
Machine Learning for Machines: Data-Driven
Performance Tuning at Runtime Using Sparse
Coding

Citation
Tarsa, Stephen J. 2015. Machine Learning for Machines: Data-Driven Performance Tuning at
Runtime Using Sparse Coding. Doctoral dissertation, Harvard University, Graduate School of
Arts & Sciences.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:14226074

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:14226074
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Machine%20Learning%20for%20Machines:%20Data-Driven%20Performance%20Tuning%20at%20Runtime%20Using%20Sparse%20Coding&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=b3a2a31cc84fea9a494208548b1713a0&department
https://dash.harvard.edu/pages/accessibility

Machine Learning for Machines:

Data-Driven Performance Tuning at Runtime
Using Sparse Coding

A dissertation presented

by

Stephen John Tarsa

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

October 2014

c©2014 - Stephen John Tarsa

All rights reserved.

Dissertation Advisor Author

Professor H. T. Kung Stephen John Tarsa

Machine Learning for Machines:
Data-Driven Performance Tuning at Runtime

Using Sparse Coding

Abstract

We develop methods for adjusting devices to runtime conditions based on system-

state predictions. Our approach statistically models performance data collected by

actively probing conditions such as wireless link quality or leveraging infrastructure

for device-monitoring such as hardware event counters. We use state predictions to

tune devices on-the-fly, and make changes to transmission schedule in wireless devices,

voltage and frequency in circuits, and data placement in storage systems. In highly-

variable everyday use-cases, large performance gains result not from designing new

protocols or system configurations, but from more-judiciously applying those that

already exist.

This thesis presents a state-modeling framework based on sparse feature represen-

tation. It is applied in diverse application scenarios to data representing:

1. Packet loss over wireless links

2. Circuit performance counters collected during
user-driven workloads

3. Access-pattern statistics measured from data-
center storage systems

iii

Abstract

Our framework uses unsupervised clustering to discover latent statistical structure in

large datasets. We exploit this stable structure to reduce overfitting in supervised

learning models like Support Vector Machine (SVM) classifiers and Classification

and Regression Trees (CART) trained on small datasets. As a result, we can capture

transient predictive statistics that change with wireless environment, circuit workload,

and storage application. Given the magnitude of performance improvements and

the potential economic opportunity, we hope that this work becomes the foundation

for a broad investigation into on-platform data-driven device optimization, dubbed

Machine Learning for Machines (MLM).

iv

Contents

Title Page . i
Abstract . iii
Table of Contents . v
List of Figures . viii
List of Tables . x
Citations to Previously Published Work xi
Acknowledgments . xii
Dedication . xiii

1 Introduction 1
1.1 Motivating Scenario: Wireless Links in Daily Life 1
1.2 Opportunity for On-the-Fly Performance Tuning 5
1.3 Machine Learning for Machines (MLM) 7

1.3.1 Application Constraints for System State Models 9
1.4 Thesis Roadmap and Summary of Applications 12

2 Background 14
2.1 Hardware Support for On-the-Fly Performance Tuning 15

2.1.1 Subsystems Enabling Runtime Adjustment 15
2.1.2 Virtualization as a Software Convergence Layer 17

2.2 Machine Learning Tools for Modeling System State 18
2.2.1 Coping with Real-World Measurement Errors Using Sparse

Feature Representations . 18
2.2.1.1 Learning Features by Clustering 19

2.2.2 Modeling Local Statistics . 23
2.2.2.1 Linear Support Vector Machines 24
2.2.2.2 Piecewise State Prediction Over Time 24
2.2.2.3 Modeling Time Series Hierarchically 26

2.2.3 Computational Complexity and Parallelization 28
2.2.3.1 Trading Encoding Accuracy for Complexity 28
2.2.3.2 Accelerating Matching Pursuit on GPGPUs 29

v

Contents

2.2.3.3 Exploiting Dynamic Sparse Dependencies 30
2.2.4 Interpretability for Humans-in-the-Loop 31

2.2.4.1 CART and Interpretable CART Models 33
2.2.4.2 Feature-Encoding by Match Filters 33

3 A Protocol- and Environment- Aware Wireless Link Layer 35
3.1 Wireless Link Prediction in Everyday Environments 36
3.2 Scenarios and Field Experiments . 39

3.2.1 Rural UAV Scenario . 39
3.2.2 Indoor Office Scenario . 41
3.2.3 Urban Subway Scenario . 41

3.3 A Sparse-Coding Outage-Prediction Model 43
3.3.1 TCP Response to Link Outages 43
3.3.2 Dictionary Training . 45
3.3.3 Learned Link Primitives . 46
3.3.4 Isolating Network Effects Using Linear Combination 48
3.3.5 Outage Prediction by Classification 49
3.3.6 Tuning Gap Predictors . 50
3.3.7 Transferring Features . 52

3.4 State-Informed Link-Layer Queuing (SILQ) Architecture 53
3.4.1 Link-Measurement Protocol 53
3.4.2 Software Architecture & Profiling 55

3.5 System Evaluation . 57
3.5.1 UAV Throughput in Emulation 58
3.5.2 Indoor Elevator/Office Environment 60
3.5.3 Urban Subway Environment 62

3.6 Summary and Conclusion . 63

4 Workload Modeling for Predictive DVFS in Low-Power Circuits 65
4.1 Reducing Power Consumption with DVFS 66
4.2 Hardware Performance Counters . 67
4.3 Experimental Setup and Measurement Data 68

4.3.1 Device and Benchmark Workloads 68
4.3.2 On-Chip Counters . 69

4.4 A Workload Prediction Model Using Hierarchical Sparse Coding . . . 71
4.5 Prediction Accuracy and Power Savings 72

4.5.1 Accuracy for User-Driven Web Surfing 72
4.5.2 Accuracy Across Workload Types 74
4.5.3 Model Configuration and Prediction Accuracy 76
4.5.4 Dynamic Power Savings with Predictive DVFS 77

4.6 Summary and Conclusion . 79

vi

Contents

5 I/O-Response Modeling for Multi-Tenant Storage 80
5.1 Object-Based Storage Systems . 81

5.1.1 Object Placement . 81
5.1.2 Multi-Tenant Performance Modeling 83

5.2 Workload Models and Data Collection 85
5.3 Predicting Storage Performance with CART 87

5.3.1 Applying CART to Multi-Tenant Scenarios 87
5.3.2 Variation-Tolerant CART Using Workload Labels 88
5.3.3 Learning Workload Filters with Unsupervised Learning 90
5.3.4 High-Risk Configuration Detection 92

5.4 Summary and Conclusion . 93

6 Conclusion 94
6.0.1 MLM: Portable Modeling for Variable Runtime Scenarios . . . 94

Bibliography 96

vii

List of Figures

1.1 An illustration of packet loss sources in everyday environments 2
1.2 Hardware performance counters on consumer-grade devices over time 6

2.1 An illustration of clustering using sparse coding 21
2.2 An illustration of hierarchy’s impact on training data 27
2.3 Conjugate gradient accelerated on an nVidia Fermi GPU 32

3.1 An illustration of Markov wireless link models 38
3.2 A diagram of UAV wireless links at a test airfield in upstate New York 40
3.3 A diagram of packet-loss sources in an indoor office 42
3.4 A diagram of wireless conditions aboard the subway in Boston, MA . 43
3.5 TCP behavior over links exhibiting temporary outages 44
3.6 TCP performance in an indoor office 44
3.7 Link primitives in everyday wireless environments 47
3.8 A link-state template with network queuing effects 48
3.9 The relationship between gap-detection RoC and TCP throughput . . 50
3.10 Gap detector RoC curves and empirical TCP throughput 51
3.11 The SILQ link-measurement protocol 54
3.12 The SILQ software architecture . 55
3.13 TCP with and without SILQ in an indoor office 60
3.14 TCP throughput as SILQ’s probe rate is reduced 61
3.15 TCP throughput using SILQ in a 3G cellular subway network 62

4.1 Instruction throughput for user-driven web surfing 68
4.2 Our hierarchical model for circuit-workload prediction 71
4.3 Prediction accuracy for lulls in instruction throughput 73
4.4 Lull-detector performance by look-ahead range 74
4.5 A model of dynamic power savings with predictive DVFS 78

5.1 An illustration of object-based storage 82
5.2 Experimental setup for storage data collection 85

viii

List of Figures

5.3 Data showing high-risk object-placement configurations 86
5.4 An illustration of CART models applied to sparse representations . . 89
5.5 A visualization of clusters as workload profiles 90
5.6 A comparison of learned and directly-computed dictionary features . 91

ix

List of Tables

3.1 Outage Prediction when Transferring Features 53

4.1 Prediction Accuracy Across Workload Types 75
4.2 Prediction Accuracy by Model Configuration 76
4.3 Prediction Accuracy by Layer-1 Training Dataset 76

5.1 Percent of IOPs Predictions Within 40% Accuracy by Representation 87
5.2 Detection Accuracy for Conflicting Access Patterns 92

x

Citations to Previously Published Work

Portions of Chapter 2 have appeared in the following:

S. J. Tarsa, T.-H. Lin, and H. T. Kung, “Performance Gains in Conjugate
Gradient Computations with Linearly Connected GPU Multiprocessors”,
in USENIX HotPar 2012.

T.-H. Lin, S. J. Tarsa, and H. T. Kung, “Parallelization Primitives for
Dynamic Sparse Computations”, in USENIX HotPar 2013.

Portions of Chapter 3 have appeared in the following:

H. T. Kung, C.-K. Lin, T.-H. Lin, S. J. Tarsa, D. Vlah, et al. “A Location
Dependent Runs-and-Gaps Model for Predicting TCP Performance Over
A UAV Wireless Channel”, in IEEE MILCOM 2010.

S. J. Tarsa and H. T. Kung, “Hierarchical Sparse Coding for Wireless
Link Prediction in an Airborne Scenario”, in IEEE MILCOM 2013.

Chapter 3 includes follow-up work suggested by the dissertation commit-
tee that has been submitted for publication. This work includes extensive
input from Marcus Comiter.

Portions of Chapter 4 have appeared in the following:

S. J. Tarsa and H. T. Kung, “Workload Prediction for Adaptive Power
Scaling Using Deep Learning”, in IEEE ICICDT 2014.

Portions of Chapter 5 include input from Mike Mesnier at Intel.

xi

Acknowledgments

I feel inexpressibly lucky to have found a field that I find so fascinating and rewarding

at a young age. I am grateful to each of the teachers who have challenged and encour-

aged me since then, including my parents, Robert Webster, Errin Fulp, and especially

H.T. Kung. Working with H.T. may end up being the greatest opportunity I ever get,

and it has changed all aspects of my thinking: intellectual, professional, and personal.

To my committee: H.T., Margo, Shlomo, and Yue Lu; to our research collaborators

at AFRL and Intel; to the professors and students of the Harvard CS department;

and most importantly to C.K. Lin, Tsung-Han Lin, Dario Vlah, Kevin Chen, and the

residents of MD 207: thanks for making these such happy and energetic years, while

offering a unique, broad, and historically significant perspective on the field I find so

interesting.

To my parents, sister, brother, in-laws, nieces, & nephew(s); to my friends and loved

ones, from holidays, to hospital rooms, to hockey games in single-digit temperatures:

thank-you for your kindness and love. You have put me in deep karmic debt.

The Harvard community is an exciting and colorful place. It has offered me more

opportunities in six years than any one person deserves in a lifetime. For symphonies

in Havana concert halls, midnight star-gazing among nomads in the Jordanian desert,

surfing trips to remote beaches in Taiwan, and summertime adventures up-and-down

the west coast of the US, I will be forever nostalgic. Especially to the members of

the Harvard-Radcliffe Orchestra and all of the friends I made throughout Cambridge:

thanks for making life so much fun.

xii

Dedicated to my parents, with apologies for breaking

the family computer so often growing up.

xiii

Chapter 1

Introduction

1.1 Motivating Scenario:

Wireless Links in Daily Life

Many computer systems struggle to perform efficiently when runtime conditions like

network state, workload, and user-demands change continually. This is because it

is impractical to optimize a single device for all possible use-cases at design-time.

Even with extensive research and planning, fluid runtime variations inevitably create

unanticipated scenarios that break static design assumptions. In general, the result is

a tradeoff between precisely-tuned systems targeted to a subset of users, or general-use

systems that underperform in individual cases.

The network-transport protocol used by mobile phones during the morning com-

mute to Harvard provides one representative example. As shown in Figure 1.1, when

a user travels to campus from a nearby suburb, their smartphone must contend with

huge variations in link quality over a short period of time. At the outset, conditions

in open-space rural environments are affected primarily by line-of-sight occlusions

Chapter 1: Introduction

Urban	
 Signal	
 Propaga.on	

Rural	
 Signal	
 Propaga.on	

Indoor	
 Signal	
 Propaga.on	

Figure 1.1: Drivers of wireless packet loss change throughout everyday scenarios. In open-
space rural environments, occlusions from terrain and radio range cause transmissions to gradually
degrade over space. In urban environments, multipath reflections and fast-changing line-of-sight
occlusions cause rapid fluctuations in link quality. And in indoor scenarios, densely-placed access
points compensate for hard-to-predict dead-zones, but interference from other users affects signal
quality.

from terrain, and gradual degradation due to radio range limitations. Once aboard a

subway train, that same device must address intermittent packet losses due to fast-

changing multipath interference as the train passes through tunnels and over bridges,

surrounded by dense ground structure. And finally, upon arrival at the office, signal

propagation in indoor 802.11 (WiFi) networks is highly asymmetric, since congestion

and multipath interference have a stronger effect on fixed-position access points than

isolated mobile nodes.

In this everyday use-case, smartphones rely on TCP for congestion control and

2

Chapter 1: Introduction

reliable data transport when supporting applications like web surfing. Baseline TCP

interprets packet loss as a congestion signal, and responds by throttling sending rate

to share the link with others. However, given the variety of delay, congestion, and

signal propagation characteristics found across networks, this simple assumption is

not appropriate in all cases. For example, in asymmetric office-WiFi networks, packets

lost traveling downstream to an end-host are more likely to signal network congestion

than those lost along flakier wireless links traveling toward an access point.

Since its introduction, researchers have defined more than thirty-five TCP variants

tuned for different network scenarios. For example, the Linux default TCP CUBIC

targets high-latency high-bandwidth networks. It uses a fast-retransmit option to

fix isolated delivery failures, but assumes that lower layers compensate for link loss

with automatic-repeat requests (ARQ) and forward-error-correction (FEC). This con-

figuration is sufficient to provide high throughput and fair share in rural and office

environments, but the transient link outages of an urban subway track will under-

mine connection performance. As a result, a smartphone’s network throughput will

fluctuate wildly during the morning commute.

The variable performance of protocols like TCP in our motivating scenario high-

lights a system-design limitation: the smartphone’s poor network throughput is not

due to a broken protocol, but instead arises when static assumptions on link condi-

tions are applied across variable environments. For wireless, rather than inventing a

new TCP variant, we demonstrate performance gains in this work by more-carefully

applying those that already exist.

Beyond wireless, we show that analogous issues arise in circuit power-management

3

Chapter 1: Introduction

and object-based storage systems. Anecdotally, the ARM A9 processor embedded in

warzone communication devices like the Boeing Black is also used in Google Glass

prototypes worn by surgeons to film operations [1]. But regardless of chip workload

and user needs, a single set of heuristics govern the frequency and voltage scaling

rules that drive power dissipation [2]. Likewise, Amazon’s datacenters serve both

the Christmas shopping rush and the photo rendering computations of Instagram

when extra compute cycles are leased to third-parties [3]. But in their current state,

commercial datacenters are so over-provisioned for worst-case demand that randomly-

assigned jobs run only a minor risk of resource contention in typical conditions [4].

To address the need for more-flexible configuration, we present system architec-

tures that actively measure and model runtime conditions to tune performance. We

capitalize on the prevalence of low-level performance counters on off-the-shelf devices,

and focus on building high-quality predictive models from their data in uncontrolled

real-world measurement conditions. To this end, we adapt tools from the machine

learning literature that exploit sparse feature representations. For wireless commu-

nication, circuit power-management, and object-based storage systems, sparse fea-

ture modeling produces useful state predictions when static or expert-derived models

struggle to capture runtime variability. As a result, our systems adjust to runtime

conditions that change over time, across machines, and among users – a specificity

not possible in their static or hand-optimized counterparts.

4

Chapter 1: Introduction

1.2 Opportunity for On-the-Fly Performance

Tuning

For many platforms, popular adoption means that a single design must satisfy vastly

different user demands. Heterogeneity is assured, yet current systems are rigid to

a surprising degree. However, this is not due to a lack of on-the-fly reconfiguration

mechanisms. Over time, manufacturing improvements have reduced computation and

memory costs by orders of magnitude, making alternate data pathways and powerful

microcontrollers affordable. For example, power-saving reconfiguration mechanisms

exist at the circuit-, architecture-, and component-level on devices from AMD, Intel,

nVidia, and Cisco. Platforms like the IBM POWER8 CPU control power configu-

ration with the full computational capabilities of an early-2000s CPU. Within larger

datacenters, software-driven storage systems like CEPH [5], the Google File Sys-

tem [6], and Lustre [7] manage cheap hardware to provide configuration options for

many different workloads. In the meantime, the widespread adoption of virtualization

has made low-level software control possible in consumer devices, datacenters, net-

work hardware, storage systems, and soon across System on Chip (SoC) components

in designs like the Intel SoFIA.

Among these devices, instrumentation for capturing runtime system state is ex-

tensive. Figure 1.2 shows the number of on-board hardware performance counters for

popular CPU, GPU, and network interface cards over time. Driven by the need to

debug complicated designs, architects have naturally increased the density of coun-

ters for events like packet receptions along links, cache hits and misses in a chip’s

instruction table, and block-level I/O statistics. In one case, we found that an SoC

5

Chapter 1: Introduction

 0

 200

 400

 600

 800

 1000

 1200

 1995 2000 2005 2010

C
ou

nt
ab

le
 E

ve
nt

s

Year

BlueGene'P'

POWER7'

Core'i7'

PowerPC'
7450'

POWER5'

Pen6um'M'

MIPS''
R10000'

AMD'Athlon'

Pen6um'4' Citrix'
NetScalar'

NIC'

Configured'System:'
Core'i7'+'GPU'+'NIC'

nVidia'GPU'
285GTX'

Hardware'Performance'Counters'–'ConsumerTGrade'

Hardware	
 Performance	
 Counters	
 	
 on	
 	

Consumer-­‐Grade	
 Devices	

Figure 1.2: The number and diversity of hardware performance counters instrumenting off-the-
shelf devices has naturally increased over time. This trend is driven by designers’ desire for high-
quality debugging information, and has created a rich data source for state-modeling at runtime.

had been instrumented with tens of thousands of hardware performance counters,

even though only a few could be accessed in the final design.

Despite devices’ low-level versatility and support for fine-grained performance-

monitoring, we observe that designers lack a portable, automated approach for mod-

eling system states. Through collaboration with industry, we have seen that brittle

strategies for matching device designs to runtime conditions dominate, such as one-off

expert analysis or spreadsheet-driven modeling. However, using the rich data gener-

ated by performance counters, we show that flexible automated modeling is possible.

Advances in machine learning have greatly improved techniques for computing stable

statistics from high dimensional datasets acquired in uncontrolled conditions. We

will use these tools to capture latent statistical relationships that act as predictive

signatures of system state, despite non-Gaussian measurement noise.

