
Set Reconciliation and File Synchronization Using
Invertible Bloom Lookup Tables

Citation
Gentili, Marco. 2015. Set Reconciliation and File Synchronization Using Invertible Bloom Lookup
Tables. Bachelor's thesis, Harvard College.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:14398536

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:14398536
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Set%20Reconciliation%20and%20File%20Synchronization%20Using%20Invertible%20Bloom%20Lookup%20Tables&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=82fe4346aaca05c5a0b0b8c1616af4dc&department
https://dash.harvard.edu/pages/accessibility

Set Reconciliation and File Synchronization Using Invertible
Bloom Lookup Tables

A Thesis presented

by

Marco Gentili

to

the Department of Computer Science
in partial fulfillment of the requirements

for the degree of

Bachelor of Arts in Computer Science and Physics

at

Harvard University

Cambridge, Massachusetts

April 2015

Abstract

As more and more data migrate to the cloud, and the same files become accessible
from multiple different machines, finding effective ways to ensure data consistency is
becoming increasingly important. In this thesis, we cover current methods for effi-
ciently maintaining sets of objects without the use of logs or other prior context, which
is better known as the set reconciliation problem. We also discuss the state of the art
for file synchronization, including methods that use set reconciliation techniques as an
intermediate step. We explain the design and implementation of a novel file synchro-
nization protocol tailored to minimize transmission complexity and targeted for files
with relatively few changes. We also propose an extension of our file synchronization
protocol for more general file directory synchronization. We describe IBLTsync1, our
implementation of the aforementioned file synchronization protocol, and benchmark
it against a naïve file transmission protocol and rsync, a popular file synchronization
library. We find that for files with relatively few changes, IBLTsync transmits signif-
icantly less data than the naïve protocol, and moderately less data than rsync. In
addition, we provide the first (to our knowledge) implementation of multi-party set
reconciliation using Invertible Bloom Lookup Tables, a hash based data structure,
and evaluate its performance for message propagation in large networks.

1all relevant code available at https://github.com/mgentili/SetReconciliation

2

https://github.com/mgentili/SetReconciliation

Acknowledgments

I am infinitely grateful for the guidance of Professor Michael Mitzenmacher, who

proposed this work’s topic, provided me with numerous suggestions, and offered me

constant and insightful feedback. CS 124 turned me into a Computer Science con-

centrator, and for that, I’m forever indebted.

I am also extremely thankful for the mentorship of Professor Eddie Kohler, who

first introduced me to the exciting domains that lie at the intersection of systems

and algorithms, and spent countless hours helping me in my quest to implement a

concurrent and dynamically resizable cuckoo hashtable. I bow down to your sagely

wisdom.

I would like to thank Professor Jelani Nelson for being a willing thesis reader, and

teaching me all those cool algorithms in CS 224. I don’t know when I’ll next use

y-fast tries, but man, they’re awesome.

I’d also like to thank my friends for making my four years here at Harvard an

amazing experience. Two people in particular, David Ding and Alisa Nguyen, deserve

special thanks for taking the time to read through (at least most!) of my thesis.

Lastly, I would like to thank my mom, dad, and brother for always being there

for me – you’re the best.

3

Contents

1 Introduction 7

1.1 Motivation . 7

1.2 Model . 8

1.3 Proposed Solution . 9

1.4 Applications . 9

1.4.1 Individual File and File Directory Synchronization 9

1.4.2 Gossip Protocols . 10

1.4.3 Other Applications . 10

1.5 Outline . 11

2 Set Reconciliation 14

2.1 Exact Methods . 15

2.1.1 Naïve Approach . 15

2.1.2 Characteristic Polynomials . 15

2.2 Methods That Succeed with High Probability 17

2.2.1 Bloom Filter . 17

2.2.2 Approximate Reconciliation Trees 19

2.2.3 Basic Invertible Bloom Lookup Tables 20

2.2.4 Multi-party Invertible Bloom Lookup Tables 29

2.3 Estimating the Size of the Set Difference 35

2.3.1 Strata Estimator . 35

2.3.2 Min-wise Sketches . 37

2.3.3 Repeated Doubling and Using Number of Listed Keys 38

4

3 File Synchronization 42

3.1 rsync . 43

3.1.1 Protocol . 44

3.2 Set Reconciliation for File Synchronization 46

3.2.1 String Reconciliation Using Multisets and de Bruijn Digraphs 47

3.3 Content-Dependent File Partitioning 50

3.3.1 Point Filter Chunking . 51

3.3.2 Winnowing . 52

4 Our Algorithms 53

4.1 File Synchronization . 53

4.1.1 Motivation . 53

4.1.2 Protocol . 54

4.1.3 Choosing Parameter Settings 58

4.2 Extension: File Directory Synchronization 64

4.2.1 Protocol . 64

5 File Synchronization Experiments 67

5.1 Setup . 67

5.2 Random Error Model . 68

5.3 Block Error Model . 72

5.4 Practical Workload . 76

6 Gossip Algorithms 80

6.1 Background . 81

6.1.1 Protocols . 81

6.2 Gossip Algorithms with Invertible Bloom Lookup Tables 83

6.2.1 Motivation . 83

6.2.2 Protocol . 84

6.3 Experiments . 86

6.3.1 Dissemination Completion Time 86

5

6.3.2 Listing Success Rate . 87

7 Conclusion 91

7.1 Future Work . 92

Bibliography 93

6

Chapter 1

Introduction

1.1 Motivation

For decades, computer scientists have explored methods for establishing consistency

among data from different sources [15, 28, 29]. One of the earlier such applications

involved Personal Digital Assistants (PDAs), first invented in 1984 and popularized

in the late 1990s. PDAs allowed users to synchronize data between their mobile

devices (PDAs) and their home computers. Initial data synchronization methods

used by many such devices involved wholesale transfer of data from one device to

the other, a bandwidth-expensive process. As that step became more and more of a

bottleneck in performance, computer scientists began researching methods that could

take advantage of data similarities between source and destination to decrease the

amount of data transferred [37].

Fast-forwarding to the present, where cloud file storage systems like Dropbox [1]

and distributed databases like Cassandra [2] have become a part of our everyday lives,

finding efficient methods for data synchronization is becoming increasingly relevant.

In the case of Dropbox, files accessed from multiple different machines, each of which

may keep local copies, and may periodically be disconnected from the Internet, must

be kept in synchrony. In the case of Cassandra, updates made at one node of a

distributed database, with datacenters potentially located across the globe, must

eventually get replicated across all datacenters.

7

1.2 Model

We can pose the problems faced above, of establishing consistency among sets of

objects across remote machines, in the more general framework of set reconciliation,

which we describe below.

Say that we have two sets, SA and SB, on different machines, and we want to

determine the set difference, that is, the elements that are exclusively in SA and the

elements that are exclusively in SB (we denote these as SA \ SB and SB \ SA respec-

tively). Set reconciliation is the problem of determining those sets while minimizing

transmission complexity. In the extension to more than just two sets, we want to

determine elements from each set that are not in the intersection of all the sets. That

is, we have sets S1, S2, . . . , Sm, and letting I denote ∩i∈1...mSi, we want to determine

(S1 \ I), (S2 \ I), . . . , (Sm \ I)

In this thesis, we focus on set reconciliation without prior context such as log files.

While set reconciliation can be done efficiently with logs in some situations1, using

logs is not always possible or necessarily the best solution. For instance, if we only

need to perform set reconciliation operations infrequently, or if certain data items are

written particularly often, then the overhead for every update to the log may not be

worth it. Also, if multiple parties need to maintain consistent state, logs could result

in redundant communication when parties receive the same update from many other

parties. Lastly, logs usually require stable storage and mostly synchronized time,

which are not always available on routers and other such networking devices.

Mapping the problem Dropbox faces to this framework, we can think of Dropbox-

enabled devices as the different machines, and all of the files within those devices’s

Dropbox directories as the sets to be reconciled. For Cassandra, we can think of

different database servers as the machines, and the series of database operations

applied at each server as the sets to be reconciled (we would need some method to

preserve ordering, for instance, by appending a unique identifier to each operation).
1To use a log, both parties must start with the same data set and thereafter log all changes

8

1.3 Proposed Solution

We consider a particular data structure called an Invertible Bloom Lookup Table

(IBLT) [21] that is able to take two sets of fixed-length keys and find the set difference

using space within a constant factor of optimal2. We will explain IBLTs in more depth

in Chapter 2, but we cover the basics here.

Structure-wise, we can think of an IBLT as similar to a hash table3 except with

three main differences. First, unlike in a hash table, each key in an IBLT must be of

fixed length. Second, instead of each bucket holding a unique key, each bucket holds

a sum of keys. Third, instead of inserting each key exactly once to the hash table,

each key in an IBLT is inserted multiple times at different indices. Since one bucket

can hold the sum of multiple keys, we cannot always directly retrieve a key from an

IBLT. Using a clever trick involving the repeated removal of keys from buckets that

only have one key, we can in fact retrieve all the keys with high probability, given

that the number of keys inserted is below a certain threshold. We can use IBLTs for

set reconciliation by noting that removal of keys can proceed in the same manner as

insertion, except subtracting the key instead of adding it. After inserting one set of

keys and removing the other set of keys, we will only retrieve keys in the set difference.

1.4 Applications

Invertible Bloom Lookup Tables have many applications outside of just pure set

reconciliation.

1.4.1 Individual File and File Directory Synchronization

In this thesis we demonstrate how IBLTs can be used for individual file synchroniza-

tion, which involves exchanging similar strings held by different hosts, ideally with
2the minimum transmission complexity is proportional to the size of the set difference multiplied

by the object size
3A basic hash table is an array-based key-value store that uses a hash function (which takes a

key as input) to compute an index into an array. That index in the array will contain the specific
key-value pair.

9

minimal transmission complexity.

We also show how to combine set reconciliation and individual file synchronization

techniques for file directory synchronization. Instead of just trying to ensure that one

particular file is the same on two machines, we now want to maintain synchrony

between directories of files on local and remote machines. To do so, we can think of

all the files in one machine’s directory as a set of files. Using set reconciliation, we

can determine the files that are only on one machine or the other. Individual files

that differ can then be reconciled using individual file synchronization techniques.

1.4.2 Gossip Protocols

Invertible Bloom Lookup Tables have also been proposed as building blocks for gossip

protocols, which are communication protocols that allow for robust message propa-

gation in large networks [31]. Message propagation protocols in such settings need to

be 1) very simple, since each node has limited computational power, 2) distributed,

as there is no notion of centralized control, 3) robust, as the network may be unsta-

ble, and 4) efficient, as bandwidth is limited. In this thesis, we describe a protocol

satisfying those constraints that uses multi-party IBLTs as the transmitted message.

1.4.3 Other Applications

Invertible Bloom Lookup Tables are also useful in networking applications such as

link-state database4 synchronization or deduplication [18, 25], which involves identi-

fying keys in the intersection of multiple sets of keys so that duplicate data can be

replaced with pointers. Deduplication is commonly used to improve the efficiency of

backups [41].

IBLTs can also be used for synchronizing results generated from multiple actors

acting in parallel on similar tasks [18]. As an example, a search engine might have two

independent crawlers that use different techniques to search URLs. The resultant sets
4essentially a computerized representation of the topology of a system – in such a diagram, routers

are nodes, and connections are lines. In essence, the link-state is the graph representing the network

10

of URLs are probably quite similar, so IBLTs could be used to efficiently determine

the ones unique to each.

In opportunistic ad hoc networks, which are networks characterized by low band-

width and intermittent connectivity to peers, such as in military settings, IBLTs could

be used to synchronize data when connectivity is up.

IBLTs have even been proposed for use in privacy-enhanced methods of comparing

compressed DNA sequences [17]. More recently, Gavin Andersen, the chief scientist

of the Bitcoin Foundation, proposed using Invertible Bloom Lookup Tables for more

efficient block propagation [3].

1.5 Outline

Our goals in this thesis are four-fold:

1. Introduce the set reconciliation problem and provide an overview of various

proposed methods to solve it

2. Explain in depth how an Invertible Bloom Lookup Table, one such set recon-

ciliation method, works

3. Show how IBLTs can additionally be used for file synchronization and as a data

structure for gossip protocols

4. Provide an empirical evaluation of IBLTs in the two contexts mentioned above

The organization of the following chapters reflects those goals. Chapters 2 and 3

provide background on set reconciliation and file synchronization, respectively. Chap-

ter 4 explains our novel file synchronization protocol using IBLTs, IBLTsync, and

proposes an extension for directory synchronization. Chapter 5 provides an experi-

mental evaluation of IBLTsync. Chapter 6 introduces gossip algorithms and provides

an evaluation of IBLTs as a building block for such algorithms.

In more detail, the organization of the thesis is as follows:

11

In Chapter 2, we begin by more formally posing the problem of set reconcilia-

tion. We categorize approaches into methods that are exact (always returning the

correct set difference) and methods that succeed with high probability (which have

a small chance of returning the incorrect result), and describe a few methods from

each. In particular, we provide an in-depth explanation of two techniques, one using

characteristic polynomials and one using Invertible Bloom Lookup Tables (IBLTs),

that only need to transmit messages proportional to the size of the set difference. We

also consider an extension of IBLTs, aptly called multi-party IBLTs, that are able to

simultaneously reconcile sets from n > 2 parties. Many set reconciliation techniques

rely on having a tight upper bound on the size of the set difference. We discuss vari-

ous approaches to this problem, and explain a bit of the mathematical basis behind

each.

In Chapter 3, we consider the problem of file synchronization, and explain our

assumptions and setup. We discuss current techniques, which can be divided into

two categories, single-round and multi-round protocols, and discuss the trade-off in

computation and transmission complexity between both categories of approaches.

We then explain a commonly used single-round protocol, rsync, in depth. After, we

discuss approaches that use set reconciliation as a part of the file synchronization

protocol, going over the appropriate mathematical tools (such as de Bruijn digraphs

and context-dependent file partitioning) when necessary.

In Chapter 4, we explain how to combine some of the above techniques into a

new protocol for file synchronization, which we also implement in C++. We then

go through back-of-the-envelope calculations to optimize various parameters of our

protocol assuming different models of file differences, and explain where our protocol

could be improved and optimized for specific workloads. We also propose an adapta-

tion and extension of our protocol for more general file directory synchronization.

In Chapter 5, we discuss the experimental setup for the testing of IBLTsync, our

implementation of the file synchronization protocol discussed previously, and provide

results comparing it to a naïve file synchronization approach and the popular file

synchronization library rsync. We test three different workloads, one where each

12

character in a file is independently altered with some probability (the random er-

ror model), one where a fixed number of short blocks are altered (the block changes

model), and one based on actual source code repository changes (the practical work-

load).

In Chapter 6, we provide background information on gossip algorithms and explain

a few of the basic protocols. We then explain how multi-party IBLTs can be used

with such protocols for message spreading in large, unstable networks. We finish

this chapter by providing experimental results verifying the theoretical performance

bounds from [31] and showing that multi-IBLTs can be useful in practice.

In Chapter 7, we conclude and discuss directions for future work.

13

Chapter 2

Set Reconciliation

As explained in the introduction, the set reconciliation problem involves efficiently es-

tablishing consistency among sets of objects. In this chapter, we explore the problem

in more depth, as set reconciliation is an important step in our file synchronization al-

gorithm developed in Chapter 4. We being by restating the set reconciliation problem

in the case of two sets here.

We have sets SA and SB, on different machines, and want to determine the ele-

ments exclusively in SA and exclusively in SB (denoted SA \ SB and SB \ SA respec-

tively), which is known as the set difference. An information-theoretic lower bound

on the transmission required is the size of the set difference multiplied by the element

size (which we assume to be some constant c), O(c · (|SA \ SB| + |SB \ SA|)). Note

that in this thesis we assume that our sets contain fixed-size bitstring keys.

In the following sections, we consider various methods that tackle the set recon-

ciliation problem. In general, we can partition those methods along two axes – first,

between those whose transmission cost is proportional to the size of the set difference

(we call these near-optimal), and those that are not, and second, between those that

are exact (always returning the correct set difference), and those that succeed with

high probability (sometimes missing elements in the set difference).

Section 2.1 covers two exact methods, a naïve method, and a characteristic poly-

nomial method, the latter of which is near-optimal.

Section 2.2 covers three methods that succeed with high probability, Bloom filters,

14

Approximate Reconciliation Trees, and Invertible Bloom Lookup Tables (IBLTs), the

last of which is near-optimal. We also explain an extension to IBLTs called multi-

party IBLTs that can handle set reconciliation with more than two parties. Since we

choose to use IBLTs in our file synchronization protocol described in Chapter 4, we

explain IBLTs in depth.

Section 2.3 covers methods to obtain a tight upper bound on the size of the set

difference, which is an important step for both the characteristic polynomial and

IBLT approaches (the two near-optimal methods).

2.1 Exact Methods

2.1.1 Naïve Approach

Perhaps the simplest method to determine the set difference is for each party to send

an encoding of their entire set. This requires messages with total size O(|SA|+ |SB|)

and takes computation time O(|SA| · |SB|), assuming the completely naïve approach

of each party scanning the other party’s entire list to remove shared elements. The

computation time could be decreased to O(|SA|+ |SB|) if each party sent the lists in

sorted order (the pre-processing would then take O(|SA| log |SA|+ |SB| log |SB|) time.

