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Methods for the Analysis of Differential 
Composition of Gene Expression 

 
Abstract 

Modern next-generation sequencing and microarray-based assays have empowered 

the computational biologist to measure various aspects of biological activity. This has led 

to the growth of genomics, transcriptomics and proteomics as fields of study of the 

complete set of DNA, RNA and proteins in living cells respectively. One major challenge 

in the analysis of this data, however, has been the widespread lack of sufficiently large 

sample sizes due to the high cost of new emerging technologies, making statistical inference 

difficult. In addition, due to the hierarchical nature of the various types of data, it is 

important to correctly integrate them to make meaningful biological discoveries and better 

informed decisions for the successful treatment of disease. In this dissertation I propose: 

(1) a novel method for more powerful statistical testing of differential digital gene 

expression between two conditions, (2) a framework for the integration of multi-level 

biologic data, demonstrated with the compositional analysis of gene expression and its 

link to promoter structure, and (3) an extension to a more complex generalized linear 

modeling framework, demonstrated with the compositional analysis of gene expression 

and its link to pathway structure adjusted for confounding covariates.  
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edgeRun: an R package for sensitive, functionally relevant 

differential expression discovery using an unconditional exact test 

Emmanuel Dimont1, Jiantao Shi1, Rory Kirchner1, and Winston Hide1,2,3 
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Boston, MA 02115, USA, 2Harvard Stem Cell Institute, 1350 Massachusetts Ave, 

Cambridge, MA 02138, USA, 3Sheffield Institute of Translational Neuroscience, University 
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Abstract 

Summary: Next-generation sequencing platforms for measuring digital expression such as 

RNA-Seq are displacing traditional microarray-based methods in biological experiments. 

The detection of differentially expressed genes between groups of biological conditions has 

led to the development of numerous bioinformatics tools, but so far few, exploit the 

expanded dynamic range afforded by the new technologies. We present edgeRun, an R 

package that implements an unconditional exact test that is a more powerful version of 

the exact test in edgeR. This increase in power is especially pronounced for experiments 

with as few as 2 replicates per condition, for genes with low total expression and with 

large biological coefficient of variation. In comparison with a panel of other tools, edgeRun 

consistently captures functionally similar differentially expressed genes.  

Availability and implementation: The package is freely available under the MIT license 

from CRAN (http://cran.r-project.org/web/packages/edgeRun).  

Contact: edimont@mail.harvard.edu  
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1.1 Introduction 

Next generation sequencing technologies are steadily replacing microarray-based 

methods, for instance transcriptome capture with RNA-Seq (Mortazavi et al, 2008) and 

CAGE-Seq capture for the promoterome (Kanamori-Katayama et al, 2011). All of these 

approaches result in digital expression data, where reads or tags are sequenced, mapped 

to the genome and then counted. The discrete nature of the data has required the 

development of new bioinformatics tools for their analysis that address discrete count 

data. 

 Once the expression has been quantified, an important next step is the statistical 

significance testing of differential expression between two or more groups of conditions. 

By the far the simplest and most popular approach reduces differential expression to a 

pairwise comparison of mean parameters, resulting in a fold-change measure of change 

and a p-value to ascertain statistical significance of the finding. To address this problem, 

tools such as edgeR (Robinson et al, 2010), DESeq2 (Love et al, 2014) among many others 

have been developed and can be applied to any experiment in which digital count data is 

produced. 

 This vast array of tool choices can be bewildering for the biologist since it is 

generally not clear under which conditions a tool is more appropriate than its alternates. 

Traditional metrics used when benchmarking methods such as the false positive rate and 

power are useful but limited as they are purely statistical concepts that can only be tested 

on simulated data. Moreover they do not help in determining to what extent methods 

deliver truly biologically important genes. This is a major challenge because in the vast 

majority of cases, we do not know what the true positives and negatives are. 

 In this paper, we propose a novel metric to determine the number of functionally 

relevant genes reported by a differential expression tool and present edgeRun, an extension 

of the edgeR package delivering increased power to detect true positive differences be-
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tween conditions without sacrificing on the false positive rate. We show using simulations 

and a real data example that edgeRun is uniformly more powerful than a host of 

differential expression tools for small sample sizes. We also demonstrate how even though 

it may be less statistically powerful than DESeq2 in some simulation cases, edgeRun 

nonetheless produces results that are functionally more relevant. 

 

1.2 Methods 

1.2.1 edgeRun: exact unconditional testing  

Assuming independent samples, Robinson et al. (2011) proposed edgeR, an R 

package that eliminates the nuisance mean expression parameter by conditioning on a 

sufficient statistic for the mean, a strategy first popularized by Fisher (1925) for the 

binomial distribution. This leads to a calculation of the exact p-value that does not involve 

the mean. The advantage of this approach is its analytic simplicity and fast computation, 

however a key disadvantage is that this conditioning approach loses power, especially for 

genes whose counts are small. 

We propose an alternative more powerful approach which eliminates the nuisance 

mean parameter via maximizing the exact p-value over all possible values for the mean 

without conditioning which we call “unconditional edgeR” or edgeRun. This technique was 

initially proposed by Barnard (1945) for the binomial distribution. The main disadvantage 

of this method is the higher computational burden required for the maximization step. 

On the other hand, the gain in power can be significant. A thorough derivation and 

comparison of both methods can be found in the Supplementary Methods. 
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1.2.2 Benchmarking against other methods  

The compcodeR Bioconductor package (Soneson, 2014) was used to benchmark the 

performance of edgeRun against a panel of available other tools using a combination of 

simulated and real datasets. edgeRun had the highest area under the curve (AUC) of all 

methods and it maintained a comparable false discovery rate similar to other tools. In 

terms of power, only DESeq2 was found to outperform edgeRun. For this reason in the 

next section, we perform a function-al comparison only with DESeq2. The full results are 

summarized in Supplementary Methods. 

 

1.2.3 Comparing Functional Relevance  

We propose to compare the genes called significant by various differential 

expression tools. Figure 1.1 compares the results of edgeRun and DESeq2 applied to a 

prostate cancer dataset (Li et al., 2008) using an FDR less than 5% cutoff. Out of the 

4226 genes reported as differentially expressed, 80% were common to both tools. The 

highest 500 up- or down-regulated of these consensus genes by fold-change are used as a 

seed signature. It is reasonable to hypothesize that true differentially expressed genes 

uniquely reported by a differential expression tool are functionally connected to genes in 

the consensus group. We use GRAIL (Raychaudhuri et al, 2009) coupled with a global 

coexpression network COXPRESdb (Obayashi et al, 2013) to assess the relatedness 

between a gene and the consensus group. As expected, nearly half of these seed genes are 

correlated with other members of the seed group, meaning that these consensus genes 

form a tightly connected network. Figure 1.1 shows that edgeRun reports 6.6 times more 

unique DE genes, and a larger proportion of which are coexpressed with the consensus. 
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This means that the genes reported by edgeRun are more likely to be functionally relevant 

as they are more correlated with the consensus network. 

 

 

Figure 1.1: Comparing the functional relevance of genes called significantly differentially expressed by 

edgeRun and DESeq2 

 

1.3 Discussion 

We present edgeRun, an R package that improves on the popular package edgeR 

for differential digital expression by providing the capability to perform unconditional 

testing, resulting in more power to detect true differences in expression between two 

biological conditions. Even though the computational burden is increased, the power 

gained using this approach is significant, allowing researchers to detect more true 

positives, especially for cases with as few as 2 replicates per condition and for genes with 

low expression, all the while without sacrificing on type-I error rate control. edgeRun is 

simple to use, especially for users already experienced with edgeR as it is designed to 

interface with edgeR objects directly, taking inputs and generating output in the same 

format.   
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Abstract 

Summary: Alternate promoter usage is an important molecular mechanism for generating 

RNA and protein diversity. Cap Analysis Gene Expression (CAGE) is a powerful 

approach for revealing the multiplicity of transcription start site (TSS) events across 

experiments and conditions. An understanding of the dynamics of TSS choice across these 

conditions requires both sensitive quantification and comparative visualization. We have 

developed CAGExploreR, an R package to detect and visualize changes in the use of 

specific TSS in wider promoter regions in the context of changes in overall gene expression 

when comparing different CAGE samples. These changes provide insight into the 

modification of transcript isoform generation and regulatory network alterations 

associated with cell types and conditions. CAGExploreR is based on the FANTOM5 and 

MPromDb promoter set definitions but can also work with user supplied regions. The 

package compares multiple CAGE libraries simultaneously. Supplementary Materials 
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describe methods in detail, and a vignette demonstrates a workflow with a real data 

example.  

Availability and implementation: The package is freely available under the MIT license 

from CRAN (http://cran.r-project.org/web/packages/CAGExploreR).  

Contact: edimont@mail.harvard.edu  

 

2.1 Introduction 

It has been predicted that the majority of human genes have multiple promoters. 

