4.1). Model performance was matched for both movie stimuli and 

so for clarity we only quoted the performance of the simulated mouse movie. We defined 

a successful firing rate prediction as one that differed from the A-RGC responses within 

intrinsic neural noise. The LN and “split” 2-filter models were tested in addition to a new 

model composed of nonlinear subunits in the receptive field center. 

 

5.5.1 Performance of the linear-nonlinear model on predicting natural movie responses 

We started by modeling the A-RGC responses with the simplest model for RGCs: 

the LN model. For the LN model we filtered the input stimulus of the training dataset 

with the spike-triggered average calculated by reverse correlation and passed that output 
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through a static nonlinearity. Above, we found this model to very successfully predict the 

responses of all the A-RGCs to a new spatially uniform stimulus and to reasonably 

predict the responses to more spatially complex white-noise stimuli. We also found 

earlier that the A-RGC responses to the original and manipulated movie of averaged 

central pixels were 70% similar, which suggested that these cells may be amenable to 

simple models (see Chapter 4, Figure 4.17). Based on the results from fitting white-noise 

responses and the similarity between the A-RGC responses to the original and 

manipulated movies, we hypothesized that the LN model would predict the responses to 

natural movies reasonably well. To test this hypothesis, we fit the natural movie 

responses with the LN model.  

Just as for the white-noise stimuli, we convolved the movie with the measured 

spatio-temporal filter of the cell and rectified the filter output with a log-sigmoidal 

nonlinearity (Figure 5.1). The spatio-temporal filter was held constant, meaning this 

model again had three free parameters that were optimized during the fit: the nonlinearity 

gain, threshold, and peak firing rate (Eqn. 4). We found this standard LN model to predict 

the responses of the Off- and On-Sustained A-RGCs quite well. This assessment was 

based on the similarity of the model prediction to the A-RGC responses across repetitions 

of the same stimulus. For example, the On- and Off-Sustained A-RGC responses were 

~85% correlated, on average, across single spike trains and the average similarity 

between the model output and the same single trial repetitions was 70-75%. On average 

the correlations between the predictions and the data were only 10-15% less than the 

similarity across trials (Figure 5.31). The Off- and On-Transient responses were 

consistently fit the worst by the LN model. On average their responses were 30-40% less 
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correlated than the single trial repetitions. Overall the predictions of the LN model with a 

fixed linear filter were at least 55% correlated to the A-RGC responses and in some cases 

the predictions were far better. 

In the above standard LN model fitting, we kept the spatio-temporal filter 

measured from white-noise stimuli constant. Due to the differing statistics of white-noise 

and natural scenes, we acknowledged that the filtering properties of the A-RGCs may 

have changed under the two conditions. In an attempt to improve the predictions from the 

single filter LN model, we decided to optimize the temporal component of the receptive 

field. In practice, we kept the spatial receptive field fixed and chose starting parameters 

for the temporal kernel by fitting the STA with the “2 hump model”17. Fitting the 

temporal kernel added an additional 5 free parameters on top of the 3 parameters for the 

nonlinearity and this modification increased the prediction power of the single filter 

model. The model predictions of the Off- and On-Sustained A-RGC responses improved 

by 10-15%. This jump in performance put the error of the model prediction within the 

range of the intrinsic noise of the cell. The average correlation between single trial 

repetitions for the sustained cells was 85±4% and the average correlation between the 

repetitions and model prediction was 84±2%. Therefore the model reproduced the firing 

rate of the neuron within the biologically acceptable limits of the sustained A-RGCs. The 

model performance for the Off- and On-Transient responses also improved when fitting 

the temporal kernel. The prediction power with the modified standard LN model was 

roughly equivalent to the sustained A-RGC predictions under the standard model. The 

Off-Transient predictions were 13% and the On-Transient predictions were 20% less 

correlated than the data repetitions. 
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Figure 5.22: LN model prediction for an On-Sustained A-RGC’s responses to the 
simulated mouse natural movie. In this example the temporal kernel and 
nonlinearity were optimized by the fitting algorithm. The correlation between the 
data and the fit was 87%. 
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 We tested one final simplification of the LN model by assuming that the A-RGC 

spatial receptive field averaged across the pixels in the center. The motivation for this 

simplification came from our earlier observation of A-RGC responses to modified natural 

movies (see Chapter 4, Figure 4.17). For the same movies used in modeling, the majority 

