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DYNAMIC LOGIT WITH CHOICE AVERSION

BY DREW FUDENBERG AND TOMASZ STRZALECKI1

We characterize a generalization of discounted logistic choice that incorporates a
parameter to capture different views the agent might have about the costs and benefits
of larger choice sets. The discounted logit model used in the empirical literature is the
special case that displays a “preference for flexibility” in the sense that the agent always
prefers to add additional items to a menu. Other cases display varying levels of “choice
aversion,” where the agent prefers to remove items from a menu if their ex ante value
is below a threshold. We show that higher choice aversion, as measured by dislike of
bigger menus, also corresponds to an increased preference for putting off decisions as
late as possible.

KEYWORDS: Recursive choice, stochastic choice, preference for flexibility, prefer-
ence for delay.

1. INTRODUCTION

OBSERVED INDIVIDUAL CHOICE IS TYPICALLY STOCHASTIC. Most of the theo-
retical literature on stochastic choice has focused on static models. Structural
econometric models of aggregate dynamic decisions start by specifying a dy-
namic choice problem for each agent, where the agent is typically assumed to
be dynamically sophisticated in the sense of correctly anticipating the way the
probability distributions over his future actions depend on his actions today
(Rust (1987)).

This paper provides the first axiomatic characterization of stochastic choice
in dynamic settings, where choices made today can influence the possible
choices available tomorrow, and consumption may (but need not) occur in
multiple periods. Our main goal is to better understand the issues involved
in modeling an agent who makes random choices not only over actions with
immediate consumption consequences, but also over actions that can alter the
choice sets that will be available in the future, when the agent’s choice in each
period is made taking her future randomizations into account.

Data on dynamic choice let us distinguish between models of random choice
that coincide in static settings, because these models have different implica-
tions for how the agent views his future randomizations over menus, and thus

1A previous version of this paper was titled “Recursive Stochastic Choice.” We thank Steve
Berry, Eddie Dekel, Glenn Ellison, Phil Haile, Igal Hendel, Paulo Natenzon, Ariel Pakes, Wolf-
gang Pesendofer, Phil Reny, Satoru Takahashi, Jan Werner, and a co-editor and four anonymous
referees for helpful comments and conversations, and Mira Frick, Jonathan Libgober, and Mor-
gan McClellon for expert research assistance. Parts of this research were conducted while D.
Fudenberg was visiting the Cowles Foundation at Yale, and T. Strzalecki was visiting the Institute
for Advanced Studies at Hebrew University and then the Cowles Foundation. We are grateful
for their support and hospitality, and also that of the Sloan Foundation and NSF Grants SES-
0954162, SES-1123729, and CAREER Grant SES-1255062.
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induce different choices between menus. In particular, standard models of
dynamic random utility such as discounted logit generate a positive option
value for each item that is added to a menu because each added item pro-
vides another chance for a good realization of the random shocks and has no
downside. On the other hand, models of limited attention, implementation er-
rors, or costly decision making all suggest that the agent may dislike adding at
least some items. This leads us to propose a generalization of discounted logit
called Discounted Adjusted Logit (DAL), where the attractiveness of menus is
adjusted to reflect the agent’s “choice aversion” and reduce or eliminate the
option value of additional items.

To make this first step in characterizing dynamic stochastic choice, we main-
tain the Independence of Irrelevant Alternatives (IIA) assumption throughout
the paper, so that static choice in our model is logit, and can be represented
by a random utility model where the payoff shocks are independent and iden-
tically distributed (i.i.d.) with extreme-value type-1 distributions; see, for ex-
ample, Anderson, De Palma, and Thisse (1992). Although this assumption is
restrictive, we maintain it here. This lets us focus on the new issues that arise
when modeling stochastic choice in a dynamic setting, axiomatize the widely
used discounted logit model,2 and propose and characterize the generalization
to DAL.

Concretely, in DAL the agent values combinations of current outcome zt
and continuation menu At+1 as

Ut(zt�At+1)= v(zt)+ δE
[

max
at+1∈At+1

Ut+1(at+1)+ εat+1 − κ log |At+1|
]
�(1)

and then chooses each at = (zt�At+1) from the menu At :

Pt[at |At] = Prob
[
Ut(at)+ εat ≥ max

bt∈At

Ut(bt)+ εbt

]
�(2)

where εat has an extreme-value distribution.
Every DAL is equivalent to logit in static decisions or when δ= 0, regardless

of the value of κ. DAL with κ = 0 reduces to the usual form of discounted logit.
The new parameter κ measures the agent’s choice aversion, and is determined
by the extent to which the agent wants to add new items to the menu. When
κ = 0, the agent is choice loving in the sense that the agent always prefers to
add additional items to a menu, as in the “preference for flexibility” of Kreps
(1979) and Dekel, Lipman, and Rustichini (2001).

Another special case of interest is κ = 1; here, the agent wants to remove
choices that are worse than average, as might be the case if the agent were

2Miller (1984), Rust (1989), Hendel and Nevo (2006), Kennan and Walker (2011), Sweeting
(2011), Gowrisankaran and Rysman (2012), and surveys Eckstein and Wolpin (1989), Rust (1994),
Aguirregabiria and Mira (2010).
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worried about choosing them by accident or if the agent incurs “menu” or
“consideration” costs that exactly offset the benefit of another random draw.3

In addition to DAL, we present two alternative but equivalent representa-
tions. To motivate the representations and explain their equivalence, it is use-
ful to recall that there are several explanations in the literature for stochastic
choice in static problems.

Random utility: Agents might maximize their expected utility given privately
observed payoff shocks, as in Thurstone (1927), Marschak (1959), McFadden
(1973), and Harsanyi (1973a), so that even choices that are typically unappeal-
ing could be optimal when the payoff shock is large. Logit corresponds to pay-
off shocks that are i.i.d. with extreme-value type-1 distributions; this functional
form is the starting point for the discounted logit model.

Inattention: Agents might randomize as the result of error or inattention.
van Damme (1991) and van Damme and Weibull (2002) studied a model where
the agent’s intended choice is implemented with a probability that depends
on the attention paid, and Manzini and Mariotti (2014) axiomatized a model
where each possible choice is overlooked with an exogenous probability. Static
logit corresponds to the case where the agent chooses a probability distribu-
tion to maximize the difference between the expected utility and the relative
entropy of the choice distribution with respect to the uniform distribution, as
in Mattsson and Weibull (2002).

In our dynamic setting, the relative entropy cost function corresponds to
κ = 1 in an alternative representation we call Discounted Adjusted Entropy or
DAE. In this case, adding an equally good item to a singleton menu has no
effect on the menu’s value, as the agent will choose to randomize uniformly
and thus incur no attention cost while receiving an equivalent current outcome.
As with DAL, all versions of DAE are equivalent to logit in static decisions, but
the value of κ matters once there are two or more periods. In particular, DAE
with κ = 0, where the cost function is the negative of the entropy of the choice
probabilities, is equivalent to discounted logit and so is choice loving; here,
the preference for larger choice sets arises from the fact that larger choice sets
have a higher maximum entropy.

Ambiguity aversion: Agents might be uncertain about the rewards to each
choice, and randomize in response to ambiguity aversion. As shown by
Fudenberg, Iijima, and Strzalecki (2014), this can lead to the agents acting
as if their goal was to maximize the sum of expected utility and entropy (or
some other convex function); thus, this explanation for stochastic choice and
the explanation based on inattention motivate representations with identical
functional forms, including DAE as a the special case where IIA is satisfied.4

3When κ ∈ (0�1), the agent prefers to include additional items provided they are not too much
worse than the current average, while when κ > 1, the agent only wants to add items that are
sufficiently better.

4Harsanyi (1973b) introduced the more general idea that choice probabilities correspond to
maximizing the sum of expected utility and a nonlinear perturbation function. This functional
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Weighting function: Finally, observed choices might be the result of psy-
chophysical “weighting functions,” as in Luce (1959), who characterized
stochastic choice in static problems under the additional assumptions of pos-
itivity (all actions have positive probability) and IIA. Under these assump-
tions, the observed choice distribution can be generated by assigning weights
W (a) to each action a, and then picking an action with probability equal to its
share of the total weight; the term “psychophysical” reflects the idea that these
weights correspond to the mental stimuli generated by the feasible actions.
This motivation for random choice corresponds to our Discounted Adjusted
Luce (DALu) representation.

As should be clear by now, this paper relates to several strands of the ax-
iomatic decision theory literature, to foundational literature in game theory,
and to empirical work on dynamic choice. We discuss these relationships in
the concluding section, after we have developed our representations and the
associated axioms.

Of these axioms, the most significant are: IIA (so that static choice is logit);
a separability axiom that implies that preferences over future decision prob-
lems are independent of the outcome in the current period, and vice versa;
a recursivity axiom that links current choice of menus for tomorrow to behavior
when tomorrow arrives; and a replica invariance axiom that says roughly that
how the agent feels about duplicating every item in a menu does not depend
on the menu’s elements or size. We also characterize the special case of κ = 0
(which corresponds to the usual discounted logit) with a more specific “aggre-
gate recursivity” axiom, which says that menu A is more likely to be selected
now than some other menu B if elements of A are more likely to be selected
than elements of B when both are presented as an immediate decision next pe-
riod. In contrast, DAE with κ = 1 corresponds to “average recursivity,” where
menu A is preferred if its elements are chosen with higher average probability.
As in the deterministic case of Koopmans (1960), additional assumptions are
needed to arrive at a stationary discounted sum formulation.

In addition to its impact on preferences over menus at a given time, the
choice aversion parameter κ also influences whether the agent wants to make
decisions as soon as possible or to postpone them: when κ = 0, the agent enjoys
making decisions and so (because of discounting) prefers to decide early, while
when κ ≥ 1, the agent views decisions as costly and wishes to postpone them.
As we argue below, to the extent that people typically do prefer to postpone
decisions, this can be viewed as an additional reason to generalize DAL to
allow for positive values of κ.

form was recently used by Swait and Marley (2013) to model stochastic choice as the result of
balancing multiple goals.
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2. DYNAMIC CHOICE PROBLEMS

For any set S, let K(S) be the collection of nonempty finite subsets of S, to
be interpreted as the collection of possible choice problems. For any set S let
Δ(S) be the collection of probability measures on S with finite support. Let
Δn := Δ({1� � � � � n}).

We assume that time is discrete, t = 0�1� � � � �T with T finite. We assume
throughout that T > 0, that is, choices are observed in at least two time pe-
riods. Let Z be the set of all one-period outcomes.5 In any period t, an in-
dividual choice problem is called a menu; we denote period-t menus by let-
ters At�Bt�Ct� � � � and the space in which all menus live by Mt . The elements
of the menu are called actions and are denoted by at� bt� ct� � � � ; the space
in which all actions live is denoted by At . We construct the set of dynamic
choice problems recursively. Let AT := Z and MT := K(AT ); in period T , ac-
tions are synonymous with one-period outcomes because in the terminal pe-
riod there is no future, and period-T menus are just collections of one-period
outcomes. Now we define the possible menus and actions in earlier time peri-
ods by At :=Z ×Mt+1 and Mt :=K(At). Thus, an action at at time t is a pair
(zt , At+1) of a current outcome and a time-t+1 menu, while a menu At at time
t is a finite set of such actions. For notational convenience, we set MT+1 = ∅
and use the convention that Z ×MT+1 =Z.