The differential use of transcription start sites (TSSs) in alternative promoters is a 

complementary mechanism to alternate splicing for the generation of RNA diversity that 

is now becoming better understood (Pal et al., 2011). Tissue specific TSS usage has been 

identified in mammalian genomes (Carninci et al., 2006), and alternate TSS usage has 

been identified in cancers when compared with normal cells (Thorsen et al., 2011), 

implying that promoter-specific transcription coupled with gene expression exists as 

hallmarks of cell state. The profound impact of switches in transcript isoform production 

is well recognized for its role in regulation (Trapnell et al., 2010). 

 Cap Analysis Gene Expression (CAGE) captures, sequences and maps capped 50 

RNA tags. In addition to being a platform for measuring gene expression, it has more 

importantly provided molecular biologists with enhanced resolution of gene regulation by 

revealing the precise locations of transcription initiation events (Plessy et al., 2010). 

CAGE data have recently become more plentiful, thanks to the recent ENCODE (2012) 

and FANTOM5 (Forrest A.R.R. et al., 2014) publications. 

 Analysis of TSS choice provides insight into the variation of transcription factor 

binding, epigenetic modifications and regulatory network activation between different cell 

types. Although CAGE allows for the identification of individual TSS, it is more 
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convenient to group clusters of TSSs detected in close vicinity into ‘promoter’ regions. 

This makes CAGE an attractive platform for de novo promoter identification. 

 The relative transcription occurring at TSSs among alternative promoters of a gene 

is termed promoter composition (PC). We describe CAGExploreR, an R package that 

conveniently summarizes, visualizes and ranks changes in PC (also called promoter 

‘switching’) genome-wide across different samples. The dynamics of differential PC is 

especially intriguing when this phenomenon leads to changes in the abundance of different 

transcript isoforms or protein products within the cell population under study. Figure 2.1 

highlights the conceptual difference between PC and differential gene expression. Four 

samples, A–D, are evaluated at four color-coded promoter regions located near or within 

a gene. Total gene expression measured as mapped tags per million sequenced following 

optional library normalization with edgeR (Robinson et al., 2010) is obtained by summing 

the number of tags that map to the union of the gene region, all four promoters including 

the regions between them and dividing by effective library size. PC is measured as a 

proportion vector. A and B have no change in PC, but the gene is differentially expressed. 

A and C have no differential gene expression but there is differential PC. Finally, A and 

D demonstrate both differential gene expression and differential PC. 

 Existing bioinformatics tools that analyze count data from sequencing technologies 

treat genes as elementary indivisible units and usually measure differences in expression 

via a contrast between two groups of samples. Examples include edgeR (Robinson et al., 

2010) and Cuffdiff (Trapnell et al., 2010) for differential gene expression and transcription 

analysis, respectively. Unlike these tools, CAGExploreR treats genes as multiunit blocks 

composed of promoter subunits and compares their relative expression within the gene 

across samples. It is not restricted to the analysis of contrasts between pairs of experiments 

but rather is designed to scale to any number of experiments for simultaneous comparison. 
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2.2 Model and Methods 

Typical CAGE output consists of a BAM library file that maps sequenced tags to 

the genome, which CAGExploreR converts to a table of tag counts that correspond to 

promoter regions using either the built-in FANTOM5, MPromDb (Gupta et al., 2011) or 

a set of user-specified promoter definitions such as de novo identified regions. Internally, 

a table of counts is generated for each mapped gene, with rows corresponding to the 

different samples or libraries and columns corresponding to promoters, and displayed 

accordingly as in Figure 2.1. The promoter counts are normalized to proportions within 

each gene and sample. The simplest case would be a 2-by-2 table when comparing the PC 

across two samples for a gene with two promoters. 

 

 

Figure 2.1: Differential PC and differential gene expression. A, B, C and D 

are four arbitrary samples being compared. Gene displayed has four 

promoters 

 

Genes are assigned a proportional entropy reduction score (Theil, 1970), which 

ranges from 0, when PC stays constant across every sample, to 1, when every sample 
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transcribes exclusively from a unique promoter, for overall promoter switching. For each 

gene, the test of the null hypothesis of no differential PC corresponds to the test that the 

entropy reduction score is 0. P-values for this test are obtained using a Monte Carlo 

approach (Supplementary Methods). The switching effect size for promoter pairs is 

reported using the odds ratios for every nested 2-by-2 table within a gene. In addition, 

entropy-based measures are used to quantify the level of heterogeneity in gene expression 

across samples. All P-values are adjusted for multiple comparisons using the Benjamini-

Hochberg method to control the false discovery rate or some other appropriate user-

specified method. 

CAGExploreR generates text-based and visual HTML reports and figures similar 

to Figure 2.1 for further analysis. When several conditions are being compared, they can 

be grouped together via hierarchical clustering on a gene-by-gene basis, demonstrating 

which conditions have similar PC profiles. This profiling helps demonstrate whether the 

PC across replicates clusters together within experimental conditions. Consequently, the 

user can assess replicate agreement at the gene level and so can gain a sense of biological 

variability. 

 

2.3 Discussion 

We present CAGExploreR, the R package that addresses the important task of 

detecting changes in PC in CAGE experiments. The method is scalable to any number of 

conditions and/or promoter regions for simultaneous comparison. The method is flexible 

and can be applied to any experiment that produces tag counts grouped by classification 

factors in which the detection of switching or changes in composition is of interest, e.g. 

gene expression switching within gene sets, pathway activity switching within regulatory 

and molecular networks, isoform and exon switching using RNA-Seq. To use this software 
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for any of the aforementioned applications, the user need only to change the genomic 

region definitions from promoter regions to other regions of interest. This work is part of 

the FANTOM5 project. Data download, genomic tools and co-published manuscripts have 

been summarized at http://fantom.gsc.riken.jp/5/top/. 
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pcmR: an R package for pathway composition modeling 
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Abstract 

Summary: Genes act together in complex interrelationships within the context of 

numerous biological pathways. This information is difficult to incorporate in differential 

gene expression analysis, and even current pathway-based or enrichment analyses do not 

address the individual dynamics of each gene product as part of overall pathway activity. 

Differential expression analyses yield many potential targets for disease, but in the absence 

of relative gene activity, provide only a starting point for gene target development. We 

extend traditional gene expression analysis to the analysis of relative gene expression, 

termed composition, quantified within the context of pathways. We model the pathway-

specific gene composition with respect to covariates using a generalized linear model 

framework. We describe pcmR, an R package that identifies the composite activity of 

genes-within-pathways that are most associated with disease, which provides novel 

context for assessing candidates for drug targeting.  

Availability and implementation: The package is freely available under the MIT license 

from CRAN (http://cran.r-project.org/web/packages/pcmR).  

Contact: edimont@mail.harvard.edu  
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3.1 Introduction 

Gene expression analyses using microarray and next-generation sequencing 

platforms have become ubiquitous in modern biological research. A typical analysis 

involves the detection and quantification of differentially expressed genes between two or 

more conditions. Recently, limma (Smyth, 2005) and edgeR (Robinson et al. 2010), 

designed for continuous and count-based expression signals respectively, introduced the 

ability to fit linear models, linking the gene expression to a set of observed metadata 

covariates. 

 As no provision for gene interaction is currently available in these tools, an implicit 

fundamental assumption shared by these techniques is that genes act independently of 

one another. It is known however that genes in fact do interact with one another via 

biological pathways (Karlebach and Shamir, 2008). Current pathway-based analysis tools 

can be classified into two main categories. First, a gene list obtained from a differential 

gene expression analysis can be checked for enrichment in pathways, e.g. GSEA 

(Subramanian et al. 2005). Alternatively, genes involved in pathways can be collected and 

their expression summarized, producing a single value describing the overall pathways 

activity, e.g. PathPrint (Altschuler et al. 2013). Both of these approaches lose a significant 

amount of internal pathway information in favor of simplicity. A recent approach that 

overcomes this problem is DIRAC (Eddy et al. 2010) where the relative rank expression 

within pathways is com-pared between conditions. However tools do not yet exist that 

allow for the integration of gene expression and pathway information together with the 

ability of fitting linear models. 

 We describe pcmR, an R package that integrates gene expression data and sample 

metadata with biological pathway definitions, allowing for the quantification of differential 

relative gene expression in a pathway-specific context. The pathway-specific relative 

expression, termed composition, is obtained by dividing the raw gene expression value by 
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the sum of expression values across member genes of that pathway. Figure 3.1 illustrates 

the conceptual difference between gene expression and pathway composition. In addition 

to being context-specific, composition also has the advantage of being normalization and 

scaling independent. 

 

3.2 Methods 

A pathway is defined as a group of genes that work together to achieve a common 

goal. These lists have been curated and made available by sources such as KEGG 

(Kanehisa et al. 2010). A gene may be a member of multiple pathways, hence in pcmR, 

its composition value is made available for all its parent pathways. 

Composition as a proportion is best modeled using a statistical distribution that is 

bounded between 0 and 1. We assume that the composition follows a Dirichlet distribution 

and fit a generalized linear model by maximum likelihood, linking the mean composition 

vector to a set of covariates. Usually one main covariate is of primary interest to the 

biologist, e.g. case-control status, dose of drug, etc. A multiply-corrected p-value for this 

main effect regression coefficient is provided using a variety of standard methods. Other 

covariates are generally used in more complex experimental designs and to adjust for 

confounding. The regression framework used is similar to the one pioneered in limma, and 

the Supplementary Methods summarize the key differences in greater detail. One key 

confounder that is always included in the model by default is the total pathway expression. 