(~70%) of the A-RGC responses to the original movie (1000 µm diameter mask) were 

retained when shown the same movie of only the average of the central pixels (200-250 

µm diameter mask). The model for this fit was identical to the previous model, except 

instead of calculating the model input for each cell by filtering the movie with the spatial 

receptive field, the model input was the averaged movie stimulus we used during the 

movie manipulations. For all the A-RGCs, taking a flat average versus a weighted 

average of the pixels did not affect the model performance. If anything, the predictions 

using the flat averaged input were better than the weighted input by a few percent. 

In summary, the standard LN model predicted the natural movie responses of the 

A-RGCs quite well. By modifying the model to fit the temporal kernel, this model with a 

single filter and nonlinearity was sufficient to predict the responses of the sustained A-

RGCs within intrinsic biological noise. Unexpectedly, these predictions were generated 

by taking a flat average of the central pixels for each frame and the model performance 

did not improve with an input generated by filtering the movie with the spatial receptive 

field. Unlike for white-noise stimuli of increased complexity, the LN model was 

sufficient for predicting the majority of the responses to complex natural movies. This 

result indicated the computations performed by the A-RGCs under our natural movie 

stimuli were simpler than under the white-noise. 
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5.5.2 Performance of the split center model on predicting natural movie responses 

The addition of a second independently flickering white-noise channel to generate 

the split spot white-noise required further model components to match the performance of 

the LN model to spatially uniform stimuli. This requirement was unsurprising 

considering the nonlinear addition of the stimulus illustrated by the 2D-nonlinearities 

(Figure 5.12). By adding a second, identical channel to locally rectify the new half of the 

stimulus, we improved on the LN model prediction by 2-9%. Based on this result, we 

hypothesized that applying the 2-filter “split” model to the natural movie responses 

would also improve upon the performance of the LN model. To generate the input for the 

split center model, we arbitrarily divided the center of the natural movie (250 µm 

diameter) into two halves (Figure 5.23). The average of the pixels in each half was either 

weighted based on the calculated spatial receptive field or computed as the flat average.  
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Figure 5.23: Diagrammed procedure of fitting the “split” 2-filter model to the 
natural movie responses. Each frame of the movie was split in half and the halves 
were independently summed to comprise the input to the model.  
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The performance of the “split” 2-filter model did not improve on the performance 

of the modified LN model. Additionally, the model was not affected by the method of 

averaging used to generate the model input. The predicted firing rates for the transient A-

RGCs were still 13-20% less correlated, on average, than the data repetitions while the 

prediction errors for the sustained A-RGCs were within the neural noise. 

After seeing no improvement in the predictive power of the “split” 2-filter center 

model to natural movie responses, we investigated whether this deviation from the white-

noise stimuli was due to different spatial processing of the A-RGCs under the two 

stimulus conditions. As a preliminary test, we compared the 2D-nonlinearities of A-

RGCs of the same type calculated from responses to both white-noise and the simulated 

mouse natural movie. We calculated the natural movie 2D-nonlinearities in a similar 

manner as above. Each half of the averaged movie was filtered by the temporal kernel for 

the receptive field center and plotted on the x- and y-axes respectively. The recorded 

firing rate was plotted on the z-axis. Comparing the natural movie and split spot white-

noise 2D-nonlinearities, we found that the region of stimulus space explored during 

natural movie stimulation was smaller than during white-noise (Figure 5.24). 