6

Chapter 1: Introduction

This thesis demonstrates automated prediction models for wireless, circuit, and

storage devices, as well as performance optimizations that use them. In Chapter

3, we predict temporary wireless link outages to hold TCP packets when successful

data delivery is unlikely. In Chapter 4, we predict patterns in architecture-level event

counters that arise in circuits during user-driven workloads. By anticipating brief

lulls in instruction throughput, chips can scale back voltage and frequency to save

power without affecting computation speed. And in Chapter 5, we learn patterns

of conflicting I/O access requests in object-based storage systems that colocate data

from multiple users. With the resulting performance models, automated placement

policies can avoid configurations that cause disproportionately bad performance due

to effects like head-of-line blocking.

1.3 Machine Learning for Machines (MLM)

Machine learning techniques implement data-driven models whose parameters are al-

gorithmically estimated from measurements of a target system. This is useful when

measurement data captures statistical relationships that reflect underlying system

behaviors. Modeling these hidden or latent relationships is an indirect method of

mapping out complicated or unknown processes, for example to make predictions.

The field incorporates insights from statistics, signal processing, optimization, artifi-

cial intelligence, computational biology, and parallel computing. Application vehicles

in the literature draw from computer vision, speech recognition, natural language

processing, finance, medicine, and astronomy, among others.

Learning techniques fall into two categories: unsupervised and supervised. Un-

7

Chapter 1: Introduction

supervised methods discover latent structure from large datasets. Examples include

the clustering algorithms of Section 2.2.1.1 that identify patterns formed by similar

recurring measurements. By transforming raw data into a representation that re-

flects this more-meaningful structure, unsupervised learning can implement powerful

pre-processing functions like noise removal, or support visualization within a larger

workflow such as a Knowledge Discovery in Databases (KDD) process [8].

In contrast, supervised learning tools such as the Support Vector Machine (SVM)

classifiers of Section 2.2.2.1 infer unknown information from measurements. For train-

ing, they require both measurement vectors and associated examples of a process that

is unobservable at acquisition time. They are then trained to reproduce the relation-

ships between these two types of inputs, and generalize them for new measurements.

For example, SVMs associate measurements with class labels, and compute a sep-

arating plane between different classes. Once trained, the SVM can then infer the

class label of a new measurement by comparing it to the separator. As described in

Section 2.2.2, supervised learning techniques are often limited by the cost of acquiring

labels for large datasets.

When paired together, these two approaches complement each other. This is be-

cause latent statistical relationships are generally stable over time, and can be used

to combat variation in the statistics of limited-sized labeled datasets. For example,

the performance-counter data from a circuit reflects patterns created by architecture-

level operations. After an SVM has been trained to identify a particular workload

based on performance-counter patterns, new measurement variants may arise due

to unforeseen errors like missing data. For variations not captured by the SVM’s

8

Chapter 1: Introduction

training set, classification results will be uncertain. However, if raw measurements

are first matched to templates of common patterns found with unsupervised learn-

ing, such distortions will be removed before classification. In this way, unsupervised

learning leverages past data to improve the statistical stability of supervised learning

techniques.

Machine learning’s successes have produced a variety of tools useful for modeling

state from performance data. In Chapter 2, we present our framework and describe

how to manage tradeoffs of training time, computational complexity, and statistical

accuracy to implement real-time state prediction on-device.

1.3.1 Application Constraints for System State Models

When building state models from the performance data of wireless, circuit, and stor-

age devices, we found several common characteristics across domains. We present

them here to motivate the tradeoffs discussed in Chapter 2:

MLM(1) Localized Statistical Stability - In each domain, our data shows strong

temporal effects as exogenous factors like physical environment, program code,

and user behavior drive system state. The statistics of predictive patterns are

often valid for a short time period, and data acquisition does not yield an unbi-

ased sample of trends experienced over a platform’s lifetime. For wireless links,

we find that patterns in packet loss data change across rural, urban, and indoor

environments. For circuit performance counters, sequences of architecture-level

events are driven by the current workload, and change drastically when program

9

Chapter 1: Introduction

code shifts from a cyclic compute-driven video game to I/O-bound web surfing.

In the case of storage systems, access patterns change as datacenter customers

come and go, or even when an external network is reconfigured to buffer data

more efficiently. As a result, we find that good predictions of system state are

governed by the statistics of local contexts.

MLM(2) Constrained Acquisition of Labeled Training Data - Labeled data ac-

quisition for supervised learning techniques is expensive relative to application

lifetimes in all of our scenarios. For wireless, the fine-grained measurements

required to associate packet loss with link outages are limited by power, band-

width, and the financial cost of transmission over commercial networks. For

circuits, workload phases lasting just seconds provide only a few observations

of instruction throughput lulls. And in storage systems, performance measure-

ments require tens of seconds for devices to be brought to steady state, making

it infeasible to observe all possible conflicting access patterns. In all cases, la-

beled training data is limited, and long collection times dilute net performance.

MLM(3) Utility of Domain Knowledge to Mitigate Complexity - When data

acquisition and model complexity are limited on-platform, pure data-driven

models cannot capture all important statistical trends; as a result, we show

that bootstrapping learning techniques with expert knowledge produces major

gains in training efficiency and prediction accuracy. For wireless, we compare

patterns of packet loss identified by clustering against known network topology

10

Chapter 1: Introduction

to find that queuing delays affect predictive signatures. When we include these

effects explicitly in our models, predictions transfer more-effectively among net-

works to reduce re-training requirements. For storage systems, we compare

clustering results to workload labels assigned by a human-in-the-loop to find

previously unknown similarities. Combining workload definitions reduces the

complexity that must be managed by system administrators or captured by su-

pervised learners. In order to facilitate this bi-directional flow of information

between learning tools and experts, we focus on models that can be easily in-

terpreted.

In Section 2.2.3, we use these observations to guide our choice of learning tools.

For example, despite their eye-catching results in commercial systems, we avoid convo-

lutional neural networks. This is because large models with many parameters require

too much labeled training data to quickly adapt to changing local statistics. We

must also consider both accuracy and computational complexity, as when we encode

measurements in terms of their latent structure. This leads to a platform-specific

tradeoff that balances accuracy against computational resources and power consump-

tion. Finally, we find through industry collaboration that machine learning tools with

a straightforward interpretation are preferred for capital-intensive projects. Given the

cost of chip fabrication or the expenses associated with day-to-day datacenter oper-

ation, these concerns reflect a necessary level of conservatism that informs modeling

choices in commercial settings.

11

Chapter 1: Introduction

1.4 Thesis Roadmap and Summary of Applications

Chapter 2 next presents background on mechanisms for on-the-fly device reconfigu-

ration. A review of machine learning tools useful for state modeling then discusses

tradeoffs relevant to wireless, circuit, and storage systems. Chapters 3, 4, and 5,

employ these tools in the following applications:

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer -

We model packet receptions along wireless links in everyday scenarios. When

users travel through harsh urban and indoor environments, links are unsta-

ble and temporary outages common. As a result, connections that rely on

TCP, link-layer retransmissions, and physical-layer FEC achieve only minimal

throughput. We build predictors that anticipate temporary outages by learn-

ing signatures of environment effects like entry into subway tunnels, passage

through dead zones, or elevator doors closing. Our system, State Informed

Link-Layer Queuing (SILQ), holds TCP packets temporarily when delivery is

likely to fail. By stabilizing performance in higher layers of the network stack,

this method improves throughput and reduces network-performance variation.

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Cir-

cuits - We model hardware performance counters collected from an ARMv7a

chip. As user-driven workloads like web surfing create patterns at the architecture-

level, we learn signatures that predict lulls in instruction throughput. These

predictions support a Dynamic Frequency and Voltage Scaling (DVFS) policy

that saves power throughout compute-dominated workloads.

12

Chapter 1: Introduction

Chapter 5: I/O-Response Modeling for Multi Tenant Storage - We learn

patterns in I/O-request statistics when different users’ objects are co-located on

the same device. A CART model identifies conflicting workloads that produce

disproportionately bad performance. This human-readable model is useful for

both system-administrators and automated object-placement mechanisms. We

use unsupervised learning to discover latent structure corresponding to distinct

workloads. This structure reduces CART sensitivity to low-level background

processes that interfere with measurement, improving prediction accuracy in

datacenter scenarios.

13

Chapter 2

Background

On-the-fly performance tuning starts with manufacturing. Flexible devices require

alternate data pathways, and these must be both technologically and economically

feasible. To implement reconfiguration policies that control these pathways based

on system state information, low-level software control is also necessary. Section 2.1

reviews these capabilities in common devices.

State prediction requires a modeling framework that carefully manages the plat-

form constraints introduced in Section 1.3.1. Section 2.2 surveys machine learning

tools that can balance statistical accuracy, training time, and computation complex-

ity, while coping with “real-world” measurement artifacts. These are the basis of the

wireless, circuit, and storage state-models deployed in Chapters 3, 4, and 5, respec-

tively.

Chapter 2: Background

2.1 Hardware Support for On-the-Fly

Performance Tuning

2.1.1 Subsystems Enabling Runtime Adjustment

Reconfigurable systems owe their flexibility to low-cost manufacturing. Technologies

such as tri gate transistors and strained silicon reduced chip feature sizes from 130nm

to 14nm in only 12 years [9]. This dropped manufacturing costs by an estimated 30%

per 10nm [10]. Meanwhile, storage costs fell by 5x for hard disk drives and NAND

memory in the four-year period ending in 2012 [11].

To realize savings from new technologies, manufacturers pair technical break-

throughs with better economic strategies. This is necessary because manufacturing

costs rise as devices get smaller and require greater precision. For example, a 14nm-

process fabrication plant planned for 2013 cost Intel more than $5 billion [12]. Photo

lithography masks, a key component in the manufacturing process, cost more than $1

million each at 22nm [13]. Yield-driven production strategies recover these expenses,

for example by selectively disconnecting components of a chip post-fabrication to sell

one die at different price-points [14].

Architects have exploited low-cost hardware to increase runtime flexibility at

nearly every level of device design. At the circuit level, Dynamic Frequency and

Voltage Scaling (DVFS) reduces the power consumed along circuit pathways at run-

time. Provided slower performance does not disrupt computations, this mechanism

can adapt a device’s power profile to workload. Commercially-available DVFS mech-

anisms from both AMD and Intel make adjustments at the 10− 100µs timescale [15].

15

Chapter 2: Background

Research designs have further reduced adjustment time to nanoseconds [16].

At the architecture level, many processors are equipped with computationally pow-

erful microcontrollers to manage chip operations. For example, the IBM POWER8

CPU repurposes a PowerPC 405 to control gating, frequency, and voltage settings

per core [17] [18]. In this case, the processing capabilities of an entire early-2000s

CPU manage parallelism against a power-consumption budget. Other devices like

the massively parallel nVidia Maxwell GPU similarly trade off chip size for control.

In this design, additional scheduling units increase size by 20% in order to selectively

power off idle execution units at runtime [19].

Computational capabilities have also migrated into peripheral systems like stor-

age. Self-healing solid-state drives (SSDs) use microcontrollers to detect flash mem-

ory failures and manage repairs. Extra computations relocate data to backup chips

upon failure, redirect I/O requests temporarily, and prioritize repair operations along-

side normal user activity. These optimizations target wear-out failures that inhibit

widespread adoption of cheap, high-capacity SSDs [20].

Datacenters have a long history of leveraging low-cost computation and storage

hardware. Redundant devices spread-out across networks and geographies provide

flexible options for data placement. Computational resources then implement policies

that manage network performance and reliability across devices [21] [22]. Datacenters

have also given rise to economically-incentivized performance optimizations. The best

example is Amazon, which leases datacenter resources to customers using market-

driven pricing [23].

16

Chapter 2: Background

2.1.2 Virtualization as a Software Convergence Layer

To realize performance gains in reconfigurable systems, flexible low-level control is

necessary. Coinciding with cost reductions in hardware manufacturing, virtualization

technology has pushed software deep into many devices. Virtualization gets its name

by implementing a lightweight, software-driven, universal interface to heterogeneous

hardware resources [24] [25]. By improving interoperability, systems like Xen [26] and

VMWare [27] originally simplified long-term management and reduced capital costs

in datacenters. Since the initial wave of adoption in the late 1990’s, virtualization

has spread to consumer devices with Google’s Dalvik/Android system [28], network

hardware with OpenFlow [29], storage through software-driven object management

systems [30], and soon to circuits with the Intel SoFIA.

Virtualization not only simplifies high-level design, it uses low-level software to

manage device resources at a fine grain, often with direct hardware support. As

a result, it implements a convergence layer ideal for state modeling. For example,

software-defined radio systems like GNU Radio [31] or the Joint Tactical Radio Sys-

tem (JTRS) [32] can implement link prediction at the lowest layers of the network

stack. Similarly, virtualized circuit platforms like the Intel SoFIA are well-suited to

implement the workload-prediction optimizations of Chapter 4. And object-based

storage systems that manage datacenters of heterogeneous devices are the target of

the performance modeling techniques of Chapter 5.

17

Chapter 2: Background

2.2 Machine Learning Tools for Modeling

System State

Section 1.3.1 introduced common constraints that affect state-models in wireless,

circuit, and storage systems. These were MLM(1) localized statistical stability, MLM(2)

constrained acquisition of labeled training data, and MLM(3) utility of domain knowledge

to mitigate complexity. This section introduces machine learning techniques that

satisfy these requirements, while addressing variation in measurement data and the

restrictions of our target platforms.

2.2.1 Coping with Real-World Measurement Errors
Using Sparse Feature Representations

Sparse feature representation is a powerful method for coping with non-Gaussian data

variations. These occur in uncontrolled acquisition conditions such as environments

containing interference, or situations that preclude careful alignment between mea-

surements and their target. Errors manifest as signal distortions like shifts, deletions,

and stretches. These are common in “real-world” data, and sparse feature represen-

tation is an important component of systems for natural language processing [33],

object-recognition [34] [35], and signal processing [36] [37].

To compute a sparse feature representation, raw measurement data is expressed

in terms of a small number of canonical patterns, called features. This process latches

measurements representing noisy or incomplete signals to stable exemplars, restor-

ing garbled information. Sparsity is enforced by imposing a penalty on the total

number of features chosen to represent a measurement vector. This constraint cuts

18

Chapter 2: Background

away weakly-expressed information like low-level interference. Unlike approximation

methods that purely minimize Euclidean distance, sparse approximation purposefully

removes information to remove noise, suppress clutter, and amplify important trends.

As a result, statistical models fit to sparse feature representations more-accurately

capture trends that can be distorted during data acquisition. Interestingly, evidence

suggests that this process occurs in biological systems like the visual cortex [38].

2.2.1.1 Learning Features by Clustering

An encoding algorithm that transforms raw data into a sparse feature representation

requires a set of appropriate canonical features. Experts can define such features by

hand, as in object-recognition systems like SIFT or biologically-inspired vision sys-

tems [39] [40]. However, for data with unknown or unmanageably complex structure,

expert-driven feature-design is impractical.

In this case, unsupervised learning techniques can find features from a large rep-

resentative dataset. Collections of candidate features are often called dictionaries.

For example, dictionaries in this work are overcomplete matrices whose columns rep-

resent canonical patterns found in measurement data. The process of computing a

dictionary using unsupervised learning is called dictionary training.

The most common generic approach to unsupervised dictionary training is cluster-

ing, which groups measurement samples to identify recurring patterns. Since effects

like clustered values often result from an underlying unobservable process, cluster

definitions are one form of latent or hidden statistical structure. Given their straight-

forward explanation, clustering algorithms are common in both automated learning

19

Chapter 2: Background

systems and data-mining systems that include humans-in-the-loop [8].

2.2.1.1.1 Capturing Latent Structure with K-Means Depicted in Figure 2.1,

K-Means is one simple clustering formulation. It assumes that measurement data can

be grouped into K clusters, each represented by their mean value, or centroid [41].

K-Means is solved greedily by iterating between a cluster-assignment step, and a

centroid-update step. The algorithm starts with K as an input parameter, and ini-

tializes K candidate centroids. In the assignment step, all measurement vectors are

associated to the closest centroid by minimum Euclidean distance. Then, in the

update step, each centroid is recomputed by averaging its constituent measurement

vectors. This process repeats until a convergence criterion is satisfied.

Though straightforward, K-Means is capable of finding features that support state-

of-the-art object-recognition systems [42]. Under this formulation, cluster centroids

become dictionary features, and the sparsity constraint k = 1 is implied (notationally,

we note the difference between K: the number of clusters, and k: the constraint on

the number of features used in a sparse representation). K-Means is convenient in

many situations because it aligns with a generative Gaussian mixture model.

2.2.1.1.2 Sparse Coding: Linear Combinations of Concurrent Features

Sparse coding generalizes K-Means to express measurements with a linear combina-

tion of cluster centroids, as shown in the right portion of Figure 2.1. This more-

expressive framework is useful when measurements result from multiple underlying

processes operating at the same time. For example, circuit performance data will

capture concurrently-operating chip components as they increment a common set

20

Chapter 2: Background

d1	

z = [1, 0, 1]TSparse	
 Code:	

d2	

d3	

d1	
 d2	

d3	

Sparse	
 Code:	

x

z = [0.6, 0, 0.4]T

Re
co
ns
tr
.	

Er
ro
r	

x

Sparse	
 Coding,	
 k	
 =	
 1	

(K-­‐Means)	

Sparse	
 Coding,	
 k	
 =	
 2	

(K-­‐SVD)	

z = [0.6, 0, 0.4]T

Figure 2.1: Sparse coding is a clustering method that generalizes K-Means. Unlike K-Means,
sparse coding allows data to be explained by a linear combination of cluster centroids. This model
more-closely fits systems like circuits, in which multiple components increment a common set of
counters.

of counters. Clusters found using K-Means will map awkwardly to combinations of

circuit components, while clusters found using sparse coding can separate them.

Sparse coding is the subject of intense study, and many alternative formulations

exist to exploit tradeoffs like statistical accuracy or computation speed [43]. One

simple formulation is based on minimizing approximation error under a strict `-0

constraint on the number of features that may be used:

min ‖X −DZ‖2 s.t. ‖zi‖0 ≤ k for i = 1...t (2.1)

with X a matrix containing t n-dimensional measurement vectors, D a feature dic-

tionary with m cluster centroids as its columns, and Z a matrix of t sparse feature

vectors with at most k non-zero values. In the prior circuit example, X would con-

tain values captured from n counters sampled at t time instants. Dictionary atoms

21

Chapter 2: Background

would loosely represent different underlying circuit operations with unique signatures

evident in counter values. Note that when k = 1, this formulation is the same as

K-Means with the notational difference that K clusters become the m columns of D.

Though `-0 minimization is NP-Hard, greedy approximation algorithms are known.

Just like K-Means, K-SVD solves this clustering problem by alternating between

cluster-assignment and update steps [44]. In this formulation, sparse feature vectors

zi reflect a weighted combination of several clusters, so K-SVD uses the Matching

Pursuit (MP) family of algorithms to perform the assignment step. These are pre-

sented in detail in Section 2.2.3.1. Furthermore, since clusters are not a pure average

of their constituent vectors, K-SVD uses Singular Value Decomposition (SVD) to

update centroids by rank-1 approximation. Though fast, this greedy approach is

sensitive to initial conditions.

In contrast, `-1 regularization provides an alternative formulation with a convex

objective function (when m < n) that can be solved directly. Called the general Least

Absolute Shrinkage and Selection Operator (LASSO), this formulation is given by:

min ‖X −DZ‖2 + λ‖zi‖1 for i = 1...t (2.2)

where λ is a “regularization” parameter that penalizes the sum of absolute values in

any sparse feature vector [45].