We could also achieve O(|SA| + |SB|) computation time without any pre-processing

by inserting all of the set elements into a hash table.

2.1.2 Characteristic Polynomials

Minsky, Trachtenberg, and Zippel [30] discovered a method to use characteristic poly-

nomials for set reconciliation. A key part of their approach involves the representation

of sets by their characteristic polynomials, an idea first proposed by Lipton in 1990

[26].

Let our set S = {x1, x2, . . . , xn}. Then the characteristic polynomial for S is

χS(Z) = (Z − x1)(Z − x2)(Z − x3) . . . (Z − xn)

15

The zeros of χS(Z) are exactly the elements of S, meaning that we can retrieve the

elements of S if we can factor χS(Z). However, since a set’s characteristic polynomial

contains all the information in that set, transmitting the full characteristic polyno-

mial is no cheaper than transmitting the set itself. If we know beforehand that two

sets share many elements though, then we do not actually need to send the full char-

acteristic polynomial to be able to retrieve elements in the set difference, as we will

soon see.

Consider two parties A and B with sets SA and SB, and corresponding charac-

teristic polynomials χSA
(Z) and χSB

(Z). Parties A and B wish to efficiently find

the elements in their set difference. If we consider the quotient of their characteristic

polynomials, we find something surprising:

χSA
(Z)

χSB
(Z)

=
χSA∩SB

(Z)χSA\SB
(Z)

χSA∩SB
(Z)χSB\SA

(Z)
=
χSA\SB

(Z)

χSB\SA
(Z)

All the terms in SA ∩ SB cancel out! If Parties A and B were able to efficiently

reconstruct
χSA

(Z)

χSB
(Z)

, the ratio of characteristic polynomials, then they would be able

to find the set difference. Minsky et al.’s insight was to evaluate the polynomials

at a collection of points and use those to reconstruct
χSA

(Z)

χSB
(Z)

, something known as

rational function interpolation.

More formally, the rational interpolation problem is as follows: Given bound d1

and d2 on the degrees of the numerator and denominator of a rational function1

R(Z) = P (Z)/Q(Z), where P (Z) =
∑

i piZ
i and Q(Z) =

∑
i qiZ

i, and a support set

T consisting of d1 + d2 + 1 pairs of points (xi, yi) ∈ F2, there is a unique rational

function f such that f(xi) = yi for each (xi, yi) ∈ T . Though we will not go into the

details of this proof, the idea is that each pair (xi, yi) ∈ T implies a linear constraint:

pd1x
d1
i + pd1−1x

d1−1
i + . . .+ p0 = yi · (qd2xd2i + qd2−1x

d2−1
i + . . .+ q0)

Solving the d1 +d2 + 1 simultaneous linear equations gives us the desired polynomial.
1A rational function is any function such that the numerator and denominator are both polyno-

mials

16

If we know the size of the set difference, |SA \ SB|+ |SB \ SA| = d, then we have

a bound on the sum of the degrees of the numerator and denominator (d = d1 + d2),

but not on the individual terms d1 and d2. Since d1, d2 ≥ 0 though, we have the loose

bounds d1, d2 ≤ d.

Thus, given that Parties A and B know the size of the set difference d, if they

evaluate χSA
(Z) and χSB

(Z) at 2d+ 1 points (that do not happen to be a root of the

polynomial), then they can reconcile their sets. Minsky et al. [30] develop a protocol

based on this technique and show its communication complexity is within a small

factor of optimal.

The computational complexity of their technique has two dominating terms, one

from the cost of evaluating the characteristic polynomials at the chosen points, and

one from the rational function reconstruction. The former takes O(|S|d) time, and

the latter takes O(d3) time using Gaussian elimination to solve the system of linear

equations. As discussed in their paper, faster methods for solving systems of linear

equations are available in theory, though they do not seem to be more efficient in

practice, and are significantly more complex to implement.

2.2 Methods That Succeed with High Probability

While each of the methods described above guaranteed that all elements of the set

difference were found, in this section we describe methods that have a small (and

tunable) chance of retrieving an incomplete set.

2.2.1 Bloom Filter

A Bloom filter [9] is a data structure that supports insert and lookup queries, and

is used to store a set S of n items, {x1, x2, . . . , xn}, from a universe2 U of size u. It

consists of an array of m bits all initially set to 0, and uses k random and independent

hash functions h1, h2, . . . , hk, each of which maps the keys to a range {0, 1, . . . ,m−1}

(thus giving us an index into one of the positions in the Bloom filter).
2A universe consisting of all l-bit bitstrings would have size 2l, for instance

17

To insert an element xi into a Bloom filter, we apply each of the k hash functions

in turn to determine k positions in the bit array, and then set each of those k bits to

1. Looking if an element is in the Bloom filter proceeds in a similar fashion, except

that we check the k corresponding bits rather than setting them. If at least one of

the bits is 0, then the key is not in the set, so we return false. If all the bits are

set, then we return true, though there is some false positive rate (i.e., the key is not

actually in the set but we say that it is). For instance, say we have a Bloom filter

consisting of 6 cells all initially set to 0 (we represent this as 000000), and have k = 2

hash functions. Say that key A sets bits 0 and 2, key B sets bits 1 and 3, and key C

sets bits 2 and 3. After inserting A and B to our Bloom filter, the Bloom filter would

look like this: 111100. If we now looked up key C (corresponded to looking up bits 2

and 3), then we would return true even though C was not in the Bloom filter.

The false positive rate ε depends on the number of bits used per item and the

number of hash functions according to the equation:

ε = (1− e−kn/m)k

Minimizing the size of the Bloom filter over k for a fixed value of ε, a space-optimized

Bloom filter uses k = log2(1/ε) hash functions, and with those settings, can store

each item using 1.44 log2(1/ε) bits.

We can use Bloom filters for set reconciliation by having Party A insert all keys

in its set SA into a Bloom filter FA, and then have Party A send FA to Party B.

Party B then looks in FA for each of the keys in SB. If the key is found, then Party

B assumes that Party A already has the key, so it does not send the key to Party

A. However, as Bloom filters can have false positives, there is a chance that Party A

does not actually have the key that Party B found, which is why this method is not

exact. Since looking up a key that has previously been inserted into a Bloom filter

will never return false, the Bloom filter never causes Party B to mistakenly send a

key Party A already has.

As shown above, for a fixed false positive rate, the space used by a Bloom filter is

18

still proportional to the set size, not the set difference, so Bloom filters do not have

transmission complexity within a constant factor of optimal.

2.2.2 Approximate Reconciliation Trees

Approximate Reconciliation Trees [12, 13] (ARTs) were developed as an extension to

the Bloom filter approach, and provide another method for set reconciliation. We

describe the process of creating an ART below:

Party A creates a binary tree of depth log u, where u is the number of elements

in the universe U . The root corresponds to the full set SA. We will explain exactly

how to correspond a set to a binary tree node in more detail later. The left and

right children correspond to the subsets of SA in each half of U , respectively. That

is, the left child corresponds to SA ∩ [0, u/2 − 1] and the right child corresponds to

SA ∩ [u/2, u). Deeper nodes are constructed in the same fashion by dividing each

parent node’s interval in half.

To reconcile sets, Party B creates a similar binary tree but with the keys in SB.

If the root of Party A’s binary tree matches that of Party B, then we know that the

sets are identical. Otherwise, Party B recursively traverses the children nodes of the

roots of both trees. If an element x ∈ SB \ SA, then Party B will find that the leaf

node corresponding to x in its tree is not present in Party A’s tree. Thus, we can find

all of the keys in SB \ SA.

Without any optimizations, the binary trees have Θ(u) nodes and depth Θ(log u).

However, most of the nodes in a tree represent the exact same sets. Since there

are only |SA| elements in set SA, there are actually only O(|SA|) nodes representing

distinct sets, so the tree can be compressed to O(|SA|) nodes by removing edges

connecting nodes that correspond to the same set.

As described so far, ARTs would provide an exact method for set reconciliation.

To optimize traversal time and space complexity, we make two modifications that

lead ARTs to have a small false positive rate. Our first modification seeks to solve

the problem of comparing nodes (which represent sets containing O(|SA|) elements)

efficiently. Our second modification seeks to decrease the depth of the tree, which

19

currently is potentially O(|SA|). To solve the first problem, we let each set of elements

correspond to a value using hashing. The hash associated with each internal node

of the tree is the exclusive-or of the values of its children. This introduces a small

chance of false positives, as now two different sets can have the same hash. To solve

the second problem, we do not insert the keys themselves into the ART, but instead

insert hashes of the keys. If the range of the hash function is at least poly(|SA|), then

with high probability, the depth of the compressed tree is O(log |SA|). Using a hash

instead of the key itself again introduces a chance of false positives.

In summary, given SA and an Approximate Reconciliation Tree for SB, Party

A is able to compute SA \ SB. In this situation, an ART requires O(d log(|SB|))

computation time and O(|SB|) space, where d is the size of the set difference.

2.2.3 Basic Invertible Bloom Lookup Tables

An Invertible Bloom Lookup Table (IBLT) [21] is a randomized data structure that

stores a set of key-value pairs. IBLTs have the property that, under certain conditions,

they can be inverted to retrieve the keys that were previously inserted. This is in

contrast to Bloom filters or Approximate Reconciliation Trees, which enabled lookup

but not retrieval of keys. As we use IBLTs in our file synchronization protocol in

Chapter 3, we describe them in detail here.

An IBLT consists of a table T of m buckets and uses k random and independent

hash functions h1, h2, . . . , hk, each of which maps the keys to a range {0, 1, . . . ,m−1}

(giving us an index into one of the positions of the IBLT). The number of buckets

is chosen with respect to some threshold t so that inverting the table succeeds with

high probability when there are fewer than t key-value pairs in the structure.

Each bucket has a keysum field that is the exclusive-or of all the keys that have

been added to that bucket and a count field that is the number of keys that have

hashed to that bucket. For simplicity, we only consider keys and not key-value pairs –

we can easily extend the analysis to accommodate the latter by including a valuesum

field.

20

Operations

An Invertible Bloom Lookup Table supports three main operations, insert, delete,

and listing. insert adds a key to the IBLT and delete removes a key from the

IBLT. For now, we assume that we only can remove keys that are already in the IBLT.

Later, we will show how we can allow for removal of keys never inserted to the IBLT.

listing is our inversion function, and lists all the keys in the structure, succeeding

with high probability as long as the number of keys is below a certain threshold.

To insert a key x, we compute h1(x), h2(x), . . . , hk(x) to determine which buckets

the key should be added to. For each of those buckets, we compute the exclusive-or of

the key with the existing keysum and increment count. Method 1 shows pseudocode

for insert.

Method 1 Insert a new key to the IBLT
1: function Insert(key)
2: for i in GetKeyIndices(key) do
3: T [i].keysum = T [i].keysum ⊕ key
4: T [i].count = T [i].count + 1

To delete, we perform the exact same operations, except that we decrement

count.

To perform a listing operation, we go through each of the buckets in turn,

looking for buckets that have count = 1 and adding those buckets to a queue. If a

bucket’s count is not equal to 1, we skip the bucket, as in that case it is not possible

that there is only one key in that bucket. We then pop a bucket off of the queue.

Let the keysum of that bucket be yi. Since that bucket’s count is 1, yi corresponds

exactly to one key x, so we add x to our retrieved set. We then perform a delete

operation with key x to remove it from the IBLT. During the process of deleting x

(looking through buckets corresponding to h1(x), . . . , hk(x)), we can see if any of those

buckets now have a count of 1. If a bucket does, then we add it to the queue. We

repeat this process of popping a bucket off the queue and removing the corresponding

key from the IBLT until we either have listed all keys (in which case every field of

every bucket has value 0), or we cannot proceed (which will happen if every bucket i

21

has count > 1). Pseudocode for listing is provided in Method 2.

Method 2 List all the keys in the IBLT
1: function Listing(S)
2: queue = emptyQueue()
3: for i = 0 to m− 1 do
4: if T [i].count = 1 then
5: Add i to queue
6: while queue not empty do
7: i = queue.pop()
8: if T [i].count != 1 then
9: continue
10: key = T [i].keysum
11: add key to S
12: for i in GetKeyIndices(key) do
13: T [i].keysum = T [i].keysum ⊕ key
14: T [i].hashsum = T [i].hashsum ⊕ H(key)
15: T [i].count = T [i].count - 1
16: if T [i].count = 1 then
17: Add i to queue
18: for i = 0 to m− 1 do
19: if T [i] is not empty then
20: return Failure
21: return Success

Intuition

The rationale behind using exclusive-ors for both insert and delete is as follows:

Imagine that key x has been inserted once and deleted once from the same IBLT.

Then for every bucket corresponding to h1(x), . . . hk(x), the resultant keysum, which

we denote keysumf is exactly equivalent to the keysum before first inserting k, which

we denote keysumi. This is the case as keysumf = (keysumi ⊕ k)⊕ k = keysumi.

Listing Example

We will now work through a simple example to see how the listing process works in

practice. Let us consider an IBLT T with k = 2 hash functions, m = 4 buckets, and

bitstring keys of length 4. Initially, T looks like the IBLT in Table 2.1 (the 1,2,3,4 in

the first row are indices of the bucket).

22

Table 2.1: Initial IBLT

IBLT T 1 2 3 4
keysum 0000 0000 0000 0000
count 0 0 0 0

We consider inserting three keys, x = 1011, y = 1001, z = 0111 (we assume these

are the bitstring representations of the keys), into the IBLT. We first insert x = 1011,

which hashes to buckets 1 and 2 (we have not specified our hash functions, so this

choice is arbitrary). Table 2.2 shows what T now looks like.

Table 2.2: IBLT after inserting key x

IBLT T 1 2 3 4
keysum 1011 1011 0000 0000
count 1 1 0 0

We insert y = 1001, which hashes to buckets 2 and 3. Table 2.3 shows T after

inserting this additional key.

Table 2.3: IBLT after inserting keys x, y

IBLT T 1 2 3 4
keysum 1011 0010 1001 0000
count 1 2 1 0

And we finally insert z = 0111, which hashes to buckets 3 and 4, leaving the IBLT

as in Table 2.4.

Table 2.4: IBLT after inserting keys x, y, z

IBLT T 1 2 3 4
keysum 1011 0010 1110 0111
count 1 2 2 1

Note that after this last step we cannot find key y in the IBLT, as it is only in

buckets with count > 1. We begin our listing process by searching for a bucket

with count= 1. Buckets 1 and 4 satisfy this property, and are added to our queue.

We pop the first bucket off the queue (bucket 1), and remove the key x from each

23

location it hashed to (buckets 1 and 2). This leaves us with the IBLT as shown in

Table 2.5.

Table 2.5: IBLT after removing key x

IBLT T 1 2 3 4
keysum 0000 1001 1110 0111
count 0 1 2 1

When removing x from bucket 2, we find that bucket 2’s resultant count is 1, so

we add bucket 2 to the queue. We then pop the next bucket off the queue (bucket 4),

and remove the key y from each location it hashed to (buckets 3 and 4). During the

process of removing y from bucket 3, we find that bucket 3’s count is 1, so we add

bucket 3 to the queue. This leaves us with the IBLT as in Table 2.6.

Table 2.6: IBLT after removing keys x, z

IBLT T 1 2 3 4
keysum 0000 1001 1001 0000
count 0 1 1 0

We pop the next bucket off the queue (bucket 2), and remove key z from buckets

2 and 3, leaving us with the IBLT as in Table 2.7.

Table 2.7: Final IBLT after listing

IBLT T 1 2 3 4
keysum 0000 0000 0000 0000
count 0 0 0 0

We then pop the last bucket off the queue (bucket 3), but its count is already 0,

so we skip it. There are no more buckets in the queue, so we check to see that all

buckets are empty. Indeed, that is the case, so we are done!

Success Probability

Goodrich and Mitzenmacher [21] proved bounds on the success rate of a listing

operation.

24

Theorem 1. If m is the number of buckets in the IBLT, and t is a chosen threshold,

then as long as m is chosen so that m > (ck + ε)t for some ε > 0, listing fails with

probability O(t−k+2) whenever n, the number of keys needing to be peeled, is ≤ t.

We list some values for ck in Table 2.8.

Table 2.8: Threshold for successful listing

k 3 4 5 6 7
ck 1.222 1.295 1.425 1.57 1.721

Supporting Removal of Keys Not Present in IBLT

We will now consider extending IBLTs to support removal of keys not present in the

IBLT. To do so, let us first consider what happens when we delete a key k from an

empty IBLT. We compute the exclusive-or of x with the existing keysum and subtract

1 from the count. So now we have a bucket with a count of -1. Note also that since

insert and delete both use exclusive-ors, the keysum is the same whether we inserted

or deleted the key. In this situation, even though the key was never inserted before

being deleted, keysum exactly corresponds to the key itself, and furthermore, we can

tell that the key was never inserted since the count is -1.

Before, we could only retrieve a key from a bucket if its count was 1. Furthermore,

having a count of 1 was sufficient to guarantee that exactly one key was in the bucket.