This allows one to disentangle the effect of the covariates from the effect of the total 

pathway expression on the pathway composition. 

 



18 
 

 

Figure 3.1: Conceptual difference between (i) gene expression, (ii) pathway expression, and (iii) gene 

composition. Comparing two conditions, e.g. normal v.s. cancer, both (v) pathway expression and (iv/vi) 

gene composition of the pathway may differ.   

 

3.3 Example 

We demonstrate pcmR and compare it to limma on a dataset of non-small cell lung 

cancer (NSCLC) tumors with matched controls from 60 Taiwanese non-smoking women 

(Lu et al. 2010). Our aim is to identify the genes that change in their pathway composition 

the most as opposed to their absolute expression between tumor and control conditions 

while adjusting for the effect of patient age. Details of the implementation are provided 

in the Supplementary Methods.   

First we look at one pathway, the Non-Small Cell Lung Cancer pathway from 

KEGG. Supplementary Figure S3.1 compares the results of differential expression (limma) 

and differential composition (pcmR) at a 5% FDR cutoff.  We note that most genes were 

not found to be statistically significantly differentially expressed, whereas almost all genes 

were differentially composed. Secondly, pcmR finds EGF as the most strongly over-

composed gene in this pathway, making it a prime target for drug development. In fact, 

gefitinib and erlotinib that target the EGF Receptor (EGFR) have already been approved 

as a new standard in treating NSCLC, clearly demonstrating that the etiology of this 

disease in non-smoking Asian women may be directly impacted by overstimulation of the 
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EGF cascade. On the other hand, limma finds a downstream gene, AKT the most 

differentially expressed. Though it may not be the initial driver of disease at the time of 

patient evaluation, studies have shown that aberrant activation of AKT is one of the 

mechanisms of acquired resistance to targeted EGFR therapy (Fumarola et al., 2014). 

Table 3.1 shows the top 3 differential composition results by magnitude across all 

pathways in KEGG, Reactome and Wikipathways. It is interesting to note that MASP1, 

involved in the lectin pathway, part of the complement system in immune response, is 

strongly under-composed in cancer, suggesting that an increase in its composition could 

be a potential target for drug development. Illustrating this hypothesis, it has been shown 

that lectins extracted from a mushroom, pleurotus citrinopileatus, are potent anti-tumor 

agents, resulting in 80% inhibition of tumor growth when administered in mice (Li et al. 

2008). 

 

Table 3.1. The 3 most differentially composed genes between NSCLC and healthy matched lung. OR: 

odds ratio. 

Gene Pathway Context Source log OR p-
value* 

QDPR Metabolic 
Pathways 

KEGG -81,082 0.0250 

MASP1 Signaling in 
Immune System 

Reactome -69,989 0.0087 

PIK3C3 
Metabolic 
Pathways KEGG -56,302 0.0152 

* FDR-adjusted 

 

3.4 Discussion 

pcmR is an R package that extends linear modeling to pathway context-specific 

gene composition data, allowing for the effect of composition to be disentangled from the 

effect of total pathway expression and other experimental covariates. We demonstrate 

these results in terms of their potential impact on the understanding of NSCLC. We show 

that pcmR provides a novel and potentially powerful analytic paradigm that is 
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complementary to conventional gene expression analysis; providing for a better 

understanding for the identification and assessment of drug targets in disease. 
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Supplementary Materials for edgeRun

S1.1 Data Setup

One simple experimental setup in computational biology is one in which the gene expression from 2 different

biological conditions (X and Y ) is to be compared to one another. We assume that we have n1 and n2

replicates of each condition respectively. Next-generation sequencing technologies generate reads or tags

that are mapped to a reference genome. The number of tags that map to various genomic loci of interest

(e.g. genes) is a measure of that feature’s expression. We represent this data in a table in which rows

correspond to different genomic loci (e.g. genes), and columns correspond to the biological samples.

Condition X Condition Y

Gene 1 x11 x12 · · · x1n1
y11 y12 · · · y1n2

Gene 2 x21 x22 · · · x2n1
y21 y22 · · · y2n2

...
...

...
. . .

...
...

...
. . .

...

Gene G xG1 xG2 · · · xGn1
yG1 yG2 · · · yGn2

S1.2 Distribution Assumptions

The simplest model for an integer count variable X that is not assumed to be bounded above is the Poisson

distribution that has the following probability mass function (p.m.f.):

X ∼ Poisson(µ)

P (X = x|µ) =
µxe−µ

x!

where E [X] = µ and Var [X] = µ. One major problem with the Poisson model is the strong assumption that

the variance is equal to the mean. In practice this assumption rarely holds. To obtain a model that allows

for more variation than that assumed by the Poisson, we can assume that the Poisson mean parameter has

a distribution of its own rather than being a fixed constant. The simplest distribution for a non-negative
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continuous mean parameter is the Gamma distribution with the probability density function (p.d.f.) given

below. We now have have the hierarchical model:

X|M ∼ Poisson(M) and M ∼ Gamma(α, β)

fM (m|α, β) =
1

Γ(α)βα
mα−1e−

1
β
m

This is also called Gamma mixing. Here, M is the random variable and m is the realization of the Poisson

mean parameter. For the Gamma distribution, α is the shape and β is the scale parameter respectively. As

a consequence, E [M ] = αβ and Var [M ] = αβ2. If we let α = 1/φ and β = φµ, we then have E [M ] = µ and

Var [M ] = φµ2. With repeated sampling on average, the mean parameter will be µ, but it will have some

variation that depends on a new parameter φ which we call the dispersion. The marginal distribution of X

under this structure results in the negative binomial distribution with p.m.f.:

X ∼ NegBin(µ, φ)

P (X = x|µ, φ) =

(
x+ φ−1 − 1

x

)(
1

1 + φµ

)φ−1 (
φµ

1 + φµ

)x

E [X] = µ and Var [X] = µ+ φµ2

Using this model, X allows for extra-Poisson variation which we call overdispersion, using the parameter φ.

With this distribution in place, we now make the following assumptions concerning our data:

Xgr
iid
∼NegBin(µg, φg)

Ygr
iid
∼NegBin(µ′

g, φg)

Each gene is allowed to have a separate mean and/or dispersion, and X and Y can have different means as

well. Independence of samples is assumed.

Note: In practice, each sample will have a different number of total tags that are generated and success-

fully mapped, i.e. the sequencing depth or library size.

Xgr
iid
∼NegBin(krλg, φg)

As a result, µ is equal to the product of k, the library size of the sample and λ, the relative expression

of the gene. To make all of the samples comparable requires a procedure called normalization. It is beyond
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the scope of this paper to discuss normalization methods, and the choice of any one method does not affect

our discussion that follows. We proceed by assuming that X and Y are transformed into pseudo-counts in

all further analyses as is standard procedure. For this reason and for clarity, we revert back to our original

notation.

S1.3 Hypothesis of Interest

We are interested in testing the G hypotheses of the form:

H0 : µg = µ′
g

H0 : µg 6= µ′
g

Since sample sizes are typically small when sequencing technologies are expensive, we proceed with an

exact test that makes no asymptotic assumptions. The p-value is defined as the probability of getting

something as or more extreme as the observed data under the null hypothesis. Obtaining the probability of

the observed data is straightforward:

P (observedg) = P (Xg1 = xg1 ∩ · · · ∩Xgn1
= xgn1

∩ Yg1 = yg1 ∩ · · · ∩ Ygn2
= ygn2

)

The challenge is to identify which data points are as or more extreme than those observed. The trivial

approach would require the enumeration of n1n2 variables, but this is not feasible. For a particular gene, let

Sg1 =
∑

Xg and Sg2 =
∑

Yg. It becomes much easier to work with the probabilities associated with these

sums rather than the original random variables. The sum of iid negative binomial random variables is also

negative binomial:

Sg1 ∼ NegBin(n1µg, φg/n1)

Sg2 ∼ NegBin(n2µg, φg/n2)

We can now calculate the probabilities of various (S1, S2) independent pairs as follows:

P (sg1, sg2|µg) = P (Sg1 = sg1 ∩ Sg2 = sg2|µg) =

(
sg1 + n1/φg − 1

sg1

)(
sg2 + n2/φg − 1

sg2

)(
1

1 + φgµg

)n1+n2
φg

(
φgµg

1 + φgµg

)sg1+sg2

We can see that any p-value obtained from this formula will depend on the choice of φg and µg. However,
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our hypothesis of interest does not depend on these parameters. Under the null, we only assume that the two

means are equal to one another and we make no statements about what that value is. As a result, both φg

and µg are nuisance parameters that need to be eliminated. There is no generally accepted way to eliminate

φg, and so in all ensuing discussion, φg is assumed to be a known constant. On the other hand there are

two ways to perform the elimination of µg, one resulting in a conditional exact test (CET) and the other,

an unconditional exact test (UET).