It is important that the actions today can restrict future opportunities with-
out having any impact on the current outcome; for example, the agent might
face the period-T −1 menu {(z�AT)� (z�A

′
T )}. Moreover, the agent might face

the choice at time T −3 of whether to commit to her time-T outcome in period
T − 2 or in period T − 1. As we will see, different values of κ predict differ-
ent choices here; this is one advantage of allowing a general finite horizon as
opposed to restricting the model to have only two time periods.

DEFINITION 1—Dynamic Stochastic Choice Rule: A dynamic stochastic
choice rule is a collection of mappings P = {Pt}Tt=0 such that Pt :Mt → Δ(At),
with the property that, for any At ∈ Mt , the support of Pt(At) is a subset
of At .6

For any At ∈ Mt , Pt(At) is the probability distribution on actions that rep-
resents the stochastic choice from At .7 For notational convenience, we write

5Our richness axiom will imply that Z is infinite, but we do not assume any structure on this set;
possible cases include: a subset of R (monetary payoffs), or R

n (consumption bundles or acts),
and Δ(Rn) (lotteries).

6This is the stochastic version of the usual condition that the only elements that can be chosen
are those that belong to the menu.

7Note that this implicitly assumes that choice at time t from a given menu is independent of
past history, although that history can influence the set of options available. We believe that our
approach could be extended to allow for history dependence through a state variable, as is com-
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Pt[Bt|At] to denote the probability that the chosen action will belong to the
set Bt when the choice set is At . For (z�At+1) ∈ At , we write Pt[(z�At+1)|At]
instead of Pt[{(z�At+1)}|At]; note that Pt[Bt|At] = ∑

bt∈Bt
Pt[bt |At].

Note that the time periods in our model are data that are observed by the
analyst, as opposed to the purely notional time periods in nested logit, which is
an as-if representation of static choice. As we will see, observing how the choice
probabilities vary with the times that decisions are made provides additional
information about the agent’s preferences that is unavailable in static models.

Our primitive is a dynamic stochastic choice rule P . However, it will be more
convenient to express some of our questions using the notion of the stochastic
preference �t on At , which is derived from Pt as follows.

DEFINITION 2—Stochastic Preference: Action at is stochastically preferred to
action bt at time t, denoted at �t bt , if Pt[at|{at� bt}] ≥ Pt[bt |{at� bt}]. Given �t ,
we define induced stochastic preferences on Z and Mt+1 as follows: z is
stochastically preferred to w at time t, denoted z �t w, if (z�At+1)�t (w�At+1)
for all At+1 ∈Mt+1. Menu At+1 is stochastically preferred to Bt+1 at time t, de-
noted At+1 �t Bt+1, if (z�At+1)�t (z�Bt+1) for all z ∈ Z.

Under our basic axioms (to be introduced later), these stochastic preference
relations are complete and transitive. All behavioral content expressed in terms
of �t can be formulated in terms of Pt at the cost of making some expressions
more cumbersome.

3. CHOICE RULES AND THEIR REPRESENTATIONS

We study three equivalent representations of a dynamic stochastic choice
rule. Each of these writes values as the sum of current payoff plus the dis-
counted value of the expected continuation payoff, where the continuation
payoff assigned to each menu is adjusted to account for its size.

The most familiar-looking of the representations is Discounted Adjusted
Logit, which generalizes the standard discounted logit representation used to
model dynamic individual choice in estimation problems.

DEFINITION 3: A random variable ε has the extreme value distribution
(with noise parameter 1), denoted ε ∼ EV(1), if its c.d.f. is F(ε) =
exp(−exp(−ε− γ)), where γ is Euler’s constant.

DEFINITION 4—Discounted Adjusted Logit: P has a Discounted Adjusted
Logit (DAL) representation iff there exist a utility function v :Z → R, dis-

monly allowed in empirical work (see, e.g., Aguirregabiria and Mira (2010)). However, because
the complexities involved in axiomatically characterizing state dependence seem orthogonal to
the study of stochastic choice, we have not tried to develop this extension.
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count factor δ ∈ (0�1), choice aversion parameter κ ≥ 0, and value functions
Ut :At → R recursively defined by UT(z) = v(z) and

Ut(zt�At+1)= v(zt)+ δE
[

max
at+1∈At+1

Ut+1(at+1)+ εat+1 − κ log |At+1|
]
�(3)

such that, for all t = 0� � � � � T , all At , and all at ∈At ,

Pt[at |At] = Prob
[
Ut(at)+ εat ≥ max

bt∈At

Ut(bt)+ εbt

]
�(4)

where εat ∼i�i�d� EV(1).8

In this representation, the ε terms correspond to payoff shocks that are ob-
served by the decision maker but not by the analyst, as in static random utility
models.9 Note that these payoff shocks apply to every action, just as they do
under the “Assumption AS” or equation (3.7) of Rust (1994). As an exam-
ple, suppose that a consumer first decides what size tuna fish can to buy and
later decides how much to consume each day; then payoff shocks apply to each
possible purchasing decision in period t = 0 as well as to consumption in sub-
sequent periods, as in Hendel and Nevo (2006, p. 1645).

We call this sort of payoff shocks “shocks to actions,” as opposed to the alter-
native model where payoff shocks apply only to a set of “immediate outcomes.”
The simplest version of this alternative model, in which the agent knows all fu-
ture shocks from the outset, predicts purely deterministic choice in settings
such as the purchasing decisions discussed above, which seems implausible
and is impractical for empirical work.10 The model could generate stochastic
decisions under the assumption that the agent gradually learns about future
payoff shocks over time, but this would make it difficult or impossible to ob-
tain closed form solutions, and so require computationally intensive numerical
work. Thus we follow the empirical literature here and restrict attention to
“shocks to actions.” We explore one consequence of this modeling assumption
in Section 5.4.

In the case κ = 0, the representation reduces to discounted logit. (More pre-
cisely, it is the simplest sort of discounted logit representation, as it does not
include a state variable and assumes stationarity; we make these simplifications

8Allowing for a more general noise parameter η is possible, but does not lead to a more general
model, as only v/η is identified.

9Note that the agent does not know the realizations of future payoff shocks, so he is on an
equal footing with the analyst when it comes to future. This simplifying assumption makes the
model tractable, which is why it is used in estimation.

10Some aspects of this alternative approach have been studied in the decision theory litera-
ture: Ahn and Sarver (2013) related deterministic choice over menus in period 0 with random
choice from menus in period 1, but it is not clear how to extend this to allow for random choice
in period 0. Dillenberger, Lleras, Sadowski, and Takeoka (2013) and Lu (2013) made a similar
connection in a model with an objective state space, but likewise did not characterize random
choice in period 0.
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to focus on the issues related to recursive choice.) As we will show explicitly
below, discounted logit is choice loving in the sense of always preferring larger
menus. Intuitively, this comes from the fact that each new object added to the
menu provides another chance for a good realization of the random shock ε,
as it does in any random utility model unless the shocks to some of the objects
are perfectly correlated.11

The case κ = 1 represents error-averse choice in the sense that the constant
log |At+1| that the agent prefers not to add a new item to a singleton menu if
it is worse than the current item (in the sense of being chosen less than half
the time in the binary menu). More generally, the parameter κ is responsible
for how heavily big sets are penalized and corresponds to the choice aversion
ordering of agents introduced below. The role of κ and the special nature of
κ = 1 are easier to see in the next two representations.

DEFINITION 5: For any q ∈ Δn, let Hn(q) := −∑n

i=1 qi log(qi) be the entropy
of q with the convention that 0 log 0 = 0. Let Jn

κ(q) = Hn(q) − κ logn be the
adjusted entropy.

Since the entropy and adjusted entropy are invariant to permutations, we
treat distributions q ∈ Δ(A) as if they were elements of Δ|A| when they are
arguments of the functions H and J.

DEFINITION 6—Discounted Adjusted Entropy: P has a Discounted Adjusted
Entropy (DAE) representation if and only if there exist a utility function
v :Z → R, discount factor δ ∈ (0�1), choice aversion parameter κ, and value
functions Ut :At → R recursively defined by UT(z) = v(z) and

Ut(zt�At+1)(5)

= v(zt)+ δ

[
max

q∈Δ(At+1)

∑
at+1∈At+1

q(at+1)Ut+1(at+1)+ J |At+1|
κ (q)

]
�

such that, for all t = 0� � � � �T and At ,

Pt[·|At] = arg max
q∈Δ(At)

∑
at∈At

q(at)Ut(at)+ J |At+1|
κ (q)�(6)

11The standard nested logit model applies to a static choice of an item and so cannot directly
address preferences over menus, but a similar issue arises there: If “purchase” is one nest and
“not purchase” is another, then in the limit of a very large set of goods, almost everyone must
purchase. Ackerberg and Rysman (2005) proposed (but did not characterize) two alternative
responses to this issue in a static model: either scale the variance of the extreme-value shocks with
the number of goods in the menu, or add a term to the utility function that depends on various
characteristics of the menu. Fudenberg, Iijima, and Strzalecki (2014) axiomatized an extension of
the static nested logit model that allows for choice aversion.
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Note that the entropy of the uniform distribution over n objects is log(n),
which increases without bound in n. Hence a κ = 0 agent will prefer a menu of
many roughly similar objects to the singleton menu with just one of them. We
elaborate on the consequences of this below.

When κ = 1, the adjusted entropy is −Rn(q), the negative of relative entropy
of q with respect to the uniform distribution. This function is maximized in the
interior of the simplex, so when κ = 1, stochastic choice can be interpreted as
the result of costly attention: Choosing a uniform distribution is costless, but
departing from it in the direction of a more desirable lottery is costly, with cost
proportional to the relative entropy. Such an agent is error-averse, and prefers
removing the lowest-ranked item from a menu, but is indifferent about whether
an equally good item is added to a singleton menu. As the equivalent logit
representation suggests, though, the error-averse preferences are consistent
with a combination of consideration costs based on menu size and logit-type
payoff shocks.

More generally, note that Jn
κ(q) = (1 − κ)Hn(q) − κRn(q), where Rn(q) =∑n

i=1 qi log qi
1/n is the relative entropy of q with respect to the uniform distribu-

tion. That is, adjusted entropy is a linear combination of entropy and relative
entropy. Thus, adjusted entropy represents a combination of two motivations
for random choice: desire for randomization (represented by the entropy term)
and costly attention (represented by the negative relative entropy term).

The third representation is perhaps the easiest to use in applications, as it
incorporates the well-known “log-sum” representation of the logit value func-
tion. (See, e.g., Train (2009, Chapter 3), or Lemma 3 in the Appendix.)

DEFINITION 7—Discounted Adjusted Luce: P has a Discounted Adjusted
Luce (DALu) representation if there exist a utility function v :Z → R, dis-
count factor δ ∈ (0�1), choice aversion parameter κ ∈ R, and value functions
Wt :At → R++ recursively defined by logWT(z) = v(z) and

logWt(zt�At+1)= v(zt)+ δ

[
log

( ∑
at+1∈At+1

Wt+1(at+1)

)
− κ log |At+1|

]
�

such that, for all At and all at ∈At ,

Pt[at |At] = Wt(at)∑
bt∈At

Wt(bt)
�

Here, as in the static Luce case, the ratio of the choice probabilities of two
items is given by the ratio of their weights; these weights now correspond to a
weighted sum of current payoff and the sum of the weights of the continuation
menus, with menu size penalized by κ.