Additionally, during the natural movie stimulus, the 2D-nonlinearity could be adequately 

approximated by a linear combination of the two averaged stimulus halves. This 

preliminary comparison indicated the A-RGCs performed equivalent processing of visual 

input under the two stimulus conditions, i.e. the 2D-nonlinearity was unchanged under 

white-noise and natural movie input, but that the region over which the nonlinearity was 

evaluated changed. 
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Figure 5.24: Comparison of the A-RGC 2D-nonlinearities calculated from responses 
to the simulated mouse movie and split center white-noise. The nonlinearities for the 
white-noise responses are reproduced from Figure 5.12 and placed in the lower 
right corner. The axes for all the 2D-nonlinearities range from -4 to +4.  
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 So far we tested the predictive power of the LN and “split” 2-filter models on the 

A-RGC responses to natural movies. The LN model proved sufficient for modeling the 

sustained A-RGC responses to these movies, but both models failed to predict the 

transient cell responses within neural noise. To attempt to improve the prediction of the 

transient A-RGC responses, we decided to build a subunit model to locally sum and 

rectify the movie input. We chose this direction instead of applying the “center-surround” 

2-filter model as used for the center-surround white-noise for two reasons. First, the 2D-

nonlinearity of the Off-Transient cells indicated a minimal influence of the surround on 

the final firing rate output. Therefore, it would be unlikely for the “center-surround” 2-

filter model to improve the Off-Transient prediction. Additionally, our earlier observation 

of responses to manipulated movies suggested local summation and rectification in the A-

RGC surround rather than flat summation. To successfully implement a model with 

surround subunits would perhaps take many more additional parameters. Thus in an 

effort to find a model of minimal complexity to improve the prediction for both of the 

transient cells, we built the four-by-four subunit model. 

 

5.6 Predicting responses to natural movies with the four-by-four subunit model 

We established that the A-RGCs nonlinearly process visual input over their 

receptive field centers in two ways. For one, we found each stimulus channel in the 2D-

nonlinearites under split spot white-noise to display a rectified shape and, second, we 

found all of the A-RGCs, except some of the Off-Sustained, to display responses similar 

to the frequency doubling indicative of nonlinear spatial summation (see Chapter 3, 

Figure 3.6)10,34,38. Models from other work explaining frequency doubled responses have 
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pooled over locally rectified regions of a large receptive field10,38,39. The crude, two-

channel version of this model that we already tested, i.e. the “split” 2-filter model, failed 

to perform better than the LN model to predict natural movie responses despite having an 

additional parameter. We hypothesized that the equivalent performance of the two 

models was due to a model input that had been averaged over “too large” of an area. In 

this scenario, by averaging over half of the receptive field center, we had averaged out 

the important information to effectively drive local nonlinear subunits driving the 

response. Therefore, we created the last model in our beginning A-RGC modeling 

strategy by dividing the center stimulus into eight times the number of regions to build a 

nonlinear subunit model (Figure 5.2).  

 

5.6.1 Description and fitting strategy of the four-by-four subunit model 

Our model split the receptive field center into 16 subunits through a 4-by-4 grid 

(Figure 5.25). Each model subunit matched the same structure of the previous LN model 

extensions. Thus, the average stimulus across each subunit was filtered by a temporal 

kernel and passed through a sigmoidal nonlinearity. The temporal kernel and nonlinearity 

were identical for all subunits except that each subunit was allowed to have its own 

weight as implemented by a scaling of the nonlinearity. All the rectified outputs of the 

subunits were added together as they would be within the RGC. The sum of the subunit 

outputs was passed through a final sigmoidal nonlinearity representing the spike 

generation of the RGC. The final output of the model was interpreted as the time-

dependent prediction of the A-RGC firing rate. 
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The number of parameters in the previous models had not exceeded 12, but the 4-

by-4 subunit model more than doubled that number. The subunit model had 26 free 

parameters: 5 for the temporal kernel, 2 for the subunit nonlinearity, 16 for the weights of 

the subunits, and 3 for the RGC nonlinearity. We used the same starting parameters as 

before for the temporal kernel and the nonlinearities. All of the subunit weights were set 

to unity. To facilitate the algorithm with fitting the larger number of parameters, the fit 

iteratively went through subspaces of similar parameters until convergence (see section 

5.2 on optimization). 
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Figure 5.25: Schematic of the 4-by-4 subunit model. The natural movie, within a 
1000 µm mask, was split into a 4-by-4 grid. The pixels within each of the 16 squares 
were linearly averaged and each served as an input to a bipolar subunit “B.” The 
subunit outputs were rectified before summation within the retinal ganglion cell 
“G” and final transformation into the output firing rate. This model had 23 
parameters, the most of all the models so far utilized. 
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5.6.2 Performance of the four-by-four subunit model 
 