Now, we can retrieve a key from a bucket if its count is 1 or -1. However, having a

count of 1 or -1 is no longer sufficient to guarantee that there is only one key in the

bucket. To see this, consider three distinct keys x1, x2, x3 that all happen to hash to

the same bucket i. If we first insert x1 and x2, and then delete x3, then the resultant

count of bucket i will be 1 even though there are three keys in that bucket.

To ensure that we only retrieve a key when there is exactly one key in the bucket,

we introduce a new hash function H that maps keys to values in {0, 1, . . . , 2l − 1}.

H(x) for some key x is thus an l-bit hash for the key. We also add a new field to each

bucket called the hashsum that is the exclusive-or of all the l-bit hash values of the

25

keys added to that bucket. insert and delete now additionally need to compute the

exclusive-or of H(x) with the hashsum. We provide updated pseudocode in Method 3.

Method 3 Insert a new key to the IBLT
1: function Insert(key)
2: for i in GetKeyIndices(key) do
3: T [i].keysum = T [i].keysum ⊕ key
4: T [i].hashsum = T [i].hashsum ⊕H(key)
5: T [i].count = T [i].count + 1

For listing, in addition to checking if count is 1 or -1, we further check that

H(keysum) = hashsum. For exactly one key to be in the bucket, H(keysum) must

equal hashsum. IfH(keysum) = hashsum, we still have a small probability of retrieving

an incorrect key (i.e., when the keysum in a bucket corresponds to an exclusive-or

of multiple keys, but H(keysum) still happens to match the hashsum at the time).

Assuming a completely random hash function, we will only retrieve an erroneous key

with probability 2−l. Our modified listing protocol that accounts for negative values

of count is shown in Method 4.

Set Reconciliation

For set reconciliation, we introduce a new operation called subtract that takes an-

other IBLT (of the same size) as a parameter and “removes” all the keys in that other

IBLT from the current IBLT. More specifically, to perform a subtract operation,

we go through each of the buckets in turn, compute the exclusive-or of the keysums

from both IBLTs, compute the exclusive-or of the hashsums, and subtract the two

counts. As shorthand, for IBLTS T1, T2, T3, when we write T3 = T1 − T2, we mean

that T3 is the result of subtracting T2 from T1. Pseudocode for subtract is provided

in Method 5.

Let us consider inserting a set of keys SA into IBLT TA and inserting a set of keys

SB into IBLT TB. We will determine which keys from SA and SB we will be able to

retrieve during a listing operation from the IBLT T = TA − TB.

If a key k is in both SA and SB, then k’s contribution to the keysum and hashsum

26

Method 4 List all the keys in the IBLT. SA will contain all the keys that were added
to the IBLT, and SR will contain all the keys that were removed from the IBLT
without having been added previously
1: function Listing(SA, SR)
2: queue = emptyQueue()
3: for i = 0 to m− 1 do
4: if T [i].count = 1 or -1 and H(T [i].keysum) = T [i].hashsum then
5: Add i to queue
6: while queue not empty do
7: i = queue.pop()
8: c = T [i].count
9: if c != 1 or -1 then
10: continue
11: key = T [i].keysum
12: if c is 1 then
13: add key to SA
14: if c is -1 then
15: add key to SR
16: for i in GetKeyIndices(key) do
17: T [i].keysum = T [i].keysum ⊕key
18: T [i].hashsum = T [i].hashsum ⊕H(key)
19: T [i].count = T [i].count - c
20: if T [i].count = 1 or -1 and H(T [i].keysum) = T [i].hashsum then
21: Add i to queue
22: for i = 0 to m− 1 do
23: if T [i] is not empty then
24: return Failure
25: return Success

Method 5 Subtract T2 from T1. T3 will contain the resulting IBLT
1: function Subtract(T1, T2, T3)
2: for i = 0 to m− 1 do
3: T3[i].keysum = T1[i].keysum ⊕T2[i].keysum
4: T3[i].hashsum = T1[i].hashsum ⊕T2[i].hashsum
5: T3[i].count = T1[i].count - T2[i].count

27

in each relevant bucket of T will be exclusive-ored twice (once for k being in TA, and

once for k being in TB), and k’s contribution to count will be 0 (+1 for it being in

TA, and -1 for it being in TB), and thus T will have no idea that k was inserted.

Thus, if we perform a listing operation on T = TA − TB, we will not find any key

in SA ∩ SB.

Any key in SA \ SB will be exclusive-ored once in keysum and hashsum for each

corresponding bucket in T (since it was added to TA but not to TB), and will contribute

+1 to count. Any key in SB \ SA will be exclusive-ored once in keysum and hashsum

for each corresponding bucket in T (since it was added to TB but not to TA), and will

contribute -1 to count. Thus, the keys in the IBLT after subtract will correspond

exactly to the keys in the set difference, and we can just use a listing operation to

retrieve them.

For set reconciliation, all we need to do is have Party A create an IBLT TA

containing all the keys from SA and have him send TA to Party B. Party B then

creates an IBLT TB containing all the keys from SB and subtracts TA from TB to get

a final IBLT TC . Assuming the size of the set difference is less than the threshold

t, Party B will be able to successfully perform a listing operation on TC , and can

thus determine all the keys in SA \ SB and SB \ SA.

Example Set Reconciliation Using IBLTs

We now provide an example of two-party set reconciliation using IBLTs. As in our

listing example above, we once again have keys x = 1011, y = 1001, z = 0111

that hash to buckets (1,2),(2,3), and (3,4) respectively. We have an additional key

a = 0001 that hashes to buckets 2 and 4. Party A has a set of keys SA = {x, y, z},

and Party B has a set of keys SB = {y, z, a}, so SA \ SB = {x} and SB \ SA = {a}.

After inserting SA and SB into their respective IBLTs TA and TB, TA and TB look as

in Table 2.9 (we omit the hashsum field for simplicity).

Note that a listing operation on TB would fail since there is no count equal to

1. We then compute T = TA − TB, which gives us the resultant IBLT T as shown in

Table 2.10.

28

Table 2.9: IBLTs TA and TB after inserting keys {x, y, z} and {y, z, a} respectively

IBLT TA 1 2 3 4
keysum 1011 0010 1110 0111
count 1 2 2 1

IBLT TB 1 2 3 4
keysum 0000 1000 1110 0110
count 0 2 2 2

Table 2.10: T = TA − TB

IBLT T 1 2 3 4
keysum 1011 1010 0000 0001
count 1 0 0 -1

Note that bucket 2’s count is 0 but its keysum is non-zero. This is the case since

it has one key from SA and one key from SB. Now, we search through each bucket for

counts that are 1 or -1. In this case, we add buckets 1 and 4 to the queue. We pop

the first bucket from the queue (bucket 1), removing the key x from both locations

it hashed to (buckets 1 and 2). Since bucket 1’s count was 1, we know x came from

Party A’s set. T with x removed is shown in Table 2.11.

Table 2.11: T after removing key x

IBLT T 1 2 3 4
keysum 0000 0001 0000 0001
count 0 -1 0 -1

Note that during the process of removing x, bucket 2’s count became -1, at which

time we added bucket 2 to the queue. We now pop the next bucket from the queue

(bucket 4), removing the key z from both locations it hashed to (buckets 2 and 4).

Since bucket 2’s count was -1, we know z came from Party B’s set. This also means

that we add 1 to count of each location z hashed to rather than subtracting 1. We

then pop the last bucket from the queue (bucket 2), but since its count is already 0,

we skip it. We are then left with an empty IBLT, and our listing process finishes.

We indeed obtained that SA \ SB = {x} and SB \ SA = {a}.

2.2.4 Multi-party Invertible Bloom Lookup Tables

We now consider the extended set reconciliation problem, which involves multiple

parties that all want to reconcile their sets. As stated in the introduction, we want to

29

determine elements from each set that are not in the intersection of all the sets. That

is, we have sets S1, S2, . . . , Sm, and letting I denote ∩i∈1...mSi, we want to determine

(S1 \ I), (S2 \ I), . . . , (Sm \ I)

An extension of IBLTs was recently proposed [31] to handle this situation. In the

next section, we explain the intuition behind that extension, and show how it works

in practice.

Changing the Key Representation for Multiple Parties

In the 2-party case, we considered keys as bitstrings, or equivalently, numbers base

2. We can think of the exclusive-or we performed for keysum before as taking the

bit-wise sum of two numbers base 2. For instance, if we have x = 0112 and y = 1012,

then x ⊕ y = 1102 (counting from the right leftwards, bit 0 in x ⊕ y results from

adding 1 and 1 base 2, which is 0, bit 1 results from adding 0 and 1 base 2, which

is 1, and bit 2 results from adding 0 and 1 base 2, which is also 1). A bitstring key

exclusive-ored with itself always equals 0. We can see this since each bit is either 0

or 1. If it is 0, then when computing the exclusive-or, we find 0 + 0 mod 2 = 0, and

if the bit is 1, we compute 1 + 1 mod 2 = 0, meaning that the result is always 0.

We want to find something analogous for n > 2 parties. More specifically, we

want a key representation and “exclusive-or” such that if we add the same key to the

same bucket n times, then it cancels out. Based on the discussion in the previous

paragraph, we can imagine that instead of representing each key as a number base 2

(for two parties), we can represent each key as a number base n (for n parties), which

we call the key’s nit-wise representation (so for three parties, it would be its 3it-wise

representation). Our “exclusive-or” operation then takes the nit-wise sum of the two

keys, computing the sum of each nit individually, and then reducing each nit modulo

n.

As an example, let us consider a key x with a binary representation of 100012. x’s

nit-wise representation would then be 10001n. We denote x’s binary representations

30

as x2, and more generally denote the nit-wise representation of a key x as xn. We

overload ⊕ for nit-wise addition, and 	 for nit-wise subtraction. As an example of

these operations, let us consider n = 3 (corresponding to 3 parties) and the same

key x defined previously. Then x3 ⊕ x3 = 200023, and x3 ⊕ x3 ⊕ x3 = 000003. Thus,

exactly as desired, if the same key is added n times, then it cancels out of the nit-wise

representation. Note that if a key is added i times for i < n, then the result’s nit-

wise representation will consist only of i’s and 0’s. As another example, if we have a

different key y such that y2 = 10111, then x3 ⊕ y3 = 201123, and x3 	 y3 = 002203.

Changing the Protocol for Multiple Parties

With this modification to the key representation, we can consider how to change the

protocol to handle multiple parties. Each bucket of the multi-party IBLT will once

again have keysum, hashsum, and count fields, except the former two now store nit-

wise representations of the numbers. count is now a counter modulo n – we explain

why this is the case in a bit.

insert and delete proceed analogously to the two-party case, except using nit-

wise ⊕ and 	 operations.

For listing, we need to be a bit more careful. As shown previously, if a key is

added n times to an n-party IBLT, it will cancel out of all the buckets it was added

to. Let us consider what happens if there is a single key x that is in a bucket, but

that key is added i times for 0 < i < n. As we explained before, we expect that the

keysum and hashsum will have nit-wise representations consisting solely of i’s and 0’s.

Similarly, since the key is added i times, we expect count to be i. Thus, to check if a

key x is in a bucket b, we first look at bucket b’s count. Say that it has a value j. We

then see if bucket b’s keysum and hashsum nit-wise representations consist solely of

j’s and 0’s. If so, then let the key (that when added j times corresponds to keysum’s

nit-wise representation) be y, and let the hash (that when added j times corresponds

to hashsum’s nit-wise representation) be z. As an example, if we see that keysum is

40445 and count is 4, then the key y is 1011. However, if we see that keysum is 40345

and count is 4, we know that there is more than one distinct key in the bucket. We

31

then check that H(y) = z to confirm that the retrieved key does indeed correspond

to exactly one key. If it does, then we can remove j copies of key y from the IBLT,

and continue the listing process as before.

To use this for set reconciliation, say we have n parties with IBLTs T1, T2, . . . , Tn

respectively. Each party adds its corresponding keys to its IBLT. We define an add

operation for IBLTs that is analogous to subtract defined for two-party IBLTs, except

that we add the corresponding counts rather than subtracting them. We also adopt

the shorthand of T = T1 + T2 meaning that IBLT T is the result of performing add

on T1 and T2. Now consider the IBLT T = T1 + T2 + . . .+ Tn. Any key that appears

in all n sets will be canceled out of keysum, hashsum, and count, so the keys in T

are exactly the keys from (∪iSi) \ (∩iSi). We then perform a listing operation to

retrieve all those keys.

Determining Which Key Belongs to Which Party

As described so far, we are only able to determine the set of keys in (∪iSi) \ (∩iSi),

but not which party had each key to begin with. To resolve this problem, we can

add a bit vector bv of length n to each bucket. When Party i adds a key to bucket j

in its IBLT, it toggles the ith bit of bv in bucket j. When summing IBLTs, we now

additionally sum the corresponding bvs. When we find a bucket with exactly one

key, we check bv to see which bits are set. All the bits that are set correspond to the

parties that originally had the key. We then remove this bv from the bv of all the

buckets the key hashed to.

As stated, this method of determining which parties had a certain key is not

entirely correct, and even after further modification, actually only works when the

number of parties is odd. Say that Parties A,B,C all have sets with one key x. Then

in the resultant IBLT I = IA + IB + IC , for each bucket that x hashes to, the keysum,

hashsum, and count will all be 0, but bv will be 111. Now say that Party A has an

additional key y that hashes to that same bucket. In I = IA + IB + IC , the keysum

of that bucket will be y, the hashsum will just be H(y), and the count will be 1, but

bv will be 011. Using our approach as stated so far, we would say that Parties B

32

and C both had key y even though only Party A had it. To correct this, we need to

check that the count matches the number of bits set in bv. If it does not, then we

flip all the bits in bv before checking that count matches the number of bits set in

bv. This approach does not necessarily work if n is even, since if n/2 bits of bv are

set, flipping all the bits will not change the number of set bits. In that situation, we

will be unable to determine if the parties corresponding to the original bv or the final

bv are the ones that originally had the key.

Example Set Reconciliation Using Multi-party IBLTs

We extend our two-party set reconciliation example to three-party set reconcilia-

tion by introducing an additional Party C. As before, we have keys x = 1011, y =

1001, z = 0111, a = 0001 that hash to buckets (1,2),(2,3),(3,4),(2,4) respectively. Par-

ties A and B once again have sets of keys {x, y, z} and {y, z, a} respectively. Party

C has keys {z, a, x}. Thus, all three parties share key z, but keys x, y, a are each in

two out of the three sets. We once again omit the hashsum field, but now include

the bv field. We index bv such that position 0 (leftmost bit) corresponds to Party A,

position 1 to Party B, and position 2 to Party C. We use the subscript 3 in keysum to

note that these are 3it-wise representations. The initial IBLTs TA, TB, TC are shown

in Table 2.12.

Table 2.12: IBLTs TA, TB, TC after inserting keys {x, y, z}, {y, z, a}, {z, a, x}

IBLT TA 1 2 3 4
keysum 10113 20123 11123 01113

count 1 2 2 1
bv 100 000 000 100

IBLT TB 1 2 3 4
keysum 00003 10023 11123 01123

count 0 2 2 2
bv 000 000 000 000

IBLT TC 1 2 3 4
keysum 10113 10123 01113 01123

count 1 2 1 2
bv 001 000 001 000

33

We then compute T = TA + TB + TC . The resultant T is shown in Table 2.13.

Table 2.13: T = TA + TB + TC

IBLT T 1 2 3 4
keysum 20223 10203 20023 00023

count 2 0 2 2
bv 101 000 001 100

We now go through T , looking for any bucket with count i > 0 and keysum

consisting solely of i’s and 0’s. Buckets 1, 3, and 4 satisfy this property, so we add

them in that order to our queue. We see that bucket 1’s keysum is 20223 and count

is 2, meaning that our key x is 1011, and that x appears in two of the original sets.

Using bv (which agrees that there are two parties holding the key, since the number

of set bits is 2), we can tell that Parties A and C originally had x. We now remove

two copies of x from T . The IBLT with two copies of x removed from T is shown in

Table 2.14.

Table 2.14: T with two copies of key x removed

IBLT T 1 2 3 4
keysum 00003 20013 20023 00023

count 0 1 2 2
bv 000 101 001 100

We now pop the next bucket off the queue, which is bucket 3. We see that bucket

3’s keysum is 20023 and count is 2, meaning that our key y is 1001, and that y

appears in two of the original sets. However, if we look at bucket 3’s bv, we see that

the number of set bits is actually 1. Thus (as explained in the previous section), we

flip all the bits in bv, and can tell that Parties A and B originally had key y. We

now remove two copies of y from T . The new IBLT is shown in Table 2.15.

Table 2.15: T with two copies of key x and two copies of key y removed

IBLT T 1 2 3 4
keysum 00003 00023 00003 00023

count 0 2 0 2
bv 000 100 000 100

34

We pop the next bucket off the queue, which is bucket 4. We see that bucket 4’s

keysum is 00023 and count is 2, meaning that our key a is 0001, and that a appears in

two of the original sets. However, if we look at bucket 4’s bv, we see that the number

of set bits is actually 1, so we flip all the bits in bv, and can tell that Parties B and

C originally had key a. We now remove two copies of a from T , leaving us with an

empty IBLT, and our listing finishes. Again, we are able to retrieve all the keys for

each party that are not already contained by all parties.