The following proposition states the equivalence of the three representa-
tions.
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PROPOSITION 1: The following statements are equivalent:
1. P has a DAL representation with parameters (v�δ�κ) and value func-

tions Ut .
2. P has a DAE representation with parameters (v�δ�κ) and value func-

tions Ut .
3. P has a DALu representation with parameters (v�δ�κ) and value functions

Wt = exp(Ut).
Moreover, if P has any of the above representations with parameters (v�δ�κ)

and (v′� δ′�κ′), then (v�δ�κ)= (v′ +β�δ′�κ′) for some constant β.

The proof is in the Appendix (as are the proofs of all of the other proposi-
tions). In outline, the proof first notes that all three representations generate
the same choice probabilities as logit in the static case and thus are equiva-
lent in final period, and then uses the equivalence of the corresponding value
functions for final-period menus to work backwards. The reason that αv is not
equivalent to v in DAL, as opposed to the usual affine uniqueness of expected
utility, is that we set the parameter of the extreme-value distribution to 1, which
fixes the multiplicative term in the utility function; this parallels our specifica-
tion of a unit coefficient for adjusted entropy in DAE and of W = exp(1 · v) in
DALu. Uniqueness of δ is as in the deterministic choice literature, and unique-
ness of κ follows from the period-t choices between singleton menus at period
t + 1 and arbitrary two-element menus. Motivated by this proposition, we re-
fer to the three representations collectively as discounted adjusted representa-
tions, or DARs.

DEFINITION 8—Discounted Adjusted Representation: P has a DAR if it has
a DAL, DAE, or a DALu representation.

4. APPLICATIONS

4.1. Work or College?

To illustrate our setup, consider the following example of a high school stu-
dent’s choice of whether or not to go to college, which we adapt from Train
(2009, Chapter 7). There are two periods. In period 0, the student can either
go to college, which leads to immediate outcome c, or work, which leads to
immediate outcome w. In addition to immediate outcomes, her choices in pe-
riod 0 have consequences for the sets of options available in period 1: If the
student works in period 0, she must work in job z in period 1, and if the stu-
dent goes to college in period 0, she will choose between two jobs x and y .
Thus, the student faces the decision depicted in Figure 1.

To represent this decision tree as one of our dynamic choice problems, let
A1 = {x� y} and B1 = {z} be the two possible continuation problems in period 1
(after choosing to go to college or not). Then the time zero choice problem is
A0 = {(c�A1)� (w�B1)}. We write P0[(c�A1)|A0] to denote the probability that
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FIGURE 1.—Choosing whether to go to college.

the student chooses to go to college in period 0 and P1[x|A1] to denote the
probability that in period 1 (conditional on having gone to college) the student
chooses a job x.

Suppose that the v is the utility function of the agent, so that, for example,
the utility of outcome c is v(c). Under any of the DARs, the value of the con-
tinuation choice problem A1 is log(ev(x) + ev(y)) − κ log 2 and the probability
of choosing job x from A1 is ev(x)

ev(x)+ev(y)
. Using the formula from DALu, it is

immediate that the probability that the student goes to college is

P0

[
(c�A1)|A0

] = exp
(
v(c)+ δ log

(
ev(x) + ev(y)

) − δκ log 2
)

/
(
exp

(
v(c)+ δ log

(
ev(x) + ev(y)

) − δκ log 2
)

+ exp
(
v(w)+ δv(z)

))
�

An extreme case is when v(x) = v(y) = v(z) = v1 and v(c) = v(w) = v0.
Then

P0

[
(c�A1)|A0

] = ev0+δ(v1+(1−κ) log 2)

ev0+δ(v1+(1−κ) log 2) + ev0+δv1
�

Here the log 2 term reflects the fact that going to college leads to two future
options. When κ < 1, the term has positive weight, corresponding to an agent
who likes to have choices, perhaps due to the perceived option value; when
κ > 1, the log 2 term has negative weight, corresponding to an agent who is
choice-averse. When κ = 1, the log 2 term vanishes, so the agent is indifferent
about adding an equally good choice to the menu.
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FIGURE 2.—Durable goods purchasing decisions.

4.2. Durable Goods

The example in Figure 2 shows how the model of individual demand for
durable goods proposed by Gowrisankaran and Rysman (2012) fits into our
framework. In period t = 0, there are two durable goods available: x and y; in
period t = 1, there is only one durable good z available. In this environment,
the customer also cares about the price of each good, so in our setting, the out-
comes available in each period are pairs (good, price), for example, (x�px).12

In period t = 0, the agent chooses between x and y . She will receive the
flow of utility of that choice in t = 0 as well as in t = 1, unless she decides
to replace it with z. For example, purchasing x at price px corresponds to the
action a= ((x�px)�A1): the agent receives x in period 0 and pays the price px;
in period 1, the agent has a choice from the menu A1 = {(x�0)� (z�pz)}: not
making any purchases and continuing to receive x, or making a new purchase
z and paying the price pz . Likewise, purchasing y at price py corresponds to
the action b= ((y�py)�B1), where B1 = {(y�0)� (z�pz)}.

Like us, Gowrisankaran and Rysman (2012) supposed that the individual is
uncertain about her own future choices, and moreover, that this uncertainty is
symmetric between the agent and the analyst. In addition, they made the same
functional form assumptions that we do: They assumed that in period 1, the
utility of the outcome (x�0) is v(x) + εx�1, the utility of (y�0) is v(y)+ εy�1,
and the utility of (z� r) is v(z) − r + εz�1, where εx�1� εy�1� εz�1 ∼i�i�d� EV(1).
Gowrisankaran and Rysman (2012) assumed that preferences are discounted

12Gowrisankaran and Rysman (2012) also allowed for the possibility that the agent may not
know the set of goods available in future periods, nor their prices. With incomplete information,
their model is not formally a special case of ours. We abstract from this and assume complete
information on the part of the agent.
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logit; in particular, they assumed that the taste shocks in period 0 and period 1
are independent and that the period-1 shock is not revealed until the begin-
ning of period 1. Thus their model corresponds to DAR with κ = 0, so from
the agent’s t = 0 perspective, the value of menu A1 is

V (A1)= log
(
eu(x) + eu(z)−pz

)
�

Likewise,

V (B1)= log
(
eu(y) + eu(z)−pz

)
�

As a result, the probability that the agent purchases x in period 0 is

eu(x)−px+δV (A1)

eu(x)−px+δV (A1) + eu(y)−py+δV (B1)
�

4.3. Magazine Subscriptions

Our framework can be also used to model choices that influence the future
opportunities to make decisions, such as choosing between liquid and illiquid
assets, purchasing or renting a car, or whether to get a cellphone with or with-
out a contract. For example, suppose that an agent is contemplating buying
a magazine subscription; if the agent does not buy the subscription, she will
have to decide whether to purchase each issue separately. For simplicity, we
abstract from pricing (since subscriptions offer cost savings, this force would
push the agent in the direction of buying the subscription). We focus instead
on another aspect of the problem: since every issue differs, even if in expecta-
tion the magazine is worth buying, there may be weeks when it is not. Thus, not
having a subscription offers an option value. On the other hand, the agent may
be choice-averse and may prefer to make the decision once and for all, instead
of having to decide every week. As we will see, in our model the strength of
this force is measured by the parameter κ.

To illustrate this in a simple model, suppose that in period t = 0, the agent
makes the subscription decision, and in periods t = 1�2, she makes decisions
about buying individual issues should she choose not to subscribe. Let x denote
‘consuming’ the magazine and � denote not consuming it. The agent faces the
dynamic decision problem depicted in Figure 3.

Formally, buying a subscription corresponds to the action b0 = (�� {(x� {x})}),
whereas not buying the subscription corresponds to n0 = (�� {(x� {x��})�
(�� {x��})}). Normalize v(x) = 0 and let v(�) = d < 0. Then the probability
of skipping the purchase of an issue of the magazine is the same in every pe-
riod and equals

π := P1

[
(��A)|{(��A)� (x�A)

}] = P2

[�|{��x}] = ed

1 + ed
�
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FIGURE 3.—Subscription decision.

which is increasing in d. With this parameterization, buying the subscription
has value U0(b0)= d, whereas not buying the subscription has value

U0(n0) = d + δ
(
log

(
ed+δ(log(1+e)−κ log 2) + eδ(log(1+e)−κ log 2)

) − κ log 2
)

= d + (
δ+ δ2

)
log

(
1 + ed

2κ

)
�

Thus, the agent will buy the subscription with probability more than 0.5 iff
her choice aversion parameter κ is above the threshold

κ∗ = log
(
1 + ed

)
log 2

= − log(1 −π)

log 2
�

Note that κ∗ is increasing in π, which can thus be seen as a measure of the
option value of not locking in to the subscription: the higher the probability of
skipping the single issue purchase, the stronger the choice aversion has to be
to compensate for the forgone flexibility.

As we show in Section 5, it is true more generally that the parameter κ
measures how the agent trades off flexibility and decision costs. The ability
to quantify this tradeoff may be helpful in applied work studying choices about
subscriptions and other choices influencing the future opportunities to make
decisions, such as those mentioned in Section 4.

5. COMPARATIVE STATICS

5.1. Choice Aversion

We now introduce a partial order that allows us to compare how agents feel
about adding items to a menu.
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DEFINITION 9—Choice Aversion: Agent 2 is more choice-averse than
agent 1 if, for all menus At+1, Bt+1 with |At+1| ≤ |Bt+1|, At+1 �1

t Bt+1 implies
that At+1 �2

t Bt+1 and At+1 �1
t Bt+1 implies that At+1 �2

t Bt+1.

PROPOSITION 2: Consider any two DARs P with parameters (v�δ�κ), and P∗

with parameters (v�δ�κ∗). Then, P is more choice-averse than P∗ if κ ≥ κ∗. The
converse is true under the Richness axiom (Axiom 5) introduced in Section 6.

Intuitively, this is true because higher κ means that bigger sets are penalized
more heavily. The parameter κ also determines the conditions under which the
agent wants to add an item to a menu, that is, when At+1 ∪ {bt+1} �t At+1: the
higher the κ, the more “choosy” the agent.

PROPOSITION 3: For any DAR with parameter κ and bt+1 /∈ At+1, we have
At+1 ∪ {bt+1} �t At+1 if and only if Pt+1[bt+1|At+1 ∪ {bt+1}] > 1 − |At+1|κ

(|At+1|+1)κ .
In particular, if At+1 = {at+1}, the agent strictly prefers {at+1� bt+1} to {at+1} iff
Pt+1[bt+1|{at+1� bt+1}]> 2κ−1

2κ .

Thus if κ = 0, the agent always wants to add new items. If κ = 1, the agent
only wants to add a new item if it is chosen with more than uniform prob-
ability, which fits with the interpretation that stochastic choice arises from a
cost of preventing errors. This provides an easy way to distinguish κ = 0 from
κ = 1 (assuming that the model is correct with one of these two values): It
is sufficient to observe the agent’s choice between the menu {at+1� a

′
t+1} and

the menu {at+1}, where Pt[at+1|{at+1� a
′
t+1}] = 0�5. Moreover, by observing the

agent’s choice probabilities between n pairs of menus, we can determine to
which of n+ 1 subintervals the agent’s value of κ belongs.13 The next proposi-
tion provides further information on the implications of various values of κ by
linking them to stochastic versions of axioms in the literature on preferences
over menus: Kreps (1979), Dekel, Lipman, and Rustichini (2001, 2009), Gul
and Pesendorfer (2001).