S1.4 edgeR: Conditional Exact Test (CET)

The popular edgeR Bioconductor package (Robinson et al., 2010) implements an exact test that eliminates

the nuisance mean parameter by conditioning on a sufficient statistic for the mean. This technique was first

proposed by Fisher (1925) to eliminate the nuisance parameter when testing equality of parameters in the

binomial distribution, resulting in Fisher’s Exact Test. The sufficient statistic is the total sum Sg = Sg1+Sg2.

The p-value is calculated based on the following conditional probability. Reminder: The parameter φg,

whether it is estimated from the data or not, is assumed to be known.

P (Sg1 = sg1 ∩ Sg2 = sg2|Sg) =
P (Sg1 ∩ Sg2 ∩ Sg)

P (Sg)
=

P (Sg1 = sg1 ∩ Sg2 = sg − sg1)

P (Sg)

=

(
sg1+(n1/φg)−1

sg1

)(
sg−sg1+(n2/φg)−1

sg−sg1

)
(
sg+((n1+n2)/φg)−1

sg

) = CP (sg1)

We can see that this expression no longer depends on µ. Sg1 is taken as a statistic to determine values

which are as or more extreme as those observed. The conditional two-sided p-value can then be calculated

as follows:

pedgeR = 2×min





ŝg1∑

k=0

CP (k),

ŝg∑

k=ŝg1

CP (k)





This is the default method used in the exactTest function in edgeR. It is called the double-tail method

because it calculates both tails of the conditional probability and doubles the smallest of the two.

The p-value from the conditional exact test is very easy to compute, however this approach suffers from a

loss in power due to the fact that conditioning is performed. The smaller the value of Sg (e.g. few replicates

are available and/or the gene has low expression levels), the greater the loss in power. This happens because

a conditional probability by definition restricts the original sample space to a smaller subset. If Sg is small,

then CP (sg1) may have a small finite number of values that it can take, but since it must sum to 1, the
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values are all larger, leading to a larger p-value.

S1.5 edgeRun: Unconditional Exact Test (UET)

We can eliminate the loss in power due to conditioning by performing an alternative exact test that eliminates

the nuisance mean parameter in a different way. Instead of working with the conditional probability CP (sg1),

we use the unconditional probability of the observed data P (sg1, sg2) as a basis for calculating a p-value.

One challenge involves determining what set of data points sg1 and sg2 correspond to values as or more

extreme than those observed. We use the pooled z-statistic T for this purpose:

T (sg1, sg2) =
sg1 − sg2√

(µ̄g + φgµ̄2
g) (n1 + n2)

where µ̄g =
sg1 + sg2
n1 + n2

This statistic is adapted from the z-statistic used for a z-test for testing the equality of two normal means

assuming equal variances with some minor modifications. The numerator is simply the difference in the

sums of the two groups, while the denominator is the standard error of this difference, assuming independent

negative binomially distributed data with an estimated common mean µ̄g. The observed sums yield the

value T0 = T (ŝg1, ŝg2). Larger values of the statistic |T | relative to |T0| (or alternatively T 2 relative to T 2
0 )

correspond to increasing evidence of deviation from what we get using the observed data.

We can calculate T for every combination of (sg1, sg2) and compare it with T0 to determine if that

combination is as or more extreme as the one observed. For those values of (sg1, sg2) that are as or more

extreme as those observed, we calculate their unconditional probability P , and then sum these probabilities

across all such points. This process is then repeated for different values of µg until a supremum is obtained,

i.e. take the largest sum of P as the two-sided p-value:

pedgeRun = sup
µg





∑

{(j,k):T (j,k)2≥T 2
0 }

P (j, k|µg)





Reminder: Just like in the CET, the parameter φg present in P , whether it is estimated from the data

or not, is assumed to be known.

This approach of eliminating the nuisance parameter by maximizing over it can be traced back to Barnard

(1945) in which he proposed a similar test for binomially distributed data as an alternative to Fisher’s exact

test. Barnard showed that this technique yields a test that is more powerful than Fisher’s.

The main disadvantage of this approach however is the difficulty in its implementation. Unlike in the

conditional p-value calculation, the number of terms to be summed in this expression is infinite. This,
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together with the fact that there is no closed-form solution to the supremum operator, requires the use of

numerical techniques to obtain this p-value which is much more computationally intensive.

S1.6 Numerical Implementation of the UET

S1.6.1 Approximating the Infinite Sum

Ignoring the supremum operation for now, one major challenge in implementing the UET is performing the

summation of probabilities across the relevant space of sg1 and sg2. One could propose to calculate values

of T for all such points, determine which points are relevant, and then perform the summation over these

points. This is impractical since the space over which this needs to be done is the upper right quadrant of

integers which is countably infinite. The space in question is depicted in the figure below. The red diagonal

Supplementary Figure S1.1: The Cartesian space of (sg1, sg2). Red points: T < T0

line corresponds to the null case where sg1 = sg2. Points in red are those for which T 2 < T 2
0 and so belong

to the null as well. Points in black are those for which T 2 ≥ T 2
0 and are those over which we want to perform

the summation. Let A0 be the total probability mass occupied by the null points depicted in red and A1 its

complement. The probability mass of black points is then A1 = 1− A0, and the problem is simplified if we

can find a way to characterize the red area. This summation still requires summing over an infinite array
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over 2 dimensions. We can reduce this to an infinite summation over just 1 dimension as follows:

A1 =
∑

{(j,k):T (j,k)2≥T 2
0 }

P (j, k|µg)

= lim
K→∞

K∑

sg2=0

{
1−

[
F (s

U |sg2
g1 )− F (s

L−1|sg2
g1 )

]}
P (Sg2 = sg2)

In the above expression, P (Sg2) is the marginal p.m.f. of Sg2 with mean n2µg and dispersion φg/n2 and F (·)

is the c.d.f. of Sg1 with mean n1µg and dispersion φg/n1. s
U
g1 and sLg1 correspond to the values of sg1 which

are the edge points on vertical slices of the red probability mass area for a given value of sg2. In essence

what the expression above is doing is calculating the complementary mass of the red area (i.e. the black

area) by taking vertical slices across values of sg2.

The next challenge is finding these edge points that are used in the c.d.f. which we find by solving the

inequality T 2 < T 2
0 .

Let: w1 = 1 +
φgT

2
0

n1 + n2
and w2 = 1−

φgT
2
0

n1 + n2

After some algebraic manipulation, we get the following quadratic inequality:

as2g1 + bsg1 + c < 0 where:

a = w2 b = −(2w1sg2 + T 2
0 ) c = sg2(w2sg2 − T 2

0 )

The solutions are obtained by applying the quadratic formula. Let L be the smallest and U be the largest of

the two solutions. Because w2 > 0 always, the parabola is convex, and since the solutions must be integers,

we apply the appropriate floor and ceiling operators.

s
L|sg2
g1 = max(⌈L⌉, 0)

s
U |sg2
g1 = max(⌊U⌋, 0)

Finally, we take the maximum of the solution with 0 to avoid solutions which are negative. It should be

noted that these solutions depend on the specific value of sg2.

We approximate the infinite sum in A1 by choosing an upper bound K which is sufficiently large. Larger

values of K increase computing time but increase the accuracy of the p-value. The figure below shows how
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the level of accuracy of the p-value increases with K. Two groups with 3, 5 and 10 samples per group are

simulated under the null with sg1 = sg2 = 10, 000 for various levels of φ. Since this is a null scenario, we

expect a true p-value of 1, which as expected, is evident as the asymptote for every curve in the plot. In

addition to the p-value, the y-axis in this figure also refers to the goodness of the approximation. Larger

values of K are necessary for a good p-value approximation for increasing φ and decreasing sample size with

fixed sg (i.e. increasing observed average tag counts per replicate).

By default, edgeRun takes K = 50, 000 as a compromise between accuracy and speed, but this can be

adjusted by the user. As seen from the figure, this value of K yields approximately 80% accuracy for a wide

range of data scenarios. On an Intel R© Core-i7 4700HQ 2.4GHz processor, a computation with 20,000 genes

takes approximately 15 minutes to complete.

Supplementary Figure S1.2: Relationship between p-value accuracy and K for various levels of φ and number
of replicates per group with sg1 = sg2 = 10, 000
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S1.6.2 Approximating the Supremum

In the previous section, we find an approximation to A1. The next challenge is to find the value of µg that

will maximize the value of A1 which we call µ∗, i.e.

µ∗
g = argmax

µg

A1

To solve this problem, we attempt to find a relationship between the µ∗ and various factors. To do this,

data was simulated under the non-null case for arbitrarily chosen sg1 = 1000 and sg2 = 1 and n1 = n2 = 2

across a range of φg which were chosen over a range 0-20 in fine increments of 0.01. For each case, µ∗ was

obtained by evaluating A1 over an iterative logarithmic grid of µg values until an accuracy within ±1 was

obtained. These values are plotted in the figure below.