The performance of the 4-by-4 subunit model matched or exceeded that of the 

previous models for all of the A-RGCs. The predictions for the Off-Sustained and On-

Transient responses both increased in correlation by 5% and the prediction for the Off-

Transient A-RGCs increased by 7%. The prediction for the On-Sustained responses 

matched those of the previous models. Recall the modified LN model was already 

sufficient to explain the Off-Sustained responses within the error of neural noise. This 

additional 5% increase indicated the 4-by-4 subunit model could, on average, predict the 

responses of the Off-Sustained A-RGCs well within intrinsic neural noise. Example 

predictions and the calculated receptive field parameters are given for each A-RGC type 

(Figures 5.26-29). For each A-RGC type, the grey prediction closely follows the colored 

average response. Additionally, the temporal filters found by the model tend to differ 

somewhat from those calculated from the white-noise responses. The degree of 

rectification of the bipolar subunits varied depending on the cell, but we did not see a 

consistent relationship between rectification strength and A-RGC type. The lower right 

corners of Figures 5.26 -29 contain the weight matrices for the 16 bipolar subunit 

channels. Channels with larger weights, aka lighter colors, were often in the center of the 

receptive field as expected for Gaussian weighting. The range of nonlinearity shapes can 

be seen in the lower left corners with the magnitude of the weights represented by the 

peak subunit output values. Overall, the computations performed by the 4-by-4 subunit 

model and the final firing rate predictions were reasonable for each A-RGC type.  
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Figure 5.26: 4-by-4 model prediction and fit parameters for Off-Transient A-RGC. 
Correlation between data and fit: 80%. Lower right weight matrix shows location of 
lower left nonlinearities with lighter colors representing larger subunit outputs. 
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Figure 5.27: 4-by-4 model prediction and fit parameters for Off-Sustained A-RGC. 
Correlation between data and fit: 88%. Lower right weight matrix shows location of 
lower left nonlinearities with lighter colors representing larger subunit outputs. 
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Figure 5.28: 4-by-4 model prediction and fit parameters for On-Transient A-RGC. 
Correlation between data and fit: 80%. Lower right weight matrix shows location of 
lower left nonlinearities with lighter colors representing larger subunit outputs. 
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Figure 5.29: 4-by-4 model prediction and fit parameters for On-Sustained A-RGC. 
Correlation between data and fit: 88%. Lower right weight matrix shows location of 
lower left nonlinearities with lighter colors representing larger subunit outputs. 
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5.7 Testing the performance of simple LN models on non-alpha retinal ganglion cells 
 

In addition to fitting the A-RGC responses to natural movies, we also fit our 

models to a few randomly selected RGCs. The responsiveness of the non-alpha RGCs to 

the natural movies varied. Some of the non-alpha RGCs only sporadically responded to 

the natural movie stimuli while others, such as the example in Figure 5.30, responded 

robustly. In all cases, fitting our LN models from Figure 2 elicited worse predictions than 

we obtained for the A-RGCs. The average correlation between the model prediction and 

the data was consistently below 30%. Our finding that a subset of non-alpha ganglion 

cells were poorly fit by simple models suggests our modeling results are unique to the A-

RGCs. 
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Figure 5.30: LN and modified LN model predictions for a non-alpha, On-Off RGC. 
The average correlations of the predictions to the data were 15% for the LN model 
and 20% for the modified LN model where the temporal kernel was fit by the 
model. 
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5.8 Summary of predicting alpha retinal ganglion cell responses to natural movies  
 

We found the simple models successful in predicting white-noise responses, in 

some cases, equally successful at predicting responses to natural movies. We also found 

that allowing the model to fit the temporal kernel improved the model performance by 

10-25%. In opposition to our results from predicting responses to white-noise, the “split” 

2-filter model performance did not improve upon on the LN model. To improve the 

correlation between the model prediction and fit by the same degree (~5%), the model for 

the natural movies required 8 times the number of rectifications with the receptive field 

center. This result is consistent with more complex spatial structure of natural movies. As 

a final assessment of model performance, we compared the average model performance 

of predicting responses to natural movies with the intrinsic noise of each A-RGC (Figure 