PROPOSITION 4: Suppose that P is a DAR. Then
1. κ ≥ 1 iff for all t and disjoint At+1, Bt+1, At+1 �t Bt+1 implies At+1 �t At+1 ∪

Bt+1.
2. κ ≤ 1 iff for all t and disjoint At+1, Bt+1, At+1 �t Bt+1 implies At+1 ∪Bt+1 �t

Bt+1.
3. κ = 1 iff for all t and disjoint At+1, Bt+1, At+1 �t Bt+1 implies At+1 �t At+1 ∪

Bt+1 �t Bt+1.

13We can also prove the following result: suppose that Pt+1[at+1|{at+1�ht+1}] = ε =
Pt+1[lt+1|{at+1� lt+1}]. Then, for any ε, there exists κ∗ such that {at+1} �t {ht+1� lt+1} for κ > κ∗ and
{at+1} ≺t {ht+1� lt+1} for κ < κ∗. Moreover, for any κ, there exists ε∗ such that {at+1} �t {ht+1� lt+1}
for ε > ε∗ and {at+1} ≺t {ht+1� lt+1} for ε < ε∗.
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4. κ ≤ 0 iff for all t, At+1 �t Bt+1 whenever At+1 ⊇ Bt+1.
5. κ > 0 iff for all t and for any At+1, there exists bt+1 /∈At+1 such that At+1 �t

At+1 ∪ {bt+1}.

Of course, data on a finite set of menus could never prove that the repre-
sentation also fit choices from menus that have not been observed. For this
reason, our representation theorem in Section 6 places restrictions on choice
from every menu; the theorem tells us just what conditions these choices must
satisfy to be consistent with the representation.

5.2. Immediate versus Delayed Consequences

Dynamic choice problems also let us study how choices depend on whether
their consequences are immediate or delayed. For example, suppose that the
decision maker chooses x with probability 0�51 from the menu {x� y}, as in Fig-
ure 4. What will the decision maker do if asked to make the choice between x
and y one period before they can be consumed, that is, what is the probability
of choosing the action a = (z� {x}) over b = (z� {y})? As noted above, DAL
assigns shocks to all actions, even those without any immediate payoff conse-
quences. At the time of the decision, the agent does not know the particular
shocks that apply to x and y tomorrow. However, even though the menu {x}
is in expectation strictly better than {y}, the agent’s choice between a and b is
stochastic, as both actions receive independent payoff shocks today.

One obvious alternative model would be one where shocks are only to con-
sumption. With the usual i.i.d. shocks assumption, that model predicts deter-
ministic choice regardless of the real time that elapses between the choice and
its consumption consequence in the next period. This stark conclusion strikes
us as a significant drawback. The intermediate case where information about
consumption shocks is gradually revealed over time would yield less stark pre-
dictions, but it seems too complicated to work with except in extremely simple
problems.

FIGURE 4.—Stochastic choice with delayed consumption.
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5.3. Horizon Effects

A related phenomenon is the relationship between the length of the delay
and choice. How do the choice probabilities change when the consequences re-
cede into the future? Are choices over later rewards more random than choices
over sooner rewards? What happens in the limit?

Let A be a subset of Z. Suppose the agent will receive a fixed sequence
z̄ = (z0� z1� � � � � zT−1) in periods 0 through T − 1, and that the only nontrivial
decision (nonsingleton choice problem) that the agent faces is to decide in time
0 which z̃T to receive at time T . Thus, the agent’s time-0 decision problem is
to choose between |A| different continuation problems, one for each element
of A. Let A0 := {(z0� z1� � � � � zT−1� z̃T ) : z̃T ∈ A} be the choice set at time 0.
The object of interest is P0[(z0� z1� � � � � zT−1� z̃T )|A0], the choice probability of
a given element z̃T .

Discounting implies that the agent becomes less concerned about a choice as
its consequences recede into the future, and so under DAR in the limit choice
over distant rewards is close to the uniform distribution. To see that, note that
if the agent picks z̃T , his period-T utility is v(z̃T ), and his value in period 0 is
U0(z0� z1� � � � � zT−1� z̃T ) = ∑T−1

t=0 δtv(zt) + δTv(z̃T ). Thus, the agent’s choice at
time 0 is

P0

[
(z0� z1� � � � � zT−1� z̃T )|A0

] =
exp

(
T−1∑
t=0

δtv(zt)+ δTv(z̃T )

)

∑
z′∈A0

exp

(
T−1∑
t=0

δtv(zt)+ δTv
(
z′))

= exp
(
δTv(z̃T )

)
∑
z′∈A0

exp
(
δTv

(
z′)) �

Note that even though the initial differences between the utilities of items
of A may be large, discounting makes them closer to each other, which
leads to more uniform choice probabilities. In the limit, as T → ∞ we have
P0[(z0� z1� � � � � zT−1� z̃T )|A0] → 1

|A| .

5.4. Choosing When to Choose

A concomitant question about timing is when the agent would like to make a
choice from a given menu, with the outcome to be received at some later time.

Let A be a subset of Z with a generic element z̃T . Suppose that the agent
must choose between a0 = (z0�A1) and b0 = (z0�B1) at time 0. Under either
decision problem, he will receive the same sequence (z1� � � � � zT−1) in periods 0
through T − 1. Under A1, he will face a choice in period 1 of which element
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FIGURE 5.—Choosing when to choose with A= {z�w}.

z̃T to receive at time T , while under B1, he selects his time-T outcome z̃T ∈ A
in period T . Figure 5 shows a simple problem of this kind; we are interested
whether a0 �0 b0 or vice versa.

The following result shows that the timing decisions of the agent depend on
his choice aversion parameter κ: agents who are more choice-loving have a
stronger preference for making earlier decisions; agents who are more choice-
averse have a stronger preference for making later decisions.

PROPOSITION 5:
1. Fix any two DAR choice rules (v�δ�κ) and (v�δ�κ∗). If a0 �0 b0 and

κ > κ∗, then a0 �∗
0 b0. If b0 �0 a0 and κ∗ > κ, then b0 �∗

0 a0.
2. If κ ≤ 0, then a0 �0 b0 for any menu A. If κ ≥ 1, then b0 �0 a0 for any menu

(with indifference if and only if κ = 1 and all the elements of the set A are chosen
with equal probabilities).

An agent with κ = 0 always likes to make an early choice. Under DAE, she
derives a benefit (measured by the entropy function) from the simple act of
choice, and impatience implies she would like to receive this benefit as early
as possible. Under DAL, the reason the agent prefers early resolution when
κ = 0 is that the payoff shocks εt apply to pairs (zt�At+1) of current action and
continuation plan, and since the expected value of the shock of the chosen ac-
tion is positive, the agent again prefers early choice. This is a consequence of
two key assumptions: first, that there are utility shocks to actions as opposed
to shocks to consumption utility (as is needed to generate stochastic choice
over any act that involves delayed consumption, such as purchasing cans of
tuna fish), and second, that the desirability of future menus includes all of the
“option value” that the utility shocks suggest. The adjustment embodied in the
parameter κ lets the model keep the analytic simplicity of i.i.d. shocks to ac-
tions while reducing or eliminating this option value. For example, when κ≥ 1,
the menu-size adjustment is so large that the agent perceives the act of choice
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as a “bad.” Then, because the agent is impatient and so prefers to postpone
losses, a κ ≥ 1 agent has a preference for later choice. This provides a way to
identify κ without using menus of different sizes (again on the assumption that
the representation applies).

Some additional intuition for the link between κ and preference over the
timing of choice can be obtained by noticing that the value function in DALu
expresses the value today as a nonlinear function of the choice probabilities to-
morrow. This function resembles the formulation of Kreps and Porteus (1978)
and especially the functional form of Epstein and Zin (1989), with the differ-
ence that in those models the randomization is exogenous, while here the ran-
domization is a consequence of the actions of the agent herself. When κ = 1,
our agent has preferences toward late resolution of uncertainty because the
nonlinear transformation of the probabilities is concave; here the adjusted log-
sum formula can be interpreted as a certainty equivalent.

The “shocks to actions” assumption, along with our other conditions, im-
plies that agents who tend to like bigger menus are also more inclined to make
decisions earlier, while agents who typically like smaller menus are also in-
clined to postpone their decisions. In contrast, the “shocks to immediate out-
comes” model discussed in Section 3 implies that agents always at least weakly
prefer larger menus and later choices. There are many possible intuitions for
either case and they apply in different situations. Although many economists
find preference for both larger menus and later choice intuitive, we personally
would sometimes strictly prefer a menu with one great choice to a menu with
the great choice and several awful ones, due to our awareness of our limited
cognition: It takes time and effort to make choices, and sometimes we make
mistakes.14 On the other hand, in some cases we might prefer larger menus for
reasons outside of the model, such as getting utility from thinking about possi-
ble vacation plans. Likewise, there are cases where we prefer to make decisions
early to get the decision over with (which fits with κ < 1) or to avoid the need
to remember to make it (which does not fit into our model), and cases where
we prefer to postpone decisions to get more information or to avoid facing
unpleasant alternatives. Moreover, there are other forces, such as regret aver-
sion, that can lead to a preference for either larger or smaller menus and either
sooner or later decisions. Unfortunately, we do not know of any empirical ev-
idence on the prevalence of the preference for each of the four combinations
(larger/smaller, earlier/later); such data would be a valuable guide to future
work in this area.

14For example, the agent in the Rubinstein and Salant (2006) model of choice from lists can
strictly prefer {x} to {x� y} because with the larger menu, if y is presented first, he might end up
choosing it despite x being better.
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6. AXIOMATIZATION

We present the axioms in three subsections. The axioms in the first subsec-
tion simply ensure that preferences reduce to the logit case in a static problem
and that preferences are independent of any fixed continuation problem, which
also implies that preferences over today’s outcomes with a fixed continuation
problem reduce to logit. The second subsection develops axioms that relate
choices at times t and t + 1, and pin down how the agent feels about replicat-
ing the objects in each menu. These axioms are sufficient to obtain recursive
versions of DAR, in which choice at time t depends on the utility of time-t
outcomes and a continuation value. However, just as in deterministic dynamic
choice (Koopmans (1960)), additive, stationary, impatient representations re-
quire additional assumptions that we develop in the third subsection.

6.1. Logit-esque Axioms

AXIOM 1—Positivity: For any t, At ∈Mt , and at ∈ At , we have Pt[at |At]> 0.

As argued by McFadden (1973), a zero probability is empirically indistin-
guishable from a positive but small probability, and since keeping all proba-
bilities positive facilitates estimation, the positivity axiom is usually assumed
in econometric analysis of both static and dynamic discrete choice. In settings
where the stochastic term arises from random utility, positivity corresponds to
the assumption that the utility shocks have sufficiently large support that even
a typically unattractive option is occasionally preferred. Positivity is implied by
the perturbed objective function representation for stochastic choice when the
gradient of the perturbation becomes infinite on the boundary of the probabil-
ity simplex; it has been motivated there by the fact that no deterministic rule
can be Hannan (or “universally”) consistent.

AXIOM 2—Stage IIA: For any t ≤ T , at� bt ∈ At , and At�Bt ∈ Mt such that
at� bt ∈ At ∩Bt ,

Pt[at |At]
Pt[bt |At] = Pt[at |Bt]

Pt[bt |Bt] �

whenever the probabilities in the denominators are both positive.