Supplementary Figure S1.3: Relationship between µ∗ (µg that maximizes A1), v.s. φg for the case sg1 =
1000, sg2 = 1 and n1 = n2 = 2

This relationship is characterized and stored in edgeRun as follows:
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µ∗(φg) =





22.98 : 0 ≤ φg < 0.20

−74, 939 + 374, 809φg : 0.20 ≤ φg < 0.32

∑11
i=0 βiφ

i
g : 0.32 ≤ φg < 20

∑11
i=0 βi20

i : 20 ≤ φg

Very small values of φg < 0.2 were simulated using the Poisson distribution since the negative binomial

routines were found to be unstable in this range. A discontinuity was detected in the from 0.2-0.32 and it

was very difficult to obtain a result in this range, hence a linear interpolation was performed to join to the

upper range of φg. An 11th order polynomial fit was found to approximate the solution for φg > 0.32 very

well with an R2 very close to 100%. The β coefficients of the polynomial approximation are stored in the

fit.2 object. For the remaining range of φg > 20, since the curve appears to level off, the accuracy of using

the exact value of φg v.s. the upper threshold of 20 in the polynomial fit was not significantly altered (data

no shown).

It was found that varying the values of n1 and n2 affected this relationship only by the corresponding

scaling effect on µg and φg. As a result, the case of n1 = n2 = 2 is taken as a reference and all data for

other n is linearly scaled to the n = 2 case for the purposes of obtaining µ∗. Finally, values of sg1 and

sg2 were chosen to lie in the non-null space, but the numbers were chosen arbitrarily. We choose values in

the non-null case because we want to be conservative specifically for data that is non-null, since values that

are closer to the null are more likely to be non-significant anyway. We find that the solution for µ∗ does

not significantly alter if other values for s are used (data not shown). Once again, this approximation is a

compromise between accuracy and speed.

S1.7 Simulation Studies using compcodeR

We used the Bioconductor package compcodeR (Soneson, C., 2014) to benchmark the performance of edgeRun

against a panel of 26 other differential expression tools using various parameters. We used the B625
625 simulated

dataset with 2 replicates per condition in which 10% of a total of 12500 genes were differentially expressed

(625 genes in each condition). More details on how these random testing datasets are generated can be

found in Soneson and Delorenzi (2013). The figures below show the performance of edgeRun in terms of area

under the curve (AUC) and the true positive rate (TPR). The blue line corresponds to the value attained

by edgeRun.

We find that edgeRun has the highest AUC of all methods tested, meaning that on the average, choosing

across a range of cutoff values of the false discovery rate (FDR) to determine which genes to call as differ-
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entially expressed (e.g. call a gene differentially expressed if it’s adjusted p-value < 0.05), edgeRun has the

most optimal combination of sensitivity (true positive rate) and specificity (true negative rate).

Supplementary Figure S1.4: Area under the curve (AUC) comparison between edgeRun (blue) and 26 other
tools/parameter combinations using B625

625 simulation dataset

Supplementary Figure S1.5: True positive rate (TPR) comparison at 5% cutoff between edgeRun (blue) and
26 other tools/parameter combinations using B625

625 simulation dataset

Typically however, instead of looking across a range of cutoff values, in practice a single cutoff value is

used to determine differentially expressed genes, one of the most popular being the 5% cutoff for adjusted
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p-values. In the next figure we can see that the sensitivity or true positive rate is high, but no longer the

best across all tools compared. We note that DESeq2 (Love, M.I. et al. 2014) is by far the most competitive,

with sensitivities reaching nearly 3 times that of edgeRun. There is always a trade-off between sensitivity

and specificity however, and in the figure below we can see how the false discovery rate is higher for those

DESeq2 settings that yielded the highest TPR.

Supplementary Figure S1.6: False discovery rate (FDR) comparison at 5% cutoff between edgeRun (blue)
and 26 other tools/parameter combinations using B625

625 simulation dataset

We concede that DESeq2 can be more powerful than edgeRun, however in the next several sections we

propose a new approach of comparing these tools from a functional relevance perspective. As a result, from

now on we only focus on the comparison between edgeRun and DESeq2.

S1.8 A Real-Data Example

Having shown that edgeRun performs well on simulated data, we next proceed to applying it to some real

experimental data. For this purpose we use the prostate cancer model by Li et al. (2008), the same dataset

used by the authors of edgeR (Robinson et al. 2010) to demonstrate its functionality. The dataset consists

of a two sample comparison with n1 = 3 and n2 = 4.
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S1.8.1 edgeRun v.s. edgeR

We first compare edgeRun to edgeR. We can see in the MA plot below that there is wide overlap in the

genes called significant at a 5% FDR cutoff between the two methods. We can also see that edgeRun is more

sensitive than edgeR since it is able to call genes significant that for a fixed level of expression, have lower

fold change. We see this increased power across the whole range of expression levels, but especially so for

more lowly expressed genes as expected. It should be noted that edgeRun calls as significant all those genes

already called by edgeR, thus confirming in practice the expected theoretical gains in power due to the UET

over the CET.

Supplementary Figure S1.7: edgeRun (UET) is uniformly more powerful than edgeR (CET)

S1.8.2 edgeRun v.s. DESeq2

Previously we have shown in simulations that DESeq2 is the only other tool that was shown to be more

powerful than edgeRun. We now perform a comparison between the edgeR family (edgeRun and edgeR)
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and the DESeq family (DESeq and DESeq2) on the same dataset, the results of which can be seen in the

MA plot below. Once again we can see that there is wide agreement between all 4 tools, however we find

interesting differences in what classes of genes the different families call as significant. The DESeq family

is more sensitive at detecting genes with higher expression levels, whereas edgeRun is more sensitive at the

lower end of the gene expression spectrum.

Supplementary Figure S1.8: edgeRun is more sensitive for lowly, whereas DESeq2 is more sensitive for more
highly expressed genes

S1.9 Assessing Functional Relevance

As described in the main manuscript, Out of the 4226 genes reported as differentially expressed in a prostate

cancer dataset, 80% were common to both edgeRun and DESeq2. We define these shared genes as consensus

genes, which are assumed to be truly differentially expressed (DE). Although edgeRun identified 6 times

more DE genes compared to DESeq2 (740 vs. 112), we cannot simply say all the called genes are true DE
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genes. But its reasonable to hypothesize that true DE genes are functionally related to consensus genes. We

thus used GRAIL (Raychaudhuri et al., 2009) coupled with a global coexpression networks COXPRESdb

(Obayashi et al., 2013) to assess the significance of functional relatedness between a gene and the consensus

group. GRAIL builds coexpression subnetworks using provided seed genes, and then assesses the relatedness

between a query gene and seed networks. To avoid the heterogeneity of subnetworks, we split the consensus

genes into up-regulated and down-regulated groups, and only select top 500 genes (by fold change) for each

group. Using a cutoff of false discovery rate (FDR) of 5%, more than 40% of genes in each consensus group

are significantly correlated to other genes in the same group, suggesting that genes in the consensus group

form tightly connected subnetworks. By checking the genes uniquely called by two tools, we can see the

genes reported by edgeRun are more likely to be functionally relevant (14.7% vs. 10.7% with Up seeds, and

18.5% vs. 6.2% with Down seeds).
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Supplementary Materials for CAGExploreR

S2.1 Model and Methods

S2.1.1 CAGE-seq data overview

CAGE-seq data consists of short (~25bp) tags that correspond to the 5’ ends of mRNA. These are mapped

to the genome, and their location specifies the transcription start site (TSS). The figure below shows a

typical setup: a gene region with CAGE tags colored in red that map to this region. Areas where the

Supplementary Figure S2.1: CAGE-seq tags mapping to a gene region in one experiment with two pro-
moter regions A and B

number of mapped tags is significantly enriched over the background (e.g. regions A and B above) are

called promoter regions. Tags landing outside such promoter regions may be noise or other transcription

events. Our primary goal however is to quantify the dynamics of transcription between different samples

or conditions and between promoter regions within genes. It is beyond the scope of CAGExploreR to

empirically define gene and promoter regions. For this purpose, the following pre-defined promoter

regions come included with the package:

• FANTOM5. These are regions from the FANTOM5 Consortium (2013) and are based on CAGE-seq

tag clusters determined from a comprehensive assessment of over 1000 conditions using CAGE-seq
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performed at RIKEN as part of the Functional Annotation of the Mammalian Genome international

consortium. We include only those promoter regions that associate with genes with at least 2 pro-

moters (multi-promoter genes). Only genes with valid HGNC names are included. NOTE: regions

are based on hg19 coordinates.

• MPromDB. These are regions from Gupta et al. (2011) available online at http://mpromdb.wistar.

upenn.edu/. The Mammalian Promoter Database is a curated database that strives to annotate

gene promoters identified from ChIP-Seq experiment results. According to the website, the lat-

est version of MPromDb is based on 507 million uniquely aligned RNA Pol-II ChIP-seq reads

from 26 different datasets. We include only those promoters that are associated with genes with

at least 2 promoters (multi-promoter genes). Only genes with valid HGNC names are included.

NOTE: MPromDB regions were converted from hg18 to hg19 coordinates using the liftover tool at

http://genome.ucsc.edu/cgi-bin/hgLiftOver, and gene names were converted to HGNC names

whenever possible.