5.31). The models performed consistently better by at least 10% in predicting the output 

of the sustained A-RGCs versus the transient RGCs. This was especially true considering 

the slight bias of the transient cells toward more regular firing across stimulus repetitions 

(Figure 32, y-axis). In general all of the models performed well for predicting the output 

of the A-RGCs compared to non-alpha RGCs. The success of the LN and extended LN 

models suggested simple models with few processing stages were sufficient to capture 

the A-RGC computations on natural movie input. 
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Figure 5.31: Comparison of model performance on predicting responses to natural 
movies with intrinsic neural noise. The y-intercept (“Data”) represents the intrinsic 
error of each A-RGC calculated as the average response correlation across repeated 
trials of the same stimulus. The average correlation of the model prediction to these 
same trials is plotted for the 4-by-4 subunit (“Subunit”), split 2-filter (“Split”), 
modified LN to fit the temporal kernel (“Center”), and LN models. 
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5.9 Summary of predicting the alpha retinal ganglion cells with simple models 
 

We found that across all stimuli the standard LN model, consisting of a fixed 

linear filter that was calculated from the white-noise data and a three parameter sigmoidal 

nonlinearity, succeeded in replicating over 50% of the trial to trial A-RGC responses 

(Figure 5.32). The predictions for the uniform, split spot, and center-surround white-noise 

stimuli were all within <10% of the intrinsic variation of the data, except for the Off-

Transient center-surround prediction. Even for the natural movie responses, the LN 

model predictions were only 10-15% less correlated than the data for the sustained cells 

and 35% for the transient A-RGCs. Though models with additional nonlinearities 

improved upon the LN model in all attempted cases, the effectiveness of a single filter 

and nonlinearity at predicting the A-RGC responses suggests these cells perform simple 

computations on visual input. 
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Figure 5.32: Comparison of the linear-nonlinear (LN) model across all forms of 
stimuli to the intrinsic neural error. The y-intercept (“Data”) represents the error of 
each A-RGC calculated as the average response correlation across repeated trials of 
the same stimulus. On the x-axis, the stimulus variations and the performance of the 
LN model for that stimulus are plotted in increasing order of complexity. 
 
 
 
 
 
 
 
 
 
 



171 

 
 
 
 
 
 

 
Figure 5.33: Summary of correlation values between data and model fit for 
responses of the A-RGCs to all tested stimuli. The range under the linear-nonlinear 
model indicates the span of correlation values for the standard LN model across all 
four A-RGC types. The percent improvements indicated under the 2-filter model 
and the 4-by-4 subunit model state the improvement in the two range values to fit 
the same data. 
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5.10 Discussion 
 

We found the responses of the A-RGCs to white-noise stimuli and natural movies 

to be very amenable to prediction by simple models. All responses to visual stimuli were 

at least 50% correlated to the prediction by the standard LN model. The success of the 

standard LN model consisting of a temporal filter, calculated by reverse correlation, and 

three parameters for the nonlinearity suggested the computations performed by the A-

RGCs on our visual stimuli were relatively simple. Our success modeling the mouse A-

RGCs with the LN model was consistent with a past report on the potential A-RGC 

analogs in the guinea pig. Zaghoul et al. 2007 found the responses of the large RGCs to a 

spatially uniform Gaussian flickering spot were 80 ± 3% captured by the LN model21. We 

extended these results by verifying the RGC type through the use of the KCNG4-cre 

transgenic mouse line and by finding that the LN model performed reasonably well on 

more complex stimuli, including natural movies. Previous work predicting responses to 

natural movies from the feline lateral geniculate nucleus (LGN) used the LN model and 

found the predictions to be, on average, 48% correlated with the data26. It should be noted 

that in this study they calculated the correlation between the average neural response and 

the model prediction. Our model predictions were correlated with A-RGC responses to 

individual repetitions of the stimulus and our predictions with the LN model were 65% 

correlated on average. If Dan et al. 1996 had calculated the correlation using the noisier 

individual spike trains, as we have here, their average correlation value would have been 

lower than 48%. Our work builds upon previous successful applications of the LN model 

by predicting neural responses to natural movies more accurately than ever before. 
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By adding additional nonlinearities, we were able to improve upon the standard 