Though LASSO produces more-stable dictionaries than K-SVD in general, solving

it is more-complicated. In practice, we use LASSO to compute dictionaries offline

when computation constraints are minimal. Then, once D has been trained, we

encode new measurements using easily-parallelizable MP algorithms according to the

22

Chapter 2: Background

formulation in (2.1).

2.2.2 Modeling Local Statistics

Clustering and sparse feature representations capture variation-tolerant signatures

of system processes – supervised statistical models can then learn the relationships

between these signatures to implement state prediction. There are many supervised

learning tools, including hypothesis testing, regression, Bayesian inference, Classifi-

cation and Regression Trees (CART), and Support Vector Machines (SVMs). For all

of them, training data must include both a measurement vector and the outcome of

the process being modeled, called a label. Labeled data is often orders-of-magnitude

more costly to acquire than unlabeled data. For example, in image-based object-

recognition, labels are the result of human cognition, and acquisition is bottlenecked

by the time it takes a person to annotate individual pictures.

When modeling system state, measurement vectors contain samples of perfor-

mance data and labels reflect a future observed system state. Prediction is imple-

mented by assigning an expected future-state-label to a new input measurement vec-

tor. In the simplest case, labels indicate the occurrence of a target event such as a link

outage; a binary classifier is then sufficient for prediction. Labeled data is limited in

state modeling because every acquisition is a missed optimization opportunity. Fur-

thermore, the relationships between system states change over time as environment,

application, and workload changes. Labels are therefore useful only within a limited

context, making acquisition difficult to amortize over time.

23

Chapter 2: Background

2.2.2.1 Linear Support Vector Machines

We use SVMs to predict binary events because they are widely considered to be the

most flexible and powerful classifier available. In its most basic formulation, an SVM

computes a linear separator that maximizes the sum of weighted distances between

a separating plane and measurement vectors in different classes. The best separator

is a vector whose coefficients have largest magnitude in dimensions that discriminate

between classes. Weight vectors therefore provide hints into which measurement

dimensions are most useful when telling classes apart.

However, separators can be defined as a kernel function of arbitrary shape. This

flexibility enables the SVM formulation to implement probabilistic separators and to

generalize techniques like logistic regression. Intuitively, the effect of a non-linear

kernel is to first apply a function f()̇ to data points x, and then to find a linear

separator between transformed points f(x) [46]. When sparse feature representations

are computed from raw measurement data and fed to a linear SVM, sparse coding

becomes a form of data-dependent kernel [47].

2.2.2.2 Piecewise State Prediction Over Time

Linear approximation is a data-efficient way to capture complicated functions when

little information is known about their shape. This is because any n data points

can be used to approximate an n dimensional signal by regression. When applied

piecewise, independent linear models fitting local portions of a function’s domain

together capture arbitrary continuous functions. This is especially useful if data

acquisition naturally samples points within a small region.

24

Chapter 2: Background

Linear SVMs that perform state prediction over short windows of time implement

a similar procedure. In all of our applications, a few prominent predictive effects

dominate at any time. For wireless, these are sources of packet loss specific to the

current environment; for circuits, they are the function blocks of a workload phase;

and in storage, they are the access patterns of a transient workload. The predictive

relationships between these dominant processes and system state represent a limited

local context of a much more-complicated global prediction model.

Rather than building general high-order statistical models for all possible runtime

conditions, it is most effective to train individual models for limited local contexts.

This is because data acquisition is highly time dependent – as we will show in later

chapters, the statistics of system states driven by environment, program code, and

user demands change over time. It is not only prohibitive to collect statistics on the

global state function, it is not necessarily useful. For example, predictive trends may

change enduringly when a wireless user leaves an environment for good, software code

is upgraded, or a storage client changes their workflow.

We therefore implement prediction using linear SVMs to model local statistics.

The solution found by a linear SVM can be interpreted as one portion of a piece-wise

linear regression of the global state function. For environment-, application-, and

workload-specific models, linear predictors require few training samples to converge,

enabling our system to easily adapt to new runtime conditions.

25

Chapter 2: Background

2.2.2.3 Modeling Time Series Hierarchically

When predictive signatures of system state stretch over large spans of time, state

modeling suffers the curse of dimensionality: each linear increase in scale produces

an exponential increase in the number of possible states that may occur. Though

clustering and sparse representation collapse variations corresponding to the same

latent state at small scales, training data requirements make them impractical when

signal dimensions stretch into the thousands or millions. In this case, hierarchical

modeling is a tractable approximate solution that is central to deep learning systems

for vision, speech, and language processing [48] [49].

As shown in Figure 2.2, a hierarchical model encodes statistical relationships

within small independent signal patches at its lowest layer. Relationships between

these patches are then captured at subsequent higher layers. Practically, this is imple-

mented by cutting a long sequence of measurement data into small pieces, and sparse-

coding each independently. Feature vectors corresponding to neighboring patches are

then concatenated to increase scale before coding them again with a dictionary that

captures feature co-occurrences.

Hierarchy increases training efficiency by assuming that patches within a layer are

independent and identically distributed. Full-sized training samples can be subdi-

vided and used to learn a single dictionary for encoding independent patches. This

increases the number of patch-sized training samples multiplicatively. Furthermore,

reducing signal size to that of a much-smaller patch decreases the number of possible

sequences that may occur. As a result, training data requirements drop exponentially.

Together, these two effects make it tractable to find latent structure within very large

26

Chapter 2: Background

z 2 R8

z

1
1 ⇠ z

2
1 2 R4

z

2 2 R2m

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

z 2 R8

z

1
1 ⇠ z

2
1 2 R4

z

2 2 R2m

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

z 2 R8

z

1
1 ⇠ z

2
1 2 R4

z

2 2 R2m

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

z 2 R8

z

1
1 ⇠ z

2
1 2 R4

z

2 2 R2m

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)
Observa(on	
 Variables:	

Latent	
 Variables:	

Single	
 Layer	
 Model	
 Two	
 Layer	
 Hierarchical	
 Model	

State-­‐Space	
 Reduc(on	
 Using	
 Hierarchical	
 	

Models	
 with	
 i.i.d.	
 Patches	

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z12

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z12

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z12

Sparse	
 Coding	
 Dic(onary	

Layer	
 2	
 Sparse	
 Coding	
 Dic(onary	

Layer	
 1	
 Sparse	
 Coding	
 Dic(onary	

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2
z 2 R8

z

1
1 ⇠ z

2
1 2 R4

z

2 2 R2m

x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8)D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

i

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z12

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z12

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z12

D 2 R+ 8⇥m

D1 2 R+ 4⇥m1

D2 2 R+ m1⇥m2

z1

z2

Figure 2.2: Hierarchy is a general way to ease training data requirements when modeling long
sequences. The number of possible patterns that may occur in patches decreases exponentially with
patch size, while the number of training samples increases multiplicatively as data is subdivided.
Conveniently, hierarchy is an appropriate compositional model for many data modalities, especially
in vision, language, and speech applications.

measurement vectors.

In addition to its statistical benefits, hierarchy reflects the natural properties of

many datasets, such as vision, speech, and language data [50] [51] [52]. For example,

images are often composed of smaller component parts, such as faces that have eyes,

noses, and mouths. Language structure fits words into phrases, phrases into sentences,

sentences into paragraphs, etc. And, speech data follows a similar structure starting

with phonemes, then words, and then phrases. Interestingly, primates’ visual cortices

model data hierarchically by processing visual inputs in different regions of the organ

at increasing degrees of complexity [48].

27

Chapter 2: Background

2.2.3 Computational Complexity and Parallelization

A rich variety of approaches exist for learning models based on sparse feature repre-

sentations. These include convolutional neural networks, latent-dirichlet allocation,

sparse coding, etc. As a result, we can choose a formulation to carefully manage trade-

offs of training-data requirements, computational complexity, and parallelization. For

example, deep neural networks are popular in vision, speech, and language processing

systems. They use the supervised back-propagation algorithm to refine data repre-

sentations until a model’s statistical objective is maximized. While deep learning

achieves excellent accuracy on high-dimensional data, commercial implementations

utilize tens of thousands of compute cores [34].

In contrast, the modeling framework employed in later chapters uses sparse coding

to compute data representations, and linear SVMs to perform classification. While

dictionary training occurs offline, SVM training happens either on- or off-platform

depending on computation constraints. In all applications, encoding and SVM clas-

sification happen on-platform. This configuration gives up the statistical accuracy

of large neural network models for the flexibility to spread learning and prediction

modules across platforms.

2.2.3.1 Trading Encoding Accuracy for Complexity

For all of our applications, performance gains are sensitive to the cost of computing

sparse feature representations. Fortunately, sparse coding’s multiple formulations

allow room for optimization within our prediction framework. For example, low-

overhead wireless link predictions can be calculated in microseconds without dedicated

28

Chapter 2: Background

hardware using the Matching Pursuit (MP) algorithm shown in Algorithm 1 [53]. MP

iteratively computes sparse-representation coefficients by identifying the largest inner-

product correlation between a residual vector and dictionary features. This algorithm

consists primarily of matrix-vector multiplications and can be easily parallelized.

Since its introduction, researchers have extended MP to improve approximation

accuracy and stability using additional computations. For example, it’s closest off-

spring is Orthogonal Matching Pursuit (OMP), shown in Algorithm 2 [54]. OMP re-

computes its residual vector each iteration by performing a least-squares fit between

an estimated set of supporting dictionary features I and the original measurement

vector. This step reduces error propagation throughout the algorithm’s iterations.

When the signal dimension n is small, least-squares computations are expensive rel-

ative to overall computation time. However, if n is large or the target platform has

a data-parallel hardware accelerator such as a GPGPU, OMP can efficiently improve

encoding accuracy. This is the case for the datacenter storage systems of Chapter 5.

2.2.3.2 Accelerating Matching Pursuit on GPGPUs

Using a data-parallel hardware accelerator, OMP can be distributed among proces-

sors to reduce encoding time. For example, we have tightly optimized the conjugate

gradient method for least-squares on nVidia Fermi GPUs [55]. For this architec-

ture, OMP is bound by the cost of communication between independent parallel

multiprocessors during vector-norm computations, as depicted in Figure 2.3. Newer

iterations of this hardware like the nVidia Maxwell partially alleviate I/O limitations

29

Chapter 2: Background

Algorithm 1 Matching Pursuit (MP)

Input: n× 1 data vector x, n×m matrix D, sparsity constraint k

Output: sparse vector z

1: r0 = x; i = 0; z = ~0m;

2: while i < k do

3: q = D′ri

4: j = arg max(q)

5: zj = qj

6: ri+1 = ri − qjDj

7: i = i+ 1

8: end while

for small problem sizes by increasing the amount shared memory available to com-

pute units. Researchers have also proposed algorithmic modifications to address this

bottleneck [56].

2.2.3.3 Exploiting Dynamic Sparse Dependencies

When OMP is parallelized across many-core platforms, communication bottlenecks

may be caused by nodes holding irrelevant operands. For example, after OMP updates

its estimated support set I, only a few nodes will participate in the inner-loop least-

squares calculation. Other nodes should therefore be prevented from slowing the

global computation. Since such optimization opportunities are determined on-the-fly,

compile-time optimizers cannot exploit them. Algorithms with this runtime structure

are called dynamic sparse computations [57] and include MP, OMP, and K-SVD.

We added support for dynamic sparse computations to GraphLab, a many-core

parallel programming framework. By introducing two new primitives into the GraphLab

30

Chapter 2: Background

Algorithm 2 Orthogonal Matching Pursuit (OMP)

Input: n× 1 data vector x, n×m matrix D, sparsity constraint k

Output: sparse vector z

1: r = x; I = {∅}; z = ~0m;

2: while |I| < k do

3: q = D′r

4: I = I ∪ arg max(q)

5: zI = D+
I x

6: r = x−Dz
7: end while

programming abstraction, OMP’s runtime decreased by 4x. The “Selective Push-

Pull” primitive temporarily focuses computation on a small number of self-selected

nodes. “Statistical Barriers” then prevent a few straggling workers from holding-up

computation. This barrier waits for a percentage of workers to check-in at synchro-

nization points before leaving the rest behind – provided no operands are systemati-

cally ignored, OMP will naturally correct for missing interim values over subsequent

iterations. This implementation was used for the offline learning computations of

Chapter 4.

2.2.4 Interpretability for Humans-in-the-Loop

In many scenarios, learning algorithms operate as part of a larger design process

that includes humans-in-the-loop. This is the case for circuit workload-prediction,

when encoding and prediction systems require implementation in hardware. Here,

capital requirements mandate a conservative, well-tested design-process that consists

31

Chapter 2: Background

Global	
 Memory	

PCIe	
 2.0	
 Bus	
 to	
 CPU	

…

Shared	
 Mem	

L1	
 Cache	

Stream	
 Processors	

(SM)	
 ExecuBon	
 Units	
 (EUs)	

400μs	
 RTT	
 for	
 synchronizaBon	

and	
 operand	
 exchange	

L2	
 Cache	

nVidia	
 Fermi	
 Architecture	

Matrix-­‐Vector	

Mult.	

Block	
 1	

SM	
 	
 1	
 SM	
 	
 2	
 SM	
 	
 15	

Vector	
 Norm	
 	

	

…	

…	

…	

Matrix-­‐Vector	

Mult.	

Block	
 2	

Matrix-­‐Vector	

Mult.	

Block	
 15	

Matrix-­‐Vector	

Mult.	

Block	
 1	

Matrix-­‐Vector	

Mult.	

Block	
 2	

Matrix-­‐Vector	

Mult.	

Block	
 15	

Data	
 flow	
 of	
 Conjugate	
 Gradient	
 	

Least-­‐Squares	
 on	
 the	
 nVidia	
 GTX	
 570	

Figure 2.3: The conjugate gradient least-squares-estimation algorithm forms the inner loop
of OMP. Consisting primarily of data-parallel inner product computations, it can be accelerated
using commodity GPUs. However, when shared memory resources are limited, synchronization
can bottleneck OMP. Slowdowns are alleviated by better support for on-board synchronization and
operand exchange, for example with neighbor-communication or more low-latency memory resources.

of many iterations. This is also the case in storage scenarios, when systems are sold

to third-party clients. For these, client-side system administrators must answer for

datacenter performance, including learned placement policies.

Some advanced machine learning techniques do not interface well with humans-

in-the-loop due to their level-of-complication. For example, SVMs produce accurate

statistical classifications that are can be hard to interpret. Separator weights identify

features that influence classification, but they do not easily convey the space of all

important signatures associated with a target class. Interpretation is even more

difficult when many SVMs are combined to implement multi-class prediction.

32

Chapter 2: Background

2.2.4.1 CART and Interpretable CART Models

Classification and Regression Trees (CART) are one alternative supervised learning

tool that better-supports humans-in-the-loop. The CART algorithm progressively

applies binary splits to labeled training data to greedily improve a target metric like

classification error. CART models not only fit non-linear trends, but produce human-

readable output when trees are kept to manageable complexity. Unfortunately, they

are also prone to overfitting and make poor use of latent data structure. In Chapter

5, we show that CART models trained on sparse feature representations are more-

resilient to overfitting. Since clusters are well-understood and easily visualized [58],

this procedure does not hurt interpretability.

Recently, researchers proposed an explicit formulation for interpretable CART

models that constrains their depth and breadth [59]. Not only are results guaranteed

to be low complexity, but the optimization objective is convex. This means that

solutions are not prone to overfitting, as with greedy approximations algorithms.

The result is a stable, uncomplicated prediction model.

2.2.4.2 Feature-Encoding by Match Filters

Finally, we point out that learning algorithms based on Matching Pursuit have a

straightforward explanation in terms of match filters. Each iteration, MP computes

inner-product distance between a signal vector and dictionary features. When features

are referred to as “filters”, this procedure aligns with match-filtering, a common signal

processing technique in communications and electrical engineering. Through collabo-

ration, we found that techniques like SVMs with custom kernels that draw heavily on

33

Chapter 2: Background

machine learning terminology are difficult to communicate across disciplines. How-

ever, an explanation of sparse encoding based on match-filtering terminology drew

on common knowledge. The result was clear communication and a shared intuitive

understanding of strengths and weaknesses.

34

Chapter 3

A Protocol- and Environment-

Aware Wireless Link Layer

We now implement a wireless link model that improves throughput in everyday

scenarios by predicting temporary link outages. In harsh transmission environments

like those found indoors, in urban settings, and in vehicular networks, link variability

disrupts network protocols. In the example scenario described in Section 1.1, TCP

connections will improperly throttle back upon delivery failures and time out if all

packets in a transmission window are lost. For transient outages, this causes low

utilization once links are restored. The result is dismal throughput and a frustrating

user-experience when devices are slow to react to environment changes.

Our system, State-Informed Link-Layer Queuing (SILQ), actively measures links

to predict such outages. SILQ then holds packets at the link layer to preempt

TCP when appropriate. This method trades a slight increase in latency for more-

predictable transport behavior. As a result, timeouts are avoided and connections

react quickly to link fluctuations. We find that overall throughput in scenarios like

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

subway networks increases by up-to 4x, while variation over repeated experiments

drops similarly. This chapter presents SILQ in detail, and includes extensive data-

collection and field-validation in rural Unmanned Aerial Vehicle (UAV), urban sub-

way, and indoor office environments over 802.11b and 3G cellular networks.

3.1 Wireless Link Prediction in

Everyday Environments

Daily, wireless devices face the challenge of providing fast reliable data delivery over

flaky links. Link loss arises due to a confluence of factors, including signal strength at-

tenuation, antenna pattern nulls, line-of-sight occlusions, and multipath interference.

In general, these effects are determined by complicated environmental properties like

geometry, and are exacerbated by node mobility. Consequently, transmission quality

is difficult to anticipate in practice.

Strategies for addressing data loss at the lowest layers of the network stack shield

applications from unreliable link conditions. At the physical layer, forward-error-

correction (FEC) improves symbol resilience to individual bit errors. At the link

layer, Automatic Repeat Request (ARQ) quickly detects frame errors to trigger re-

transmissions [60] [61]. And at the transport layer, TCP options like Fast-Retransmit

and F-RTO dampen throughput degradation caused by intermittent packet losses [62].

Inherent to all of these loss-mitigation protocols is an assumption that the link is

actually available at the 10-100ms timescale. This assumption breaks routinely, for

example when users encounter coverage dead-zones. The consequences are unintended

protocol behaviors like improper throttling and timeout, which in turn lead to erratic

36

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

network performance and unreliable applications.

Outage-prediction is one method for stabilizing network protocols. This strat-

egy uses a link model to anticipate future delivery failures, and holds transmissions

temporarily until link conditions improve. Link models in the literature tend to be

complex and require large amounts of input data. The two most common approaches

are ray tracing and statistical modeling. Ray tracing uses detailed physical simulation

to compute signal strength and requires comprehensive geometric and propagation

information about the environment [63], [64]. In contrast, statistical modeling ab-

stracts away physical effects by capturing relationships between link measurements,

like clusters formed by recurring delivery patterns. Examples include applications

of Markov chains that reproduce the first- and second-order statistics of 802.11 and

GSM networks [65], [66], [67], [68]. For these models, accuracy depends on the number

of state-transition probabilities that must be estimated and the amount of available

training data.