As long as the formatting is compatible, users can supply their own promoter regions of interest as

well. Updates of these or other databases can also be easily incorporated for use with CAGExploreR.

Whole gene regions are obtained from the txdb.hsapiens.ucsc.hg19.knowngene Bioconductor package.

To determine the quality of the promoter definitions used, coverage is calculated for each gene as the

mean of the ratio of the number of tags that map to defined promoter regions relative to the total number

of tags that map to the entire gene region (which includes all promoter regions and everything else in

between).

S2.1.2 Quantifying transcription levels

We first determine the TSS from each CAGE-seq tag by obtaining the coordinate of the first 5’ base. We can

then count the number of these TSS tags that map to a set of P promoters for a given gene g simultaneously

across C conditions. This generates the following table of tag counts that we call Y g:

promoter 1 promoter 2 · · · promoter P
condition 1 y11 y12 · · · y1P n1+

condition 2 y21 y22 · · · y2P n2+
...

...
...

. . .
...

...
condition C yC1 yC2 · · · yCP nC+

n+1 n+2 · · · n+P n++

Where the row, column and grand totals are obtained by summing across columns, rows and both

respectively:
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ni+ =
P

∑
j=1

yij , n+j =
C

∑
i=1

yij , n++ =
C

∑
i=1

P

∑
j=1

yij

If R replicates are present for one or more of the conditions, one can imagine incorporating counts for

these replicates in a third dimension by adding an additional subscript in the form ycondition,promoter,replicate =

yi,j,k. Nonetheless, counts are pooled across replicates by summation as follows, and we always end up

with the form of the table as seen above with only two subscripts.

yij =
R

∑
k=1

yijk

S2.1.3 Defining promoter composition

The table of counts is converted to a table of row proportions by dividing each cell by the row totals.

Margin proportions are defined in the usual way.

promoter 1 promoter 2 · · · promoter P
condition 1 p1|1 p2|1 · · · pP|1 p1+

condition 2 p1|2 p2|2 · · · pP|2 p2+
...

...
...

. . .
...

...
condition C p1|C p2|C · · · pP|C pC+

p+1 p+2 · · · p+P

pj|i =
yij

ni+
, p+j =

n+j

n++
, pi+ =

ni+

n++

The vector of proportion values pi = (p1|i, · · · , pP|i)
′ is termed the observed promoter composition for

condition i. This set of values shows how transcription in a particular condition is divided between the

various promoters available.

We assume that these observed composition values are sampled randomly from a population with

corresponding parameter vector πi = (π1|i, · · · , πP|i)
′ which is the true promoter composition for con-

dition i. We have dropped the subscript g to avoid cluttering, but it is important to remember that each

composition vector is defined within a given gene.

S2.1.4 Differential promoter composition

Our primary goal is to determine whether the promoter composition vector for a gene is homogeneous

across conditions, i.e. our null alternative hypotheses are:
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H0 : π1 = π2 = · · · = πC

H1 : some πr 6= πs

We need a statistic that measures the magnitude of differential promoter composition as a "distance"

away from the null case. For this we use the proportional entropy reduction or uncertainty coefficient

(Theil, 1970):

U = −
∑

C
i=1 ∑

P
j=1 pij log

(
pij

pi+p+j

)

∑
P
j=1 p+j log p+j

, where pij =
yij

n++

This value is well-defined as long as at least 2 promoters are active in at least 1 condition. It ranges

from 0 to 1. When it is 0, this means that the promoter composition across all conditions is identical

(independence) and when it is 1, this means that each condition transcribes from a single promoter, i.e.

there is promoter specificity to condition. We can now conveniently restate our set of null and alternative

hypotheses in terms of this statistic:

H0 : U = 0

H1 : U 6= 0

To test this null hypothesis for each gene, we use a three-step approach (again we drop the g subscript

for clarity):

1. Perform Monte Carlo sampling to obtain a set of B matrices (Y∗
1 , ..., Y∗

B) of pseudo-counts under the

null hypothesis such that:

((Y∗
b)1j, ..., (Y∗

b)Cj)
iid
∼ Negative Binomial(µj, φ) where µj =

1

C

C

∑
i=1

yij

We use the negative binomial parametrized in terms of its mean and dispersion, such that

E[Negative Binomial(µ, φ)] = µ

Var[Negative Binomial(µ, φ)] = µ + φµ2

This strategy allows for variation in the pseudo-counts for various promoters based on their em-

pirical means, but restricts the pseudo-counts across conditions to be identically and independently
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distributed. For our purposes here, we choose the Negative Binomial distribution as the most pop-

ular distribution for count data. The user has a choice when running CAGExploreR whether they

want to estimate the dispersion coefficient φ, or whether they want to set it to 0 and alternatively use

the Poisson distribution. Because of its lower variance, the Poisson distribution will generate more

statistically significant results than the negative binomial and this may be desirable for initial data

exploration.

2. Calculate the entropy reduction U for each of the B resampled Y∗ matrices to obtain it’s null distri-

bution.

3. Obtain a one-sided p-value by calculating the upper tail probability from a fitted Beta distribution

to the set of resampled values of U in step 2. The beta distribution has two parameters α and β:

fU(u) =
uα−1(1 − u)β−1

B(α, β)
where B(α, β) =

∫ 1

0
uα−1(1 − u)β−1du

We fit a Beta distribution by obtaining parameter esimates αMOM and βMOM by using the Method

of Moments. This involves solving the following system of equations where the first two empirical

moments are equated to the population moments:

ū =
αMOM

αMOM + βMOM

s2
u + ū2 =

αMOMβMOM

(αMOM + βMOM)2(αMOM + βMOM + 1)
+

(
αMOM

αMOM + βMOM

)2

This results in the following estimates:

αMOM = ū

(
ū(1 − ū)

s2
u

− 1

)
and βMOM = (1 − ū)

(
ū(1 − ū)

s2
u

− 1

)

The Beta distribution is the natural distribution for values that range between 0 and 1, and depending

on its two parameters, it can take on a wide variety of shapes. After simulating many different

scenarios, we find that the Beta distribution has extremely good fit for U under the null (data not

shown).

4. Perform correction for multiple comparisons using the Benjamini-Hochberg method (1995) for con-

trolling False Discovery Rate or any other appropriate method.
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S2.1.5 Pair-wise promoter switching

Once we obtain a list of genes that appear to have differential promoter composition, it is naturally of

interest to determine which promoters switch from one condition to another the most as this gives us

insight into potential changes in transcript generation and differential regulation. To achieve this goal,

we calculate pair-wise switching effect measure statistics between all (P
2) × (C

2) promoter and condition

comparisons.

promoter promoter
r s

. . .
... · · ·

... . . .

condition c · · · pcr · · · pcs · · ·
...

...
. . .

...
...

condition d · · · pdr · · · pds · · ·

. . . ... · · ·
...

. . .

As a measure of pairwise promoter switching we use the odds ratio which we calculate directly from

the raw tag counts:

OR =
pcr/pcs

pdr/pds
=

pcr pds

pdr pcs
=

ycryds

ydrycs

It has interpretation as follows: the odds of transcription from promoter r relative to that from promoter

s is OR times higher (or lower) in condition c v.s. condition d.

NOTE: We can simultaneously exchange the ordering of the promoter pair and condition pair indexes

without changing the interpretation: i.e. this is identical to the interpretation as the odds of transcription

from promoter s relative to that from promoter r is OR times higher (or lower) in condition d v.s. condition

c.

NOTE: If we exchange the ordering of only one of the pairs (either promoter or condition), then the

the effect size is the inverse of the odds ratio, i.e. the odds of transcription from promoter s relative to that

from promoter r is 1/OR times higher (or lower) in condition c v.s. condition d.

NOTE: The words higher or lower used in the paragraphs above refer to whether the OR is greater or

less than 1 respectively.

We choose the odds ratio as the switching effect measure for the following attractive attributes that it

possesses:

1. Can be calculated directly from the original tag count data.
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2. It is independent of the sequencing depth or library sizes involved. Similarly it does not depend on

differences in gene expression between conditions (note lack of yi+ and y+j terms).

3. It is immune to multiplicative transformation of the data in both rows and columns. This is useful

because it makes the OR the same irrespective of any normalization method used on the data where

either the promoter expression columns or condition samples or both are normalized by multiplying

by a set of constants. This also means that the data need not be integer counts, but any real set of

numbers.

4. If future normalization methods are applied which scale every promoter/condition combination of

cell counts, i.e. where every cell is multiplied by a separate normalizing constant, then the OR based

on such normalized data will be just a scalar multiple of the OR based on the raw data.

We can obtain p-values for the test of H0 : OR = 1 by using the log-transformed odds ratio statistic

below. We perform the log transformation because it approaches asymptotic normality much faster than

the raw odds ratio (Agresti p.71, 2002).

z =
log(OR)√

1
ycr

+ 1
ydr

+ 1
yds

+ 1
ycs

We compare this value to a standard normal distribution and calculate both upper and lower tail

probabilities to obtain a two-sided p-value.