2.3 Estimating the Size of the Set Difference

For both of our near-optimal methods (recall that we defined “near-optimal” as having

transmission complexity within a constant factor of the information-theoretic limit),

we needed a good estimate of the size of the set difference, which we denote d. In

the case of the characteristic polynomial method, the degree of the rational function

formed from the quotient of both parties’ characteristic polynomials depended on d.

In the case of IBLTs, the choice of the size of the table depended on d.

Several methods have been proposed to estimate the size of the set difference,

including using a hierarchy of samples [14], using random projections [22], and us-

ing a more generalized sketching algorithm involving limited-independence random

variables [19].

In the following sections we describe three approaches, the Strata Estimator, Min-

wise sketches, and repeated doubling. We adopt the Strata Estimator in our file

synchronization protocol.

2.3.1 Strata Estimator

Eppstein, Goodrich, Uyeda, and Varghese [18] proposed a data structure using multi-

ple smaller IBLTs to estimate the set difference. Their approach works especially well

when the set difference is small. If the set difference is large, then other approaches,

including random sampling [22] and min-wise hashing [10, 11] (which we describe in

the Section 2.3.2), work better.

35

Their approach is based on the methods developed by Flajolet and Martin [20]

to estimate set sizes. We assume that we have a set S such that all elements of S

come from a universe of size u. We also assume that we have a random hash function

h that maps the elements of the universe to the integers in [0, u). In Flajolet and

Martin’s approach, we create a log(u) bit estimator, with each bit i in the estimator

set to 1 if there is at least one element e ∈ S such that the ith bit of h(e) is the first

one that is set, counting from the right. Since we assume that the hash function is

random, for a given element, the probability that the ith bit is the first bit that is set

is 1/2i+1. The estimator then returns 2I as the set size, where I is the highest index

such that bit I is set in the estimator.

Adapting this for set differences, we separate the universe U into L + 1 = log(u)

partitions, P0, P1, . . . , PL such that the ith partition covers a fraction 1/2i+1 of U .

This can be done quite easily by mapping each element e in the universe to partition

i, where i is the highest power of 2 that divides e (equivalently, the number of trailing

zeros in e’s binary representation). We correspond to each partition an IBLT of some

fixed size C (Eppstein et al. choose C = 80). We call the series of L + 1 IBLTs

a “Strata Estimator”. For a given Strata Estimator E, E[i] corresponds to the ith

IBLT. To create a Strata Estimator E for a set S, for each element e ∈ S, we compute

h(e), count the number of trailing zeros of h(e), which we denote z, and insert h(e)

into E[z].

To estimate the size of the set difference, Parties A and B create Strata Estimators

EA and EB for their respective sets SA and SB. Party A then transmits EA to Party

B. For i ∈ {L,L−1, . . . , 0} in descending order, Party B computes E = EB[i]−EA[i]

and then performs a listing operation on E. Each time listing succeeds, we add

the number of recovered keys to a counter. If listing is unsuccessful, then we

estimate the size of the set difference as 2i+1c, where c is the value of the counter

(which corresponds to the number of recovered keys), and i is the index at which our

listing failed.

As shown in [18], the Strata Estimator technique performs quite well:

Theorem 2. Let ε and δ be constants in the interval (0,1), and let S and T be two sets

36

whose set difference has size d. If we encode the two sets with our Strata Estimator,

in which each IBLT in the estimator has C cells using k hash functions, where C and

k are constants depending only on ε and δ, then with probability at least 1 − ε, it is

possible to estimate the size of the the set difference within a factor of 1± δ of d.

This approach takes only one round and is able to estimate the size of the set

difference using O(log(u)) space. However, the constant factors hidden are quite

large, so it works best when the sets of keys compared are quite large. Eppstein et al.

also proposed a hybrid approach using both IBLTs and min-wise sketches to improve

performance for a fixed size estimator.

2.3.2 Min-wise Sketches

Min-wise sketches [10, 11] are another approach to estimate the set similarity. In

particular, they are used to estimate the resemblance r of two sets SA and SB, defined

as r =
SA ∩ SB
SA ∪ SB

. This quantity is also known as the Jaccard Similarity coefficient.

To create a min-wise sketch, we first select k random hash functions, h1, h2, . . . , hk

that each permute elements within the universe U of keys. As an example, if we imag-

ine our universe of keys to be {0, 1, 2, 3}, then one such hash function hA satisfying

the permutation property would be defined as follows: hA(0) = 2, hA(1) = 1, hA(2) =

3, hA(3) = 0.

We then apply each of the hash functions h1, h2, . . . , hk to all of the elements of

S. Let min(hi(S)) be the smallest value produced by hi over all the elements of our

chosen set S. Using the hash function hA we defined before, if our set S were {0, 2},

then min(hA(S)) would be 2, since hA(0) = 2 and hA(2) = 3. The min-wise sketch

is defined as the k values min(h1(S)),min(h2(S)), . . . ,min(hk(S)). Letting the min-

wise sketches for Parties A and B be WA and WB respectively, the set similarity is

estimated by the fraction of hashes from WA and WB that return the same minimum

value.

Expanding on our example, say that we have two more hash functions, hB and

37

hC defined as follows:

hB(0) = 0, hB(1) = 1, hB(2) = 3, hB(3) = 2

hC(0) = 3, hC(1) = 2, hC(2) = 1, hC(3) = 0

Let us say that our two sets are S1 = {1, 3} and S2 = {2, 3}. Then the min-wise

sketch using the three hash functions hA, hB, hC for S1 would be {0, 1, 0} and the

min-wise sketch for S2 would be {0, 2, 0}. Our estimate of the set similarity would

then be 2/3, since both min-hashes corresponding to hA are 0, and both min-hashes

corresponding to hC are 0.

If SA and SB have resemblance r, then we expect that the number of matching

hashes m in WA and WB to be m = rk. This is the case since the hash functions

are random permutations, so each element in SA ∪ SB is equally likely to be the one

that hashes to the minimum. For min(hi(SA)) to equal min(hi(SB)), we need the

element mapping to that minimum to be in both sets (in SA ∩ SB). This happens

with probability (SA ∩ SB)/(SA ∪ SB), which is precisely the resemblance.

Using the fact that |SA ∩ SB| = |SA| + |SB| − |SA ∪ SB| and |SA ∪ SB| = |SA| +

|SB| − |SA ∩ SB|, we can rewrite the resemblance equation r =
SA ∩ SB
SA ∪ SB

as

r =
|SA|+ |SB| − |SA ∪ SB|
|SA|+ |SB| − |SA ∩ SB|

Rearranging, we find that

|SA ∪ SB| − |SA ∩ SB| =
1− r
1 + r

(|SA|+ |SB|)

Note that the left hand size is exactly the size of the set difference d.

2.3.3 Repeated Doubling and Using Number of Listed Keys

The Strata Estimator and Min-wise Sketches methods both seek to first determine the

size of the set difference and then use that information to determine the appropriate

38

data structure to transmit. Let us consider an alternative approach, where we just

guess an initial size for the set difference, transmit the data structure according to

that guess, and retry until we succeed. In the case of Invertible Bloom Lookup Tables,

we start with Party A transmitting an IBLT of some fixed size c to Party B. Party

B then subtracts its IBLT from Party A’s and performs a listing operation. If

listing succeeds, then we are done. Otherwise, we double the size of the IBLT and

retry. As this is an exponential backoff solution, we will transmit messages with a

total size proportional to the set difference. However, this method potentially requires

many rounds of communication, which is a significant downside.

In the following section, we see if we can gain any more information from the

number of keys listed during a failed listing operation. More concretely, say that we

have an IBLT with 80 buckets, and when we tried to perform a listing operation,

we managed to list only 2 keys before every bucket’s count was greater than 1.

Does this mean we have approximately 100 keys in the table? 1000? 10000? If we

can determine a good estimate, then we can choose an appropriate expansion factor

that is potentially much greater than 2, which will reduce the number of rounds of

communication needed to successfully list. Unfortunately, as we will show, if the

number of keys inserted to the IBLT is significantly more (>4 times) the number of

IBLT buckets, then for IBLTs of reasonable size, we will most likely not be able to

list any keys.

Listing Analysis

Say we have an IBLT with m buckets, we are using k independent and random hash

functions, and we insert n keys to the IBLT. Determining the number of keys that

hash to each bucket is effectively the same as the well-studied balls-and-bins problem,

where we have a fixed number of bins, and we randomly add balls to those bins. Our

buckets are the bins, and our keys are the balls. In our situation, we actually have

kn balls since each individual key is inserted into k slots.

As in typical balls-and-bins analyses, we use the Poisson approximation to the

Binomial [32]. That is, we assume that the number of balls that fall into a certain

39

bin, X, follows a Poisson Distribution:

P (X = x) =
λxe−λ

x!

with λ =
kn

m
.

A key can be retrieved from an IBLT bucket if it is the only key in that bucket,

and thus we want to find the number of buckets with exactly 1 key. For a Poisson

random variable,

P (X = 1) =
λe−λ

1!

If we let Yi be an indicator random variable for bucket i having exactly one key, we

have that the expected value of Yi is just equal to the probability that bucket i has

exactly one key. Plugging in to the previous expression, we get the following:

E[Yi] =
kn

m
e−kn/m

If we let Y = Y1 +Y2 + . . .+Ym be a random variable for the total number of buckets

having exactly one key, by linearity of expectation, we have

E[Y] = E

[∑
i

Yi

]
=
∑
i

E[Yi] = kne−kn/m

So for a fixed number of buckets m, the number of retrievable keys falls of exponen-

tially with the number of inserted keys. Note that this is only for the first sweep

through the IBLT for listing. With more nuanced “peeling” analysis (see [23] for

more information), which takes into consideration the fact that when we remove the

keys found during the first sweep through the IBLT, more buckets will now have only

one key in them, we would be able to show a more precise result. For our purposes,

this simpler analysis is sufficient.

Assuming k = 4, an IBLT of 1000 buckets, and 4000 inserted keys, we find that

the expected number of buckets with exactly one key is ≈ 0.002, which is quite small.

If there is not a single bucket with exactly 1 key, that we cannot even begin the

40

listing process, in which case listing will always fail with 0 keys retrieved. This

means that the number of keys successfully listed only is useful when the number of

keys inserted is within a rather small (<4) multiplicative constant above the IBLT

table size, as above that number we will almost always retrieve 0 keys.

41

Chapter 3

File Synchronization

As stated in the introduction, the file synchronization problem involves efficiently

keeping versions of a file from multiple different hosts up to date. This problem arises

in many situations, including website mirroring, file system backup and replication. In

those sorts of situations, successive versions of each file generally are very similar. We

would like to take advantage of that fact to decrease the amount of data transmitted,

which is especially relevant in systems where bandwidth is a bottleneck. Ideally,

the amount of data transmitted should be roughly proportional to the “difference”

between the old and new file.

In general, file synchronization techniques fall into one of two categories, single-

round protocols and multi-round protocols. Single-round protocols, as their name

suggests, involve one round of communication between local and remote host. Multi-

round protocols generally involve a divide and conquer approach, where one party

breaks the file down into a few large blocks, sends hashes corresponding to those

blocks, and then recursively divides any blocks the remote host was not able to match

until a matching block is found.

Single-round protocols are more effective when transmitting small files or when

the network has high latencies, as the overhead of sending multiple rounds of mes-

sages might not be worth the bandwidth savings. Multi-round protocols can be more

effective when transmitting large files or when the network is bandwidth limited –

as experiments have shown, multi-round protocols can allow significant transmission

42

savings over single-round protocols on real data sets [38].

In Section 3.1, we describe rsync, a popular single-round protocol. Since our file

synchronization protocol involves a (small) constant number of rounds of messages,

we do not describe multi-round protocols in more detail.

In Section 3.2, we describe a few techniques that use set reconciliation for file syn-

chronization. We focus on one such method, called string reconciliation using puzzles,

since we use an optimization based on that technique in our file synchronization pro-

tocol discussed in Chapter 4.

In Section 3.3, we discuss content-dependent file partitioning, which uses local fea-

tures of a file to partition that file into blocks. This is beneficial since two parties can

independently partition their files (using the same content-dependent file partitioning

technique), and if the two files are similar, end up with relatively similar blocks. We

adopt this approach to partitioning the file in our file synchronization protocol.

We have some assumptions in our setup for file synchronization. First, we assume

that files can be modified in arbitrary ways (insertion, deletion, etc). Second, we

assume that there is no system that can log all file changes and then transmit them

to the remote machine. Third, we assume that the synchronization is between two

parties. Methods have been proposed to handle multiple parties [34], though we do

not discuss them here.

3.1 rsync

rsync [39] is a popular single-round protocol for file synchronization. The basic idea

behind rsync is to split a file into blocks and use hash functions to compute short

hashes of those blocks. The hashes from the local file are then compared with the

hashes computed for the remote file. If a hash does not match, then we need to send

the actual block contents that correspond to the unmatched hash. Otherwise, we can

just send an acknowledgement that we already have the corresponding block.

In particular, rsync takes advantage of rolling hash functions [24] to skip file blocks

that match on both the remote and local machines. However, it is unable to use more

43

nuanced information from the outdated file to reduce transmission overhead. For

instance, rsync is unable to detect that the file block is present on the local machine

but in a different file). We describe the rsync protocol in more detail below.

3.1.1 Protocol

Say Party A wants to get an updated version of a file from Party B.

1. Parties A and B agree on some block size b. Let fA and fB denote A’s and B’s

file respectively, and let fA(i, i+ b− 1) denote the b-gram (the b bytes) starting

at position i in fA.

2. Party A splits its file into disjoint blocks Bi, each of size b (starting at file

positions 0, b, 2b, . . .), computes a hash h(Bi) for each i, and transmits h(Bi) for

each i to Party B.

3. Party B receives those hashes and inserts (h(Bi), i) into a map structure (an

efficient key-value store).

4. For each index i in Party B’s file, Party B computes h(fB(i, i + b − 1)) and

checks the map for a matching hash. If a match is found, then Party B sends

an acknowledgement of that match back to Party A and increments i by b. If a

match is not found, then Party B sends fB(i, i) (one character) to Party A and

then increments i by 1.

5. Party A recreates the file by adding the block corresponding to index i if a

match was found or adding the character sent over if a match was not found.

6. To ensure that the recreated file is correct, Party B sends a longer hash corre-

sponding to the whole file fB (for instance a 128-bit MD5 hash) and transmits

it to Party A. Party A computes the same hash on the newly recreated file and

ensures that the hashes match. If they do not, then Party A requests Party B

to send fB over in its entirety.

44

Note that it is necessary for Party B to compute the hash at every offset of its

file – if Party B just computed hashes for disjoint blocks of length b, then adding a

single character at the beginning of the file would cause all blocks to be misaligned.

Optimizations

The actual rsync protocol includes various optimizations for efficiency. To decrease

the number of bits sent over the wire, all indices and characters sent are compressed.

The hashing in step 4 is done using a rolling hash function, such as the one used for

Karp-Rabin String Matching [24], which is able to efficiently compute a new hash

based on the last hash computed.

Design Decisions

One significant decision that needs to be made for rsync (and many other file syn-

chronization protocols, including ours), is an appropriate block size b. This depends

both on the number of changes between the local and remote files and the length

of each of those changes. We can understand this more fully by considering a few

examples.

Imagine that the changes are all spread out, such that one character is altered

in each block. Since rsync will compute a different hash for the block with and

without the altered character, it will most likely be unable to match a single block,

and will have to transfer the full file over with additional overhead. If instead all the

changes are clustered in one area (which is more likely in practical scenarios), then

most blocks will be unchanged, so only a small section of the file will need to be

transmitted. rsync uses a default block size of 700 bytes, but for large files, uses the

square root of the file size instead (this is just a heuristic, but it seems to work well

in practice).

Another parameter that can be tweaked is the number of bits x for the block

hashes. rsync defaults to 48 bits each. In the following section, we will provide a

brief analysis for the approximate number of bits necessary to achieve a certain false

positive rate.

45

Approximate Number of Bits Necessary for Block Hash

Say we have two files, fA and fB, each of length n, and we use the rsync protocol as

described above. Each hash in fA (
n

b
in total) is potentially compared to n − b + 1

hashes from fB (corresponding to the n − b + 1 different blocks of size b created at

every offset of the file). Assuming a perfectly random hash function, for hashes of

length x, the probability of a specific pair of hashes conflicting is 1/2x. For rsync,

we are comparing
n

b
(n − b + 1) pairs of hashes in total (

n

b
from fA and (n − b + 1)

from fB). Using the Poisson Approximation to the Binomial [32], we have that the

distribution of the number of conflicting hashes follows

X = Pois

(
λ =

n

b
(n− b+ 1) · 1

2x

)

So the probability that we have no conflicting hashes is:

P (X = 0) = exp

(
−n
b

(n− b+ 1) · 1

2x

)

Setting this equal to 2−d, our chosen false positive rate, and solving for x, we find

that we need ≈ lg(n/b) + (lg n) + d bits to have a false positive rate of 2−d.