LN model predictions (Figure 5.21 and 5.31). The justification for adding further model 

complexity came from our finding via the 2D-nonlinearities that the A-RGC spatial 

processing of binary stimuli was nonlinear. This result was consistent with our earlier 

recordings of the neurons responding to inverting gratings in a manner similar to the 

frequency doubling reported in mouse A-RGC analogs (see Chapter 3, Figure 3.6). The 

extensions of the standard LN model successfully reproduced the computations of the A-

RGCs as reflected in the predicted 2D-nonlinearities for the split-center and center-

surround white-noise stimuli. The reproduction of those nonlinearities provided evidence 

that the increase in prediction quality over the LN model resulted from a better estimate 

of the A-RGC computation rather than the additional free parameters. It should be noted 

that there was no chance of overfitting because the model was optimized on one portion 

of the data and the prediction was calculated on another. Further subdividing the 

receptive field center improved the prediction for the natural movies. We found this result 

somewhat surprising considering the 16 stimuli inputs were highly correlated with each 

other (data not shown). The finding that separately rectifying highly correlated inputs 

improved the model performance supports the notion that A-RGCs possess spatially 

nonlinear receptive fields. It is important to remember that the contribution from these 

additional nonlinearities was significant, but below 10% and that the standard LN model 

with a single nonlinearity captured the majority of the A-RGC responses. 

All stimuli we tested elicited robust responses from the A-RGCs. Qualitatively, 

the A-RGC responses to white-noise and natural movies were similar based on having 

roughly equal peaks in firing rate per second and similar jitter in response across stimulus 



174 

repeats. The frequent responses of the A-RGCs compared to those of other RGCs, that 

tended to be sparser, may partly explain our modeling success based on having larger 

quantities of data2. Under the current stimulus conditions, we were unable to predict A-

RGC responses to movies using the LN model with the parameters found by fitting the 

white-noise responses. This was primarily due to differences in the nonlinearities 

resulting from the high contrast white-noise stimulus eliciting higher peak firing rates 

than the natural movies. Our preliminary results comparing the 2D-nonlinearities from 

white-noise and natural movies suggested those differences in the parameters were due to 

differences in the properties of the stimuli rather than a change in neural processing. For 

example, the “split” 2-filter model failed to improve the prediction for the natural movie 

responses as it had for the white-noise stimuli. This difference may have been due to the 

binary stimulus overall driving the retina harder than the natural movies to result in less 

exploration of the nonlinearities. Future experiments can use white-noise stimuli with a 

contrast range equal to that of the natural movies. In such a case, the parameters for the 

LN model prediction optimized to the white-noise stimulus should likely predict the 

responses to the natural movies. It should be noted that at times the temporal kernel found 

by the model for the natural movie prediction was shifted relative to the kernel calculated 

from the white-noise responses. In practice the receptive fields were measured at the end 

of the experiment and thus this shift could have resulted from the time delay between the 

recordings of the responses to the two stimuli.  

Our key result from modeling the A-RGC responses was our success predicting 

the neural responses to natural movies. The responses of the Off- and On-Sustained A-

RGCs were readily replicated by the standard LN model when fitting the temporal kernel. 
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The predictions were within the biological error measured from stimulus repetitions and 

thus the LN model was sufficient to explain the responses to the movies we tested. The 

model predictions for the Off- and On-Transient A-RGCs were never within the intrinsic 

biological error of those cells. Allowing optimization of the temporal filter in the standard 

LN model improved the fit by 15-20% and introducing local rectifying subunits in the 

center improved the fit by an additional 5-7%. Further modifications of the models by 

allowing for a different temporal kernel in the surround or even adding locally rectified 

surround subunits would perhaps completely reproduce the responses of the transient A-

RGCs. Overall, our model results showed the computations performed by the A-RGCs to 

be mostly captured by the simple combination of a linear filter with a few nonlinear 

transformations. 
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The work presented in this thesis has focused on the electrophysiological responses 

of the mouse alpha retinal ganglion cells (A-RGCs). The main conclusions from this 

work are as follows:  

The mouse A-RGCs constitute a symmetric population of 2 transient and 2 sustained 
types with both Off- and On-center responses. 