Hybrid models blend statistical and physical information, such as a mobile node’s

location [67] [69]. However, in practice we find that location is a poor predictor of

individual packet losses for many scenarios. For example, in indoor environments,

link state in a particular location may change significantly if a coworker holds open a

nearby fire-proof door, temporarily removing a source of signal blockage. In scenarios

like subway tunnels, precise location information is simply not available once the train

passes underground.

The statistics of wireless link measurements have inherent predictive power be-

cause physical factors that affect signal propagation create correlations in transmis-

37

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

00	
 01	

10	
 11	

	
 0	
 	
 1	

00000	
 00001	

Markov	
 Link	
 State	
 Models	
 for	
 Packet	
 Delivery	
 Sequences	

1	
 packet	
 à	
 4	
 transi<ons	
 2	
 packet	
 sequences	

à	
 16	
 transi<ons	

5	
 packet	
 sequences	

à	
 1024	
 transi<ons	
 	
 	

…	
 …	

Figure 3.1: Markov models are popular in the research literature for capturing sequences of bit-
or frame-transmission errors. The number of state-transitions in these models grows exponentially
with the sequence length being modeled. In practice, this creates onerous training-data requirements
that limit the ability of general Markov chains to capture predictive effects over time.

sions over time. This effect is often abstractly referred to as “channel memory.” For

example, when occlusion from the UAV engine in our airborne scenario blocks back-

to-back packet transmissions, the failure of several deliveries in-a-row may suggest

the outcome of the next.

We therefore implement a data-driven statistical link model, and actively probe

links to acquire measurement data. We conduct dedicated data-collection campaigns

in diverse environments and use unsupervised learning to find stable link-state sig-

natures. Outage predictors are then implemented by sparse-coding probe data and

training a linear SVM for individual environments. During online operations, our sys-

tem probes outgoing links at a low rate and uses returning reception-reports to make

outage predictions. From these, transmitters either forward or hold data packets to

avoid delivery failures. This approach allocates a small amount of link bandwidth to

state-modeling, but requires no side-channel information like node position.

38

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

3.2 Scenarios and Field Experiments

We now describe our rural UAV, indoor office, and urban subway scenarios. In each

environment, we measure links to find and compare link states using unsupervised

learning. Links are probed by transmitting 66B UDP packets every 1ms. Each

packet carries a sequence number that is logged by receivers. Receivers detect failed

transmissions from non-consecutive probe arrivals and reconstruct a binary sequence

of probe-delivery outcomes, referred to as a link trace.

Due to the speed and range of our UAV, we transmit data at 1Mbps modulation

for best resilience; we then match this speed in all environments so that results are

comparable. In Section 3.4.2 we show that results scale to 10Mbps. For UAV and

indoor scenarios, we disable ARQ retransmissions by sending packets in broadcast

mode. For the subway scenario, wireless hops implement the 3GPP cellular standard’s

Hyrbid-ARQ mechanism with 10 retransmissions [70].

3.2.1 Rural UAV Scenario

The UAV flight path is illustrated in Figure 3.2. A low-altitude fixed-wing aircraft

flies multiple laps in a dumbbell-shaped pattern over an airfield in upstate New York.

Auto-pilot maintains positional consistency between laps, and GPS location variation

is on the order of 15m when banking through turns. The flight path spans approx-

imately 1,000m east-to-west. Two wing-mounted 802.11b/g transmitters broadcast

UDP probes to ground nodes arranged throughout the property. Ground node loca-

tions are organized in three groups, each representing a distinct signal-propagation

environment: field, forest, and ground-structure. Measurements are collected primar-

39

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

Forest	
 	

Nodes	

Open-­‐Field	

Nodes	

Ground-­‐	
 	

Structure	

Nodes	

UAV	

	
 Node	

Airborne	
 Scenario	
 	

Open-­‐Field	
 Node	
 	

Loca4on	

Forest	
 Node	
 	

Loca4on	

Ground-­‐Structure	
 	

Node	
 Loca4on	

Figure 3.2: The experimental setup for our rural UAV experiment is shown. The UAV test
facility covers forest and farmland in upstate New York. Packet losses are driven primarily by radio
range effects – deliveries at range edges are intermittent since transmission becomes sensitivity to
effects like antenna-pattern nulls and line-of-sight occlusion from the UAV engine block.

ily in October when leaves have fallen and temperatures are low.

Data delivery over these UAV wireless links represents a scenario of both tactical

and commercial interest. Alleviating bottlenecks in military networks is a research

priority [71], and software defined radios like the JTRS platform can easily be ex-

tended to implement link prediction [32]. In the private sector, UAV platforms for

Internet relay, package delivery, and bridge, crop, and wildlife inspection are currently

in development [72] [73].

40

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

3.2.2 Indoor Office Scenario

Our indoor office scenario is shown in Figure 3.3. A user walks throughout an active

office environment during normal daytime hours. A handheld 802.11 device commu-

nicates with a fixed-position access point (AP) as the user traverses a footbridge to a

nearby building, rides an elevator to the basement, and then returns to the AP loca-

tion. Throughout this tour, packet-loss conditions fluctuate due to radio range and

signal attenuation from building structures. For example, links are completely severed

when heavy, metal fire doors shut between user and AP. Similarly, the metal elevator

car causes significant packet loss, even though signals are powerful enough to reach

the basement. Throughout experiments, transmissions are subjected to cross-channel

interference from the building’s working 802.11 network. This scenario represents a

typical indoor environment encountered by most wireless users on a daily basis.

3.2.3 Urban Subway Scenario

Finally, our subway scenario is shown in Figure 3.4. Probe packets are transmitted

between a server on the Harvard campus network and a handheld 3G cellular device

aboard a subway train. These packets pass through multiple wired Internet hops in

addition to the last-hop 3G wireless link. We observe that round-trip time averages

150ms and fluctuates within a manageable distribution. Queuing delays cause probes

to arrive in a bursty pattern, however bursts are of roughly consistent length and

spacing.

We conduct experiments as a user rides from Cambridge to Boston, MA during

daytime hours. Dead zones occur at unknown points in tunnels, creating link outages

41

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

2nd	
 Floor	

Start/Finish	

Fire-­‐Proof	

Doors	

Access	
 Point	

Elevator	

1st	
 Floor	

Ground	
 Floor	

Basement	

Indoor	
 Office	
 Scenario	
 with	
 Elevator	

Access	
 Point	
 	

Environment	

Fire-­‐Proof	
 	

Doors	

2nd	
 Floor	
 Elevator	

Figure 3.3: Our walking tour throughout an indoor office environment is shown. Fire-proof doors
and an elevator are significant drivers of packet loss. Experiments are conducted during normal
working hours and data includes cross-channel interference from the building’s 802.11 network.

lasting in the 10’s of seconds, depending on train speed. Clean line-of-sight transmis-

sion is possible between Kendall Square and the Charles/MGH stops when the train

passes over a bridge. At this point, we often observe that baseline TCP connections

have timed-out due to prior outages, causing links on the bridge to go unused. This

environment represents a scenario of particular aggravation to the author.

42

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

Alewife'
Davis'Sq.'

Porter'Sq.'

Harvard'Sq.'

Central'Sq.'

Kendall'Sq.'/'MIT'
Charles/MGH'

Outbound(

Above?Ground'

Alewife'
Davis'Sq.'

Porter'Sq.'

Harvard'Sq.'

Central'Sq.'

Kendall'Sq.'/'MIT'
Charles/MGH'

Inbound'

Above?Ground'

Urban&Subway&Scenario&
Wireless&Environment&

Link%Loss%≤%10%%

Link%Loss%>%90%%
10%%<%Link%Loss%≤%90%%

Figure 3.4: Probe reception rates over a commercial 3G cellular network are illustrated along a
portion of subway track in Boston, MA. Location information is unknown, and link loss due to dead
zones fluctuates with train speed.

3.3 A Sparse-Coding Outage-Prediction Model

3.3.1 TCP Response to Link Outages

Our ultimate goal is to use a link model to implement predictions that improve net-

work performance. Given TCP’s ubiquity in modern networks, we use bulk data

delivery over a TCP connection as our application vehicle. Other candidate appli-

cations include media streaming, reliable transaction processing, or any scenario in

which link loss adversely affects higher-layer performance. TCP’s behavior over lossy

wireless links is illustrated in Figure 3.5.

Though the Linux network stack can compensate for intermittent delivery failures

using Fast Retransmit, F-RTO, ARQ, and FEC, it is configured using static parameter

settings such as the number of ARQ retransmissions. This design implicitly assumes

that link loss is stable with respect to first-order averages. When loss rates fluctuate,

delivery failures will affect higher layers. Measurements from our office environment

43

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 0	
 1	
 1	
 1	
 0	
 1	
 1	
 0	
 0	
 0	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 0	
 Packet	
 Recep,on:	

	
 	
 	

TCP	
 Timeout	

	
 	

Transmission	

	
 Rate	

Time	

TCP	
 Over	
 Standard	
 802.11	
 Links	

Transmission	
 	

Rate	

	

Predic.ve	

Queuing	

	

Time	

TCP	
 Over	
 Environment-­‐	
 and	
 Protocol-­‐Aware	
 Link	
 Layer	

Figure 3.5: When temporary link outages cause all packets in TCP’s transmission window to
be lost, the connection suspends until TCP timeout. Holding packets temporarily at the link layer
prevents this effect by preempting TCP until conditions improve. At that point, the protocol can
wake up quickly and resume transmission.

 0
 250
 500
 750

 1000

 0
 0.2
 0.4
 0.6
 0.8
 1

Th
ro

ug
hp

ut
 (k

bp
s)

Li
nk

 L
os

s
 R

at
e

Time

TCP	
 Performance	
 in	
 Indoor	
 Office	
 Environment	

Linux	
 TCP	

1	
 min	
 3	
 min	
 2	
 min	

Figure 3.6: A TCP connection’s throughput is shown on top of link-loss rates throughout the
office walking-tour. TCP times out due to the presence of fire-proof doors and does not resume for
several minutes.

show this effect in Figure 3.6. Green and red bars depict loss rates for probe packets,

and the shaded black curve overlays the throughput of a TCP connection. In this

case, a timeout early in the walking tour prevents large sections of high-quality link

conditions from being used. Overall throughput is low, as is network utilization.

44

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

3.3.2 Dictionary Training

Our link model implements prediction by classifying link states that precede outages

apart from those that do not. Here, we first illustrate the kinds of measurement errors

that affect probe data and complicate this procedure. Consider a linear SVM trained

to classify raw link-measurements into noisy channel or temporary outage classes us-

ing the following samples:

Noisy Channel Training Data:
(intermittent 0’s)

x1 = [1101010111]

x2 = [1010101110]

x3 = [1101010101]

Temporary Outage Training Data:
(long strings of 0’s)

x4 = [0000111111]

x5 = [1000011111]

x6 = [1111110000]

Test Observation:

x7 = [1111000011]

Intuitively, the test observation belongs to the temporary-outage class, but the SVM

will label it otherwise. This is because an SVM produces unexpected results for any

input vector that is not a linear combination of the training samples in its class.

Common variations such as pattern shifts cause this failure case to occur, and such

effects are commonplace when measurements cannot be tightly synchronized to the

physical environment. However, if raw data is first latched to a set of candidate

features, a linear relationship between training and test samples is more-likely to

hold within the SVM. In this example, latching the test sample to its closest training

sample by inner-product distance corrects the problem.

To find dictionaries of link-state features, we implement dictionary learning offline

45

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

using the LASSO algorithm. For the UAV environment, training data is captured

from a single 20 minute flight and pooled over nodes in each ground-receiver group.

From the subway, training samples are collected over one inbound and one outbound

trip between Harvard and Charles/MGH stops. From the indoor office, we train on

traces from four laps of the walking tour.

LASSO can be configured to learn templates that represent link state with a single

feature, or primitives that capture link states as a combination of features. Template-

learning implements a similar link representation to that of the Markov-based link

models in the literature. It is instantiated by setting the dictionary-size parameter

m to be large and sparsity-penalty λ to be low, for example: m ≈ 200 and λ ≈ 0.1.

In contrast, primitives are learned by setting the dictionary size to be small and the

regularization parameter to be large: m ≈ 20 and λ ≈ 4. This latter process causes

dictionary training to extract only the most prominent pattern from each training

sample.

3.3.3 Learned Link Primitives

Here, we show link primitives discovered by training dictionaries for each environment

independently. We configure LASSO with dictionary size m = 20 with λ = 4 to learn

link state primitives for each type of receiver: UAV field nodes, UAV ground-structure

nodes, UAV forest nodes, indoor office nodes, and subway nodes. Figure 3.7 plots

frequently-occurring primitives found at each receiver.

Across UAV ground-receiver groups, link primitives are similar. They capture

both abrupt and gradual transitions, intermittent packet drops, and temporary out-

46

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

UAV (car) UAV (field) Elevator Subway

Figure 3.7: Link primitives learned across different environments are similar. Each receiver
captures link transitions from good to bad, and vice versa. In addition, subway links include bursty
patterns caused by network queuing delays. When D is trained using a link-state primitive config-
uration such as m = 20 and λ = 4, networks effects like this are separated from link transitions.
(Figure courtesy of Marcus Comiter)

ages lasting 10’s of milliseconds. When examining the number of measurement sam-

ples associated with each dictionary feature, we find that probe measurements from

field and forest nodes most-often exhibit long runs of delivery successes in-a-row, as

well as smooth, gradual changes in link quality. This corresponds to the fact that

these nodes have the best connectivity within our experiment setup, and are far from

ground structures that can suddenly occlude line-of-sight. In contrast, receivers in

the ground-structure group often exhibit abrupt transitions, since buildings block

line-of-sight until the UAV is immediately overhead.

The indoor office and subway environments share many primitives in common

with our rural UAV scenario. We see temporary outages as well as abrupt link

47

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

transitions. In the office, we see a greater degree of noisy variation, possibly due to

802.11 cross-channel interference. In the subway, features appear with regular 10ms-

long oscillations in delivery. Based on experiment logs, we find that these correspond

to bursty inter-arrivals caused by queuing at hops between transmitter and receiver.

3.3.4 Isolating Network Effects Using Linear Combination

Link	
 State	
 Template	
 from	
 Subway	
 Environment	

Figure 3.8: A link state template learned from subway data by setting m = 200 and λ = 0.1 is
shown. The effects of wireless link-loss and network delays are captured together. (Figure courtesy
of Marcus Comiter)

The expressive power of a link model based on linear combination is evident in the

subway environment. Figure 3.8 plots a typical link state learned from subway data

using a template model like that of Markov formulations in the literature. Unlike

the primitives shown in Figure 3.7, templates superimpose wireless link transitions

48

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

and queuing delays together in a single feature. As result, we see that link templates

are environment-specific, unlike link primitives. This shows that, in addition to their

portability, primitive-based models can implement powerful pre-processing like clutter

suppression – to remove network-queuing effects from these measurements, we need

only truncate the corresponding coefficient.

3.3.5 Outage Prediction by Classification

We now describe our outage-prediction model. We train a dictionary of link primi-

tives with m = 20 offline using LASSO, pooling training data from all environments

together. Our prediction target is defined as any sequence of 192 probe measurements

containing any delivery failure. Since TCP can recover quickly from a single packet

drop using fast-retransmit, this target captures outages in two back-to-back data-

packet transmissions when MTU=1500B, modulation is 1Mbps, and ARQ retries are

the Linux default 7.

A linear SVM classifier implements prediction by separating sparse feature vectors

that precede gaps from those that do not. SVMs require both measurement vectors

and labels corresponding to gap/no-gap classes for training, so we annotate the link

traces used in dictionary training to build predictors for those environments. During

SVM training, 20% of data is randomly held aside as a test set so that SVMs can

be optimized over an intercept parameter. For new environments, SILQ nodes can

collect probe data and train SVMs on-platform. All sparse-encoding operations that

occur on-platform use Matching Pursuit (MP) for its computational simplicity.

49

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

1	

1	
 0	

0	

True	
 	

Posi,ve	

Rate	

	

False	
 Posi,ve	
 Rate	

(Successful	
 	

Outage	
 	

Detec/ons)	

(Unnecessarily	
 Holding	
 Frames)	

•  Low	
 Risk	
 of	
 Timeout	

Op#mal	
 Conserva#ve	

TCP	
 with	
 Gap	
 Predic,on	
 	

By	
 Detector’s	
 Receiver	
 Opera/ng	
 Characteris/c	

	

• High	
 Sending	
 Rate	

	

•  Low	
 Risk	
 of	
 Timeout	

•  Low	
 Sending	
 Rate	

	

Poor	

•  High	
 Risk	
 of	
 Timeout	

•  Low	
 Sending	
 Rate	

	

Aggressive	

•  High	
 Risk	
 of	
 Timeout	

• High	
 Sending	
 Rate	

	

Figure 3.9: A gap detector’s sensitivity affects realized TCP throughput. Aggressive detectors
lead to high sending rates and a high risk of timeout due to wireless loss, while conservative detectors
never time out but tend to under-utilize the link.

3.3.6 Tuning Gap Predictors

We can tune our gap predictor by setting a threshold on the inner product between

the SVM separating plane and sparse feature vectors. This effectively pushes the sep-

arator toward the outage class, or away from it to set aggressiveness. This sensitivity

ultimately affects realized TCP throughput under predictive queuing. Figure 3.9 il-

lustrates this relationship. Aggressive predictors produce few alarms overall, leading

to low false positive rates but also low true positives. For TCP, the result is a high

sending rate, but increased risk of timeout. In contrast, conservative predictors raise

many alarms and produce high true positive rates but also many false positives. TCP

timeout rarely happens, but links go underutilized in good conditions.

We explore this relationship using the experiment methodology presented in Sec-

50

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

Fa
ls

e
Po

si
tiv

es

True Positives

Avg:	
 544.5	
 kbps	

Std:	
 	
 	
 43.4	
 kbps	

k	
 =	
 4	

k	
 =	
 2	

	
 k	
 =	
 1	

	

Avg:	
 410.0	
 kbps	

Std:	
 213.8	
 kbps	

Avg:	
 709.0	
 kbps	

Std:	
 	
 	
 35.9	
 kbps	

Avg:	
 174.8	
 kbps	

Std:	
 	
 	
 45.2	
 kbps	

Aggressive	

Op+mal	

Most	
 Conserva+ve	

More	
 Conserva+ve	

ROC	
 by	
 Realized	
 Sparsity	
 with	
 	

Throughput	
 in	
 Elevator	
 Scenario	

False	
 PosiLve	
 Rate	

Tr
ue

	
 P
os
iL
ve
	
 R
at
e	

Avg:	
 322.6	
 kbps	

Std:	
 	
 	
 83.0	
 kbps	

Raw	
 TCP	
 Baseline	

Figure 3.10: ROC profiles for different encoding sparsity k settings are shown. For k = 4, the
illustrated relationship to TCP throughput is reproduced experimentally.

tion 3.5, empirically balancing true positives and false positives to maximize TCP

throughput in the indoor office environment. Figure 3.10 shows that aggressive pre-

dictors realize poor throughput on average, with a high standard deviation. This is

because timeouts occur frequently, dropping TCP throughput to zero for long peri-

ods of time. Since users may sometimes get lucky and experience good throughput,

variation is significant. Overly-conservative predictors produce the opposite effect

and realize lower throughput, but with low variation. Ultimately, these conservative

predictors do not send often-enough when the link is usable, paralyzing connections.