3.2 Set Reconciliation for File Synchronization

A few methods have been proposed that use set reconciliation as part of a file syn-

chronization protocol, including one by Agarwal, Chauhan, and Trachtenberg [7] that

splits files into overlapping blocks (covered in more depth in Section 3.2.1) that are

then reconciled, and one by Yan, Irmak, and Suel [40] that uses Characteristic Polyno-

mial Interpolation (see Section 2.1.2) and content-dependent file partitioning (which

we will go over in Section 3.3). However, both of the above methods assume prior

knowledge of an upper bound on the size of the set difference. We use the idea of

splitting the file into overlapping blocks in our file synchronization protocol discussed

in Chapter 4.

46

3.2.1 String Reconciliation Using Multisets and de Bruijn Di-

graphs

Agarwal et al. [7] proposed a bandwidth efficient method to reconcile strings (equiva-

lently, files) using set reconciliation techniques. Their method scales linearly with the

edit distance1 between the two strings. One limitation of using the edit distance as a

metric can be seen in the following example. If the two halves of a file are swapped,

then the resultant file will be significantly different from the original file according to

the edit distance metric (i.e., it will be proportional to the length of the file itself),

even though the file contents are largely the same.

At a high level, their protocol works as follows. Each party converts its string into

a multiset2 of overlapping parts (which they call “puzzle pieces”) by computing the

length l substring at every offset of the string, where l is some predetermined fixed

length. For instance, if the string were “01110011” and l were 3, then the multiset

would be {011, 111, 110, 100, 001, 011}.

After converting their strings into multisets, and further converting those multi-

sets into regular sets (we will go over how they do this later on), the two parties then

reconcile their sets using any set reconciliation algorithm. Each party can then deter-

mine which pieces of the string it is missing and ask the other party for those pieces.

They can then reconstruct the string by choosing the right index in an enumeration

of all Eulerian cycles 3 in a modified de Bruijn digraph corresponding to the multiset

of puzzle pieces. We will now parse the jargon-laden last sentence.

Before we explain what a modified de Bruijn digraph is, we will go over a regular

de Bruijn digraph. The de Bruijn digraph Gl(Σ) over an alphabet Σ and a chosen

length l is defined to contain |Σ|l vertices. Each vertex v’s label L(v) corresponds to a

distinct string of length l over the alphabet. An edge from vertex vi to vj exists with

label Lij if the last l−1 characters of L(vi) match up with the first l−1 characters of
1the edit distance between two strings is the minimum number of inserts, deletes, and replace-

ments of single characters needed to convert one string into the other
2a multiset is a set that allows for the same element to appear multiple times
3An Eulerian cycle is a path in a graph that traverses every edge exactly once and starts and

ends at the same edge

47

Figure 3-1: de Bruijn digraph for an alphabet Σ = {a, b} and length l = 3

aab abb

bab aba bbb

baa bba

aaa

b

a

a b

aa b

aa

b

b

b

a b

a
b

L(vj), and the last character of L(vj) is Lij. Effectively, the de Bruijn digraph shows

how we can move from any length l string to any other by shifting the characters over

by 1 (in the process truncating the leftmost one) and then appending a new character

to the end. Figure 3-1 shows the de Bruijn digraph for an alphabet Σ = {a, b} and

length l = 3.

A modified de Bruijn digraph is a slightly modified version of the de Bruijn digraph

to handle the multisets of puzzle pieces created from our full string. First, we add

parallel edges between the appropriate de Bruijn digraph vertices for each occurrence

of such a transition within our multiset. Second, we delete edges that represent

transitions not in our multiset, and delete vertices with degree 0. Third, we add two

special vertices and edges corresponding to the first and last pieces of the full string.

We denote the special start and end vertices as vs and vt, and the special start and

end edges as es and et respectively. Fourth, we add an artificial edge from vt to vs,

so that the two new vertices have in-degree equal to their out-degree. We denote this

edge as e∗.

As an example, the modified de Bruijn digraph for a string ababbbbbab (correspond-

48

Figure 3-2: Modified de Bruijn digraph for string ababbbbbab

aba

bab abb bbb

bba

bab

b b

a

end

special

b

start

b

ing to multiset {aba, bab, abb, bbb, bbb, bbb, bba, bab} using the same alphabet Σ = {a, b}

and l = 3 is shown in Figure 3-2. Note that node bbb has two self-edges, as the sub-

string bbbbb corresponds to the two transitions bbb → bbb, bbb → bbb. Note also that

we have two vertices with label bab. This is the case since one of those vertices cor-

responds to vt, our special end vertex. Note also the special edge connecting vt to

vs.

Assuming a model of strings as random sequences of bits that each independently

have probability p of being 1, Agarwal et al. [7] show that if l is chosen to be O(log n),

where n is the length of the string, then the probability that the maximum out-degree

in the modified de Bruijn digraph is one (meaning that there is exactly one Eulerian

path), is ≤ 1/2. If the maximum out-degree is 1, then the full string is uniquely

determined by the modified de Bruijn digraph, as we can just start from the special

vertex corresponding to the first piece of the full string, traverse every edge once

(there is only choice at each step), and return back along e∗ from vt to vs.

In more detail, the protocol works as follows.

49

Protocol

1. Parties A and B convert their strings sA and sB into multisets MA,MB using

a chosen length l, and each constructs a modified de Bruijn digraph from the

puzzle pieces.

2. Parties A and B determine the indices iA, iB of their string encodings in the enu-

meration of all Eulerian cycles in their modified de Bruijn digraphs. Note that

both parties need to predetermine some method for ordering all the Eulerian

cycles.

3. Parties A and B convert their multisets into ordinary sets by concatenating

each element in the multiset with the number of times it appears, and hashes

each of the results. Sets SA and SB hold the resulting hashes.

4. Parties A and B reconcile SA and SB using characteristic polynomial interpola-

tion (described in Section 2.1.2). At this point, both parties know SA and SB.

Each then sends the other the index of their string encoding iA, iB (computed

in step 2) and the puzzle pieces that correspond to the hashes unique to their

sets (SA \ SB and SB \ SA).

5. Parties A and B can now recreate both multisets since they have all the relevant

puzzle pieces. They then use the indices iA, iB to recreate the strings sA and

sB.

The idea of using overlapping puzzle pieces to decrease the number of possible

Eulerian paths is instructive – we use a similar technique when deciding how to

partition our files in our file synchronization protocol.

3.3 Content-Dependent File Partitioning

So far, we have considered splitting files into blocks of the same length b by just

partitioning the file at locations 0, b, 2b, . . ., and then hashing the resultant blocks.

50

Content-dependent file partitioning provides a different approach to separating a file

into blocks – it determines blocks based on local features of a file. In this way, sender

and recipient can independently separate their files into blocks while still ensuring

some degree of similarity between the chosen blocks, as long as the files are similar.

After determining the locations to split the file into blocks, we can then hash each

block individually and use the set of resultant hashes as the representation of the file.

There are several different content-dependent file partitioning techniques. We

focus on two in particular. In Section 3.3.1 we go over point-filter chunking, and in

Section 3.3.2 we go over winnowing. We adopt the latter in our file synchronization

protocol, as it has stronger performance guarantees than the former and is reasonably

simple to implement.

3.3.1 Point Filter Chunking

One content-dependent file partitioning approach [27] is to compute the hash of every

b-gram (length b block) at every offset of the file, but only select a location to start

a new block when the hash value is some constant c mod p, for a fixed and prede-

termined integer p. Assuming a totally random hash function and a random file, this

method has a density, defined to be the expected fraction of locations selected from

among all the locations considered, of approximately 1/p. One of the drawbacks of

this method is that the maximum gap between two chosen locations is unbounded.

That is, if the b-gram starting at position i happens to have a hash = c mod p, we

do not have any guarantees on the first integer j > i such that the b-gram starting

at position j is also chosen. This is the case since we could have that every b-gram

starting after position i hashes to d mod p for d 6= c. Also, the minimum gap be-

tween two chosen locations can be one, which corresponds to a block of one character.

Since we use the chosen locations to define block boundaries, and we then hash each

resultant block, if locations i and i + 1 are both chosen, we end up creating a hash

to represent just one character.

The Low Bandwidth File System [33] adopts a modified approach to point-filter

chunking that ensures every block length is greater than a certain minimum length

51

m. It works as follows:

1. Skip the first m positions in the file since those would result in a block of length

< m

2. For each following position, if that position satisfies the equivalence relation for

basic point filter chunking, select it, and then skip the next m positions because

of the same reason as in Step 1. Otherwise, increment the position and repeat

this step until the end of the file.

3.3.2 Winnowing

Winnowing [35] provides another solution to the problem basic point filter chunking

has of potentially unbounded block length. We define a window of size w to be a

series of w consecutive hashes of b-grams in the file. Winnowing guarantees that at

least one hash (and hence location) from every window is chosen. Thus, if two files

F1 and F2 share a substring s of length at least 2w + b − 1, then since winnowing

is guaranteed to pick two block locations within that substring, it will produce file

partitionings such that one block from each of F1’s and F2’s partitionings correspond

to the same substring of s.

The algorithm behind winnowing is simple: in each window, select the location

corresponding to the minimum hash value. If there are multiple such hash values in a

window, then choose the hash corresponding to the rightmost element in the window.

The density, which we defined in the previous section, of such an algorithm is
2

w + 1
.

A more recent method, called the local maximum method [8], shares many similarities

to winnowing, except that it also enforces a lower bound on the block length.

We use winnowing in our file synchronization protocol to determine a partitioning

of the file, as it is quite straightforward to implement and has reasonable performance

guarantees.

52

Chapter 4

Our Algorithms

With our coverage of set reconciliation techniques in Chapter 2 and file synchroniza-

tion protocols in Chapter 3, we now have (more than) sufficient background to fully

explain all steps of our new algorithms.

In Section 4.1, we go over our file synchronization protocol, and in Section 4.2, we

explain an extension of our file synchronization approach for directory synchroniza-

tion.

4.1 File Synchronization

4.1.1 Motivation

Our algorithm for file synchronization is motivated by the methods of rsync (dis-

cussed in Section 3.1) and string reconciliation using puzzles (discussed in Section 3.2.1),

and hence shares many similarities with them.

We want to take advantage of transmitting hashes in place of actual file blocks

when possible, as file blocks are generally much longer than hashes. We want to

compare fewer hashes than rsync, as that enables us to use shorter hashes for the

same hash collision rate, so we use content-dependent file partitioning to split the file.

To further save in transmission costs, we use set reconciliation to only send hashes

corresponding to file blocks that are not already in both locations. And as in the de

53

Bruijn digraph approach of string reconciliation using puzzles, we can choose blocks

from our file partitioning to have a few characters of overlap, so that only a few blocks

can follow any given block.

4.1.2 Protocol

Our protocol involves a few main steps – partitioning the file and hashing the cor-

responding blocks, estimating the size of the difference between both sets of hashes,

determining the hashes that differ, and then using that information to recreate the

file. The exact protocol is explained below:

Say Party A wants to get an updated version of a file from Party B.

1. Party A use a content-dependent file partitioning technique (in our case, win-

nowing, discussed in Section 3.3.2) to partition its file fA into distinct blocks.

Each of those blocks is then hashed to form a set of hashes SA. Party B does

similarly with fB to form a set SB.

2. Parties A and B each create Strata Estimators (discussed in Section 2.3.1) EA

and EB from their sets SA and SB. Party A transmits EA to Party B, who then

uses both Strata Estimators to get a tight upper bound on the size of the set

difference d. Party B transmits the value d to Party A.

3. Parties A and B create IBLTs (discussed in Section 2.2.3) IA, IB with a number

of buckets chosen to be able to successfully list d entries with high probability,

and insert SA and SB into their respective IBLTs. Party A transmits IA to

Party B, who then computes I = IB − IA and performs a listing operation

on I to determine all the hashes in SA \ SB and SB \ SA. Since Party B knows

SB, SB \ SA, and SA \ SB, it can then determine SA ∩ SB = (SB \ (SB \ SA))

and SA = (SA \ SB) ∪ (SA ∩ SB).

4. Party B then transmits the following to Party A:

1) blockExists: A vector of booleans, one for each block bi created for fB,

saying whether bi was also a block created for fA. We determine this by seeing

54

if the hash corresponding to bi is in SA. These booleans are ordered by the

block’s position in fB.

2) blockContents: For each boolean that is false in blockExists, the

corresponding block’s contents (raw bytes).

3) blockEncoding: For each boolean that is true in blockExists, the index

(in the sorted list of hashes for Party A) of the hash corresponding to that

matched block. We can determine the sorted list of hashes for Party A since

Party B can reconstruct all the hashes in SA, as explained previously.

4) checksum: An MD5 hash of fB to ensure that Party A correctly recon-

structs the file.

5. Party A recreates the file as follows: For each boolean in blockExists, if it is

false, then look at blockContents to get the appropriate block bytes. If it is

true, look at blockEncoding, find the corresponding hash using the sorted list

of Party A’s hashes, and then get the corresponding bytes (by looking through

fA). Party A then computes an MD5 hash on the resultant file and ensure that

it matches with checksum. If it does not, then we signal to Party B to transmit

fB in its entirety.

Computational Optimizations

To make this more computationally efficient, Parties A and B each create a data

structure mapping their own block hashes to the corresponding block’s offset within

the file. In this way, each party can quickly retrieve the bytes corresponding to a

certain block’s hash value, as long as that hash is within that party’s set of hash

values. Each party also create a sorted list of its own block hashes so that it can

quickly find the hash corresponding to a certain index from blockEncoding. To

make this protocol more bandwidth efficient, all information sent over the wire is

compressed using zlib.

55

Theoretical Transmission Costs

We have three main objects we send over the wire – the Strata Estimator, the IBLT,

and the file reconstruction info. We consider the space cost of each below:

1. The Strata Estimator is of some fixed cost (it does not depend on the file size

or the blocks), so for now we will just say that it is SE bytes. We will be more

explicit about choosing its parameter settings later.

2. Let |fA|, |fb| each be N bytes, let the hashes have length h bytes, let the average

block size be B bytes, let the number of hashes unique to Party A or Party B

be d, and let the IBLT we transfer have c · d buckets, where c is some constant.

Each bucket of the IBLT has three fields, keysum, hashsum, and count. Our

keys in this case are the block hashes, which have length h bytes. Assuming

hashsum and count are also of the same size, the total size of our IBLT is c·d·3h.

3. For blockExists, we need to send ≈ N/B booleans (one bit each). For

blockContents (all the unmatched blocks, ≈ d of them), we need to send the

block bytes (≈ B bytes for each block). For blockEncoding (all the matched

blocks, ≈ (N/B− d) of them), we need to send the indices of the hashes, which

take ≈ log(N/B − d) bits each. These are all approximations since content-

dependent file partitioning does not produce blocks all of exactly the same size

B.

In total, we need to send approximately

SE + c · d · 3h+
N

8B
+ d ·B +

N/B − d
8

log(N/B − d)

bytes. For our method to be beneficial, we need this to be less than N , the number

of bytes in an individual file. Unfortunately, we cannot optimize directly for B based

solely on this information, as B and d are correlated. In Section 4.1.3 we will assume

a few models and see how the optimal B changes.

Note that in step 4 of our protocol, instead of sending the index of the corre-

sponding hash for blockEncoding, we could just send the hash itself. However, with

56

a small calculation as shown below, we see that it is nearly always optimal to send

the index. Sending the index is better when

log(N/B − d)

8
< h

or

N/B − d < e8h

With a four-byte hash, as long as we have fewer than ≈ 1013, or roughly 10 trillion,

blocks, our method is better. If we consider a more realistic case, with perhaps

100,000 blocks, then our method uses ≈ 16.6 bits vs the 32 for a four-byte hash,

which is nearly a 2x improvement.

Transmission Optimizations

By changing our file partitioning method to do something more like the de Bruijn

digraph approach of [7], we can actually do better than just sending the index of

the hash in step 4 of our protocol. In our current approach, the blocks we form are

disjoint (they have no overlap). In this section, let us assume that we choose our

blocks so that they have l bits of overlap. As an example, if our file were 01001011,

our previous partitioning might be {010, 01, 011}. Using an overlap of 1 bit, then our

new partitioning would become {0100, 010, 011}.

The benefit of using overlapping blocks can be seen as follows. Using disjoint

blocks, if a boolean is true in blockExists (corresponding to a matched block), then

for blockEncoding, we always have to send the index of the corresponding hash in

the sorted list of hashes for Party A. Instead, if the blocks have overlap, then if the

previous block was also matched (i.e. the previous boolean in blockExists was also

true), then we only need to send the index of the hash within a smaller list of hashes

corresponding to the blocks that could follow the previous block (i.e. the last l bits

of the old block must be the same as the first l bits of the new block). For instance,

if we knew that the previous matched block was 0101 and the set of shared blocks

is {011, 100, 111, 110, 0101}, and l = 2, then only blocks 011 and 0101 could follow

57

block 0101, so instead of having to choose an index from 0-4, which takes lg 5 bits, we

would only need to choose an index from 0-1, which takes lg 2 bits. The drawback of

this approach is that each time a hash does not match up, we have to send an extra

l bits per item in blockContents.