Stage IIA says that the ratio of choice probabilities between two actions does
not depend on other actions in the menu; it reduces to the standard IIA axiom
in period T by our assumption that choices do not depend on past history.
Notice that positivity and IIA imply that the stochastic preference �t is tran-
sitive (see, e.g., Luce (1959)). As is well known, this axiom is very restrictive.
As we noted in the Introduction, it and the closely related logistic choice rule
are widely used in empirical work for reasons of tractability. Assuming IIA lets
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us focus on other aspects of stochastic dynamic choice; we discuss some of the
issues related to relaxing this assumption in Section 7.

AXIOM 3—Ordinal Time Separability: For all t < T , x� y ∈ Z, and At+1�
Bt+1 ∈Mt+1,

1. (x�At+1)�t (x�Bt+1) iff (y�At+1)�t (y�Bt+1).
2. (x�At+1)�t (y�At+1) iff (x�Bt+1)�t (y�Bt+1).

This axiom says that preferences over future decision problems are inde-
pendent of the outcome in the current period, and conversely, that prefer-
ences over current outcomes do not depend on the choice problem to be con-
fronted tomorrow.15 It is thus a stochastic version of Postulate 3 of Koopmans
(1960), and corresponds to what Fishburn (1970, Chapter 4) called indepen-
dence. Axiom 3 together with the recursivity axiom of Section 6.2 is sufficient
for a history-independent recursive representation of the agent’s preferences
(see Lemma 5 in the Appendix).

6.2. Tying Choices in Different Time Periods

Now we introduce axioms that relate choices in period t to choices and
menus in the consecutive time period. The next axiom requires that future
choice problem A is more likely to be selected now than some other B if ele-
ments of A are more likely to be selected than elements of B when both are
presented as an immediate decision next period. Note well that this axiom only
applies when A and B have the same size—for this reason, it does not constrain
how the agent feels about adding items to a menu.

AXIOM 4—Recursivity: For all t and menus At+1�Bt+1 ∈ Mt+1 with |At+1| =
|Bt+1|,

At+1 �t Bt+1 iff Pt+1[At+1|At+1 ∪Bt+1] ≥ Pt+1[Bt+1|At+1 ∪Bt+1]�
We need additional axioms to pin down choices across menus of different

sizes. Before stating these axioms, we present some others that help shed light
on the role of κ in the representations. The next axiom simply drops the quali-
fier |At+1| = |Bt+1| from recursivity:

AXIOM—Aggregate Recursivity: For all t and menus At+1�Bt+1 ∈Mt+1,

At+1 �t Bt+1 iff Pt+1[At+1|At+1 ∪Bt+1] ≥ Pt+1[Bt+1|At+1 ∪Bt+1]�
15Since at least one reader asked us whether Axioms 1 and 2 imply Axiom 3, we

point out that Axiom 3 fails if preference has logistic choice with the following spec-
ification: P[(z�At+1)|At ] = Ut(z�At+1)/

∑
(x�Bt+1)∈At

Ut(x�Bt+1) and Ut(z�At+1) = v(zt) +
δ

∑
(zt+1�At+2)∈At+1

2 · 1{zt+1=zt }u(zt+1�At+2) for some functions u and v.
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This axiom is satisfied by DAR with κ = 0. At first sight, it might seem to
require no more than that the agent is sophisticated, as it is a stochastic version
of the temporal consistency axiom of Kreps and Porteus (1978), which requires
that a future choice problem A is selected now over some other B if there
exists an element of A which is selected over any element of B when both are
presented as an immediate decision next period.16

Another noteworthy case is κ = 1, which corresponds to the discounted rel-
ative entropy model. This is captured by “average recursivity,” which says that
choice problem A is more likely to be selected now than some other B if the
average of the choice probabilities of elements of A is higher than that of B
when the choice set tomorrow is the union of A and B.

AXIOM—Average Recursivity: For all t and menus At+1�Bt+1 ∈ Mt+1,

At+1 �t Bt+1 iff

1
|At+1|Pt+1[At+1|At+1 ∪Bt+1] ≥ 1

|Bt+1|Pt+1[Bt+1|At+1 ∪Bt+1]�

We will now state an axiom that leads to a representation with an arbitrary
value of κ. To do so, we need a technical condition to ensure that the domain
of preference is suitably large.

AXIOM 5—Richness: For any t ≤ T , action (z�At+1) ∈ Z × Mt+1, finite set
of outcomes Z′ ⊆ Z, and λ ∈ (0�∞), there exists an outcome zλ ∈ Z \ Z′, such
that

Pt

[(
zλ�At+1

)|{(z�At+1)�
(
zλ�At+1

)}]
= λPt

[
(z�At+1)|

{
(z�At+1)�

(
zλ�At+1

)}]
�

In the case λ = 1 we say that z and z1 are “equivalents.” By Richness,
there are arbitrarily many equivalents of each outcome, and also many
“λ-equivalents.” An equivalent of an action (z�At+1) is any action of the form
(z1�At+1) where z1 is an equivalent of z. Let At+1 ∈Mt+1 and n be an integer.
We say that a menu A′

t+1 is an n-replica of At+1 whenever, for each a ∈ At+1,
the menu A′

t+1 contains n equivalents of a and |A′
t+1| = n|At+1|. We denote by

n ∗ At+1 any n-replica of At+1; each such replica is treated equivalently by the
agent.

16The axiom is also similar to Koopmans’ Postulate 4, which combines the requirement of
stationarity with dynamic consistency.
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AXIOM 6—Replica Invariance: For any t ≤ T , outcomes x� y ∈ Z, continua-
tion menus At+1, Bt+1, and integer n,

Pt

[
(x�At+1)|Ct

]
Pt

[
(x�Bt+1)|Ct

] = Pt

[
(y�n ∗At+1)|Ct

]
Pt

[
(y�n ∗Bt+1)|Ct

] �
where Ct = {(x�At+1)� (x�Bt+1)� (y�n ∗At+1)� (y�n ∗Bt+1)}.

To understand this axiom, suppose that At+1 = {a} and Bt+1 = {b� c}. Then,
in period t+1, when choosing from n∗At+1, the agent is sure to end up with an
equivalent of a. On the other hand, the probability of choosing an equivalent of
b when choosing from n∗Bt+1 is the same as the probability of choosing b from
Bt+1 (as a consequence of Stage IIA), so that the probability ratio of b and c is
the same whether they are being chosen from Bt+1 or from n ∗ Bt+1. Thus the
only reason that Pt [(x�At+1)|Ct ]

Pt [(x�Bt+1)|Ct ] might differ from Pt [(y�n∗At+1)|Ct ]
Pt [(y�n∗Bt+1)|Ct ] is because of the

effect of menu size per se: For example, if the agent likes menus of size 1 much
more than those of any other size, it might be that Pt [(x�At+1)|Ct ]

Pt [(x�Bt+1)|Ct ] >
Pt [(y�n∗At+1)|Ct ]
Pt [(y�n∗Bt+1)|Ct ] .

The axiom rules this out, and requires instead that the menu-size effect cancels
out.

6.3. Stationarity and Impatience

To obtain a more specific and more tractable representation, we first impose
an axiom that ensures that the effect of moving a decision from period t + 1 to
period t depends only on the period-t + 1 probabilities, and not the identities
of the actions.

AXIOM 7—Probability Equivalence: For any t < T , at+1� bt+1� ct+1� dt+1 ∈
At+1, and x� y ∈ Z,

Pt+1

[
at+1|{at+1� bt+1}

] = Pt+1

[
ct+1|{ct+1� dt+1}

]
iff

Pt

[(
x� {at+1}

)|{(x� {at+1}
)
�
(
x� {bt+1}

)}]
= Pt

[(
y� {ct+1}

)|{(y� {ct+1}
)
�
(
y� {dt+1}

)}]
�

The axioms we have developed so far are sufficient to characterize a version
of DAR where the value is a discounted sum but where various terms such
as the discount factor or utility functions can vary over time. To obtain a sta-
tionary discounted model, we also need an axiom to ensure that the discount
factor and utility functions are time invariant. The original form of stationarity
introduced by Koopmans (1960) relies on an infinite horizon; we use a similar
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axiom of Fishburn (1970, Chapter 7). The axiom is imposed on the period-zero
preference over consumption streams (z0� z1� � � � � zT ) that is induced from �0

by appropriately defining AT := {zT }, and recursively At−1 = {(zt−1�At)} for
t = T − 1� � � � �0.

AXIOM 8—Stream Stationarity: For any z� z1� � � � � zT � z
′
1� � � � � z

′
T ∈ Z,

(z� z1� � � � � zT )�0

(
z� z′

1� � � � � z
′
T

)
iff

(z1� � � � � zT � z)�0

(
z′

1� � � � � z
′
T � z

)
�

In conjunction with the previous axioms, the next axiom ensures that the way
the agent chooses between menus of different cardinality does not depend on
the time period.

AXIOM 9—Stationary Choice Aversion: For any t < T , outcome z ∈ Z, and
continuation menus A1 ∈M1 and At+1 ∈Mt+1,

P0

[
(z�A1)|

{
(z�A1)� (z�2 ∗A1)

}]
= Pt

[
(z�At+1)|

{
(z�At+1)� (z�2 ∗At+1)

}]
�

Finally, Impatience says that the agent prefers receiving better outcomes
earlier on and so ensures that the discount factor is less than 1.

AXIOM 10—Impatience: For any z� z′� z0� � � � � zT ∈ Z, if (z� � � � � z) �0

(z′� � � � � z′), then(
z0� � � � � zt−1� z� z

′� zt+2� � � � � zT
)
�0

(
z0� � � � � zt−1� z

′� z� zt+2� � � � � zT
)
�

6.4. Representation Theorem

THEOREM 1: Suppose that P satisfies Richness. Then P satisfies Positivity,
Stage IIA, Ordinal Time Separability, Recursivity, Replica Invariance, Probabil-
ity Equivalence, Stream Stationarity, Stationary Choice Aversion, and Impatience
if and only if it has a DAR.

As the following corollary shows, by strengthening Recursivity to Aggre-
gate Recursivity (and dropping Stationary Choice Aversion and Replica In-
variance), we obtain an axiomatization of the standard Discounted Logit func-
tional form.

COROLLARY 1: Suppose that P satisfies Richness. Then P satisfies Positivity,
Stage IIA, Ordinal Time Separability, Aggregate Recursivity, Probability Equiva-
lence, Stream Stationarity, and Impatience if and only if it has a Discounted Logit
representation.
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COROLLARY 2: Suppose that P satisfies Richness. Then P satisfies Positivity,
Stage IIA, Ordinal Time Separability, Average Recursivity, Probability Equiva-
lence, Stream Stationarity, and Impatience if and only if it has a Discounted En-
tropy representation with κ= 1.

The proof of Theorem 1 follows three main steps.

STEP 1: Lemma 4 shows that Axioms 1–3 are equivalent to a “sequential
Luce representation”: there are weights Wt for actions at such that

Pt[at |At] = Wt(at)∑
bt∈At

Wt(bt)
�

Here our maintained assumption that Pt is history independent and Axioms 1
and 2 let us use Luce’s original argument to conclude there are weights that de-
scribe period-t choice, and Axiom 3 then lets us mimic the proof of Koopmans’
Proposition 3 and conclude that Wt(zt�At+1) = Gt(vt(z)�ht(At+1)), where Gt

is a strictly increasing function of the utility vt(zt) and “anticipated utility”
ht(At+1).

STEP 2: Lemma 5 shows that adding Recursivity implies that the function ht

is of the form

ht(At+1)= f
|At+1|
t

( ∑
at+1∈At+1

Wt+1(at+1)

)
�

where f n
t is a family of increasing functions that depend on the cardinality n of

the menu.