Figure 3.10 also shows the Receiver Operating Characteristic (RoC) profile for pre-

dictive models with different encoding sparsities k. We see that prediction accuracy

51

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

is dependent upon finding the right configuration of model parameters – dictionary

size m , training regularization penalty λ, and encoding sparsity k. For example, if

we set m = 20, but k = 2, then the detector is strictly worse than setting k = 4. We

therefore configure our link model by searching over many possible parameter settings

to maximize a statistical criterion: across scenarios, we choose the configuration with

highest gap recall, provided non-gap recall is above a fixed threshold of 0.75 to ensure

enough sending opportunities. The best performing model configuration has m = 20,

λ = 4, and k = 4.

3.3.7 Transferring Features

While some link state primitives are unique to a particular environment, many are

shared among scenarios. Intuitively, these represent common characteristics like range

effects in large open spaces, or abrupt transitions due to occlusions. In this section,

we empirically test the universality of link features across environments. To do this,

we learn primitives from training data collected in a single environment, and use

them as the basis for a gap predictor trained in a different environment. Table 3.1

shows the resulting gap-prediction recall from this experiment. Results verify that

primitives are portable, transferring well across different networks like the 3G subway

network and the single-hop 802.11 UAV network.

We performed a similar experiment using link-state templates and found that they

do not transfer well at all. This confirms the results of Section 3.3.4, and shows that

models directly match link sequences are inherently network-specific. In contrast,

those that use linear combination to separate network and environment effects are

52

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

Table 3.1: Outage Prediction when Transferring Features

SVM Training and Testing Environment
Indoor Office Urban Subway UAV

Dictionary
Training

Environment

Indoor Office 0.82 0.79 0.83
Urban Subway 0.81 0.73 0.81
UAV 0.82 0.74 0.81

Gap recall is shown when porting link-state primitives between environments. Unlike tem-

plate features that capture link states in a single pattern, primitive features used in linear-

combinational models generalize across networks and environments.

more-portable.

3.4 SILQ Architecture

This section describes the SILQ architecture and its computational performance on

off-the-shelf devices. At runtime, SILQ nodes probe outgoing links by sending UDP

packets at a constant rate. Reception reports are bounced back to senders, pig-

gybacked on probes traveling in the opposite direction. Every 100ms, each node

computes a link prediction using the prior w measurements. The parameter w trades

off measurement granularity for bandwidth, and is investigated in Section 3.5.2. If a

link outage is predicted, SILQ holds data packets until a fresh prediction indicates

otherwise.

3.4.1 Link-Measurement Protocol

SILQ’s link measurement protocol is illustrated in Figure 3.11. Each node maintains

a bit vector Linkin of the last w incoming probes. The most recently-received probe

is also stored, denoted Seqin. Each arriving probe’s sequence number is subtracted

53

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

Seq 1!

Seq 4!

Seq 5!

SeqOut 0! Seq 0!
SeqOut 1!

SeqOut 2!

SeqOut 3!

SeqOut 7!

SeqIn= 0, LinkIn = [1]!

x	

x	

x	

SeqIn= 2, LinkIn = [101]!

SeqIn= 3, LinkIn = [011]!

SeqIn= 5, LinkIn = [101]!

SeqIn=
 0, Li

nkIn =
[1]!

SeqIn=
 5, Li

nkIn =
[101]!

Probe	
 &	
 Link	
 Es/ma/on	
 Protocol	

SeqOut 6!

State	
 Update	

E[SeqIn]= SeqOut– RTT*RateOut!
 !! = 3–2*1!

 !
= 1	

LinkOut = [10]!
 !

Recv:	
 	
 SeqIn= 0 Recv(LinkIn)=[1]!Lost	
 Report	

Detec2on	

State	
 Update	

E[SeqIn]= SeqOut– RTT*RateOut!
 !! = 7–2*1!

 !
= 5	

LinkOut = [000]!
 !

Recv:	
 	
 SeqIn= 0 Recv(LinkIn)=[1]!Lost	
 Report	

Detec2on	

Figure 3.11: SILQ piggybacks incoming reception reports on outgoing probes so that predictions
can be made for outgoing links. Reception reports consist of a bit vector marking incoming probe
deliveries. Nodes detect lost reception reports using a round-trip-time estimate.

from Seqin to detect delivery failures before updating Linkin and Seqin. These two

state variables comprise a reception report; UDP probes therefore require 69B for a

3B bitmap with sequence numbers as 2B unsigned shorts.

Nodes also maintain a round-trip-time estimate RTT to account for lost reception

reports. For example, if only the first of w = 20 reports successfully bounces back to

the sender, that node must compute the number of reports that should have arrived:

Seqin− RTT ∗ Rateout = 19. This protocol means that bi-directional probing captures

asymmetric link effects, except when many reception reports are lost at the end of

an interval. Then, we make the conservative assumption that the link is off in both

directions. In practice, we find that disruptions due to RTT fluctuation resolve after

one or two missed 100ms windows, even on a crowded carrier network.

54

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

Network	

Applica/on	

Data	
 Channel	
 Control	
 Channel	

User	
 space	

Kernel	
 space	

Link	
 State	

Updates	

Predic7ons	

FSM	

Outgoing	

Data	
 Packets	

Incoming	

Data	
 Packets	

Link	
 State	
 Bitmap	

Outgoing	
 	

Probes	

Incoming	

Probes	

[
 Outgoing	
 Packet	
 Queue	
]	

‘Forward’	
 	

SILQ	

SILQ	
 So=ware	
 Architecture	

Wireless	
 Medium	

ne?ilter_queue	

SILQ::ctrlChan	
 SILQ::dataChan	

Figure 3.12: The SILQ architecture consists of logically separated data and control channels
that isolate link-measurement from data-forwarding. In our testbed, both channels access the same
wireless medium using the same interface.

When probes share the wireless medium with data packets, they reduce its effec-

tive capacity, creating a tradeoff between measurement fidelity and maximum data

rate. For example, sending a probe every 5ms consumes 22% of a 1Mbps link, while

probing every 10ms consumes 11%. In harsh environments, we will show that the

throughput benefits of high-quality predictions far outweigh their overhead. In con-

trast, when links are more-stable and easier to predict, additional capacity outweighs

lower prediction accuracy. We explore this tradeoff experimentally in Section 3.5.

3.4.2 Software Architecture & Profiling

SILQ’s software architecture is shown in Figure 3.12. Each node implements a data

channel controller and a control channel controller. The data channel controller sim-

ply holds or forwards packets according to the current link-state prediction. The

55

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

control channel is responsible for probing and providing up-to-date data to a finite-

state machine (FSM) link-model module. The logical separation between data and

control channels keeps link measurement protocols separate from data delivery proto-

cols, simplifying both. For all results in this chapter, both channels access the same

wireless medium using the same interface.

SILQ is currently implemented in user-space, and relies on the netfilter queue

Linux module to intercept and administer packets within the kernel. The data chan-

nel controller maintains a queue of packet identifiers provided by netfilter queue

and issues NF ACCEPT verdicts when it is safe to forward them. SILQ’s current imple-

mentation scales to 10Mbps. At this rate, our SVM predictor is retrained to identify

gaps lasting 20ms. In practice, we find these predictions slightly more aggressive, and

tune the SVM to favor gap recall as much as possible.

Within the control channel, FSMs are modular, making it easy to extend SILQ

with new link models. For our purposes, we implement Loss Rate Threshold, Heuris-

tic Hold, NO OP (i.e. always forward), and Sparse Coding FSMs. In all but the NO OP

FSM, trivial link vectors with all 0’s always predict outage, while those with all 1’s

predict no-outage. For non-sparse-coding FSMs we include a “conservative” param-

eter that requires back-to-back no-outage predictions before turning a bad link back

on. This parameter is needed to stabilize loss-rate and heuristic predictors enough to

achieve meaningful throughput. For our sparse coding FSM, we optimize for stable

predictions using the previously discussed statistical methods.

The sparse coding FSM uses non-negative Matching Pursuit (MP) to compute

sparse feature representations, projecting the results onto an SVM separating plane

56

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

to implement prediction. MP relies primarily on inner-product computations and has

O(mw) complexity, with m the number of dictionary atoms and w number of probes

in an interval. Additional non-negativity constraints have been shown to improve

MP’s performance with respect to SVM classification accuracy [74].

Profiling SILQ on consumer-grade mobile devices, we observe 2% average CPU

utilization on a 1.86 GHz Intel Core 2 Duo processor and 6.9% utilization on a 1.0 GHz

ARM Cortex A8. Less than 1% of SILQ’s runtime is spent computing predictions,

with most time spent servicing packets. Using a dictionary of 30 atoms for w = 20

probes per interval, SILQ’s memory footprint is only 972KB. Both of the devices

tested are well below current smartphones in clock rate and number of processing

cores, making SILQ widely deployable.

3.5 System Evaluation

In this section, we evaluate SILQ by measuring throughput in the UAV, office, and

subway scenarios. First, we train dictionaries and SVMs on our probe traces. Then,

we deploy SILQ in each environment, measuring the throughput of a TCP connection

as data is transferred to a remote server. To fairly compare throughput over varying

links, we compute the realized link capacity in post-processing: using SILQ’s probe

delivery logs, our throughput metric only counts periods with back-to-back successful

probe deliveries as valid sending windows, since they reflect good link conditions

spanning the transmission time of an MTU data packet.

In all experiments, we use the Linux default TCP CUBIC. We enable the SACK-

enhanced F-RTO option for resilience over wireless links, use 9 keep alive probes, and

57

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

allow 15 tranport-layer retries per packet. Underneath that, our wireless adapters

use 7 link-layer ARQ retransmissions for data packets. We disable ARQ for probes.

We compare SILQ against raw TCP and predictors based on a loss-rate-threshold

and a simple heuristic that holds data packets if all probes in a previous window

are lost. The loss-rate-threshold predictor is similar to physical-layer rate-adaption

mechanisms that make a steady-state assumption about delivery probability. The

heuristic is the simplest possible method to hold data packets during the long out-of-

range regions seen in our UAV and subway tests. We experimentally tune the loss-

rate threshold and “conservative” parameters for both methods to achieve maximum

throughput.

3.5.1 UAV Throughput in Emulation

Due to logistical barriers related to personnel, budget, and weather, we validate

throughput in the UAV scenario using a lightweight UAV link emulator. During

emulated flights, SILQ runs on our UAV payload and ground nodes. Probe and data

packets are sent over wired interfaces to a central emulation controller that replays

probe traces collected in the field. Emulated traces are held out of training datasets

used for dictionary and SVM training.

The emulation controller forwards packets to their destination only if a packet

reception was recorded in the field trace. We emulate a 1Mbps link and compare

1500B MTU data packets against 12 back-to-back 1ms trace measurements to reflect

a 12ms transmission time. An error in any trace measurement causes the larger data

packet to be dropped. The emulation controller simulates both hardware ARQ and

58

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

CSMA.

Since ground-structure nodes exhibit rapid link transitions that are hard for loss

rate and heuristic methods to predict, these methods perform best when tuned to

a high conservative parameter and low probe rate. Loss rate predictions realize a

10% throughput boost over raw TCP’s 528kbps throughput. Heuristic predictions

underperform raw TCP in both throughput and performance variation. Sparse coding

performs best overall by using a high probe rate to make accurate predictions, and

achieves a 20% throughput boost over baseline TCP.

For field and forest nodes, reception rates are high for a large portion of flight

time. Consequently, baseline TCP performs well since it can send data at the highest

possible rate of any method. Both heuristic and loss-rate predictions under-perform

TCP even when probe rates are reduced to allow maximum data throughput. For

loss-rate predictions, poor performance is caused by under-utilization at radio range

edges: once link loss rises above the method’s threshold, data packets will stop sending

even when intermittently-spaced drops could be fixed by ARQ. This behavior occurs

because loss rate maps many link states to a single coarse metric – both smooth

degradations and abrupt changes are treated similarly.

In this scenario with few unexpected changes in link quality, SILQ performs sim-

ilarly to TCP in terms of aveage throughput, but with an extremely low variation

of only 19kbps across flights. This shows that SILQ predictions reduce variance and

maintain throughput when the link is relatively stable. We will next show that SILQ’s

gains are much larger when links vary wildly in our office and subway environments.

59

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

1	
 min	
 3	
 min	
 2	
 min	

 0
 250
 500
 750

 1000

 0
 0.2
 0.4
 0.6
 0.8
 1

Th
ro

ug
hp

ut
 (k

bp
s)

Li
nk

 L
os

s
 R

at
e

Time

 0
 250
 500
 750

 1000

 0
 0.2
 0.4
 0.6
 0.8
 1

Th
ro

ug
hp

ut
 (k

bp
s)

Li
nk

 L
os

s
 R

at
e

Time

 0
 250
 500
 750

 1000

 0
 0.2
 0.4
 0.6
 0.8
 1

Th
ro

ug
hp

ut
 (k

bp
s)

Li
nk

 L
os

s
 R

at
e

Time

Link	
 Quality,	
 Predic6on,	
 and	
 Throughput	
 for	
 Elevator	
 Scenario	
 	
 	

SILQ	
 +	
 Linux	
 TCP	

SILQ	
 Op(mized	
 for	
 Aggressive	
 Sending	
 Rate	

SILQ	
 Op(mized	
 for	
 Conserva(ve	
 Gap	
 Avoidance	

Predicted	
 Link	
 State:	
 	
 	
 	
 	
 	
 Off	
 	
 	
 	
 	
 	
 	
 	
 On	
 a.	

b.	

c.	

Figure 3.13: Plot (a) shows TCP atop SILQ’s predictive queuing mechanism. Timeouts are
avoided by holding data packets when the link is off, causing TCP connections to react quickly
when the link is restored. Plots (b) and (c) show TCP connections over SILQ when link predictions
are optimized to forward data more or less aggressively. Aggressive sending makes use of more
transmission opportunities, but carries a higher risk of timeout as shown. Conservative sending can
miss large portions of usable link, but will rarely time out.

3.5.2 Indoor Elevator/Office Environment

We run SILQ, raw TCP, heuristic, and loss-rate models in our indoor office envi-

ronment. Figure 3.13 plots loss rates with faint green and red bars, while TCP

throughput is overlaid in blue. SILQ’s link-state predictions are denoted by markers

at the top of the plot, with a pink marker indicating that the link is predicted to be

on and a white marker predicting that the link will be off.

When compared to the performance of the baseline TCP connection shown in

Figure 3.6, SILQ produces a throughput gain of 2x on average over 5 runs. This

gain is driven by SILQ’s rapid response once links are restored after outages. We

60

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

 0

 200

 400

 600

 800

 1000

 4 6 8 10 12 14 16 18 20

Th
ro

ug
hp

ut
 (k

bp
s)

Probe Interval

Sparse	
 Coding	

Heuris0c	
 	

Loss	
 Rate	
 Threshold	

Max	
 Data	
 Sending	
 Rate	

779	
 kbps	
 845	
 kbps	
 992	
 kbps	
 995	
 kbps	

Effect	
 of	
 Increasing	
 SILQ	
 Probe	
 Interval	
 	
 on	

TCP	
 Throughput	

Figure 3.14: Average throughput is compared between prediction models in our indoor office
scenario as probe rate is reduced. Sparse coding is resilient to lower probe rates, though the most
accurate predictions yield the best TCP throughput.

also show the performance of SILQ under predictors tuned according to the different

True Positive/False Positive tradeoffs of Section 3.3.6. The more aggressive predictor

shown in Figure 3.13 (b) sends often, but eventually times out. In contrast, the

conservative predictor in Figure 3.13 (c) underutilizes the link and misses a large

portion of sending opportunities.

In Figure 3.14, we compare SILQ with the heuristic and loss-rate predictors as we

reduce the probe rate. In these experiments, we found it difficult to tune either com-

parison method to perform well over the entire walking tour – neither could cope with

both abrupt link transitions as we passed through fire-proof doors and the gradual

link degradation seen in the elevator using a single configuration setting. However,

our sparse-coding predictions degrade gracefully when probe rates are reduced. This

makes it easier to find a configuration that works across variable link conditions.

61

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

Figure 3.15: A comparison of a raw Linux TCP connection to TCP atop SILQ is shown during
inbound and outbound subway rides over a 3G cellular network. Raw TCP times-out quickly, missing
later sending opportunities. With SILQ, timeout is avoided and throughput increases by 4x.

Also, since most of SILQ’s computation time is spent servicing probes, decreasing

the probe rate from once-every-5ms to once-every-10ms correspondingly drops CPU

utilization in half.

3.5.3 Urban Subway Environment

Our subway scenario validates SILQ “in the wild.” This case presents a completely

uncontrolled environment with a great deal of complexity. Mobile nodes experience

fast changes in velocity, sudden occlusions from tunnels, spotty connectivity to 3G re-

peaters, and competeing wireless traffic. This comparison demonstrates the strength

of SILQ’s adaptable predictions and end-to-end design, since no alterations or con-

figuration of the underlying network were needed for the system to function.

Figure 3.15 compares TCP with and without SILQ over subway rides between

62

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

the Harvard Square and Charles/MGH stops. Note that Figure 3.15 (a) represents

an inbound trip from Harvard to Charles/MGH, while Figure 3.15 (b) represents an

outbound trip between the two stops. We see that baseline TCP times out and fails

to utilize short, more-transient sending opportunities beyond the Harvard station.

In contrast, SILQ enables connections to take advantage of almost every available

sending window. The result is a 4x gain in throughput over a five minute train ride.

3.6 Summary and Conclusion

The link models and on-platform SILQ implementation in this chapter demonstrate

several important points:

• The precise statistics of outage prediction change throughout everyday use-

cases, depending on effects like environment and mobility. For example, rural

predictions are driven by range and location, while indoor predictions are based

on sudden occlusions and interference.

• Clustering is capable of learning fundamental link states and supports visual

comparisons between models of different environments.

• Packet losses in wireless networks with different technologies and environmental

conditions have similar latent structure. When a modeling framework like sparse

coding can separate network-specific effects from environment-driven wireless

effects, link models generalize beyond their training environment.

• Link predictions driven by sparse coding and linear SVM classification can be

implemented efficiently on resource constrained devices.

63

Chapter 3: A Protocol- and Environment-Aware Wireless Link Layer

• The performance gains realized by an adaptive link-layer are huge when com-

pared to the baseline static network stack. In common scenarios like offices and

subways, throughput improves by up-to 4x, while performance variation drops

by the same factor.

64

Chapter 4

Workload Modeling for Predictive

DVFS in Low-Power Circuits

We show how state-models based on sparse feature representation extend to cir-

cuits, with the goal of reducing power consumption through predictive dynamic volt-

age and frequency scaling (DVFS). We predict lulls in instruction throughput during

which DVFS can be applied without degrading application performance. Unsuper-

vised clustering finds patterns in hardware performance counters that reflect recurring

workload states in applications like user-driven web surfing. When compared to re-

gression models trained on raw counter values, we show that state predictions can be

made 3x further in-advance using sparse coding. Since longer-range predictions give

more time for chip adjustment, this method better-supports low-cost off-chip voltage

regulators [75].

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

4.1 Reducing Power Consumption with DVFS

DVFS promises to improve operating efficiency by adapting power consumption to

workloads at runtime. This flexibility is important since energy consumption varies

widely by user and application mix [76] [77].

Total on-chip power consumption is a sum of both static and dynamic power.

Static power refers to baseline dissipation regardless of circuit activity, such as en-

ergy lost to the environment by flip-flops. Dynamic power instead refers to energy

consumed by the charging and discharging of gates along circuit pathways – this

quantity is a function of workload. Dynamic power is approximated by the following

relationship:

Pdyn = CV 2
ddfa

Pdyn Dynamic power

C Capacitance

Vdd Supply voltage

f Frequency

a Switching-activity rate

Since Pdyn is quadratic in supply voltage, DVFS can save power by dialing back Vdd

when appropriate.