To estimate when using overlapping blocks decreases transmission cost, we once

again assume a file of length N bytes and d blocks that differ. Now, we have blocks

of length (B + l), but still N/B blocks because of the overlap. We also assume that

the block contents are completely random, so that having l bits of overlap decreases

the size of the set of blocks that can follow by a factor of 2l (this is a pretty large

assumption to make for real data sets, which are far from random, but we do so for

simplicity). With those assumptions in mind, the size of blockEncoding is

N/(8B) + d · (B + l/8) +
(N/B − d)

8
log

(
N/B − d

2l

)

We want this to be less than the previous value of

N/(8B) + d ·B +
(N/B − d)

8
log(N/B − d)

Subtracting, we find our new method is better when

dl/8 < (N/B − d)l/8

which is true as long as (N/B − d) > d, and should be the case given that the two

files are very similar. Thus, we adopt blocks with overlap in our protocol.

4.1.3 Choosing Parameter Settings

As shown above, we have many parameters to tweak in this model. First, we have

the content-dependent file partitioning and hashing step. We need to determine the

average block size we want to create and the size of each hash. Second, we have the

Strata Estimator. We need to determine the number of IBLTs in the Strata Estimator

and the size of each IBLT. Third, we have the IBLT transferred from Party A to Party

58

B. We need to choose the number of hash functions and also the size of the IBLT

relative to the size of the set difference.

Determining the Block Size

One of the most important problems in this protocol is determining an appropriate

block size. If it is too small, then we will end up matching the majority of blocks,

but Party B will end up sending long vectors for blockExists and blockEncoding.

However, this is not terrible in our setting, as our transferred IBLT will only contain

the unmatched keys. If the block size is too large, then many block hashes will not

match, and we will end up sending large amounts of file data. We analyze two different

block size estimation methods based on two different models of the file difference.

Note that we do not include the transmission optimizations (block overlap) in these

calculations.

Approach 1: Random Error Model

In this section, we will perform some back-of-the-envelope calculations to determine

an appropriate block size for our model. We will assume a random error model, where

Party B’s file is a replica of Party A’s, except each character has a probability (1−p)

of differing.

As in our analysis of theoretical transmission costs, we will assume that the file is

of length N bytes, and our hashing technique allows us to split the file into blocks of

B bytes, for a total of N/B blocks. The hashes will be of length h bytes.

The probability of one block being completely unchanged is pB (each of the B

characters cannot differ). Thus, the number of unchanged blocks is
N

B
· pB and the

number of differing blocks d is
N

B
(1− pB). Plugging in, we find that T , the expected

total number of bytes transmitted is

T = SE + 3c · hN
B

(1− pB) +
N

8B
+
N

B
(1− pB) ·B +

N

8B
· pB log

(
N

B
· pB

)

The first term comes from the Strata Estimator, the second from the transferred

59

IBLT, the third from blockExists, the fourth from blockContents, and the fifth

from blockEncoding. The log term is annoying computationally since it does not

scale linearly with N as is the case for the other terms. To simplify our calculation,

we assume that we use the actual hash value rather than the index, and so replace
1

8
log

(
N

B
· pB

)
with h. Our simplified version is:

T = SE + 3c · hN
B

(1− pB) +
N

8B
+
N

B
(1− pB) ·B +

N

B
· pBh

Taking the derivative of T with respect to 0 and setting it to 0 (and noting that the

dependence on N cancels out), we find that to minimize transmission complexity, we

need (
B2 ln(p) + (3c− 1)h ·B · ln(p)− (3c− 1)h

)
pB = −1

8
(24ch+ 1)

If we set c = 2 (number of IBLT buckets = 2· estimated set difference) and h = 4 (4

bytes per hash), this becomes

(
B2 ln(p) + 20B ln(p)− 20

)
pB = −1

8
(192 + 1)

As an example, if p = 0.99 (each character has a 1% chance of differing), we get

that the optimal value B∗ is ≈ 24 bytes. If instead p = 0.999, then B∗ ≈ 67 bytes.

If we send the index instead of the hashes (and assume that the file is of a rea-

sonable length, say 10MB), then the optimal values actually differ quite a bit. If

p = 0.99, B∗ ≈ 15, and if p = 0.999, B∗ ≈ 43. It makes sense that these values

should be lower – the penalty for matching a hash is lower since the index is generally

much smaller than the hash value itself.

Table 4.1 showing the optimal block size and percentage of data transferred (rel-

ative to transferring the whole file for a 10MB file) for a range of values of p. We do

not include the fixed cost of the Strata Estimator. Below p = 0.9, our method does

not save much – in those situations, it is too likely that a small block will contain a

changed character.

60

Table 4.1: Random Error Model: Optimal Block Size and Data Transferred using
IBLT method vs Full File Transfer

p Optimal Block Size % Data Transferred
70.000% 4.8 92%
80.000% 5.1 80%
90.000% 5.5 64%
95.000% 7.3 49%
99.000% 14.8 24%
99.500% 20.3 18%
99.900% 43.2 8%
99.950% 60.0 6%
99.990% 129.5 2%
99.995% 180.5 2%
99.999% 390.4 1%

Approach 2: Block Error Model

In this approach, we assume that the two files are the same except for d sequences

of bytes, with each sequence smaller than the block size. This is perhaps a more

reasonable model of changes to an actual file, as a user will generally make a small

number of changes of larger length.

In this situation, our equation for the total number of bytes transferred is:

SE + c · d · 3h+
N

8B
+ d ·B +

1

8
(N/B − d) log(N/B − d)

Table 4.2 shows the results with c = 2, h = 4 and N = 107 bytes (10 megabytes),

by varying the size of d. Note our assumption that each sequence is smaller than the

block size – in reality d and B are not actually independent, as the smaller the block,

the more likely it is that changed sequences of bytes will cross a block boundary.

Determining the Hash Size

We can use a similar analysis to the one we did for rsync in Section 3.1.1 to determine

an appropriate hash size for a certain false positive rate. Here, each party creates

≈ N/B block hashes. Say the hashes have length x. Assuming a perfectly random

61

Table 4.2: Block Difference Model: Optimal Block Size and Data Transferred using
IBLT method vs Full File Transfer

d Optimal Block Size % Data Transferred
1 3527 0.07%
10 1175 0.23%
100 390 0.77%
1000 129 2.70%
10000 42.3 10.40%
100000 13.8 49.00%

hash function, the probability of a given pair of hashes conflicting is 1/2x.

If any of the block hashes conflict, then we are in trouble, since the file recreation

info assumes that each hash is uniquely mapped to a specific block of bytes. In total

we have 2N/B blocks and corresponding hashes (N/B from each file), and we want

to find the probability that no two blocks accidentally map to the same hash value.

We have
(
2N/B

2

)
≈ 2N2/B2 pairs of hashes. Using the Poisson Approximation to

the Binomial [32], we have that the distribution of the number of conflicting hashes

follows

X = Pois

(
λ = 2

(
N

B

)2

· 1

2x

)
So the probability that we have no conflicting hashes:

P (X = 0) = exp

(
−
(
N

B

)2

· 1

2x−1

)

Setting this equal to 1 − 2−d, where 2−d is our false positive rate, and using the

approximation ex ≈ 1 + x, which is valid when x is small, our equation becomes:

2−d =
(N/B)2

2x−1

so we need ≈ 2 lg2(N/B) + d + 1 bits to have a false positive rate of 2−d. Note

that we need fewer bits than rsync as we are creating fewer hashes.

As an example, if we have 1000 blocks and want a false positive rate of one in a

62

million, we need approximately 41 bits. Assuming the same false positive rate of one

in a million, with 32 bits we can have ≈ 23 hashes, and with 64 bits we can have ≈

3 million hashes.

Determining the Strata Estimator and IBLT parameters

As described in Section 2.3.1, a Strata Estimator is a data structure consisting of

multiple small Invertible Bloom Lookup Tables that can be used to estimate the size

of a set difference, given that the size of the set difference is less than some number

u. More specifically, Strata Estimator consists of n = log u IBLTs each of some

fixed number of buckets b. Indexing the IBLTs as IA1, IA2, . . . , IAn, Party A inserts

≈ 1/2i of its keys to IAi. Party B does similarly with its own set of keys and its

own Strata Estimator consisting of IBLTs IB1, IB2, . . . , IBn. We can use the number

of successfully peeled keys from Ii = IAi− IBi for each i as a proxy for the number of

keys in the set difference.

We choose a Strata Estimator with 32 IBLTs, which allows us to estimate the size

of set differences up to ≈ 232 (note that given how we partition files and subsequently

hash the blocks, 32 IBLTs allows for set difference sizes much larger than any likely

set difference). We choose each IBLT in the Strata Estimator to contain 80 buckets.

The 80 buckets is based off of the results of Eppstein et al. [18], which showed that

80 buckets seemed to ensure good set difference estimates across a wide range of set

difference sizes. As Eppstein et al. found, using four hash functions seemed to work

best experimentally for a wide range of set difference sizes, so we default to four hash

functions. There is some intuition for why four hash functions might be optimal:

With a smaller number of hash functions, each time we find a key to list, we only

get to remove the key from a small number of buckets, which limits the number of

new buckets that will have a count of 1. If we have many hash functions though, the

chance that we start out with no bucket with a count of one is higher.

Using a Strata Estimator with 80 buckets per IBLT, Eppstein et al. found that

scaling the estimate returned by the Strata Estimator by ≈ 1.4 was enough to ensure

that it was greater than the actual set difference 99% of the time. Per our results

63

in Section 2.2.3, if t is the number of keys that we want to be able to list, then if

we choose 4 hash functions for the IBLT, if our IBLT has > 1.295t buckets, listing

operations will succeed with high probability. Factoring in the multiplier from the

Strata Estimator, we choose to create an IBLT with 2e buckets, where e is the estimate

returned by the Strata Estimator.

Note that the overhead of the Strata Estimator is quite high – if the three fields

in each IBLT bucket (count, keysum, and hashsum) are each 4 bytes, then the Strata

Estimator is 32 · 80 · 4 · 3 = 32720 bytes. Unless the file sizes are quite large, the

fixed cost of the Strata Estimator will exceed any benefit from transferring fewer

blocks. Since the Strata Estimator’s sole role is getting a tight upper bound on the

size of the set difference, we could adopt other approaches. If the file is small, then

we could adopt the approach from repeated doubling (see Section 2.3.3) and not even

try to determine the set difference, but instead start by transmitting a small IBLT

and doubling its size until a listing succeeds. If the set difference is sufficiently

large, min-wise sketches (see Section 2.3.2) could provide more accurate set difference

estimates using the same number of bytes as a Strata Estimator.

4.2 Extension: File Directory Synchronization

We can also use a similar method to our individual file synchronization protocol above

for more efficient file directory synchronization. The main idea is that we can think

of all the files in a directory as a set of (file name, file contents) pairs. Note that

these pairs are all distinct if we consider the file name to be the file’ s full path from

the root directory. Thus, we can use set reconciliation techniques to determine which

files have been changed, and only transmit the changed files. Note that here we do

not consider permission bits or other metadata.

4.2.1 Protocol

The setup is pretty much the same as before. We have Parties A and B, with

directories DA and DB, and Party A wants to update its directory to be the same as

64

Party B’s.

1. Parties A and B go through each of the files in their directory, computing a hash

of the file’s full path, which we call the pathHash, and a hash of the file contents,

which we call the contentHash. Each file’s pathHash and contentHash are

then concatenated to form a key representing that file. Those keys become the

elements of the sets SA and SB.

2. Following the protocol described for individual file synchronization in Section 4.1.2

(using Strata Estimators and IBLTs), SA and SB are reconciled to determine

SA \ SB and SB \ SA.

3. PartyB goes through all the keys in SB\SA and parses each back into (pathHash,

contentHash) pairs, which we abbreviate as (ph, ch). It then sends a message

containing three different components to Party A:

(a) For each (phi, chi) ∈ SB \ SA, Party B looks through each of the (ph′i, ch
′
i)

pairs in SA \ SB.

renameInfo: If there is a ch′i such that ch′i = chi, then we know (with

high probability, assuming no hash collisions in contentHash) that Parties

A and B have files with the same contents but with different filenames.

If contentHash is sufficiently small, we may want to transmit an addi-

tional checksum to ensure that both files’ contents are indeed the same. If

contentHash is a strong hash, say a 160-bit SHA-1 hash, then the chance of

a hash collision is extremely small. Let fni be the file name corresponding

to phi. Then Party B transmits (ph′i, fni) to Party A.

newFileInfo: If there is not a ch′i such that ch′i = chi, then (phi, chi)

must correspond to a new file. Letting that file’s name be fni and its

contents be fci, Party B transmit the new file to Party A in the form

(fni, fci).

(b) deleteInfo: For each (phi, chi) ∈ SA \ SB that was not matched in

renameInfo, Party B transmits a delete message with phi. These cor-

65

respond to files that are in SA but not in SB, and thus must be removed

for Party A’s directory to match Party B’s.

4. Party A reconstructs the directory as follows. For each (ph′i, fni) in renameInfo,

Party A finds its file fi corresponding to the path hash ph′i and renames it to

fni. For each (fni, fci) in newFileInfo, Party A creates a file with name fni

and contents fci, and adds it to its directory. For each phi in deleteInfo,

Party A deletes the file corresponding to phi.

Step 4 can be a bit complicated if there is a series of renames that overlap (for

instance, if we need to rename f1 to f2, f2 to f3, and f3 to f1). One method to solve

this problem is to create temporary copies of all the files in the directory and then

remove the original files. We perform the same operations as enumerated in Step 4,

except using the temporary files. Temporary files that did not have any operations

performed on them are then copied back to their original state. In this way, we will

not run into any naming conflicts, and do not need to worry about the order in which

we perform renames.

Another way to get around the problem of overlapping renames is to create a

directed acyclic graph of the dependencies between files. We first go through all

the deleteInfo, as those files could be preventing our renames. We then choose an

arbitrary file f that needs to be renamed (say to f ′). We then see if f ′ needs to be

renamed (say to f ′′). If it does, then we check if f ′′ needs to be renamed, and so on.

If we ever reach a file f ∗ such that f ∗′ (the file it should be renamed to) has already

been traversed, we move f ∗ to a temporary file (so now we have a linear dependency

graph). We then work backwards to rename files that have no dependencies. Finally,

we rename the temporary file to its appropriate name.

As an example, in our situation before, where we wanted to rename f1 to f2, f2

to f3, and f3 to f1, if we started with f2, then we would form the path f2 → f3 →

f1 → f2. Since f2 was already traversed, f1 would be moved to tmpf1, then we would

move f3 to f1, f2 to f3, and then move tmpf1 to f2.

66

Chapter 5

File Synchronization Experiments

In this chapter, we provide an empirical evaluation of our file synchronization protocol

described in Chapter 4.

5.1 Setup

We run three different sets of experiments, and for each compare our file synchro-

nization algorithm, which we call IBLTsync, with rsync, described in Section 3.1 and

naïvesync, a method that just sends over all the new file bytes in compressed form.

For a fair comparison, we use the same compression library for all three algorithms

(zlib with the maximal level of compression). To serialize messages (Strata Estimator,

IBLT, etc.) for IBLTsync, we use Google’s Protocol Buffer [4]. We do this so that we

can more easily put these structures into bitstring representations that can then be

compressed.

We default to a Strata Estimator (see Section 2.3.1 and Section 4.1.3) with 32

IBLTs, each with 80 buckets. We choose four hash functions per IBLT, which Eppstein

et al. [18] found to perform well empirically for set difference sizes ranging from 10

to 1 million. We choose keysum to be 64-bits (which ensures a collision probability of

less than one in a million even with 3 million+ keys), choose hashsum to be 32-bits

(so that the likelihood of an erroneous key being listed is ≈ 1/232), and choose count

to be 32-bits (so we can support more than a billion keys inserted to the IBLT). Note

67

that we could tailor the sizes of each of these fields on a case-by-case basis (based on

individual files), which would be more bandwidth-efficient, though we do not do so

here.

We include our optimizations involving block overlap from Section 4.1.2. We

choose the overlap l so that there is usually just one block that can follow a given

block. For this to be the case, 2l > N/B − d, which upon rearranging gives us

l > lg2(N/B − d). Choosing a longer overlap does not add any benefit since we must

minimally transmit one bit per following block.

Each graph in the sections below has three lines, IBLT (no strata), IBLT (with

strata), and rsync. IBLT (no strata) corresponds to the transmission cost assuming

that we already have a correctly sized IBLT, so that we do not need to use the Strata

Estimator to estimate the size of the set difference. IBLT (with strata) corresponds

to the transmission cost when we use a Strata Estimator to estimate the size of the

set difference. We create these two different lines so that we can separate out the

cost of Strata Estimation, as there are situations where we might not choose to use a

Strata Estimator (see Section 2.3 and Section 4.1.3). Since our experiments below use

quite large files (10MB), the lines corresponding to IBLT (with strata) and IBLT (no

strata) are nearly the same line in many cases. rsync corresponds to the transmission

cost using rsync.

We describe each set of experiments in more detail below.

5.2 Random Error Model

We test the random error model, where each character in a file is independently

changed with probability 1− p, with 10MB files and p values of 99%, 99.9%, 99.99%,

and 99.999%. For each chosen value of p, we plot the transmission cost for a wide

range of block sizes.