STEP 3: The final step is to show that Richness, Replica Invariance, and
Probability Equivalence imply that P has a DAR with time-dependent param-
eters (vt� δt�κt). Finally, Stream Stationarity, Stationary Choice Aversion, and
Impatience imply that the parameters are time invariant.

7. DISCUSSION

7.1. Relation to the Literature

The paper is related to quite a large number of others, as it draws on and
extends the literature on static stochastic choice pioneered by Luce (1959),
Marschak (1959), and Harsanyi (1973a), the literature on discounting repre-
sentations of deterministic dynamic choice (notably Koopmans (1960)), and
the literature on choices over menus pioneered by Kreps (1979).
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We have maintained the widely used but widely criticized IIA assumption.
While empirical analyses of dynamic choice continue to use IIA, empirical
work on static choice uses alternatives such as nested logit and BLP (Berry,
Levinsohn, and Pakes (1995)) that avoid some of IIA’s starkest implications.
Similarly, the theoretical work of Falmagne (1978), Barberá and Pattanaik
(1986), Gul and Pesendorfer (2006), and Gul, Natenzon, and Pesendorfer
(2014) provides axiomatic characterizations of static random utility models
without the IIA assumption. Gul, Natenzon, and Pesendorfer (2014) is of par-
ticular note here, as they characterized an analog of nested logit that allows
for items to be perfect, as opposed to almost-perfect, substitutes, which elim-
inates any “option value” that arises from adding exact substitutes to a menu.
Moreover, in a recent addition to their paper, they extended their character-
ization to dynamic choice problems in which consumption occurs in a single
time period and the agent is completely patient and so insensitive to the tim-
ing of payoffs and decisions. Fudenberg, Iijima, and Strzalecki (2014) provided
axiomatic characterizations of stochastic choice by an ambiguity-averse agent
as a form of nonlinear perturbed utility without assuming IIA, thus general-
izing the entropy functional form to other perturbations; they also provided
a characterization of nested logit. This work suggests that our dynamic repre-
sentations could also be generalized beyond IIA, though obtaining a model of
recursive choice problems that is both general and tractable seems challenging.

In recent years, there have been several generalizations of Koopmans’
(1960) characterization to forms of “behavioral” dynamic choice, as in Jackson
and Yariv (2010) and Montiel Olea and Strzalecki (2014); introducing stochas-
tic choice into those setups could be a useful tool for analyzing experimental
results.

The most active related literature is that on choice between menus. Some
of these papers develop representations motivated by “consideration costs”
or “costs of thinking”; to the extent that this cost is increasing in the menu
size, it is related to our representations. Ergin and Sarver (2010), following
Ergin (2003), developed a representation with a double maximization, in which
“costly contemplation” corresponds to buying a signal about the second-period
attractiveness of the various options. Though their primitives did not include
lotteries over menus, they motivated their work with the idea that the agent
prefers that such lotteries are resolved before she chooses an alternative so that
she can avoid formulating a complete contingent plan. This motivation seems
related to our comparative statics (Proposition 5) about choice aversion and
preference for late decisions. Ortoleva (2013) explicitly considered lotteries
and developed a model of “cost of thinking” where the agent ranks lotteries
over menus as if she expected to choose the best option from each of them.

Other recent papers on choice from menus are of interest here primarily for
how they impose recursivity or dynamic consistency. Ahn and Sarver (2013)
is perhaps closest, as, like this paper, it treats both initial choice of a menu
and subsequent choice from it as observable. They used recursivity axioms to
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pin down a unique state space and probabilities in the two-stage menu choice
model; their Axiom 1 is similar in spirit to our Aggregate Recursivity condi-
tion, but as stated, it is vacuously satisfied given our positivity assumption.17

Krishna and Sadowski (2014) provided two representations for a decision
maker who is uncertain about his future utility in an infinite-horizon decision
problem. Their stationarity axiom corresponds to our Axioms 3 and 8, but Re-
cursivity is inconsistent with the indifference required by their “continuation
strategic rationality” axiom, though they did assume the agent prefers larger
menus.

The paper is also related to the use of nonlinear perturbed utility in the the-
ory of nonequilibrium learning in static games, as in Fudenberg and Levine
(1995), Hart and Mas-Colell (2001), Hofbauer and Hopkins (2005), Hofbauer
and Sandholm (2002), and Fudenberg and Takahashi (2011). Fudenberg and
Levine (1995) showed that this generates a choice rule that is Hannan consis-
tent, meaning that the decision maker gets at least the payoff that would be
obtained from maximizing against the long-run average of play by Nature and
any other players (Hannan (1957)). One motivation for this paper is to extend
that work to allow for dynamic considerations, such as would arise in learning
to play an extensive-form game.

7.2. Conclusion

This paper provides an axiomatic characterization of three equivalent gener-
alizations of discounted logit, namely discounted adjusted logit, discounted ad-
justed entropy, and discounted adjusted Luce. These representations include a
choice aversion parameter that captures the link between choices in different
periods by adjusting the implied “option value” of larger menus. We point out
that discounted logit is the special case of κ = 0, where the agent always prefers
adding any item to any menu. In this case, the agent also has a preference for
early decision, which highlights the fact that a preference for larger menus can
arise for many reasons, of which Kreps’ (1979) preference for flexibility as usu-
ally understood is only one; this indicates the benefit of considering a richer
decision domain than that in Kreps (1979). The more general discounted ad-
justed logit penalizes larger menus and so reduces the value of making early
decisions: As κ increases, the agent is less attracted to larger menus and more
inclined to delay decisions, and when κ ≥ 1, the agent always prefers to put
decisions off.

17Ahn and Sarver assumed a preference for larger choice sets and so ruled out temptation.
Dekel and Lipman (2012) imposed consistency between the first-period choice of a menu and
second-period choice from a menu at the level of the representation, and used choices in the two
periods to distinguish between “random GP” and “random Strotz” representations in cases where
temptation is present. They also showed that the random Strotz model can accommodate the
nonlinear cost of self control introduced by Fudenberg and Levine (2006) and further analyzed
by Fudenberg and Levine (2011, 2012) and Noor and Takeoka (2010a, 2010b).
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The axiomatic characterization of our model provides a foundation for the
inclusion of a choice aversion parameter in empirical work. This representa-
tion is just as tractable as the usual discounted logit and may better describe
behavior in at least some choice problems where the menu size varies.

APPENDIX

A.1. Proof of Proposition 1

To prove the proposition, we use the well-known following lemmas. The first
lemma can be found in Anderson, De Palma, and Thisse (1992, Section 3.6).

LEMMA 1: For any vector (x1� � � � � xn) ∈ R
n,

max
p∈Δn

n∑
i=1

pixi +H(p)= log

(
n∑

i=1

exp(xi)

)

and the solution is pi = exp(xi)
n∑

j=1

exp(xj)

�

The following lemma is an easy conclusion from Lemma 1.

LEMMA 2: For any vector (x1� � � � � xn) ∈ R
n,

max
p∈Δn

n∑
i=1

pixi + Jn
κ(p)= log

(
n∑

i=1

exp(xi)

)
− κ logn

and the solution is pi = exp(xi)
n∑

j=1

exp(xj)

�

The next lemma can be found in Train (2009, Chapter 3).

LEMMA 3: Suppose that ε1� � � � � εn are i.i.d. random variables with the extreme
value distribution with noise level parameter 1. For any vector (x1� � � � � xn) ∈ R

n,

E

[
max
i=1�����n

xi + εi

]
= log

(
n∑

i=1

exp(xi)

)
and

Prob
[
xi + εi ≥ max

j=1�����n
xj + εj

]
= exp(xi)

n∑
j=1

exp(xj)

�
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DAL Equivalent to DALu

By Lemma 3, it follows that {Pt} has a DAL representation iff

Ut(zt�At+1)= v(zt)+ δ log
( ∑

at+1∈At+1

exp
(
Ut+1(at+1)

)) − δκ log |At+1|

and

Pt[at |At] = exp
(
Ut(at)

)
∑
bt∈At

exp
(
Ut(bt)

) �

By letting Wt = exp(Ut), this is equivalent to a DALu representation.

DAE Equivalent to DALu

By Lemma 2, it follows that {Pt} has a DAE representation iff

Ut(zt�At+1)= v(zt)+ δ log
( ∑

at+1∈At+1

exp
(
Ut+1(at+1)

)) − δκ log |At+1|

and

Pt[at |At] = exp
(
Ut(at)

)
∑
bt∈At

exp
(
Ut(bt)

) �

By letting Wt = exp(Ut), this is equivalent to a DALu representation.

Uniqueness

Suppose that (v�δ�κ) and (v′� δ′�κ′) are both DALu representations of {Pt}.
The induced period-zero choice between consumption streams z̃ = (z0� � � � � zT )
(for the definition of consumption streams, see axiom Stream Stationarity) has
static Luce representations (Luce (1959)) z̃ �→ exp(

∑T

t=0 δ
tv(zt)) and by z̃ �→

exp(
∑T

t=0 δ
′tv′(zt)). By uniqueness of Luce representations, there exists α > 0

such that exp(
∑T

t=0 δ
tv(zt)) = αexp(

∑T

t=0 δ
′tv′(zt)) for all (z0� � � � � zT ) ∈ ZT+1.

By fixing (z̄1� � � � � z̄T ) ∈ZT , this implies that there exists a constant β such that
v(z0) = v′(z0) + β for all z0 ∈ Z. By fixing (z̄0� z̄2� � � � � z̄T ) ∈ ZT , this implies
that δ′ = δ.
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Finally, consider AT−1 = {(z� {x})� (z� {y1� y2})} for some arbitrary x� y1�
y2� z ∈ Z. We have

PT−1

[(
z� {x})|AT−1

]
PT−1

[(
z� {y1� y2}

)|AT−1

] = exp
(
δv(x)

)
exp

(
δ log

(
ev(y1) + ev(y2)

) − δκ log 2
)

= exp
(
δv(x)+ δβ

)
exp

(
δ log

(
ev(y1)+β + ev(y2)+β

) − δκ′ log 2
)

= exp
(
δv(x)+ δβ

)
exp

(
δ log

(
ev(y1) + ev(y2)

) + δβ− δκ′ log 2
)

= exp
(
δv(x)

)
exp

(
δ log

(
ev(y1) + ev(y2)

) − δκ′ log 2
)

so κ′ = κ.

A.2. Recursive Representations

In this section, we study recursive representations à la Koopmans (1960) and
Kreps and Porteus (1978). The representations we present here have fewer
time-separability properties than a discounted sum and do not insist on sta-
tionarity, and therefore correspond to a shorter list of axioms. We use these
representations as intermediate steps towards the main theorem.

DEFINITION 10—Sequential Luce: {Pt} has a Sequential Luce Representation
if there exist functions vt :Z → R, ht :Mt+1 → R with ranges Rvt and Rht ,
respectively, and Gt :Rvt × Rht → R++, strictly increasing in both variables,
and value functions Wt :At → R++ recursively defined by

Wt(zt�At+1)= Gt

(
vt(zt)�ht(At+1)

)
�(7)

such that, for all At and all at ∈At ,

Pt[at |At] = Wt(at)∑
bt∈At

Wt(bt)
�(8)

DEFINITION 11—Recursive Adjusted Luce: {Pt} has a Recursive Adjusted
Luce representation if it has a sequential Luce representation with

ht(At+1)= f
|At+1|
t

( ∑
at+1∈At+1

Wt+1(at+1)

)

for some family of increasing functions f n
t .
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LEMMA 4: P satisfies Positivity, Stage IIA, and Ordinal Time Separability iff
it has a sequential Luce representation. If, in addition, it satisfies Richness, then
{Wt(zt�At+1) | zt ∈Z} = (0�∞) for any At+1 ∈Mt+1.