One problem with the odds ratio is that it is of little use if any of the tag counts y are 0. In such a case

the odds ratio will be either 0 or ∞. In situations where such a case occurs, we use an adjusted form of

the odds ratio defined as follows:

ÕR =
(ycr + k)(yds + k)

(ydr + k)(ycs + k)
, where k =

1

2

By adding a constant to all count cells we avoid the problem of zero counts. It has been shown that

the value of k = 1/2 is optimal in terms of minimizing the bias of the odds ratio estimator (Gart, 1966).

We then use the following adjusted test statistic for a Wald test:

z =
log(ÕR)√

1
ycr+0.5 + 1

ydr+0.5 + 1
yds+0.5 + 1

ycs+0.5

Assuming we have G genes of interest and Pg and Cg are the number of promoters and conditions

available for gene g respectively, we have a total of ∑
G
g=1 (

Pg

2
)× (Cg

2
) odds ratios. After obtaining p-values

for each one, we then adjust them for false discovery rate to obtain q-values (Benjamini-Hochberg, 1995).
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S2.1.6 Gene Expression Heterogeneity

Independently of looking at changes in promoter composition, it is of interest to quantify the variability

in total gene expression across conditions. In order to do this across multiple conditions simultaneously,

we define the following heterogeneity index for each gene.

GeneHetero = 1 −
∑

C
i=1 Pi log Pi

log 1/C

There are C conditions and Pi is the gene expression proportion for condition i. The index is based on

the entropy as a measure of variability, except that it is normalized by the maximum entropy to make sure

that it can take on values between 0 and 1. A value of 0 corresponds to the gene expression remaining

constant across all conditions, and a value of 1 corresponds to condition specificity for gene expression

(i.e. one condition is expressed but all others are not). Values between 0 and 1 are hard to interpret, and

are only meant to rank genes based on the variability in their expression. For the case of only 2 conditions

being compared, the following graph shows the relationship between the expression proportion and the

value of the heterogeneity index. We can see that it takes on a minimum at 0.5, and maxima at the edges

as expected. In between, the relationship is non-linear.
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Supplementary Figure S2.2: Gene expression heterogeneity measure as a function of composition propor-
tion
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Supplementary Materials for pcmR

S3.1 Biological Pathways

Assuming that an organism has a total ofN genes {G1, ...GN}, a pathway P is defined as a collection of genes:

{Gi : i ∈ P} that share some functional relationship. Users of pcmR may supply their own pathways or use

any of the ones that come with the package. These include a total of 633 pathways from KEGG (Kanehisa

et al. 2010), Reactome (Croft et al. 2011), Wikipathways (Pico et al. 2008), Netpath (Kandasamy et al.

2010) and Static Modules (Wu et al. 2010).

S3.2 Expression v.s. Composition

For a given biological sample, the gene expression for a set of genes {G1, ...GN} is a vector of intensity values

(in microarrays) or tag counts (in RNA-Seq) E = {E1, ...EN} which may be normalized between samples.

The pathway expression of a pathway P is the equivalent total gene expression across the constituent

genes of that pathway: TP =
∑

i∈P Ei .

The gene composition of a pathway P is defined as the proportion vector CP = {Ei/TP : i ∈ P}. Both

the original expression vector and the pathway context are required to unambiguously define a composition

measure. It can be seen that the composition vector sums to 1 and can only be defined for pathways that

are expressed, i.e. TP > 0.

In RNA-Seq and other digital expression assays, it is standard practice to normalize the gene expression

for sampling depth by dividing the tag counts by the library size. When multiplied by a scaling factor usually

taken to be k = 1× 106, such values are referred to as tags per million or tpm. This transforms the original

expression vector E to a scaled composition vector kC where the ”pathway” is the entire genome. These

vectors are then compared between conditions using what are inaccurately termed differential ”expression”

analyses. Problems arise when a subset of genes in the genome are strongly differentially expressed, resulting

in apparent differential expression in other, unrelated and truly non-differentially expressed genes. For
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example, if we have two conditions, A and B with a total of 1000 genes in the genome:

Condition A: C = {C1, ..., C1000}

Condition B: C′ = {C ′
1, ..., C

′
1000}

If gene 1000 is truly differentially expressed, we may find that C1000 6= C ′
1000 as expected. If at the same

time, gene 1 is not differentially expressed and all other genes remain constant however, it is not guaranteed

that C1 = C ′
1 since the composition vector sums to 1 (or to a constant if the composition is scaled). Any

change in C1000 between conditions will inevitably lead to a corresponding change in the opposite direction

in C1 leading to a false positive finding. Similarly, false negatives can also occur in slightly more complex

scenarios. This problem is called RNA composition bias. Current solutions do not solve the problem, but

attempt to reduce its effect by scaling the expression vectors by constants such that differences between

conditions are minimized in the hope that this will minimize the impact on the composition bias. edgeR

includes the option to perform TMM normalization (edgeR User Guide) which multiplies the library size by

some constant to perform said minimization, resulting in what is called a scaled or effective library size.

Note: RNA composition bias happens due to the fact that composition vectors sum to a constant,

resulting in negatively correlated elements. It is a problem only when the composition is calculated over a

pathway that is overly heterogeneous in its members and does not describe a system that works together

to achieve a single common goal. Having too many members is usually a symptom of this problem as seen

above in the case of the entire genome being used as a pathway. On the other hand, this problem is of no

concern if the pathway is chosen such that it is small and self-contained. In fact, what is previously called

a composition bias, becomes of primary interest and should not be mitigated but explored. The pathway

definition is crucial to the success of this analysis, and from here on, we assume that pathways are defined

correctly using the best available knowledge.

S3.3 Modeling Pathway Composition

The association graph below gives a top-level view of the main factors at play and their relationships as we

shall consider them. This setup is widespread in its use across the fields of epidemiology and the design of

experiments and clinical trials.
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Z X Y

Y is the outcome of interest such as a binary disease state, i.e. Y = 0 for healthy and Y = 1 for subjects

with disease. Y can also be continuous, e.g. systolic blood pressure.

X is the main determinant under study that affects the outcome, e.g. X = 0 for placebo and X = 1 for

individuals in the treatment arm. X can also be continuous, e.g. drug dosage in grams.

Z are the set of covariates that may confound the relationship between X and Y . One wishes to adjust

for the effect of these confounders in order to remove their effect on the outcome Y so that the pure effect

of X on outcome Y can be elicited. Examples of confounders are patient age, measurement batch, smoking

status, etc.

In pcmR, we distinguish between two types of models:

1) The Forward Model, where the primary determinant under study is X = CP . We assume for now

that Y is a binary outcome. In other words, pcmR answers the question, ”What are the effect of changes

in gene composition on the risk of disease outcome, adjusting for the confounding effect of

covariates?”.

2) The Reverse Model, where the X and Y are flipped. In other words, pcmR answers the question,

”How does mean gene composition differ when comparing diseased to healthy individuals,

adjusting for the confounding effect of covariates?”.

This question is answered by fitting a generalized linear model (GLM) (McCullagh and Nelder, 1972):

g(µ) = β0 + β1X +
∑

j=1

γjZj where µ = E [Y ]

S3.3.1 Distribution Assumptions

We assume that the composition vector CP follows a Dirichlet(µ,φ) distribution with the following p.d.f.

(Maier, 2014):

f(c|µ, φ) =
1

B(µφ)

|P |
∏

i=1

cµiφ−1
i µ ∈ (0, 1) φ > 0

Here, B(·) is the Beta function, E [Ci] = µi and φ is the precision parameter such that Var [Ci] =
µi(1−µi)

1+φ

and Cov [Ci, Cj ] =
−µiµj

1+φ
. Maier (2014) provides plots to visualize this distribution in 3 dimensions.

Binary exposures and outcomes are assumed to be Bernoulli(p) distributed.
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No assumptions are necessary for the set of confounders Z.

S3.3.2 Forward Model

In this model, the outcome is the composition vector while the effect of interest is the disease state. The

following Dirichlet regression model is fit via maximum likelihood using the R package DirichReg (Maier,

2014):

logit(µi) = β0 + β1Y + γ0TP +
∑

j=1

γjZj where µi = E [Ci]

Z,TP Y CP

It is important to note that the total pathway expression TP is always included in the model as a potential

confounder. Just because the proportion involves dividing the expression by the total, this does not remove

the effect of total expression on the outcome of interest. In fact, the expression and the total both contribute

to the proportion together. If not adjusted for in a model, what would appear to be the effect of composition

on outcome could also be due to changes in total pathway expression, leading to confounding.

β1 is reported as the effect of interest and is interpreted as the log odds ratio (log OR) of composition

when comparing diseased to healthy subjects while adjusting for total pathway expression and the set of

confounders Z. For pathways with a large number of member genes, this log OR becomes approximately

the log fold change (log FC) in composition between diseased and healthy subjects while adjusting for

confounding. In other words, how does the composition of a gene in pathway P change when comparing

between diseased and healthy individuals, while keeping total pathway expression and other confounders

fixed.