Tables 5.1 and 5.2 shows the performance of IBLTsync in comparison to rsync

and naïvesync for the random error model. At an error probability of 1%, IBLTsync

transfers roughly 12% more data than naïvesync and 60% more data than rsync.

68

Table 5.1: Random Error Model: Bytes Transferred for 10MB File

Error
Probability

IBLT
(w/o strata)

IBLT
(w/ strata) rsync Naïve

Transfer

Best
block
IBLT

Best
block
rsync

1.000% 8,447,528 8,461,422 5,327,823 7,547,299 140 30
0.100% 1,223,254 1,239,447 1,663,608 7,542,920 50 90
0.010% 179,051 194,798 477,522 7,542,174 60 320
0.001% 26,134 39,995 125,731 7,542,075 150 970

Table 5.2: Random Error Model: IBLT performance relative to rsync and naïve
transfer

Error
Probability

IBLT (as % of rsync)
w/o strata

IBLT (as % of rsync)
w/ strata

IBLT (as %
of naïve
transfer)

1.000% 158.6% 158.8% 112.1%
0.100% 73.5% 74.5% 16.4%
0.010% 37.5% 40.8% 2.6%
0.001% 20.8% 31.8% 0.5%

This is the case since most blocks will be unmatched, and the size of the set difference

will be large. Consequently, the transferred IBLT structure will be large. Further-

more, content-dependent file partitioning does not ensure that blocks will all be of the

same size. The variance in the block length likely contributes to the poor performance

of IBLTsync.

At an error probability of 0.1%, IBLTsync transfers significantly less data than

naivesync (83.6% less, when including the Strata Estimator) and marginally less

data than rsync (25.5% less). As the error probability decreases, IBLTsync performs

better and better relative to rsync. Including the Strata Estimator overhead, at an

error probability of 0.01%, IBLTsync transfers 40.8% of rsync’s data, and at an error

probability of 0.001%, IBLTsync transfers only 31.8% of rsync’s data. If we exclude

the cost of the Strata Estimator, then at an error probability of 0.001%, IBLTsync

only transfers 21% of rsync’s data. Thus, our approach seems to work better relative

to other approaches as the similarity between the two files increases, which is our

desired outcome.

Figures 5-1, 5-2, 5-3, and 5-4 show the performance of IBLTsync in comparison

69

Figure 5-1: Random Error Model with P(err) = 1% and 10MB File

Figure 5-2: Random Error Model with P(err) = 0.1% and 10MB File

to rsync for the random error model and differing values of the block size. Since the

files are 10MB, the overhead of the Strata Estimator is negligible, so we see that both

IBLTsync lines closely track each other. As all the figures show, the optimal block size

70

Figure 5-3: Random Error Model with P(err) = 0.01% and 10MB File

Figure 5-4: Random Error Model with P(err) = 0.001% and 10MB File

for IBLTsync tends to be much smaller than the corresponding size for rsync. This

is the case because rsync has to transmit a full hash each time two blocks match.

Instead in IBLTsync, when two blocks match, we just have to send an index, which

71

tends to be much smaller. Since decreasing the block size increases the number of

hashes transmitted for rsync, our method will perform better relative to rsync for

smaller block sizes.

When the error probability is 1%, as in Figure 5-1, we can see that rsync outper-

forms IBLTsync at all block sizes. As we explained before, IBLTsync is tailored for

very similar files, so it unsurprisingly gets beaten when the files are not that similar.

When the error probability is 0.1%, as in Figure 5-2, IBLTsync is better for block

sizes up to 120. With an error probability of 0.01%, IBLTsync is better for block sizes

up to 400, and with an error probability of 0.001%, IBLTsync is better for all block

sizes. Based on the results above, it seems that when files are sufficiently different,

rsync is probably a better approach, but when they are sufficiently similar, IBLTsync

can provide transmission benefits.

5.3 Block Error Model

Second, we test the block error model, where there is a fixed number of changes that

happen in blocks. We tested the block error model with 10MB files, and 10, 100,

1000, 10000, and 100000 changes of length 5 bytes each. For each chosen number

of changes, we plotted the transmission cost for a wide range of block sizes. Since

the changes happen randomly throughout the file, we can think of this as having

a block change approximately every 1000000, 100000, 10,000, 1000, and 100 bytes

respectively.

Table 5.3: Block Error Model: Bytes Transferred for 10MB File

Number
of
Changed
Blocks

IBLTsync
(w/o strata)

IBLTsync
(w/ strata) rsync naïvesync

Best
block
IBLTsync

Best
block
rsync

10 13,904 24,582 43,002 7,542,079 1,100 2,782
100 32,580 46,582 138,333 7,542,122 136 901
1000 183,681 199,745 492,344 7,542,536 55 325
10000 1,542,447 1,558,885 1,708,466 7,545,150 40 90
100000 7,933,327 7,944,065 5,558,934 7,559,802 973 37

72

Table 5.4: Block Error Model: Bytes Transferred for 10MB File

Number
of
Changed
Blocks

IBLTsync
(as % of rsync)
w/o strata

IBLTsync
(as % of rsync)
w/ strata

IBLTsync
(as % of naïvesync)

10 32.3% 57.2% 0.3%
100 23.6% 33.7% 0.6%
1000 37.3% 40.6% 2.6%
10000 90.3% 91.2% 20.7%
100000 142.7% 142.9% 105.1%

Tables 5.3 and 5.4 show the performance of IBLTsync in comparison to rsync

and naïvesync for the block error model. With only 10 blocks changed, IBLTsync

transfers roughly 0.3% of naïvesync’s data, and 57.2% of rsync’s data (including

the Strata Estimator), and 32.3% of rsync’s data (when not including the Strata

Estimator). IBLTsync actually improves relative to rsync for 100 blocks changed,

transferring 23.6% of rsync’s data (without SE) and 33.7% of rsync’s data (with SE).

At 1000 block changes, IBLTsync’s performance drops relative to rsync’s, transferring

37.3% of rsync’s data when excluding the Strata Estimator. Interestingly, when

including the Strata Estimator, IBLTsync transfers a smaller proportion of rsync’s

bytes at 1000 changed blocks as compared to 10 changed blocks (57.2% in the former

case and 40.6% in the latter case). This happens since the total amount of data

transferred for 10 blocks is so small that the size of the Strata Estimator is a sizeable

chunk of the total amount of data transferred. At 10000 block changes, IBLTsync

is slightly better than rsync, transferring approximately 90% of rsync’s data, both

with and without the Strata Estimator. At 100000 block changes, changes are so

frequent that IBLTsync performs extremely poorly, transferring approximately 40%

more data than rsync and 5% more data than naïvesync.

Figures 5-5, 5-6, 5-7, 5-8, and 5-9 show the performance of IBLTsync, both with

and without the Strata Estimator, in comparison to rsync for the block error model

and differing values of the block size. Once again, since the files are 10MB, the

overhead of the Strata Estimator is negligible, so we see both IBLTsync lines closely

tracking each other. Also as before, the optimal block size for IBLTsync tends to be

73

Figure 5-5: Block Error Model with # errors = 10 and 10MB File

Figure 5-6: Block Error Model with # errors = 100 and 10MB File

much smaller than the corresponding size for rsync.

With only 10 block changes, IBLTsync outperforms rsync for block sizes up to

approximately 5000. At that point, both IBLTsync and rsync closely track each

74

Figure 5-7: Block Error Model with # errors = 1000 and 10MB File

Figure 5-8: Block Error Model with # errors = 10000 and 10MB File

other. With 100 block changes, IBLTsync outperforms rsync for block sizes up to

approximately 1000. With 1000 block changes, IBLTsync outperforms rsync for block

sizes up to approximately 400. With 10000 block changes, IBLTsync outperforms

75

Figure 5-9: Block Error Model with # errors = 100000 and 10MB File

rsync for block sizes up to approximately 5000, and with 100000 changes, IBLTsync

gets outperformed across the board.

5.4 Practical Workload

We also test a (perhaps more) realistic workload, which involves actual data sets

based on different versions of source code directories we crawled from github. As our

file synchronization protocol works best with larger files (because of the overhead of

the Strata Estimator), we concatenate all the files in the source directory1 and use

those as individual files that we try to synchronize. We test our protocol on two

source code directories, sharelatex [5] (≈ 100KB) and PredictionIO [6] (≈ 28 MB).

Table 5.5 shows the number of bytes transferred for IBLTsync as compared to

rsync and naivesync for the aforementioned repositories. The file size difference is

calculated as the difference in file size between the old repo and the new repo. For

sharelatex, the file size difference is extremely small (only one line is changed), and

thus IBLTsync transfers only 3.1KB. However here the cost of the Strata Estimator
1find . -type f -print0 | sort -z | xargs -0 cat

76

Table 5.5: Source Code Repositories: Bytes Transferred

Repository
IBLT
(w/o
strata)

IBLT
(w/
strata)

rsync Naïve
Transfer

File size
difference

Best
block
IBLT

Best
block
rsync

Sharelatex 3101 10308 6076 228216 80 400 900
PredictionIO 258036 269807 267485 24701960 1288633 1700 3574

is an extremely significant overhead (more than 2x the size of all the other structures

combined). In situations like these, it might be better to take a repeated doubling

approach – start with an IBLT of some fixed size c. If the listing operation fails,

then double the IBLT size and repeat. For PredictionIO, the file size difference is quite

significant, implying that there are most likely quite a few difference between the old

and new versions. In this situation, the cost of the Strata Estimator is negligible. As

we found in our previous experiments, we see that the best block size for IBLTsync

is much smaller (≈ 50%) than the best block size for rsync.

Table 5.6: Source Code Repos: IBLT performance relative to rsync and naïve transfer

Repository
IBLT (as %
of rsync)
w/o strata

IBLT (as %
of rsync)
w/ strata

IBLT
(as % of
naïve
transfer)

IBLT (as % of
file difference)

Sharelatex 51.0% 169.7% 4.5% 12885%
PredictionIO 96.5% 100.9% 1.1% 21%

Table 5.6 shows the relative performance of IBLTsync as compared to rsync and

naivesync. For sharelatex, without including the Strata Estimator, we only transfer

half the bytes of rsync. However, including the Strata Estimator causes us to transfer

1.5x the bytes of rsync. As explained in the previous paragraph, for sufficiently small

files, some other method should be used to estimate the size of the set difference. For

PredictionIO, IBLTsync is on par with rsync (96.5% of the bytes when not including

the Strata Estimator, and 100.9% of the bytes when including). IBLTsync does not

perform much better because the files are quite different – by the file size difference,

they differ by at least ≈ 1.3MB. Interestingly, IBLTsync and rsync both transfer

significantly fewer bytes than the file size difference. This is probably caused by a

77

mixture of compression and added blocks that are just repeats of preexisting blocks,

for which we can just transfer the hash/index instead of the actual block.

Figure 5-10: Sharelatex: Cost of Updating Source Code from Version 0.1.0 to 0.1.1

Figure 5-11: PredictionIO: Cost of Updating Source Code from Version 0.8.0 to 0.8.1

As we can see in Figure 5-10, the overhead of the Strata Estimator actually plays

78

a significant role in the total transmission cost of IBLTsync when files are sufficiently

small and sufficiently similar. While IBLTsync without the Strata Estimator always

transfers fewer bytes than rsync, IBLTsync with the Strata Estimator only outper-

forms for blocks of size 300 bytes or less. Since the source code repo for PredictionIO

is significantly larger, as seen in Figure 5-11, the overhead of the Strata Estimator is

negligible. In this case, IBLTsync transfers fewer bytes than rsync for block sizes up

to 120.

79

Chapter 6

Gossip Algorithms

Previous chapters focused on how Invertible Bloom Lookup Tables could be used for

file synchronization. In this chapter, we consider an entirely different application of

IBLTs, namely to gossip algorithms, which are message-spreading algorithms useful

in large networks. As we will explain in more detail in Section 6.1, traditional gos-

sip algorithms usually involve sending unaltered bits representing the messages to

be transferred. We will show how multi-party IBLTs (described in more depth in

Section 2.2.4) can be transmitted in place of those raw messages, transforming a tra-

ditional gossip protocol into something more similar to a set reconciliation protocol.

The benefit from using IBLTs arises when multiple messages, all from different

parties, need to be propagated. While a traditional gossip protocol would require

each party to keep track of multiple messages at one time and would need those par-

ties to know which neighbors already received which messages, IBLTs allow multiple

messages to be merged into one structure, obviating the need to keep track of the

additional neighbor-message information. Furthermore, transferring an IBLT from

one party to another and merging the two is a simple process, since IBLTs can be

efficiently summed together.

In Section 6.1, we go over the definition of gossip algorithms and describe basic

gossip algorithms used for message dissemination in large networks. In Section 6.2,

we explain how a modification of the standard IBLT reconciliation algorithm can

enable multi-party IBLTs to be adapted for gossip algorithms, and in Section 6.3, we

80

provide experimental results verifying the theoretical performance bounds found by

Mitzenmacher and Pagh in [31].

6.1 Background

Gossip algorithms are a class of networking protocols that are especially useful in set-

tings where the network might be unstable, extremely large, or constantly changing,

such as peer-to-peer networks, sensor networks, and social networks [36]. Algorithms

in such settings need to be 1) very simple, so that each node, which has limited com-

puting power, can perform the algorithm, 2) distributed, as there is no centralized

control, 3) robust, as there may be network failures, and 4) efficient, as bandwidth is

limited.

We consider a network of n nodes as a graph G = (V,E), where V denotes the

set of n vertices (we label them ni, and call them nodes) and E denotes the set of

undirected edges along which a pair of nodes can communicate. Thus, e = (ni, nj) ∈

E if node ni can communicate with node nj. Denote di as the degree of node ni. As

explained in [36], the operation happening at any node ni must satisfy the following

properties to be part of a Gossip Algorithm:

1. The algorithm can only use information obtained from its neighbors (defined as

the set of vertices V ′ such that if nj ∈ V ′, then (ni, nj) ∈ E).

2. The algorithm performs O(di log n) units of computation per time step.

3. The algorithm does not require synchronization between ni and its neighbors.

4. The eventual outcome of the algorithm is resistant to reasonable changes (not

involving complete network partitions, for instance) in the neighborhood of ni.

6.1.1 Protocols

Depending on whether a single message or multiple messages need to be disseminated,

the nature of the gossip protocol can be significantly different.

81

Single-Message Dissemination

In single-message dissemination, one node starts out with a message that it seeks

to propagate to all other nodes as quickly as possible. We assume time happens in

discrete steps. A common gossip algorithm used in this situation is the so-called

randomized “rumor mongering” approach. At each time t, each node ni contacts one

of its neighbors at random. If either ni or the neighbor it contacted had the message,

then at the end of the time step, both will have the message. Note that each node can

only contact one other node during each time step, but can be contacted by multiple

nodes during that same time step. The protocol as described is a push-pull protocol.

If at each time step each node that has a message sends its message to a random

neighbor (but never asks for a message), it is called a push protocol. If instead, at

each time step each node that does not have a message asks a random neighbor for its

message (but never preemptively pushes a message), then it is called a pull protocol.

The push-pull protocol is the natural combination of the two.

As shown in [36], for any ε > 0, the message is propagated to all nodes in

O

(
log(n) + ε−1

Φ

)
rounds with probability 1 − ε, where Φ is the conductance of the

graph, and n is the number of nodes in the graph.

The conductance of a graph is defined to be

min
S⊂V :|S|≤n/2

∑
ni∈S,nj∈Sc

aij

a(S)

where aij denotes the (i, j)th entry of the adjacency matrix of the graph (whether

there is an edge from ni to nj), and a(S) denotes the sum of the degrees of the vertices

in S.

Multi-Message Dissemination

In multi-message dissemination, every node starts out with a unique message that it

seeks to propagate to all other nodes as quickly as possible. At each time step, each

node once again randomly contacts one of its neighbors. If we denote Si as the set

82

of messages node ni has at some time t and Sj as the set of messages node nj has

at that same time, then ni will send nj a random message from Si \ Sj (if one such

message exists) and nj will send ni a random message from Sj \ Si. Note that this

requires both nodes knowing the message sets of its neighbors at all times. Network

coding, and in particular Random Linear Coding [16], provides a method to avoid

this knowledge requirement by having a node send a linear combination of all the

messages it holds at the time. In the section below, we consider a similar approach

to Random Linear Coding that uses Invertible Bloom Lookup Tables.

6.2 Gossip Algorithms with Invertible Bloom Lookup

Tables

In this section, we consider what happens if each party has multiple messages that it

wants to disseminate to all other parties. We can consider this as a natural general-

ization of the multi-message dissemination case.

Instead of each party holding individual messages that it has received from neigh-

bors, as in the previous section, we let each party hold an IBLT containing its set of

messages. Instead of sending individual messages, each party sends an IBLT. More

specifically, we have n parties, A1, . . . , An with sets S1, . . . , Sn and corresponding

IBLTs I1, . . . , In. Each party seeks to learn all the new messages (corresponding to

all the messages in ∪iSi − ∩iSi) as quickly as possible.

6.2.1 Motivation

As explained in Section 2.2.4, we can think of the keysum components of an individual

multi-party IBLT as b nits, where b is the length of the key and n is the number of

parties. In the analysis below we omit consideration of the hashsum and count fields,

as they are not essential for understanding our argument.