LEMMA 5: P satisfies Positivity, Stage IIA, Ordinal Time Separability, and Re-
cursivity iff it has a recursive adjusted Luce representation.

A.3. Proof of Lemma 4

A.3.1. Sufficiency

STEP 1: Fix z̄ ∈ Z and define WT(z̄) := 1. For any other z ∈ Z, define

WT(z) := PT

[
z|{z� z̄}]

PT

[
z̄|{z� z̄}] �

For any AT = {z1� � � � � zn} ∈ MT , Positivity and Stage IIA imply that, for all
i� j = 1� � � � � n,

PT

[
zi|AT

]
PT

[
zj|AT

] = PT

[
zi|{zi� zj� z̄

}]
PT

[
zj|{zi� zj� z̄

}] = WT

(
zi

)
WT

(
zj

) �(9)

so equation (8) holds. For t ≤ T , we proceed analogously to define Wt(z�At+1)
that satisfies equation (8).

STEP 2: Part (1) of Ordinal Time Separability and Step 1 imply that, for all
z� z′ ∈ Z and At+1�A

′
t+1 ∈Mt+1,

Wt(z�At+1)≥Wt

(
z�A′

t+1

) ⇐⇒ Wt

(
z′�At+1

) ≥ Wt

(
z′�A′

t+1

)
�(10)

Fix z̄ ∈ Z and define ht(At+1) :=Wt(z̄�At+1) for all At+1 ∈Mt+1. Property (10)
implies that for any z ∈ Z, there is a strictly increasing function f z

t :Rht → R

such that Wt(z�At+1) = f z
t (ht(At+1)) for all At+1 ∈ Mt+1. Define a real val-

ued function Ft :Z ×Rht → R by Ft(z�h) = f z
t (h) for any z ∈ Z and h ∈ Rht .

Note that the function Ft is strictly increasing in the second variable. With this
notation, we have Wt(z�At+1)= Ft(z�ht(At+1)).

STEP 3: Part (2) of Ordinal Time Separability and Steps 1–2 imply that, for
all z� z′ ∈ Z and At+1�A

′
t+1 ∈Mt+1,

Ft

(
z�ht(At+1)

) ≥ Ft

(
z′�ht(At+1)

)
(11)

⇐⇒ Ft

(
z�ht

(
A′

t+1

)) ≥ Ft

(
z′�ht

(
A′

t+1

))
�

Fix h̄ ∈ Rht and define vt(z) := Ft(z� h̄). Property (11) implies that for any
h ∈ Rht , there exists a strictly increasing function mh

t :Rvt → R such that
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Ft(z�h) = mh
t (vt(z)). Define a real valued function Gt :Rvt × Rht → R by

Gt(v�h) = mh
t (v) for any v ∈ Rvt and h ∈ Rht . Note that the function Gt is

strictly increasing in both variables. This implies equation (7).18

A.3.2. Necessity

Positivity is immediate since the function W takes strictly positive values, and
Stage IIA follows immediately from formula (8). To prove that the first part of
Ordinal Time Separability holds, we need to show that

Pt

[
(z�At+1)|

{
(z�At+1)�

(
z�A′

t+1

)}]
≥ Pt

[(
z�A′

t+1

)|{(z�At+1)�
(
z�A′

t+1

)}]
iff

Pt

[(
z′�At+1

)|{(z′�At+1

)
�
(
z′�A′

t+1

)}]
≥ Pt

[(
z′�A′

t+1

)|{(z′�At+1

)
�
(
z′�A′

t+1

)}]
�

By formula (8), this is equivalent to Wt(z�At+1)≥Wt(z�A
′
t+1) iff Wt(z

′�At+1)≥
Wt(z

′�A′
t+1). Since by formula (7), Wt(zt�At+1) = Gt(vt(zt)�ht(At+1)), where

Gt is increasing in its second argument, we know that Wt(z�At+1)≥Wt(z�A
′
t+1)

iff ht(At+1)≥ ht(A
′
t+1) iff Wt(z

′�At+1)≥Wt(z
′�A′

t+1). To prove that the second
part of Ordinal Time Separability holds, we need to show that

Pt

[
(z�At+1)|

{
(z�At+1)�

(
z′�At+1

)}]
≥ Pt

[(
z′�At+1

)|{(z�At+1)�
(
z′�At+1

)}]
iff

Pt

[(
z�A′

t+1

)|{(z�A′
t+1

)
�
(
z′�A′

t+1

)}]
≥ Pt

[(
z′�A′

t+1

)|{(z�A′
t+1

)
�
(
z′�A′

t+1

)}]
�

By formula (8), this is equivalent to Wt(z�At+1)≥Wt(z
′�At+1) iff Wt(z�A

′
t+1)≥

Wt(z
′�A′

t+1). Since, by formula (7), Wt(zt�At+1) = Gt(vt(zt)�ht(At+1)), where
Gt is increasing in its first argument, we know that Wt(z�At+1) ≥ Wt(z

′�At+1)
iff vt(z) ≥ vt(z

′) iff Wt(z�A
′
t+1)≥Wt(z

′�A′
t+1).

18Note that our Steps 2 and 3 essentially mimic Koopmans’ (1960) proof, which led him to
formula (7).
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A.3.3. Surjectivity

Fix an arbitrary element (zt�At+1) ∈ At and let r := Wt(zt�At+1). For any
r̂ ∈ (0�∞), let λ := r̂

r
. Richness implies that there exists (ẑt�At+1) ∈ At such

that

Pt

[
(ẑt�At+1)|

{
(zt�At+1)� (ẑt�At+1)

}]
Pt

[
(zt�At+1)|

{
(zt�At+1)� (ẑt�At+1)

}] = λ�

By Lemma 4,

r̂

r
= Wt(ẑt�At+1)

Wt(zt�At+1)
= Wt(ẑt�At+1)

r

so Wt(ẑt�At+1) = r̂. Since r̂ was chosen arbitrarily, the conclusion follows.

A.4. Proof of Lemma 5

The necessity of Recursivity is immediate. For sufficiency, note that by
Lemma 4, {Pt} has a sequential Luce representation. Fix a period t and an inte-
ger n. Let Mn

t+1 be the subset of all menus from Mt+1 with cardinality n. Recur-
sivity together with the sequential Luce representation imply that �t restricted
to Mn

t+1 is represented by At+1 �→ ∑
at+1∈At+1

Wt+1(at+1). From the definitions
of �t and the sequential Luce representation, it follows that �t restricted to
Mn

t+1 is also represented by the function ht restricted to Mn
t+1. Thus, there

exists a strictly increasing function f n
t such that, for all At+1 ∈ Mn

t+1, we have
ht(At+1) = f n

t (
∑

at+1∈At+1
Wt+1(at+1)). Thus, for all At+1 ∈Mt+1,

ht(At+1)= f
|At+1|
t

( ∑
at+1∈At+1

Wt+1(at+1)

)
�

A.5. Proof of Theorem 1

The necessity of the axioms is straightforward. To prove sufficiency, we will
use the following lemma. The solution to this functional equation is a classic
result on R+, but we only have it defined on N, so we give the proof.

LEMMA 6: A monotone function f :N → R satisfies f (ln)

f (lm)
= f (n)

f (m)
for all

l�m�n ∈ N if and only if there exist β> 0 and γ ∈ R such that f (n)= βnγ .

PROOF: Assume w.l.o.g. that f is increasing. Set m = 1 to get f (ln) =
f (l)f (n)/f (1). Define g(t) = f (t)/f (1) for all t ∈ N. Then g(ln) =
f (ln)/f (1) = f (l)f (n)/(f (1))2 = g(l)g(n), and g(nk) = (g(n))k for all
n�k ∈ N. Fix n ∈ N; for all rational r = m

k
< logn

log 2 , we have (g(2))m < (g(n))k, so
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g(n) > (g(2))r . Take the supremum of such r to obtain g(n) ≥ (g(2))logn/log 2.
Likewise, considering r larger than logn

log 2 and taking the infimum, we obtain
g(n) = (g(2))logn/log 2 = nγ for some γ ∈ R. By setting β := f (1), we get the
desired conclusion. Q.E.D.

STEP 1: Let At+1�Bt+1 ∈ Mt+1, x� y ∈ Z, and n be an integer. Let r :=∑
at+1∈At+1

Wt+1(at+1) and r ′ := ∑
bt+1∈Bt+1

Wt+1(bt+1). Let k := |At+1| and l :=
|Bt+1|. Let v := vt(x) and v′ := vt(y). Lemma 5 and replica invariance imply
that P has a recursive adjusted Luce representation where the functions {Gt}
and f n

t satisfy

Gt

(
v� f k(r)

)
Gt

(
v� f l

(
r ′)) = Gt

(
v′nk(nr)

)
Gt

(
v′nl(nr ′)) �

Define gn
t (v� r) := Gt(v� f

n(nr)). The equation above implies

gk
t (v� r)

gl
t

(
v� r ′) = gnk

t

(
v′� r

)
gnl
t

(
v′� r ′) �(12)

Equation (12) holds for all integers n, k, l, all v� v′ ∈ Rvt (where Rvt is the
range of the function vt) and all r� r ′ ∈ (0�∞) (as Lemma 4 shows, Richness
implies that the range of Wt+1 is (0�∞)).

STEP 2: Fix v = v′ and r ′ = r, and define ḡt(n) := gn
t (v� r). Equation (12)

implies that

ḡt(nk)

ḡt(nl)
= ḡt(k)

ḡt(l)
�

By Lemma 6, there exist βt > 0 and γt ∈ R such that ḡt(n)= βtn
γt . Thus, there

exist functions βt :Rvt × (0�∞)→ (0�∞) and γt :Rvt × (0�∞)→R such that

gn
t (v� r) = βt(v� r)n

γt(v�r)�(13)

STEP 3: Fix v = v′. Equations (12) and (13) imply that, for all r� r ′ ∈ (0�∞),

βt(v� r)k
γt(v�r)

βt

(
v� r ′)lγt (v�r′) = βt(v� r)(nk)

γt(v�r)

βt

(
v� r ′)(nl)γt(v�r′) �

which implies that γt(v� r) = γt(v� r
′) for all r, r ′. Let γt(v) denote this common

value. Thus,

gn
t (v� r) = βt(v� r)n

γt(v)�(14)
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STEP 4: Fix r� r ′�λ ∈ (0�∞) and let at+1� bt+1� ct+1� dt+1 ∈ Mt+1 be such that
Wt+1(at+1) = r, Wt+1(bt+1) = λr, Wt+1(ct+1) = r ′, and Wt+1(dt+1) = λr ′, so that
Pt+1[at+1|{at+1� bt+1}] = Pt+1[ct+1|{ct+1� dt+1}]. Probability Equivalence implies
that, for any x� y ∈ Z,

Pt

[(
x� {at+1}

)|{(x� {at+1}
)
�
(
x� {bt+1}

)}]
= Pt

[(
y� {ct+1}

)|{(y� {ct+1}
)
�
(
y� {dt+1}

)}]
�

Thus, for all v� v′ ∈ Rvt and all r� r ′�λ ∈ (0�∞), we have

g1
t (v�λr)

g1
t (v� r)