To avoid noticeable performance degradation, DVFS must be applied selectively

when chip workloads are light. This is because lower supply voltages lead to a longer

signal propagation time through circuit pathways. Clock frequency must therefore be

slowed to compensate, resulting in a lower maximum-instruction-throughput when

the chip is in its low-power state.

We show that modeling workload patterns using hierarchical sparse coding enables

66

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

accuracte predictions for brief 500µs lulls in activity, during which DVFS can be

applied safely. We target predictions that are long-range to support commercially-

available DVFS hardware that requires 100µ’s for adjustment.

4.2 Hardware Performance Counters

Hardware performance counters capture architecture-level events like committed in-

structions, data table hits, misses, flushes, etc. Workload prediction methods using

this data most-often fit regressions to raw counter values [78] [79] [80]. However, we

will show that regression accuracy degrades at long ranges when future states are

not a simple extrapolation of these values. Instead, our method will use sparse rep-

resentations to capture stable signatures of chip state and classify these to predict

workload lulls.

This workload prediction scenario is related to the well-studied problem of phase

detection. Phase detection is often motivated by the desire to identify large stable

regions of a workload so that configuration-adjustment overheads can be amortized.

Detection techniques like working set signatures, basic block vectors, and conditional

branch counters apply a threshold to one or more hardware counters to identify

deviations relative to long-term variance [81]. While more-sophisticated techniques

are necessary for long-range predictions, phase detection can serve a complimentary

role. For example, large shifts in dynamic range can alert predictors to a change in

phase that requires a model update.

67

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

 0
 0.2
 0.4
 0.6
 0.8

 1

In
st

. T
hr

ou
gh

pu
t

Execution Time

BBENCH	
 on	
 gem5,	
 Single	
 Core	
 ARM	
 v7a	

Instruc=on	
 Throughput	
 -­‐	
 Web	
 Surfing	
 in	
 Android	
 Gingerbread	

Sub-­‐25%	
 	

instruc/on	
 	

throughput	

	

characterizes	

20%	
 of	
 	

run/me	

Figure 4.1: The rate of committed instructions per cycle intermittently drops below 25% over
the course of the BBENCH workload. In aggregate, these lulls make up nearly 20% of execution
time and are targets for predictive DVFS. Lulls occur for two reasons: when waiting on data I/O,
and during computations due to architecture-level operations like instruction-cache misses. We use
hierarchical sparse coding to find predictive signatures for this latter class of lulls, which make up
roughly 6.3% of the surfing phase.

4.3 Experimental Setup and Measurement Data

4.3.1 Device and Benchmark Workloads

We use gem5 to collect data for modeling. gem5 is an architecture-level simula-

tor with full-system support, including frame buffer rendering and an interactive

shell [82]. Snapshots of counter values are taken every 500µs from a simulated 1.0

GHz ARM v7a chip running the Android operating system.

Our primary workload is the BBENCH benchmark [83] running atop Android Gin-

gerbread. Figure 4.1 plots committed instructions/cycle for three phases of activity:

OS boot, web browser startup, and a web surfing phase. During surfing, web sites are

loaded from off-chip using Android’s built-in browser, and Javascript code simulates

68

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

user link clicks. We see that instruction throughput drops below 25% during nearly

20% of the surfing phase, making these intervals appropriate for DVFS.

Lulls in instruction throughput occur in two sets of circumstances. First, they arise

while waiting on web page I/O. These idle periods can be captured by simple heuristics

to realize savings in I/O-dominated workloads. Lulls also occur during computation-

dominated periods, due to architecture-level events like instruction-cache misses. This

latter class of intermittent breaks in computation requires more-precise state model-

ing, and makes up 6.3% of BBENCH. These are our prediction targets.

To generalize gains from our approach to other workloads, we also report predic-

tion statistics for the ASIMBENCH/Moby benchmark suite [84]. This set of work-

loads includes examples of a game, audio and video playback, and document ma-

nipulation applications running under Android ICS. Though ASIMBENCH captures

additional application behaviors, it lacks the simulated user interactions of BBENCH

that cause workload phases to recur over time. We therefore present these limited

results with the caveat that user interaction must be incorporated to properly assess

power savings.

4.3.2 On-Chip Counters

Our state model learns workload-specific signatures in chip states observed over mul-

tiple measurement windows in time, and multiple counters across the chip. We sample

all available counters and compute deltas from previous values every 500µs. These are

then normalized to lie between 0 and 1, ensuring that no counter dominates learning

and coding computations due to larger dynamic range.

69

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

Since there are layout and I/O-related costs for sampling counters, we use gem5

to determine the minimum number of counters needed to support prediction. The

selection of counters available on a chip is usually determined by designers, based on

desired monitoring and debugging data – for large projects, counters can number in

the tens of thousands, though only 10− 100 are typically exposed in the final design.

We collect data from 120 counters and calculate covariance and correlation matrices:

A = (X − E[X])(X − E[X])′ and Σ = (Adiag)−1/2A(Adiag)−1/2. Here, X = [x1, x2, ...]

contains 120×1 measurement vectors xi as its columns, while Adiag has each counter’s

variance along its diagonal and 0’s otherwise. By grouping those counters whose

correlation exceeds 0.98 and choosing one representative from each group, we can

enumerate statistically equivalent configurations.

By this analysis, we identify 34 different groups from the 120 possible counters

available on our ARM v7a-chip. We find, for example, that the number of integer

register reads is interchangeable with the number of committed integer operations,

though these are collected from different locations on the chip. For completeness, we

also applied Principal Component Analysis (PCA), a standard technique for dimen-

sionality reduction. Even though PCA found a lower dimensional basis for our data,

that representation required linear combinations of all 34 counters and did not allow

us to further reduce sampling costs.

70

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

Sparse	
 Coding	

Layer	
 1	

Sparse	
 Coding	

Layer	
 2	

Lull	

Predictor	

Feature	
 	

Dic+onary	

Feature	

Interrela+onship	

Dic+onary	

Linear	
 SVM	
 	

	

Concatenated	
 Sparse	
 Feature	
 Vector:	
 zt	

Feature	
 Interrela<onship	
 Vector:	
 zt	

xt	
 Performance	
 Counter	

Measurements	

Feature	
 	

Dic+onary	

xt-­‐1	

1	

2	

Figure 4.2: Our workload model using a two layers of sparse coding to extract signatures over
time. A linear SVM then predicts lulls in instruction throughput lasting roughly 500µs.

4.4 A Workload Prediction Model Using Hierar-

chical Sparse Coding

Our sparse coding model is shown in Figure 4.2. This model captures signatures over

time hierarchically, as described in Section 2.2.2.3. Canonical features are extracted

from raw counter data at Layer-1, concatenated, and coded again at Layer-2 where

feature interrelationships are captured. A linear SVM then assigns a common label

to vectors preceding throughput lulls.

71

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

4.5 Prediction Accuracy and Power Savings

4.5.1 Accuracy for User-Driven Web Surfing

In this section, we compare prediction performance between hierarchical sparse cod-

ing, linear regression, and static heuristics for detecting sub-25% throughput lulls

during BBENCH. We define prediction accuracy as the portion of all 500 µs windows

that yield a correct future-state prediction, lull or not. We also care about false alarm

statistics since there is a recovery cost associated with false positives. We therefore

report precision and recall for lull-detection. In this context, precision is the number

of correctly-predicted lulls over the total number of alarms, while recall is the number

of correctly-predicted lulls over the total number of lulls that actually occur during

BBENCH.

Sparse coding dictionaries and SVMs are trained using 50% of data from the web

surfing phase of BBENCH, and prediction accuracy is calculated on randomly held-

out samples by cross-fold validation. We code over w = 1, 2, 4, 8 trailing measure-

ment windows of 500µs snapshots to find predictive effects at different time scales.

In all cases, we use a two-layer hierarchical model with w independent patches at

Layer-1 and a single concatenated signature at Layer-2. We vary dictionary size and

sparsity parameters, and report statistics for the best-performing configuration. In

Section 4.5.3, we analyze how these configuration settings affect performance.

To compare, we also fit linear regressions of different orders to the instruction

throughput metric directly. In Figure 4.3, we show data from an order-8 regression,

which performed best. Regressions are computed using a sliding window of measure-

72

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

 93

 94

 95

 96

 97

 2 4 6 8 10 12 14 16

P
re

di
ct

io
n

A
cc

ur
ac

y

Look-Ahead Range (Windows)

Heuristic
Regression w=8

S.C. w=1
S.C. w=2
S.C. w=4
S.C. w=8

Figure 4.3: Our predictor increases look-ahead range by 3x over regressions fit directly to a
single counter and has positive predictive power with up to 8ms heads-up. In contrast, at ranges of
4 measurement windows, raw-data regressions produce more mistaken positive alarms than correct
ones. This break-even point is indicated by the dashed line marking the percent of compute-driven
lulls in BBENCH.

ment data, and curves are extrapolated and thresholded to implement lull prediction.

We also compare to a heuristic that waits until a lull has been observed and assumes

that another will follow. This represents the simplest predictor and is a DVFS method

that has been tested for commercial GPUs.

Figure 4.3 plots overall prediction accuracy against look-ahead range. First, we

see that the static heuristic works only at short ranges, when it can pick up the latter

portions of lulls spanning multiple measurement windows. On average, regression only

slightly extends prediction range by capturing some dips that can be extrapolated

from prior measurements. However, sparse coding consistently has best accuracy for

look-ahead ranges of 3 windows or more. Furthermore, we see that regression and

heuristics make so many mistakes at long ranges that they are worse than doing

nothing. In contrast, sparse coding always has positive predictive power, even at a

range of 16 windows. This technique therefore extends look-ahead range by almost

3x. Lull-detection precision and recall are reported for the best-performing models by

73

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

Detection Performance
Sparse Coding, w=2

Look-
Ahead

Overall
Acc.

Prec. Recall

1 97.3% 0.79 0.76
2 96.2% 0.74 0.60
4 95.1% 0.64 0.50
8 94.6% 0.62 0.33
12 94.3% 0.61 0.21
16 94.2% 0.62 0.16

Figure 4.4: Precision and recall are reported for lull detection as look-ahead range increases.
Performance statistics represent the best performing models by overall accuracy. Though recall
drops to only 16% at 8ms look-ahead range, overall prediction is still net positive.

overall accuracy in Figure 4.4. We see that our model captures a small set of stable,

precise signatures at long look-ahead ranges.

4.5.2 Accuracy Across Workload Types

We next present prediction accuracy for workloads in the ASIMBENCH/Moby bench-

mark suite including a video game, audio and video playback, and viewers for PDF

and Microsoft Office documents. For each workload, we report the percentage of com-

putation time during which instruction throughput is below 25%, and the prediction

accuracy using signatures spanning 2 windows. We break statistics out by distinctive

workload phases. For example, the Frozen Bubble video game has two phases: in the

first, application data is loaded and game state initialized; and in the second, the

game enters a regular frame-rendering loop. We report performance per phase for

regions with at least 8,000 measurements. Benchmark descriptions and prediction

accuracy are shown in Table 4.1.

74

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

Table 4.1: Prediction Accuracy Across Workload Types

Workload Name Phase Description
% Low Instr.
Throughput

S.C. Pred. Acc.
Look-Ahead=2 Look-Ahead=4

Adobe Reader All Display PDF file 11.2% 92.2% 89.9%

Frozen Bubble
Phase 1

Initialize and begin game
13.6% 92.0% 88.9%

Phase 2 64.6% 94.0% 86.0%
k9 Mail All Display e-mails 19.3% 89.6% 86.5%

KingSoft Office

Phase 1

Open .doc/.xls/.ppt files

14.9% 88.7% 85.5%
Phase 2 – – –
Phase 3 – – –
Phase 4 70.2% 93.4% 85.4%

MXPlayer
Phase 1 13.8% 91.0% 88.0%
Phase 2 Play a video – – –
Phase 3 6.6% 98.7% 97.8%

ttpod
Phase 1 Play mp3 13.0% 91.1% 88.7%
Phase 2 11.8% 97.6% 95.1%

Prediction accuracy is reported across workload types. Highly cyclic workloads like video games
driven by a regular frame-rendering loop lead to excellent predictions. In contrast, those with little
repetition like k9 Mail have few prediction opportunities absent user interactions.

Hierarchical sparse coding performs best when workloads have recurring patterns

– among these benchmarks, this includes media applications that are cyclic and driven

by regular sampling operations. For Frozen Bubble Phase 2, MXPlayer Phase 3, and

ttpod Phase 2, dip prediction is nearly perfect: 94.0%, 98.7%, and 97.6%, respec-

tively. In comparison, an order-8 regression yields sub-60% accuracy for those latter

two workloads, indicating that cyclic dips are not extrapolations of prior counter

values sampled every 500µs. Though it may be possible to adapt measurement sam-

pling rate to improve regression, sparse-coding signatures need no such adjustment,

demonstrating a form of application-driven variation tolerance.

We find that short phases with a high degree of irregular variation lead to few

useful long-range signatures. Fitting this description are the k9 Mail benchmark

and most applications’ Phase 1s, during which the program is initialized. However,

for workloads like k9 Mail, user interactions will drive recurrent patterns over the

application lifetime, possibly increasing the number of prediction opportunities.

75

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

Table 4.2: Prediction Accuracy by Model Configuration

Layer-1 Layer-2
Config. # Dict Atoms # Dict Atoms Acc. Prec. Recall

Baseline 100 100 94.4% 58% 38%
Small Layer-1 Dict. 30 – 94.7% 62% 37%
Small Layer-2 Dict. – 30 94.2% 56% 30%

Shrinking Layer-1 dictionaries improves precision due to more aggressive de-noising within small
patches. Large Layer-2 dictionaries are required to capture feature interrelationships, as shown by
differences in recall.

Table 4.3: Prediction Accuracy by Layer-1 Training Dataset

Layer-1 Training Workload Layer-2 Training Workload Pred Acc.

BBENCH BBENCH 94.5%
Adobe Reader BBENCH 93.4%
King Soft (Phase 4) BBENCH 94.2%
Bootstrapped (Rand. Sample) + BBENCH BBENCH 94.7%

Training Layer-1 dictionaries on data sampled from evenly mixed workloads leads to best perfor-
mance. This improvement is similar to that found in Chapter 3 across wireless environments, and
suggests that Layer-1 features are universal across workloads.

4.5.3 Model Configuration and Prediction Accuracy

In Table 4.2, we examine the effect of changing dictionary size in the different layers

of our hierarchical model. When the Layer-1 dictionary is fixed to be small, we see a

slight boost in precision due to better de-noising from a more restrictive set of features.

In contrast, when we use a small Layer-2 dictionary, recall drops significantly. This

indicates that Layer-2 interrelationships are more complicated. Based on the observed

utility of a small Layer-1 dictionary, we examine whether those features are universal

across workloads. Table 4.3 shows prediction accuracy when the Layer-1 dictionary is

trained on data from various workloads, with a 4-window look-ahead and 2-window

signatures. We see that, even when the Layer-1 dictionary is trained on out-of-band

samples, useful prediction is realized. Similar to the results of Chapter 3, this suggests

that latent structure is stable over time and workload and that unsupervised learning

76

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

captures a universal set of features.

4.5.4 Dynamic Power Savings with Predictive DVFS

The false negative and false positive rates of a predictor impact power savings due to

missed opportunities and recovery costs for incorrect scaling decisions. Given these,

we model realized dynamic power during instruction throughput lulls when predictive

DVFS is applied:

Pdyn = Pr(True Pos.) ∗ (Vrd)
2(frd)(ard)

+ Pr(False Neg.) ∗ (Vo)
2(fo)(ard) (4.1)

+ Pr(False Pos.) ∗ (Vo)
2(fo)(ao + aplt)

This model consists of terms representing power consumption for correct predictions,

false negatives, and false positives, respectively. When a lull is correctly predicted,

voltage and frequency are reduced from Vo = 1.0 to Vrd = 0.25, and fo = 1.0 to

frd = 0.25. For false negatives, voltage and frequency remain at Vo = 1.0 and fo = 1.0.

For false positives, we assume that higher-than-predicted activity is detected, and that

we must execute additional recovery steps.

Dynamic power consumption is proportional to the amount of realized switching

activity a [85]. Furthermore, when instruction throughput drops, chips use gating

mechanisms to stop electrical activity upstream of unused components. Since these

are imperfect and design specific, we use a gating coefficient g to compare different

scenarios. Gating efficiencies reported for commercial designs are between 18− 37%

on the IBM POWER7 [86] and 12−30% for an early PowerPC [87] design, depending

77

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

 0.35

 0.5

 0.65

 0.8

 0.95

 2 4 6 8 10 12 14 16

Po
w

er
 C

on
su

m
pt

io
n

Look Ahead Range (Windows)

Baseline	
 Power	

Consump1on	
 	

as	
 Ga1ng	

Efficiency	

Increases	

	

g=0.33	

aplt=	
 0.25	
 g	
 =	
 0.15	

g	
 =	
 0.66	

-­‐	

 0.35

 0.5

 0.65

 0.8

 0.95

 2 4 6 8 10 12 14 16

Po
w

er
 C

on
su

m
pt

io
n

Look Ahead Range (Windows)

Power	

Consump-on	

with	
 DVFS,	
 as	

False	
 Posi-ve	

Recovery	
 Cost	

Decreases	

	

g=0.33	

aplt=	
 0.25	

aplt	
 =	
 +0.40	

aplt=	
 +0.10	

-­‐	

Figure 4.5: Our dynamic power model measures savings during throughput lulls relative to a
chip’s baseline do-nothing power consumption. At the top, baseline power consumption is parame-
terized by a chip’s gating efficiency – when efficiency is on the order of 15%, on par with commercial
processors, predictive DVFS leads to a significant reduction in power consumption. Below, we show
the savings of predictive DVFS in light of the cost of false positive recovery, which depends on DVFS
hardware specifics. In this figure, a range of power consumption is illustration for DVFS mechanisms
with different recovery penalties.

on instruction mix. ao = 0.75 therefore captures ordinary operation, based on the

average activity-level during BBENCH. ard represents reduced activity during dips in

instruction throughput, for example ard = 1.0 − (0.75) ∗ g for a throughput drop of

75%. Finally, aplt represents additional activity needed to compensate for incorrect

scaling decisions by rerunning instructions.

Figure 4.5 plots Pdyn per lull for our best sparse coding model against look-ahead

range. Gating efficiency establishes the do-nothing baseline power consumption dur-

ing a lull, so we vary g = 0.15...0.66 to capture savings for a range of chip designs.

78

Chapter 4: Workload Modeling for Predictive DVFS in Low-Power Circuits

Power savings are also parameterized by the recovery cost aplt, which we vary from

+10% to +40% switching activity. When the recovery cost is +25% activity, predic-

tive voltage scaling successfully reduces power consumption with a 4-window heads-

up, or 2ms. If DVFS hardware can react fast enough to tolerate a 1ms chip adjustment

time, then this savings is a 50% gain over a g = 0.33 gating-efficient design without

voltage scaling.

4.6 Summary and Conclusion

Circuit-workload modeling and lull prediction for DVFS extends the state-modeling

approach of Chapter 3 to a new application domain. In this context, we see that:

• Clustering by sparse coding captures useful predictive signatures of circuit state

from hardware performance counters.

• Sequences of circuit states over time produce more-stable predictions than those

of a single measurement snapshot. In this case, hierarchy is an efficient means

to extend sparse coding to large state-spaces.