S3.3.3 Reverse Model: Binary Outcome

In this model, the outcome is the disease state while the effect of interest is the composition vector. The

following set of logistic regression models is fit via maximum likelihood using base R for each pathway:

logit(p) = β0 + β1Ci + γ0TP +
∑

j=1

γjZj where p = E [Y ]
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Z,TP Ci Y

It is important to note that the total pathway expression TP is always included in the model as a potential

confounder for the same reasons as described in the previous section.

β1 is reported as the effect of interest and is interpreted as the log odds ratio (log OR) of risk of disease for

a unit increase in composition of a gene in pathway P while adjusting for total pathway expression and the

set of confounders Z. This is the effect on risk of disease of going from a state in which this gene is completely

insignificant (is not active at all) in pathway P to the state in which this gene completely dominates (is the

only gene active) in that pathway while the total expression of the pathway remains unchanged, and while

keeping other confoudners Z constant.

S3.4 Visualization

Visualizations of pathways are made possible by interfacing with the R package pathview (Luo and Brouwer,

2013), however only KEGG pathways can be visualized in this manner. Both gene expression and gene

composition data can be overlayed on the directed KEGG pathway maps.

S3.5 A Real Data Example

We demonstrate pcmR and compare it to limma (Smyth, 2005) on a dataset of non-small cell lung cancer

(NSCLC) tumors with matched controls from 60 Taiwanese non-smoking women (Lu et al. 2010). Gene

expression was measured using the Affymetrix U133Plus2.0 microarray platform. We chose this dataset for

several reasons. First of all, it is freely available from the Gene Expression Omnibus (GEO) as a curated

dataset (GDS3837). In addition to having a large sample size, most importantly, it also provides metadata

covariates beyond the gene expression values: the age of the patients. This allows us to compare and contrast

the linear modeling capabilities of pcmR and limma.

To confirm that the results from pcmR make sense, we first look at the Non-Small Cell Lung Cancer

pathway from KEGG, a pathway that has a direct relation to the dataset. In limma, a model was fit linking

the gene expression of genes from this pathway (outcome) to the disease state of the sample (tumor or normal

- predictor) while adjusting for the age of the patient (confounder). The main effect of disease state measured
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as the log FC was extracted for each gene. Using pcmR, we fit the Forward Model with the same predictor

and confounder, but with the gene composition values as the outcome instead of the gene expression. Total

pathway expression was included as an additional confounder to the model for reasons described previously.

The main effect of interest as measured by the log OR was extracted for each gene. Only probes that map

to Entrez gene identifiers were kept in the analysis. The average expression was obtained for Entrez genes

that had multiple probes mapping to them. The results of this comparison are summarized in the pathway

visualization in the figure below.

Supplementary Figure S3.1: NSCLC pathway from KEGG. Each gene box color coded by effect size com-
paring tumor to healthy controls, adjusted for patient age. Left/right half of each gene: limma FC/pcmR
OR.

Only effect sizes that were statistically significant using the criterion of false discovery rate (FDR)-

adjusted (Benjamini and Hochberg, 1995) p-value < 0.05 were included in the figure above. Genes that are

not statistically significant do not have a color associated with them and remain white.

We first note that the majority of genes in this pathway do not pass the statistical significance threshold

when using limma, whereas pcmR detects many more statistically significant results. pcmR finds EGF and

p16 as over-composed, whereas limma finds a different set of genes: PKB/Akt, RXR and Forkhead as up-

regulated in cancer. This suggests that the results obtained from differential expression are different from

those obtained from a differential composition analysis. The figure below plots the effect size (FC and OR)

obtained from both limma and pcmR for this pathway. The correlation between the two effect measures is

low at -0.087 (p-value > 0.05), once again suggesting that differential expression and differential composition
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measure different unrelated effects.

Supplementary Figure S3.2: Differential Expression (DE) FC v.s. Differential Composition (DC) OR mea-
sures for the NSCLC pathway. PKB/Akt and EGF are highlighted as the most strongly differentially
expressed/composed genes in this pathway.

As discussed in the main manuscript, EGF is located most upstream of the entire pathway, suggesting that

in the tumor, an increase in its composition is a hallmark of the disease. Current research specifically focusing

on non-smoking Asian women who have NSCLC has consistently highlighted the receptor of EGF as strongly

implicated in this disease. In fact, current treatment actively targets this gene with great success. This is

again confirmed in our study here, where EGF is by far the strongest differentially-composed in the NSCLC

pathway. It is natural in current differential expression analyses to focus on the most strongly differentially

expressed genes, however EGF was not found to be statistically significantly differentially expressed, and so

would have been missed by a conventional analysis. On the other hand, a set of downstream genes were found

to be differentially expressed, ones which were not over-composed in the differential composition analysis.

As mentioned in the main manuscript, the most differentially expressed gene, PKB/Akt has been implicated

in NSCLC as a driver following resistance to anti-EGFR treatment. Even though it was not found to be

over-composed in our analysis here, we speculate that if a repeat sample was made of the tumor from patients

following resistance to anti-EGF drugs, it is likely that PKB/Akt would be found to be over-composed then.

53



Future research is needed to confirm this hypothesis.

We next look at the differential composition results across all 633 pathways included with pcmR in order

to check if the results look reasonable and could be useful in providing potential drug targets. The figure

below shows sample output from pcmR, displaying the log OR (estimate), standard error, z-value, p-value,

FDR-adjusted p-value, the corresponding gene, its pathway context and the pathway source. As mentioned

in the main manuscript, MASP1 from the Signaling in Immune System pathway from Reactome comes

second as most differentially composed. The under-composition of this gene in NSCLC suggests that an

increase in its composition could be a potential approach to treat the disease. We focus on this gene as

opposed to any others in the top list because a literature review of this gene, the lectin pathway in which it

is involved, and a mushroom as a source of lectins in the treatment of cancer provides a coherent story and

an interesting justification that a composition analysis can yield results that are interpretable and potentially

useful.

Supplementary Figure S3.3: Top 9 differentially composed genes across 633 pathways included with pcmR

S3.6 Appendix: a comparison of model paradigms

In this appendix, the various gene expression methodologies that allow for the fitting of linear models are

compared to each other. Key differences and commonalities are highlighted and explored. In all cases, we

assume a simple model with one main binary effect of interest, x. To make interpretation simpler, we assume

that xi = 1 corresponds to a person who has disease and xi = 0 corresponds to one who is healthy. However

these can be any 2 groups of samples being compared, not necessarily human or related to disease.

S3.6.1 limma

limma was the first tool to introduce the ability to fit linear models to gene expression data from microarray

platforms. For each gene, the following linear model is fit. Yi is the intensity of the signal on the microarray

for subject i, xi is subject i’s binary disease status and zij is the j’th confounding covariate in the model for

subject i. β1 is the difference in the mean log-intensities of a gene between diseased and healthy samples. eβ1
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is usually reported as the fold change in mean expression between diseased and healthy, however in reality it

is a value that is smaller than the true fold change in the mean expression of a gene, a result due to Jensen’s

inequality (eE[x] ≤ E [ex] since ex is a convex function).

E [log(Yi)] = β0 + β1xi +

k
∑

j=1

γjzij

S3.6.2 edgeR

edgeR was developed to analyze gene expression data arising from digital expression technologies such as

SAGE and RNA-Seq. Instead of intensities, counts of tags measure expression. For each gene, the following

generalized linear model (GLM) is fit. Yi is the number of tags mapping to the gene for subject i, Ni is the

library size (total number of tags mapped to the genome) for subject i. eβ1 is the fold change in the mean

tag counts of a gene between diseased and healthy for a fixed arbitrary library size.

log E [Yi] = β0 + β1xi + 1 · logNi +

k
∑

j=1

γjzij

A key difference from limma is that the GLM framework allows for eβ1 to be an unbiased estimate of

the true fold change. Also, an additional covariate, logNi is always added to the model. This is called an

”offset”, and it does not have an estimable beta coefficient; it is taken to be always 1.

S3.6.3 pcmR

Let’s first look at what happens when we take the entire genome as one ”pathway” so that we can directly

compare with edgeR. The following model is fit to each gene. The key difference now is that the effect of the

total library size is no longer fixed at a value of 1, but is estimated from the data. Also, instead of the log,

the logit is instead used as the link between the mean outcome and the linear predictor. eβ1 is the odds ratio

in the mean composition of a gene comparing diseased v.s. healthy subjects for a fixed arbitrary library size.

logit E

[

Yi

Ni

]

= β0 + β1xi + γ0Ni +
∑

j=1

γjzij

Note: as the number of genes in a pathway increases, the individual composition of each gene in that

pathway approaches zero and as a result, the odds ratio reported by pcmR approaches the more easily

interpretable fold change.

Finally in practice, pcmR would be applied to analyse smaller-sized pathways, in which case the following

model is fitted to each gene where (TP )i is the total expression (measured as an intensity or tag count) of
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pathway P for subject i. eβ1 is the odds ratio in the mean composition of a gene in pathway P comparing

diseased v.s. healthy subjects for a fixed arbitrary library size.

logit E

[

Yi

(TP )i

]

= β0 + β1xi + γ0(TP )i +
∑

j=1

γjzij

One major advantage of pcmR is that it can work on data that arises from both microarrays and digital

expression technologies.
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