= g1
t

(
v′�λr ′)

g1
t

(
v′� r ′) �

This and equation (14) imply that

βt(v�λr)

βt(v� r)
= βt

(
v′�λr ′)

βt

(
v′� r ′) �(15)

Let v = v′ and r ′ = 1, and define bt�v(r) := βt(v� r)/βt(v�1). The equation
above implies the Cauchy functional equation bt�v(λr) = bt�v(λ)bt�v(r). Since
the function g1

t (v� ·) is increasing, the function βt(v� ·) is increasing, so the
function bt�v(·) is increasing and hence continuous at some point. By Theo-
rem 3, Section 2.1 of Aczél (1966), the only nonzero solutions of this equa-
tion are of the form bt�v(r) = rδt (v) for some δt(v) > 0. Thus, equation (15) im-
plies that λδt(v) = λδt(v

′), and since λ is arbitrary, we have δt(v) = δt(v
′) for all

v� v′ ∈ (0�∞). Let δt > 0 denote their common value. Thus, bt�v(r) = rδt ; this
implies that βt(v� r) = βt(v�1)rδt . Define B(v) := βt(v�1). We have proven
that

gn
t (v� r) = Bt(v)r

δt nγt (v)�(16)

STEP 5: Equations (12) and (16) with k = 2, l = 1 imply that 2γt (v) = 2γt (v
′),

which implies that γt(v) = γt(v
′) for all v� v′ ∈ (0�∞). Let γt denote the com-

mon value. We have proven that

gn
t (v� r) = Bt(v)r

δt nγt �(17)

STEP 6: By definition in Step 1, equation (17) implies that Gt(v� f
n(r)) =

gn
t (v� r/n) = Bt(v)r

δt nγt−1. Define v̂t(z) := logBt(vt(z)) and κt := −(γt −1)/δt .
We have

logWt(zt�At+1)= v̂t(zt)+δt log
( ∑

at+1∈At+1

Wt+1(at+1)

)
−δtκt log |At+1|�(18)
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STEP 7: We claim next that the functions v̂t are surjective. To see this, fix
At+1 ∈ Mt+1 and let d := δt

∑
at+1∈At+1

Wt+1(at+1) − δtκt log |At+1|. Lemma 4
and (18) imply that, for any r ∈ (0�∞), there exists z ∈ Z such that r =
Wt(z�At+1) = exp(v̂t(zt) + d). Thus, for any r ′ ∈ R, there exists z ∈ Z such
that v̂t(z) = r ′ by letting r = exp(r ′ + d).

STEP 8: Given (18), the preference over consumption streams is represented
by

z̃ �→
T∑
t=0

(
t−1∏
s=0

δs

)
v̂t(zt)�

Let v := v̂0 and δ := δ0. From the proof of Theorem 7.5 of Fishburn (1970),19

it follows that if Stream Stationarity is satisfied, then v̂t ≡ v for all t and δt = δ
for all t.

STEP 9: Given (18), and the stationarity of v and δ, the induced preference
on consumption streams is represented by z̃ �→ ∑T

t=0 δ
tv(zt), with (z� � � � � z)�0

(z′� � � � � z′) if and only if v(z) > v(z′) and (z0� � � � � zt−1� z� z
′� zt+2� � � � � zT ) �0

(z0� � � � � zt−1� z
′� z� zt+2� � � � � zT ) if and only if v(z) + δv(z′) > v(z′) + δv(z).

Thus, by Impatience, (v(z)− v(z′))(1 − δ) > 0, which implies that δ < 1.

STEP 10: Let A1 ∈ M1 and At+1 ∈ Mt+1 for some t < T . Let d1 :=∑
a1∈A1

W1(a1), n1 := |A1|, dt+1 := ∑
at+1∈At+1

Wt+1(at+1), and nt+1 := |At+1|. Sta-
tionary Choice Aversion implies that

dδ
1n

−δκ0
1

dδ
1n

−δκ0
1 + (2d1)

δ(2n1)
−δκ0

= dδ
t+1n

−δκt
t+1

dδ
t+1n

−δκt
t+1 + (2dt+1)

δ(2nt+1)
−δκt

�

which implies that κ0 = κt .

A.6. Proofs of Other Results

A.6.1. Proof of Proposition 2

To see why this is true, suppose that At+1 �∗
t (�∗

t )Bt+1. Let mA :=
maxq∈Δ(A)

∑
q(at+1)Ut+1(at+1) + H |A|(q) and mB = maxq∈Δ(B)

∑
q(at+1) ×

Ut+1(at+1)+H |B|
κ∗ (q). Then

mA − κ∗ log |A| ≥ (>)mB − κ∗ log |B|
19Our induced preference on consumption streams may not satisfy the continuity property that

Fishburn requires. However, the cardinal uniqueness of additive representations invoked in his
proof holds due to the surjectivity of the v̂t functions.
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iff

κ∗(log |B| − log |A|) ≥ (>)mB −mA�

The above inequality holds if we replace κ∗ with κ as long as κ ≥ κ∗.
To prove the converse, suppose that κ < κ∗. By Richness, there exist At+1 =

{at+1} and Bt+1 = {bt+1� b
′
t+1} such that mA =mB −κ∗ log 2, so that At+1 �∗ Bt+1.

If P were more choice averse than P∗, we would have At+1 � Bt+1. But mA <
mB − κ log 2, so At+1 ≺ Bt+1, a contradiction.

A.6.2. Proof of Proposition 3

Let n = |At+1| and note that At+1 ∪ {bt+1} �t At+1 whenever

log
(
eU(bt+1) +

∑
at+1∈At+1

eU(at+1)

)
− κ log(n+ 1)

> log
( ∑

at+1∈At+1

eU(at+1)

)
− κ logn

iff

1
(n+ 1)κ

[
eU(bt+1) +

∑
at+1∈At+1

eU(at+1)

]
>

1
nκ

∑
at+1∈At+1

eU(at+1)

iff ∑
at+1∈At+1

eU(at+1)

eU(bt+1) +
∑

at+1∈At+1

eU(at+1)
<

nκ

(n+ 1)κ

iff

Pt+1

[
bt+1|At+1 ∪ {bt+1}

]
> 1 − nκ

(n+ 1)κ
�

A.6.3. Proof of Proposition 4

For the proof, we will use the DALu representation, noting that At+1 �t Bt+1

iff

|Bt+1|κ
∑

at+1∈At+1

Wt+1(at+1)≥ |At+1|κ
∑

bt+1∈Bt+1

Wt+1(bt+1)�(∗)

and that all of the weights Wt+1 are positive.
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PART 1: Suppose that κ ≥ 1 and At+1 and Bt+1 are disjoint. Then
|At+1 ∪Bt+1|κ ≥ |At+1|κ + |Bt+1|κ since the function x �→ xκ is superadditive
(see proof of Proposition 5). Suppose that At+1 �t Bt+1 and add
|At+1|κ ∑

at+1∈At+1
Wt+1(at+1) to each side of (∗) to obtain (|At+1|κ + |Bt+1|κ)×∑

at+1∈At+1
Wt+1(at+1) ≥ |At+1|κ ∑

at+1∈At+1∪Bt+1
Wt+1(at+1). Thus At+1 �t Bt+1 im-

plies At+1 �t At+1 ∪ Bt+1. Conversely, suppose κ < 1. By Richness, there
is a pair of actions at+1, bt+1 with 2κ−1

2κ < Pt+1[bt+1|{at+1� bt+1}] < 1
2 , so that

{at+1} �t {bt+1}. Then by Proposition 3, {at+1� bt+1} �t {at+1}, which contradicts
positive set betweenness.

PART 2: Suppose that κ ≤ 1 and At+1 and Bt+1 are disjoint. We have |At+1 ∪
Bt+1|κ ≤ |At+1|κ + |Bt+1|κ since the function x �→ xκ is subadditive (see proof
of Proposition 5). At+1 �t Bt+1 and add |Bt+1|κ ∑

bt+1∈Bt+1
Wt+1(bt+1) to each

side of (∗) to obtain |Bt+1|κ ∑
at+1∈At+1∪Bt+1

Wt+1(at+1) ≥ (|At+1|κ + |Bt+1|κ)×∑
bt+1∈Bt+1

Wt+1(bt+1). Thus, At+1 �t Bt+1 implies At+1 ∪ Bt+1 �t Bt+1. Con-
versely, suppose κ > 1. By Richness, there exist actions at+1, bt+1 with
1
2 <Pt+1[at+1|{at+1� bt+1}] < 2κ−1

2κ so that {at+1} �t {bt+1}, and by Proposition 3,
{bt+1} �t {at+1� bt+1}, which contradicts negative set betweenness.

PART 3: Follows from Parts 1 and 2.

PARTS 4 AND 5: Suppose that κ ≤ 0. If At+1 ⊇ Bt+1, then |At+1|−κ ≥ |Bt+1|−κ;
therefore, |At+1|−κ

∑
at+1∈At+1

Wt+1(at+1) ≥ |Bt+1|−κ
∑

at+1∈Bt+1
Wt+1(at+1), so

At+1 �t Bt+1. Conversely, suppose that κ > 0 and fix an arbitrary At+1. Since
Richness implies that the range of the function Wt+1 is (0�+∞), it follows that
there exists bt+1 with Pt+1[bt+1|At+1 ∪ {bt+1}] < 2κ−1

2κ , and from Proposition 3 it
follows that At+1 �t At+1 ∪ {bt+1}.
A.6.4. Proof of Proposition 5

To see this formally, let F(T) := ∑T−1
t=1 δt−1v(zt) be the value of inter-

mediate consumption and note that the value of choosing early is v(z0) +
δ log(

∑
z̃T ∈A exp(F(T)+δT−1v(z̃T )))−κ log |A|, whereas the value of choosing

late is v(z0)+ δ(F(T)+ δT−1 log(
∑

z̃T ∈A expv(z̃T ))− δT−1κ log |A|). Thus,

r = P0

[
a0|{a0� b0}

]
P0

[
b0|{a0� b0}

]
= exp

(
v(z0)+ δ log

(∑
z̃T ∈A

exp
(
F(T)+ δT−1v(z̃T )

)) − δκ log |A|
)

/
exp

(
v(z0)+ δ

(
F(T)

+ δT−1 log
(∑

z̃T ∈A
expv(z̃T )

)
− δT−1κ log |A|

))



DYNAMIC LOGIT WITH CHOICE AVERSION 689

=

⎡
⎢⎢⎢⎢⎢⎣

∑
z̃T ∈A

exp
(
v(z̃T )

)δT−1

(∑
z̃T ∈A

expv(z̃T )
)δT−1 e

(δT−1−1)κ log |A|

⎤
⎥⎥⎥⎥⎥⎦

δ

�

To show part (1), note that e(δ
T−1−1) log |A| < 1. Thus, a decrease in κ in-

creases r.
To show part (2), note that when κ = 0, r > 1 follows from the facts that

|A| ≥ 2, that with δ < 1 the function z �→ zδT−1 is strictly concave, and that
strictly concave functions that pass through zero are strictly subadditive.20 The
result for κ < 0 follows from part (1). When κ= 1, r ≤ 1 by Jensen’s inequality
since δ < 1 and the function z �→ zδT−1 is strictly concave. The equality holds if
and only if all the elements of A are equivalents. For κ > 1, r < 1 by part (1).
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