• Our state-modeling framework has many flexible configuration options. When

both dictionary training and SVM training are shifted off-platform, simple

inner-product circuitry is all that is needed to make predictions on-platform.

79

Chapter 5

I/O-Response Modeling for

Multi-Tenant Storage

Good storage system performance requires a configuration that is carefully tuned

to both higher-level workloads and lower-level device specifics. This fact is evident

in a long history of optimization strategies such as queuing algorithms that account

for arm repositioning in magnetic disks [88], and datacenter storage systems like

CEPH, the Google File System (GFS), and Lustre that alleviate application-specific

bottlenecks throughout large distributed platforms [5] [6] [7].

In this chapter, we focus on improving object placement, a critical management

task for datacenter storage systems. Specifically, we use sparse coding to reduce

overfitting for human-readable CART models that drive placement policies. By dis-

covering latent structure in I/O-access-pattern statistics that differentiate workloads,

we improve CART stability when measurements capture unwanted background pro-

cesses. Furthermore, we show how clusters can be visualized in a format familiar to

administrators to reveal new insights about system behavior.

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

5.1 Object-Based Storage Systems

Object-based storage is a popular paradigm for virtualizing datacenters of hetero-

geneous commodity devices. As illustrated in Figure 5.1, the object abstraction

decouples management tasks like data placement, replication, and load balancing,

from block-level storage specifics. Applications interact with a generic interface that

accesses data by first obtaining object metadata from a management server, and then

using it to request blocks from specific Object-Storage Devices (OSDs). Within the

system, management nodes are responsible for global administration, while OSDs

use on-board compute resources to oversee individual devices, implementing locally

appropriate queuing, caching, etc.

Object-based storage systems have the flexibility to shape overall performance to

application workloads. Software management permits runtime resource-scaling, load-

balancing, and on-the-fly reconfigurations of distributed devices. For example, the

three previously mentioned implementations sculpt system architecture to different

access patterns: CEPH uses clever hashing to reduce delays associated with metadata

retrieval through decentralization; GFS takes the opposite approach, using a single

master node to simplify load balancing and replication management; and Lustre im-

plements granular locks that optimize response time under non-uniform contention

patterns.

5.1.1 Object Placement

The assignment of objects to physical OSDs can either improve system performance by

load-balancing, or undermine responsiveness when conflicting access patterns create

81

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

Object-­‐Based	
 Storage	
 System	
 Architecture	

Retrieve	
 	

Object	
 	

Metadata	

Virtualized	
 	

Interface	

Class	
 1	

	

Class	
 2	

HDD	
 Array	

Tenants	

CPU	
 NIC	

Hardware	

Configura9on	

OSDA	

RAID-­‐6	
 Free	

Capacity	

CPU	
 NIC	

OSDB	

Hardware	

Configura9on	

Class	
 3	

Class	
 4	

Tenants	

CPU	
 NIC	

SSD	

OSDC	

Hardware	

Configura9on	

CPU	
 NIC	

Manager1	
 Manager2	

Block-­‐Level	
 Storage	

Object-­‐Based	
 Storage	
 System	

CPU	
 NIC	

Metadata	
 Management	

Retrieve	
 	

Data	
 Blocks	
 	

from	
 OSD	

Client	

Figure 5.1: Object-based storage decouples block-level devices from metadata managers. Man-
agement nodes are responsible for system-wide maintenance like layout and replication. Meanwhile,
heterogeneous Object-Storage Devices (OSDs) use computational and network capabilities to make
local optimizations for queue management and caching.

bottlenecks at OSDs. Typically, object placement is implemented using rule-based

policies set by a system administrator, or according to a predictive performance model

that captures interactions between access patterns and device specifics [89] [90]. To

simplify placement decisions, objects are often categorized into classes. For example,

a manager might group small objects that are accessed randomly to OSDs with large

solid state drives (SSDs), and large sequentially-accessed objects to rotating disks [91].

Performance models are most useful when object categorizations are accurate and

meaningful. Categories can be determined from application-provided hints [92] or

inferred from access pattern measurements. Though hints reflect ground-truth inten-

82

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

tions, they are unreliable – programmers ignore even the simplest interfaces, while

external designations do not always align with storage-system architecture. In con-

trast, inferred labels are always available and can be defined with specific optimiza-

tions in mind. In addition to standard regressions, CART models are popular in the

storage literature. Examples include object classifiers trained on system attributes

like filename [93] and class-specific performance predictors [94] [95].

The popularity of CART trees in storage alludes to an important constraint: hu-

mans in the loop. Though object placement is an automated process, system ad-

ministrators are required to answer for downtime, provision for future needs, and

actively balance security, economic, and environmental concerns. In our collabora-

tions, black-box or hard-to-interpret learning techniques were consistently rejected in

favor of methods that supported human operators.

5.1.2 Multi-Tenant Performance Modeling

Modeling and prediction methods are well-studied for devices that host objects for

a single tenant-workload – however multi-tenant environments like cloud datacenters

introduce additional complexity. Consider a workload represented by a distribution

of I/O requests W1. Now suppose that it’s host device OSDA has a capacity of CA

input/output per second (IOPs), and is achieving performance of IOA(W1) IOPs. In

this scenario, a manager must predict the OSD’s future performance if blocks from a

new workload W2 are assigned to that device. A linear performance predictor would

check:

CA − IOA(W1) > IOSLA(W2) (5.1)

83

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

for a service-level agreement (SLA) guaranteeing IOSLA(W2) IOPs to the new work-

load [96]. Though it is well-known that storage system performance is not linear,

such approximations are common even in advanced placement algorithms [89].

Non-linear performance prediction in these multi-tenant scenarios is hard for two

reasons. First, the sheer number of possible placement combinations makes com-

prehensive data-driven modeling impossible. Useful models must generalize beyond

their training data. Second, access patterns change as clients come and go or hosted

applications update their program code. For example, one log provided by a content

delivery network showed that changes to data buffers in an external network caused

a sudden, sustained rise in access to medium-sized images. Unlike prior modeling

research that relied on months or years of data [97] [93], examples like this indicate

the importance of transient statistics in datacenter scenarios.

The performance penalty for incorrect predictions is severe. If W1 represets a

web-transaction system with frequent random reads, and W2 a media application

with long sequential reads, head-of-line-blocking will grind performance to a halt. A

single long sequential read will cause transaction requests to back up, overloading

the request buffer, and potentially causing client-application instability. In practice,

problematic configurations are avoided by over-provisioning resources and replicating

objects to multiple OSDs [6]. However, one industry report indicates that storage

provisioning is inflated by up to 5x, increasing total datacenter costs by as much as

12% [98]. Instead, improved prediction models are a far-more attractive solution to

load-balancing.

84

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

12	
 Disk	
 HDD	
 	

Array	

OSD	

	

Mul%-­‐Tenant	
 Workload	

Red	
 Hat	
 Linux	

I/O	
 Generator	
 I/O	
 Generator	
 I/O	
 Generator	

Workload	
 Mix	
 Model	

Experiment	
 Harness	

Workload	
 Models	

Traffic	
 Generator	

Opera%ng	
 System	

Storage	
 Device	

Single	
 OSD	
 Experimental	
 Setup	

Workload	
 Descrip/on	

Maps	
 –	
 Meta-­‐Data	
 Front-­‐End	

Maps	
 –	
 Back-­‐End	
 Tile	
 Server	

Web	
 Ads	
 –	
 User-­‐Data	
 Cache	

Web	
 Ads	
 –	
 Image	
 Server	

MS	
 Exchange	
 –	
 E-­‐mail	
 Server	

MSN	
 Storage	
 –	
 Meta-­‐Data	
 Front-­‐End	

MS	
 Live	
 –	
 Object	
 Storage	

Remote	
 Access	
 –	
 AuthenOcaOon	

TransacOon	
 –	
 OLTP	
 Benchmark	

TransacOon	
 –	
 Financial	
 Brokerage	
 Orders	

Web	
 Ads	

Image	

Server	

Maps	
 	

Back-­‐End	

Tile	
 …	

MS	

Exchange	

Server	

MS	
 Live	

Object	

Storage	

Web	
 Ads	

User-­‐
Data	
 …	

Remote	

Access	

Auth	
 …	

Figure 5.2: Measurement data is generated using fio to recreate request traffic reported from
a production Microsoft facility. Hosted workloads include everything from a financial transaction
server to e-mail servers. Requests are directed at a 12-disk HDD array and steady-state performance
is measured after warming the system for 30s.

5.2 Workload Models and Data Collection

We collect training data from a single OSD configured with a 12-disk hard-disk-drive

(HDD) array running Red Hat Linux. The fio traffic generator recreates request traf-

fic for workloads observed and characterized in a Microsoft production datacenter [99].

Workload descriptions are listed in the right half of Figure 5.2. We probabilistically

model parameters for on-disk footprint, block distribution mean/mode, I/O depth,

inter-arrival time, and sequential-scan run-length, which are reported for both read

and write requests. Parameters are varied by fitting average values to a Gaussian

distribution whose variance is a tunable fraction of the mean.

To create a workload instance, we sample parameter values to instantiate fio.

We fit block-distribution mean and mode parameters to a power-law distribution to

capture long-tail effects reported in the literature. As illustrated in the left half of

85

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

Figure 5.3: Randomly selected
two-tenant configurations exhibit
three tranches of IOPs performance
when compared to the predictions
of an additive linear model. Config-
urations in green perform close to
expectations, indicating that simple
bin-packing would be accurate. Con-
figurations shown in orange exhibit
slightly sub-linear performance.
Finally, configurations in red have
disproportionately bad performance,
and should be explicitly avoided
during object placement. 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500
IO

A
(W

1
+

 W
2)

IOA(W1) + IOA(W2)

Figure 5.2, each measurement is produced by first selecting tenant workloads and then

spawning fio instances to generate request traffic. We run fio directly on the OSD

to factor out network delays, and bring the system to steady state over 30 seconds.

We record metrics like IOPs, response latency, bandwidth, etc.

Figure 5.3 shows IOPs measurements for two-tenant configurations. The horizon-

tal axis plots predicted IOPs using a simple additive linear model against measured-

performance on the vertical axis. Our experimental data exhibits three distinct

tranches based on tenant-workloads: in green are configurations with near-linear

performance, in orange are those with slightly sub-linear performance, and in red

are those with disproportionately bad IOPs. This last tranche captures high-risk

configurations that should be avoided when placing objects.

86

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

Table 5.1: Percent of IOPs Predictions Within 40% Accuracy by Representation

Background Processes
CART Input Type No Interference 2 4 6

Raw Data 77% 63% 57% 55%
OMP with Gold-Dictionary 68% 63% 75% 78%
OMP with Learned Dcitionary 66% 68% 81% 88%

Comparing the proportion of IOPs predictions within 40% of their observed value, we see that CART

models trained on raw two-tenant data quickly break down when interfering background processes

are introduced. In fact, the low-level contention introduced by interferers stabilizes the storage

system, and should ideally make performance more predictable. Using OMP to code raw data based

on workload templates boosts prediction accuracy significantly across measurement conditions.

5.3 Predicting Storage Performance with CART

5.3.1 Applying CART to Multi-Tenant Scenarios

We now extend CART to model multi-tenant performance. Replicating prior re-

sults, we train a model on input vectors xt that contain aggregate statistics from the

device-level counters depicted in Figure 5.5. Measurement values are normalized to

lie between 0 and 1, and we use a training set of 400 measurements collected from

different randomly-selected tenant configurations. Since CART is a supervised tech-

nique, each measurement is associated with a label that represents observed IOPs

performance. To mitigate overfitting, we apply bootstrap aggregation (“bagging”)

and combine the predictions of 5 independently-trained trees. In each, a minimum

leaf-count of 5 training samples is enforced. Prediction accuracy is computed on an

independent set of 600 measurements of random tenant configurations. Our results

are in-line with those previously reported, and achieve 44% prediction error at the

90th percentile cutoff, averaged over all workload models [94].

87

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

When we extend this methodology to multi-tenant configurations, performance

degrades. Prediction accuracy for two-tenant configurations drops to 52% error at

the 90th percentile cutoff. Furthermore, the trained model does not generalize well.

For example, when the OSD also includes low-level background processes, prediction

quality drops sharply. Background processes are defined as any tenant consuming

less than 5% of the OSD’s capacity, and are implemented by rate-limited fio in-

stances running a randomly-chosen workload. Such processes simulate low-intensity

tenants or maintenance tasks that only-slightly impact device performance, but do

alter counter values.

Since high-risk-configuration detection is tolerant to some degree of imprecision,

Table 5.1 reports the proportion of predictions within 40% error. When background

processes interfere with measurements, the portion of useful predictions drops from

77% to 55%. This drop is driven by CART’s sensitivity to exact cutoffs during

prediction. Ideally, CART’s accuracy should improve as background processes are

added, since low-level contention reduces the likelihood of performance outliers.

5.3.2 Variation-Tolerant CART Using Workload Labels

Since our measurement data is generated according to workload classes reported by

researchers, it is easy to define a sparse-coding dictionary of workload templates

– single-tenant measurement vectors in training data are simply averaged among

workload type. Encoding training samples with this dictionary before fitting a CART

model improves prediction significantly. As shown in Figure 5.4, this occurs for two

reasons. First, sparse feature representations enable CART to partition data based

88

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

x(1)	

x(2)	

d2	

d1	

CART	
 on	
 Raw	
 Data	

CART	
 on	
 Sparse	
 Representa1ons	

Input	
 Data	

CART	
 Modeling	
 with	
 Sparse	
 Coding	

x(1)%<%0.6%

x(1)%<%0.25%

x(2)%<%0.5%

x(1)%<%0.4%

z(1)%>%0.0%

x(1)%

x(2)%

d2%

d1%

Figure 5.4: CART models greedily partition measurement data along observed dimensions.
When trained on sparse feature representations, CART can exploit latent structure to reduce over-
fitting. The result is improved tolerance under data variations, as well as smaller trees.

on latent structure. This simplifies trees and produces cutoffs that are less sensitive to

exact measurement values. Second, as shown throughout previous chapters, imposing

sparsity cuts away weakly expressed information such as the interfering effects of

background processes.

The strategy of directly-computing a dictionary using ground-truth workload

classes is applicable in scenarios with application-provided hints, or when labels can

be assigned by-hand to training samples. Features in a “gold” dictionary are defined

for each label by: di
g

= 1
|Gi|

∑
j∈|Gi| xj, where Gi denotes the set of vectors from work-

load i, and the underscript g denotes the use of “gold” labels. To compute sparse

feature representations, train a CART model, and measure prediction accuracy, we

calculate: zt
g

= OMP(xt, D
g
, k = 2). The resulting prediction accuracy, reported for

the same training and test datasets as Section 5.3.1 is shown in Table 5.1. When

89

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 5 10 15 20 25 30

Fi
lte

r R
es

po
ns

e

Counter Index

Block	
 Size	
 M
ean	

Block	
 Size	
 M
ode	

Q
ueue	
 Depth	

Footprint	

Run	
 Length	

Inter	
 arrival	
 Tim

e	

10%
	
 Cutoff	

20%
	

30%
	

40%
	

50%
	

60%
	

70%
	

80%
	

90%
	

98%
	
 Cutoff	

10%
	
 Cutoff	

20%
	

30%
	

40%
	

50%
	

60%
	

70%
	

80%
	

90%
	
 Cutoff	

DicKonary	
 Features	
 PloOed	
 by	
 Measured-­‐Counter	
 DefiniKon	
 	

Block	
 Size	
 M
ean	

Block	
 Size	
 M
ode	

Q
ueue	
 Depth	

Footprint	

Run	
 Length	

Inter	
 arrival	
 Tim

e	

Read	
 Write	
 Block	
 Size	
 Distribu5ons	

MS	
 Exchange	
 Server	

Figure 5.5: Dictionary features can also double as workload profiles. For example, here we
visualize the profile of an MS Exchange Server workload and see that both read and write requests
are nearly symmetric, though writes have larger block sizes and slower inter arrival time than read
requests.

CART is trained on sparse feature representations, we see that predictions exhibit

far-greater stability in the face of background-process interference. Our model gen-

eralizes well, and is accurate enough that we see the expected stabilizing effect of

low-level contention, with prediction accuracy increasing from 63% to 78%.

5.3.3 Learning Workload Filters with Unsupervised Learning

Though sparse workload representations boost CART resilience to interference, Table

5.1 shows that they hurt performance for interference-free data. First, this is because

OMP throws away information in a noise-free environment. Second, by comparing

vectors zt
g

to their corresponding labels, we see that OMP makes mistakes when

workload templates are similar. This highlights a shortcoming of hand-assigned labels:

90

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 5 10 15 20 25 30

Fi
lte

r R
es

po
ns

e

Counter Index

Hand-­‐	

Computed	
 	

Filters	
 	

K-­‐SVD	

	
 Filters	
 	

Web	
 Ads	
 -­‐	
 Image	
 Server	

Maps	
 -­‐	
 Back-­‐End	

Tile	
 Server	

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 5 10 15 20 25 30

Fi
lte

r R
es

po
ns

e

Counter Index

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 5 10 15 20 25 30

Fi
lte

r R
es

po
ns

e

Counter Index

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 5 10 15 20 25 30

Fi
lte

r R
es

po
ns

e

Counter Index

d3	
 d4	

d2	
 d2	

g	
 g	

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 5 10 15 20 25 30

Fi
lte

r R
es

po
ns

e

Counter Index

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

 5 10 15 20 25 30

Fi
lte

r R
es

po
ns

e

Counter Index

d3	

d4	

Figure 5.6: Workload templates computed from hand-assigned labels are not guaranteed to
be distinctive, as in the case of a Web Ad Image Server and a Maps Back-End Tile Server. The
similarity between these two with respect to I/O device counters was discovered during unsupervised
learning.

they are not guaranteed to reflect statistical trends.

To address this latter issue, we learn a dictionary using unsupervised clustering

and compare its features to the gold-labeled workload templates. Table 5.1 shows that

prediction accuracy is highest when CART is trained on learned latent structures,

with the portion of useful predictions reaching nearly 90%. Figure 5.6 shows that

unsupervised learning finds distinctive workload primitives similar to those captured

from wireless link data in Chapter 3. In particular, the similarity of sparse feature

representations based on latent structures reveals a previously-unknown similarity

between the Maps - Back-End Tile Server and the Ads workload. Not only does such

a relationship improve automated prediction, it provides valuable feedback to system

administrators trying to understand how client workloads will affect performance.

91

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

5.3.4 High-Risk Configuration Detection

Finally, we characterize detection accuracy when CART is used to identify the con-

flicting access patterns shown in red in Figure 5.3. Using CART models trained with

each of the prior methods, we report accuracy, precision, and recall on this task. Mod-

els are trained using sparse representations that capture two-tenant configurations.

Test data is then generated by choosing two tenant-workloads, and between zero and

six interferer workloads. We make zero- and six-interferer scenarios 50% less likely

than two- and four-interferer configurations to reflect the expectation that OSDs will

not be interference-free in a tightly provisioned storage system. We set the detection

threshold to favor false-positives using an additional +100 IOPs tolerance, since in-

correctly flagged configurations can simply be assigned to different OSDs, but false

negatives cause bad performance. The results show that CART trained on learned

sparse fature representations identifies high-risk configurations with near-80% accu-

racy, a 7% bump over training CART on raw data.

Table 5.2: Detection Accuracy for Conflicting Access Patterns

CART Input Type Acc. Prec. Rec.