 
The cellular properties of the A-RGCs (active dendrites, thick axons) indicate they may 

be the fastest channel of information out of the retina. 
 
As a population, the A-RGCs appear to continuously send information about natural 

visual scenes. In contrast, many other RGC types, such as the On-Off direction 
selective and W3 aka local edge detector, rarely respond to similar movies 
dominated by self-motion. 

 
The responses of the four A-RGCs persisted under dramatic spatial movie manipulation 

suggesting their visual message is dominated by the average stimulus in the 
receptive field center. 

 
Their responses are a simple filtered version of the input stimulus for both artificial and 

natural stimuli. 
 

Our finding of the On-Transient A-RGC in Chapter 3 restores symmetry within the 

mouse alpha population. We are confident the On-Transient cells are indeed part of the 

alpha class based on staining positive for neurofilament, sharing many receptive field 

parameters with the other A-RGCs, and minimally processing the visual scene as 

assessed by movie manipulations and modeling. We found it especially surprising the 

On-Transient type had been previously missed considering in all other mammals tested, 

the A-RGCs only possessed transient light responses. We believe this cell type was 

initially overlooked because it constitutes a minority in the On population. Of all the On 

RGCs recorded in this study, 1/4th were transient. Further work is required to illuminate 

whether the On-Transient and On-Sustained cell types are morphologically distinct. 

Previous publications indicate there may be slight differences in the densities of their 
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dendritic arbors. It will also be interesting to reveal whether the On-Transient and On-

Sustained A-RGCs separately tile the retina or together form a full mosaic. For 

comparison, the Off and On alpha cells each evenly tile the retina in the cat. Recently, the 

On-Sustained alpha cells were shown to tile the retina in the mouse, but it is unclear 

whether the On-Transient A-RGCs were included in that population. My preliminary 

analysis on the population density of the Off mouse A-RGCs suggested the two types 

form separate mosaics. If the On and Off populations are truly symmetric, the On-

Transient cells will tile the retina separate from the On-Sustained cells. If not, the mouse 

may be an evolutionary intermediate on the way to the full separation of cell types in the 

cat. 

The mouse A-RGCs seem well positioned to deliver fast information to the brain. 

For one, their thick axons equate to the highest conduction velocity of all output cells 

from the retina. Additionally, we believe the unique spike shape of this class of cells with 

the prepotential may be due to dendritic spikes. If the dendrites of the A-RGCs are indeed 

active, this indicates a greater importance of local stimulation that may speed responses 

to potentially be used to trigger visual attention. Further work to block the somatic spike 

or initiate dendritic spikes will illuminate whether the dendrites are the cause of the 

prepotential. Regardless, the unique spike shape is shared across the A-RGC population 

suggesting similar biophysical mechanisms of spike generation. 

Though the A-RGCs have served as a “model” RGC to test specifics of visual 

processing across mammals, their responses to natural movies had not been investigated 

or modeled until now. In Chapter 4 we showed that, as a population, the mouse A-RGCs 

were essentially continuously sending information about the visual scene under natural 
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stimulation. This was very different from other RGCs, such as the W3, that rarely 

responded to natural movies like the ones we used here. We also showed that the A-RGC 

responses to natural movies were primarily due to the average stimulus in the receptive 

field center. In Chapter 5, we demonstrated that with the same average stimulus 

information, we could predict the responses of the A-RGCs with a simple model 

including temporal filtering and a nonlinearity replicating spike generation machinery. In 

all cases, the responses of the A-RGCs were well predicted by simple models and 

sometimes even within intrinsic neural noise. Results from Chapters 4 and 5 suggest the 

computations the A-RGCs perform on visual input are fairly uncomplicated. This claim 

holds for both white-noise stimuli and natural movies. Therefore the A-RGCs may be 

sending a simple filtered version of the visual scene to higher brain areas that may then 

serve as a reference for other inputs. It will be interesting to know whether other 

mammalian alpha cells behave in a similar manner under natural stimulation. Based on 

our finding that the A-RGCs continually encode a simple filtered version of the natural 

world, combined with the knowledge that these retinal neurons are conserved across 

species, it is very likely that the A-RGCs play a fundamental role in natural vision. 