Raw Data 73.1% 0.74 0.73
OMP with Hand-Designed Features 77.3% 0.75 0.73
OMP with K-SVD 79.5% 0.75 0.82

Sparse feature representations significantly improve the detection accuracy of conflicting tenant
configurations. When these are based workload templates computed from hand-assigned class labels,
accuracy jumps 5%. Refining those labels using unsupervised learning bumps accuracy a further
3%.

92

Chapter 5: I/O-Response Modeling for Multi-Tenant Storage

5.4 Summary and Conclusion

When applying our state-modeling framework to storage, we demonstrate several new

insights:

• Encoding raw measurement data in terms of stable latent structure reduces

the sensitivity of CART models to measurement artifacts like interference from

low-level background processes.

• Clusters can not-only be directly visualized, they augment interpretable mod-

els like CART. When latent structure provides more-separable dimensions for

CART, readability improves.

• By discovering latent statistical structure in I/O request statistics, clustering

identifies both expected workload-driven patterns, and unexpected similarities

between human-assigned workload definitions.

• A state-modeling framework based on sparse coding can exploit additional com-

putational resources like GPGPUs in datacenters. These parallel accelerators

support more-stable encoding algorithms like OMP. This tradeoff spends a

larger computation budget to improve statistical accuracy.

93

Chapter 6

Conclusion

6.0.1 MLM: Portable Modeling for Variable
Runtime Scenarios

State models are well-studied in wireless, circuit, and storage domains. For example,

the earliest wireless burst-error models are over 50 years old [65]. But many of these

share a common limitation: they are valid only for the runtime conditions to which

they were trained. In this work, we built state models in varying runtime scenarios

and exposed large differences in their predictive statistics, as well as useful similarities

among latent statistical structures.

One representative example is our UAV wireless link model. Experimentally, the

UAV scenario is attractive because links can be repeatably measured and the sur-

rounding environment can be controlled. In the open-space farmland of Stockbridge,

NY, the dominant statistical predictors of packet losses are radio range and loca-

tion. Given time and manpower, it is possible to model this environment accurately.

However, UAV link models trained on data like location, range, or exact packet-loss

sequences do not port across environments. Quickly, we found that their predictive

Chapter 6: Conclusion

power was environment-specific and not useful in offices or the subway.

The lesson is that traditional state-modeling techniques, much like the systems

we are trying to improve, are not broken, but are simply not flexible enough. When

a link model is highly-specialized for a single environment, it will produce uncertain

results in new environments. For circuits, workload prediction is similar: designers

tune performance models for general-use chips based on benchmark suites like SPEC

CPU2000. However, in an early unpublished comparison, we found that the statistics

of state prediction are wildly different between these simple, highly-controlled work-

loads and user-driven applications like web surfing. In storage, performance models

tuned in two-tenant conditions performed poorly in less-controlled datacenter sce-

narios. CART models were sensitive to background processes that perturb request

statistics. For each domain, state models from the literature imposed rigid assump-

tions on target runtime conditions that limit their utility in everyday use-cases.

Machine Learning for Machines (MLM) is therefore the study of frameworks for

modeling performance data that 1) accurately capture state statistics in diverse run-

time conditions and 2) meet the computation, power, and data constraints for real-

time operation on-platform. Sparse coding is one such framework. We showed that

models based on linear combinations of state primitives were portable across a wide

variety of scenarios. Meanwhile, flexible choices of formulation, as well as training,

encoding, and prediction algorithms allowed us to trade off accuracy, computational

complexity, and interpretability. Still, we recognize that more-effective modeling

frameworks may exist, and thus hope that MLM will define an exciting field-of-study

to unlock large efficiency and economic gains.

95

Bibliography

[1] C. Liebert, M. Zayed, J. Tran, J. Lau, and O. Aalami, “Novel Use of Google
Glass for Vital Sign Monitoring During Simulated Bedside Procedures,” Abstract
- Stanford University School of Medicine (2014).

[2] S. Eyerman and L. Eeckhout, “Fine-Grained DVFS Using On-Chip Regulators,”
ACM Transactions on Architecture and Code Optimization (2011).

[3] “What Powers Instagram: Hundreds of Instances, Dozens of Technologies,” In-
stagram Engineering Blog (2014).

[4] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes, “Omega: Flex-
ible, Scalable Schedulers for Large Compute Clusters,” ACM European Confer-
ence on Computer Systems (2013).

[5] S. a. Weil, S. a. Brandt, E. L. Miller, D. D. Long, and C. Maltzahn, “CEPH: A
Scalable, High-Performance Distributed File System,” USENIX Symposium on
Operating Systems Design and Implementation (2006).

[6] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,” ACM
SIGOPS Operating Systems Review (2003).

[7] P. J. Braam et al., “The Lustre Storage Architecture,” 2004.

[8] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, “The KDD Process for Ex-
tracting Useful Knowledge from Volumes of Data,” Communications of the ACM
(1996).

[9] M. Bohr and K. Mistry, “Intel’s Revolutionary 22nm Transistor Technology,”
Intel Website (2011).

[10] R. Fischer, “Intel - How 22nm Yield Changes the Industry,” Seeking Alpha
(2012).

[11] R. E. Fontana, G. M. Decad, and S. Hetzler, “The Impact of Areal Density and
Millions of Square Inches (Msi) of Produced Memory on Petabyte Shipments
of Tape, Nand Flash, and Hdd Storage Class Memories,” IEEE Symposium on
Mass Storage Systems and Technologies (2013).

96

Bibliography

[12] P. Darling, “Intel to Invest More Than 5 Billion to Build New Factory in Ari-
zona,” Intel Website (2011).

[13] S. Borkar, “Design Perspectives on 22nm CMOS and Beyond,” ACM Design
Automation Conference (2009).

[14] I. Wagner and V. Bertacco, “Post-Silicon Verification of Multi-Core Processors,”
Post-Silicon and Runtime Verification for Modern Processors, Springer (2011).

[15] H. Hanson, S. W. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, and J. Rubio,
“Thermal Response to DVFS: Analysis with an Intel Pentium M,” ACM Inter-
national Symposium on Low Power Electronics and Design (2007).

[16] W. Kim, D. Brooks, and G.-Y. Wei, “A Fully-Integrated 3-Level DC-DC
Converter for Nanosecond-Scale DVFS,” IEEE Journal of Solid-State Circuits
(2012).

[17] J. Friedrich, “Keynote: An Introduction to POWER8 Processor,” IEEE Inter-
national Conference on Integrated Circuit Design and Technology (2014).

[18] B. Pangrle, “The Good Kind of Regulation,” Semiconductor Engineering (2014).

[19] M. Harris, “Five Things You Should Know About the nVidia Maxwell GPU
Architecture,” nVidia Developer Zone Blog (2014).

[20] Q. Wu, G. Dong, and T. Zhang, “Exploiting Heat-Accelerated Flash Memory
Wear-Out Recovery to Enable Self-Healing SSDs,” USENIX Workshop on Hot
Topics in Storage and File Systems (2011).

[21] L. A. Barroso and U. Hölzle, “The Datacenter as a Computer: An Introduction
to the Design of Warehouse-Scale Machines,” Synthesis Lectures on Computer
Architecture, Morgan & Claypool Publishers (2009).

[22] G. Wang and T. E. Ng, “The Impact of Virtualization on Network Performance
of Amazon EC2 Data Center,” IEEE INFOCOM (2010).

[23] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, “Decon-
structing Amazon EC2 Spot Instance Pricing,” ACM Transactions on Economics
and Computation (2013).

[24] R. P. Goldberg, Architectural Principles for Virtual Computer Systems, PhD
thesis 1973.

[25] R. P. Parmelee, T. I. Peterson, C. C. Tillman, and D. J. Hatfield, “Virtual
Storage and Virtual Machine Concepts,” IBM Systems Journal (1972).

97

Bibliography

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,” ACM SIGOPS
Operating Systems Review (2003).

[27] C. A. Waldspurger, “Memory Resource Management in VMware ESX Server,”
ACM SIGOPS Operating Systems Review (2002).

[28] D. Ehringer, “The Dalvik Virtual Machine Architecture,” Techn. report (March
2010) (2010).

[29] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rex-
ford, S. Shenker, and J. Turner, “Openflow: Enabling Innovation in Campus
Networks,” ACM SIGCOMM Computer Communication Review (2008).

[30] M. Mesnier, G. R. Ganger, and E. Riedel, “Object-Based Storage,” IEEE Com-
munications Magazine (2003).

[31] E. Blossom, “GNU Radio: Tools for Exploring the Radio Frequency Spectrum,”
Linux Journal, Belltown Media (2004).

[32] J. Mitola III, “SDR Architecture Refinement for JTRS,” IEEE Military Com-
munications Conference (2000).

[33] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet Allocation,” The
Journal of Machine Learning Research (2003).

[34] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep
Learning with COTS HPC Systems,” ACM International Conference on Machine
Learning (2013).

[35] Y. LeCun, K. Kavukcuoglu, and C. Farabet, “Convolutional Networks and Ap-
plications in Vision,” IEEE International Symposium on Circuits and Systems
(2010).

[36] M. Elad and M. Aharon, “Image Denoising Via Sparse and Redundant Repre-
sentations Over Learned Dictionaries,” IEEE Transactions on Image Processing
(2006).

[37] R. G. Baraniuk, “Compressive sensing,” IEEE signal processing magazine (2007).

[38] N. Pinto, D. D. Cox, and J. J. DiCarlo, “Why Is Real-World Visual Object
Recognition Hard?,” Computational Biology, Public Library of Science (2008).

[39] D. G. Lowe, “Object Recognition from Local Scale-Invariant Features,” IEEE
International Conference on Computer vision (1999).

98

Bibliography

[40] N. Pinto, Y. Barhomi, D. D. Cox, and J. J. DiCarlo, “Comparing State-Of-The-
Art Visual Features on Invariant Object Recognition Tasks,” IEEE Workshop
on Applications of Computer Vision (2011).

[41] J. Hartigan and M. Wong, “Algorithm AS 136: A K-Means Clustering Algo-
rithm,” Journal of the Royal Statistical Society (1979).

[42] A. Coates, Demystifying Unsupervised Feature Learning, PhD thesis Stanford
University 2012.

[43] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski, “Optimization with sparsity-
inducing penalties,” Foundations and Trends in Machine Learning (2012).

[44] M. Aharon, M. Elad, and A. M. Bruckstein, “K-SVD and its Non-Negative
Variant for Dictionary Design,” International Society for Optics and Photonics,
Optics & Photonics (2005).

[45] R. Tibshirani, “Regression Shrinkage and Selection via the LASSO,” Journal of
the Royal Statistical Society. (1996).

[46] C. J. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,”
Data Mining and Knowledge Discovery, Springer (1998).

[47] F. Girosi, “An Equivalence Between Sparse Approximation and Support Vector
Machines,” Neural computation (1998).

[48] M. Riesenhuber and T. Poggio, “Hierarchical Models of Object Recognition in
Cortex,” Neuroscience (1999).

[49] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional Deep Belief
Networks for Scalable Unsupervised Learning of Hierarchical Representations,”
(2009).

[50] M. Steyvers and T. Griffiths, “Probabilistic Topic Models,” Handbook of Latent
Semantic Analysis (2007).

[51] D. Sontag and D. Roy, “Complexity of Inference in Latent Dirichlet Allocation,”
Advances in Neural Information Processing Systems (2011).

[52] N. Morgan, “Deep and Wide: Multiple Layers in Automatic Speech Recogni-
tion,” IEEE Transactions on Audio, Speech, and Language Processing (2012).

[53] S. G. Mallat and Z. Zhang, “Matching Pursuits with Time-Frequency Dictio-
naries,” IEEE Transactions on Signal Processing (1993).

99

Bibliography

[54] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal Matching Pursuit:
Recursive Function Approximation with Applications to Wavelet Decomposi-
tion,” IEEE Asilomar Conference on Signals, Systems and Computers (1993).

[55] S. J. Tarsa, T.-H. Lin, and H.-T. Kung, “Performance Gains in Conjugate
Gradient Computation with Linearly Connected Gpu Multiprocessors,” USENIX
Workshop on Hot Topics in Parallelization (2012).

[56] P. Ghysels and W. Vanroose, “Hiding Global Synchronization Latency in the
Preconditioned Conjugate Gradient algorithm,” Parallel Computing (2013).

[57] T.-H. Lin, S. J. Tarsa, and H.-T. Kung, “Parallelization Primitives for Dynamic
Sparse Computations,” USENIX Workshop on Hot Topics in Parallelism (2013).

[58] P. Berkhin, “A Survey of Clustering Data Mining Techniques,”, 2006.

[59] T. H. McCormick et al., “Bayesian Hierarchical Rule Modeling for Predicting
Medical Conditions,” The Annals of Applied Statistics (2012).

[60] A. Larmo, M. Lindstrom, M. Meyer, G. Pelletier, J. Torsner, and H. Wiemann,
“The LTE Link-Layer design,” IEEE Communications Magazine (2009).

[61] P. Arkachar, “Overview of IEEE 802.11 Standard,” (2003).

[62] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: An Enhanced Recov-
ery Algorithm for TCP Retransmission Timeouts,” ACM SIGCOMM Computer
Communication Review (2003).

[63] J. B. Andersen, T. S. Rappaport, and S. Yoshida, “Propagation Measurements
and Models for Wireless Communications Channels,” IEEE Communications
Magazine (1995).

[64] R. Valenzuela, “A Ray Tracing Approach to Predicting Indoor Wireless Trans-
mission,” IEEE Vehicular Technology Conference (1993).

[65] E. Gilbert et al., “Capacity of a Burst-Noise Channel,” Bell Systems Technical
Journal (1960).

[66] A. Konrad, B. Y. Zhao, A. D. Joseph, and R. Ludwig, “A Markov-Based Channel
Model Algorithm for Wireless Networks,” Wireless Networks, Kluwer Academic
Publishers (2003).

[67] H.-T. Kung, C.-K. Lin, T.-H. Lin, S. J. Tarsa, D. Vlah, D. Hague, M. Muccio,
B. Poland, and B. Suter, “A Location-Dependent Runs-And-Gaps Model for
Predicting TCP Performance Over a UAV Wireless Channel,” IEEE Military
Communications Conference (2010).

100

Bibliography

[68] K. Kumar, R. Chandramouli, and K. Subbalakshmi, “On Stochastic Learning
in Predictive Wireless ARQ,” Wireless Communications and Mobile Computing,
Wiley Online Library (2008).

[69] B. Ferris, D. Fox, and N. Lawrence, “WiFi-SLAM using Gaussian Process Latent
Variable Models,” IEEE International Joint Conference on Artificial Intelligence
(2007).

[70] G. T.-R. W. G. 1, “Proposal of Bit Mapping for Type-III HARQ,” 3GPP Meeting
No. 18 (2001).

[71] “The Army’s Bandwidth Bottleneck,” United States. Congressional Budget Of-
fice (2003).

[72] “Amazon Prime Air - Frequently Asked Questions,” The Amazon Prime Air
R&D Team (2014), Accessed: 2014-09-11.

[73] “Airware - Product Overview,” (2014), Accessed: 2014-09-11.

[74] T.-H. Lin and H.-T. Kung, “Robust and Efficient Representation Learning
with Nonnegativity Constraints,” International Conference on Machine Learning
(2014).

[75] W. Kim, “Reducing Power Loss, Cost and Complexity of SoC Power Delivery
Using Integrated 3-Level Voltage Regulators,” Harvard University (2013).

[76] K. Rajamani et al., “Application-Aware Power Management,” IEEE Interna-
tional Symposium on Workload Characterization (2006).

[77] A. Shye, B. Scholbrock, and G. Memik, “Into the Wild: Studying Real User
Activity Patterns to Guide Power Optimizations for Mobile Architectures,”
IEEE/ACM International Symposium on Microacrhitecture (2009).

[78] G. Contreras and M. Martonosi, “Power Prediction for Intel Xscale R© Processors
Using Performance Monitoring Unit Events,” IEEE International Symposium on
Low Power Electronics and Design (2005).

[79] K. Singh, M. Bhadauria, and S. McKee, “Real Time Power Estimation and
Thread Scheduling Via Performance Counters,” ACM SIGARCH (2009).

[80] R. Zamani and A. Afsahi, “Adaptive Estimation and Prediction of Power and
Performance in High Performance Computing,” Computer Science-Research and
Development, Springer (2010).

[81] A. Dhodapkar and J. Smith, “Comparing Program Phase Detection Techniques,”
IEEE/ACM International Symposium on Microarchitecture (2006).

101

Bibliography

[82] Binkert and Beckmann, “The Gem5 Simulator,” ACM SIGARCH (2011).

[83] A. Gutierrez et al., “Full-System Analysis and Characterization of Interactive
Smartphone Applications,” IEEE International Symposium on Workload Char-
acterization (2011).

[84] Y. Huang, Z. Zha, M. Chen, and L. Zhang., “Moby: a Mobile Benchmark Suite
for Architectural Simulators,” IEEE International Symposium on Performance
Analysis of Systems and Software (2014).

[85] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a Framework for
Architectural-Level Power Analysis and Optimizations,” ACM (2000).

[86] V. Zyuban et al., “Power Optimization Methodology for the IBM POWER7
Microprocessor,” IBM Journal of Research and Development (2011).

[87] L. Benini, P. Siegel, and G. De Micheli, “Saving Power By Synthesizing Gated
Clocks for Sequential Circuits,” IEEE Design & Test of Computers (1994).

[88] M. Seltzer, P. Chen, and J. Ousterhout, “Disk Scheduling Revisited,” Winter
1990 USENIX Technical Conference (1990).

[89] O. Ozmen, K. Salem, J. Schindler, and S. Daniel, “Workload-Aware Storage Lay-
out for Database Systems,” ACM SIGMOD International Conference on Man-
agement of Data (2010).

[90] S. Kraft, G. Casale, D. Krishnamurthy, D. Greer, and P. Kilpatrick, “IO Perfor-
mance Prediction in Consolidated Virtualized Environments,” ACM SIGSOFT
Software Engineering Notes (2011).

[91] L. L. Ashton et al., “Two Decades of Policy-Based Storage Management for the
IBM Mainframe Computer,” IBM Systems Journal (2003).

[92] M. Mesnier, F. Chen, T. Luo, and J. B. Akers, “Differentiated Storage Services,”
ACM Symposium on Operating Systems Principles (2011).

[93] M. Mesnier, E. Thereska, G. R. Ganger, D. Ellard, and M. Seltzer, “File Clas-
sification in Self-* Storage Systems,” International Conference on Autonomic
Computing (2004).

[94] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. R. Ganger,
“Storage Device Performance Prediction with CART Models,” IEEE Inter-
national Symposium on Modeling Analysis and Simulation of Computer and
Telecommunications Systems (2004).

102

Bibliography

[95] L. Zhang, G. Liu, X. Zhang, S. Jiang, and E. Chen, “Storage Device Performance
Prediction with Selective Bagging Classification and Regression Tree,” Network
and Parallel Computing, Springer (2010).

[96] D. S. Johnson, Near-Optimal Bin Packing Algorithms, PhD thesis Massachusetts
Institute of Technology 1973.

[97] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch, “A Five-Year Study
of File-System Metadata,” ACM Transactions on Storage (2007).

[98] K. Harty, “Waging War on Overprovisioning,” Data Center Dynamics (2013),
Accessed: 2014-09-19.

[99] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Characterization
of Storage Workload Traces from Production Windows Servers,” IEEE Interna-
tional Symposium on Workload Characterization (2008).

103