Let us consider what happens if we increase n to p for some prime p > n, so

that the keysum now comprises b pits. First, we will see why the method used

83

in Section 2.2.4, where Party i was able to retrieve all keys in the set difference

by computing I = I1 + I2 + . . . + In, no longer works. If we are using pit-wise

representations instead of nit-wise representations, then since each key in I is only

added maximally n < p times, none of the keys in ∩iSi will be zeroed out in I. Since

Party i knows its set of keys Si, it also knows Ii. Thus, we can remedy this by adding

Ii (p−n) additional times to I, so that I∗ = (I+(p−n)Ii). (p−n)Ii is shorthand for

(p − n) copies of Ii summed together. Note that we can compute this efficiently by

just taking Ii and multiplying every field in every bucket by p− n and then reducing

mod p. In I∗, every key in ∩iSi will be added p times, as desired.

The setup discussed in the previous paragraph corresponded to a complete graph

on n nodes, where every party was connected to every other party and thus could

get I = I1 + I2 + . . . + In (since it could ask each of the other parties individually

for its IBLT). Let us now consider what happens in a connected but not necessarily

complete graph, where each party can only communicate with a few other parties,

and thus is not guaranteed to know I = I1 + I2 + . . .+ In. If a party knew some linear

combination instead, say I ′ = α1I1 + α2I2 + . . . + αnIn, would it be able to retrieve

the keys in the set difference?

Let us consider how many times a key k in ∩iSi appears in I ′. It appears once in

each of I1, I2, . . . , In, and hence α′ = α1 + α2 + . . . + αn times in I ′. We want k to

appear 0 (mod p) times, so that it cancels out in I ′. As in the previous paragraph,

if Party i were to add Ii (p − α′) times to I ′ to create IBLT I∗ = (p − α′)Ii + I ′,

then the multiplicity of k in I ′ would be 0 (mod p), as desired. Party i could then

perform a listing operation on I ′ to retrieve all the keys in the set difference. Note

that we would also have to have that α1, α2, . . . , αn are all non-zero, or else we would

not have one or more of the IBLTs, meaning that we would not be able to retrieve all

the keys. Based on this insight, we can create a gossip protocol with IBLTs.

6.2.2 Protocol

The gossip protocol with IBLTs is as follows. Each Party j stores Ij and one linear

combination of IBLTs at any point in time. More specifically, after round l, Party j

84

stores ∑
i∈{1...n}

αijlIi

where αijl denotes the coefficient of IBLT Ii in the linear combination of IBLTs that

Party j has during round l. Party j also stores the sum of the coefficients, αjl =∑
i∈{1...n} αijl. To send a message, Party j chooses a random coefficient cjl 6= 0

(mod p) and sends

cjl
∑

i∈{1...n}

αijlIi

along with the corresponding coefficient sum cjlαjl (mod p). Note that we need to

transmit the coefficient sum so that we can compute (p−
∑

i∈{1...n} αijL)Ij, as explained

before. The receiving party just adds the received message to its current message and

adds the received coefficient sum to its current coefficient sum. Using this approach,

assuming that we choose p to be sufficiently large, the probability of ever accidentally

zeroing out a coefficient αijl is negligible (for a formal analysis, see [31]).

Mitzenmacher and Pagh [31] prove bounds on the time to completion and failure

probability of the above approach.

Theorem 3. Set reconciliation on a graph of n vertices with n parties having sets to

reconcile can be accomplished in O(log(n)/Φ) time, where Φ is the conductance of the

graph, using the randomized push-pull protocol with messages of size O(|∪iSi−∩iSi|)

with success probability 1−O(t−k+2 + nt/q + ntL/p+ n2L/p+ n−β) for any constant

β > 0, where t is the listing success threshold, k is the number of hash functions in

the IBLT, q is the number of possible hashsum values, and L is the number of rounds.

As Theorem 3 states, the failure probability goes as 1/p, so we can see the rationale

for choosing a p significantly greater than n. In the next section, we see how this

gossip protocol using multi-party IBLTs holds up in practice.

85

6.3 Experiments

In this section, we evaluate two main things. First, we measure the amount of time it

takes for each party to receive some form of communication (direct or indirect) from

every other party using the randomized protocol discussed in Section 6.2.2. This is

explained more precisely in Section 6.3.1. Second, we measure the message retrieval

success rate once that point is reached.

We use the Erdős-Rényi model for random graphs. In the G(n, r) Erdős-Rényi

model, there are n vertices, and each edge is independently present with probability

r. It is well-known that if r > (1 + ε)
lnn

n
for ε > 0, the graph is connected with high

probability. For our experiments, we choose ε = 1, so that the probability of any

edge existing is 2
lnn

n
. We ensure that every graph generated this way is connected,

as otherwise it is impossible for all parties to receive every message.

Each vertex in our graph is one party that contains its own unique message. We

use the push-pull protocol as explained in Section 6.1.1. We choose each party’s IBLT

to have 2n buckets (there are n different messages that the IBLT must hold at the

end), so that the probability of a failed listing operation is negligible.

6.3.1 Dissemination Completion Time

We measure the number of rounds it takes for each party to receive some form of

communication (whether direct or indirect) from all other parties using the random-

ized push-pull protocol. More precisely, with n parties, each party has an n-bit bit

vector (we will call this ri for Party i), with bit j of ri set if Party i has received

communication from Party j. Initially bit i is set for Party i, since it has “received”

communication from itself. When Party i is contacted by Party j, Party i updates

ri so that ri = ri ∨ rj (the OR of its bit vector and Party j’s). We update like the

above since after receiving communication from Party j, Party i has been transitively

contacted by all the parties that have contacted Party j previously. We measure the

round t such that ri is all 1’s for every Party i. At that point, it is theoretically pos-

sible for each party to retrieve all the messages from all the parties (we can imagine

86

that at each communication, Party j transfers all of the messages it holds at that

time to Party i, and Party i just takes the union of Party j’s set of messages and its

own).

According to Theorem 3, the number of rounds for that to happen is O(log(n)/Φ)

with high probability, where n is the number of parties and Φ is the conductance of

the graph.

Figure 6-1 shows the 99.9th percentile completion time of message dissemination

for graphs ranging from 10 to 1280 parties. We based this off of 1000 trials for each

graph size. As we can see, the time to completion for message dissemination increases

very slowly as the number of parties increases, as Theorem 3 suggests.

Figure 6-1: 99.9th Percentile for Number of Rounds Required for Each Party to
Receive Linear Combination of All Messages

6.3.2 Listing Success Rate

In this section, we first run the randomized push-pull model until each party receives

some form of communication from every other party, exactly as in the previous section.

At that point, we measure the success rate of listing for each party. By waiting

87

until each party receives some form of communication from all other parties, we ensure

that listing will not fail because we have run the protocol for too few rounds. By

our choice of the IBLT size, we also ensure that listing will only have negligible

failure probability from having too few buckets. Thus, we have narrowed our failure

probability to come from any failures resulting from the zeroing out of coefficients of

the linear combination of IBLTs in the randomized push-pull protocol. This failure

probability corresponds to the term O(ntL/p+n2L/p) from Theorem 3. Our L value

(corresponding to the number of rounds we run the protocol) has already been fixed.

Thus, the two parameters we can change are n, the number of parties, and p, the prime

we choose to mod each coefficient by. We consider three settings of the parameter p,

14653, 860117, and 1000000007, and vary the number of parties from 10 to 1280 for

each.

We expect that the error rate should decrease pretty much linearly with the size

of the prime p (since we designed the experiment so that the failure probability

should mainly come from the O(ntL/p+n2L/p) term in Theorem 3). Indeed, we find

from our experiments that the probability of missing at least one message decreases

approximately linearly with p. Increasing p from 14653 to 860117 (≈ 59× increase)

decreases the error probability by ≈ 55×. Increasing p from 860117 to 1000000007

(≈ 1163× increase) decreases the error probability by ≈ 1900×.

Table 6.1: Success Rate of Listing Keys (Averaged over 1000 trials) with p = 14653

Parties

%
Retrieving
All
Msgs

%
Missing
1 Msg

%
Missing
>1 Msg

#
Retrieving
All Msgs

#
Missing
1 Msg

#
Missing
>1 Msg

10 99.93% 0.07% 0.00% 9993 7 0
20 99.86% 0.14% 0.00% 19972 28 0
40 99.79% 0.22% 0.00% 39914 86 0
80 99.50% 0.50% 0.00% 79601 398 1
160 98.92% 1.07% 0.01% 158278 1713 9
320 97.82% 2.16% 0.02% 313024 6904 72
640 95.77% 4.14% 0.09% 612920 26523 557
1280 91.68% 7.96% 0.35% 1173545 101921 4534

Table 6.1 shows the success rate of listing keys for a chosen p of 14653, averaged

88

over 1000 trials, for 10 to 1280 parties. The % Retrieving All Messages column shows

the percentage of parties that are able to retrieve all of the messages from all the

parties. The other two columns are defined analogously. Even for 10 parties, in 7 out

of 1000 trials, one of the parties was unable to retrieve all the messages. However,

for n ≤ 40 parties, each party never missed more than one message. As the number

of parties increased, the percentage of parties missing a message went up accordingly.

With a graph of 1280 parties, the percentage of parties missing one message was

≈ 8%, and the percentage of parties missing more than one message was 0.35%. In

the case of n = 1280, the chosen p value of 14653 is quite small (only a factor of 12

greater than the number of parties), so it makes sense that the missed message rate

would be quite high. Also, note that the percentage of parties unable to retrieve all

messages increases approximately linearly with the number of parties, as Theorem 3

also suggests (the ntL/p term in the error probability dominates here).

Table 6.2: Success Rate of Listing Keys (Averaged over 1000 trials) with p = 860117

Parties

%
Retrieving
All
Msgs

%
Missing
1 Msg

%
Missing
>1 Msg

#
Retrieving
All Msgs

#
Missing
1 Msg

#
Missing
>1 Msg

10 100.00% 0.00% 0.00% 10000 0 0
20 99.99% 0.01% 0.00% 19998 2 0
40 99.99% 0.01% 0.00% 39995 5 0
80 99.99% 0.01% 0.00% 79993 7 0
160 99.98% 0.02% 0.00% 159971 29 0
320 99.96% 0.04% 0.00% 319870 130 0
640 99.92% 0.08% 0.00% 639505 495 0
1280 99.85% 0.15% 0.00% 1278055 1942 3

Table 6.2 shows the success rate of listing keys for a chosen p of 860117, averaged

over 1000 trials. With this p value, we are able to retrieve all messages for n = 10

in all of our trials. For n = 80, in 7 out of 1000 trials, one of the parties was unable

to retrieve all the messages. Recall that for p = 14653, for that same error rate, we

could only have 10 parties. For all of our tests up to and including n = 640, we

never had a party that missed more than one message. For n = 640, 99.92% of the

parties are able to retrieve all their messages, and for n = 1280, 99.85% are able to

89

do similarly. Once again, we see that the percentage of parties unable to retrieve all

messages increases approximately linearly with the number of parties.

Table 6.3: Success Rate of Listing Keys (Averaged over 1000 trials) with p =
1000000007

Parties

%
Retrieving
All
Msgs

%
Missing
1 Msg

%
Missing
>1 Msg

#
Retrieving
All Msgs

#
Missing
1 Msg

#
Missing
>1 Msg

10 100.00% 0.00% 0.00% 10000 0 0
20 100.00% 0.00% 0.00% 20000 0 0
40 100.00% 0.00% 0.00% 40000 0 0
80 100.00% 0.00% 0.00% 80000 0 0
160 100.00% 0.00% 0.00% 160000 0 0
320 100.00% 0.00% 0.00% 320000 0 0
640 100.00% 0.00% 0.00% 640000 0 0
1280 100.00% 0.00% 0.00% 1279999 1 0

Table 6.3 shows the success rate of listing keys for a chosen p of 1000000007,

averaged over 1000 trials. With this p value, we are able to retrieve all messages for

n up to 640 in all of our trials. For n = 1280, we only miss one key from one party in

one trial. Note that this value of p is not unreasonable. If we store each pit using a

32-bit integer, then we can have p values up to 232 − 1, which is approximately four

times larger than the p chosen above.

As all three tables tables suggest, if we choose p to be sufficiently large, then

the vast majority of messages are recovered. If p is small, then we still recover the

majority of messages, but the rate of missed messages is much higher. The benefit of

a smaller value of p is that each IBLT will be smaller. This is the case since each pit

in keysum and hashsum needs to be maximally p − 1, which takes log p bits, so the

size of each IBLT scales as log(p). In a more bandwidth constrained environment, we

might be willing to accept a higher missed message rate so that the transmitted IBLTs

are smaller. If maximally one message is missing per party, as is the case for larger

values of p, then we could transmit an additional checksum that is the exclusive-or

of all the messages, and use that to recover the missing message.

90

Chapter 7

Conclusion

In this thesis, we set out to better understand the many interesting properties of

Invertible Bloom Lookup Tables and the practicality of their use for various applica-

tions. To understand Invertible Bloom Lookup Tables in the first place, we had to

explain the set reconciliation problem, which involves efficiently synchronizing sets of

objects. During that discussion, besides showing how Invertible Bloom Lookup Ta-

bles could be used for set reconciliation, we also explained how a few other methods,

including Bloom filters, Approximate Reconciliation Trees, and Characteristic Poly-

nomial Interpolation, could be used to solve the set reconciliation problem. Many of

those techniques only work when considering set reconciliation with two parties – we

also discussed multi-party IBLTs, an extension to Invertible Bloom Lookup Tables

that is able to handle an arbitrary number of parties desiring to reconcile their sets.

Browsing the literature, we saw that file synchronization was one such applica-

tion for set reconciliation. As we found file synchronization to be an interesting

and relevant problem, we then sought to see how IBLTs could be harnessed for file

synchronization. Reading up on various file synchronization techniques, including

rsync, probably the most commonly used file synchronization protocol today, and

string reconciliation using puzzles, an approach that involves set reconciliation for

file synchronization, we were able to develop a new file synchronization protocol that

uses IBLTs, which we called IBLTsync.

To evaluate whether IBLTsync had any practical relevance, we implemented our

91

file synchronization protocol in C++ and tested it on a variety of workloads, compar-

ing it to rsync and a simple file transfer protocol. We found that IBLTsync indeed

had transmission benefits, transferring fewer and fewer bytes relative to rsync and

the simple file transfer protocol as the two files become more and more similar.

As we explained, the above approach only works when trying to synchronize a

single file between a local and remote machine. Although we did not provide an

implementation, we also proposed an extension to our file synchronization protocol

that allowed for synchronization between local and remote machine directories.

As another application for Invertible Bloom Lookup Tables, we considered gossip

protocols, communication protocols that are especially effective in large and changing

networks. Multi-party IBLTs fit particularly well into such a framework. In addition

to explaining how multi-party IBLTs can easily be used for gossip protocols, thus

converting gossip algorithms into reconciliation algorithms, we provided an imple-

mentation and empirical evaluation of IBLTs in such settings, corroborating many of

the theoretical findings from [31], and showing that multi-party IBLTs can be useful

in practice.

7.1 Future Work

As seen in our experiments from Chapter 5, the amount of data transmitted during file

synchronization depends greatly on the chosen block size. It would be interesting to

see if we could come up with efficient and accurate methods to estimate this optimal

block size before initiating the file transfer, as that would significantly improve the

performance of many file synchronization protocols.

In our evaluation of multi-party IBLTs for gossip protocols, we only considered

the Erdős-Rényi model of random graphs. It might be interesting to consider other

network topologies, such as the ring model, where every node is connected to a neigh-

bor to its left and a neighbor to its right, or a social network model, where there are

clusters of nodes that are highly connected intra-cluster but only sparsely connected

inter-cluster.

92

Bibliography

[1] www.dropbox.com.

[2] cassandra.apache.org.

[3] gist.github.com/gavinandresen/e20c3b5a1d4b97f79ac2.

[4] developers.google.com/protocol-buffers.

[5] https://github.com/sharelatex/sharelatex.

[6] https://github.com/PredictionIO/PredictionIO.

[7] Sachin Agarwal, Vikas Chauhan, and Ari Trachtenberg. Bandwidth efficient
string reconciliation using puzzles. IEEE Transactions on Parallel and Dis-
tributed Systems, 17, 2006.

[8] Nikolaj Bjorner, Andreas Blass, and Yuri Gurevich. Content-dependent chunking
for differential compression, the local maximum approach. Technical Report
MSR-TR-2009-74, Microsoft Research, August 2007.

[9] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[10] A. Broder. On the resemblance and containment of documents. In Proceedings
of the Compression and Complexity of Sequences 1997, SEQUENCES ’97, pages
21–, Washington, DC, USA, 1997. IEEE Computer Society.

[11] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.
Min-wise independent permutations (extended abstract). In Proceedings of the
Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pages
327–336, New York, NY, USA, 1998. ACM.

[12] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Fast approximate
reconciliation of set differences. In BU Computer Science TR, pages 2002–19,
2002.

[13] John W. Byers, Jeffrey Considine, Michael Mitzenmacher, and Stanislav Rost.
Informed content delivery across adaptive overlay networks. In In Proceedings of
ACM SIGCOMM, pages 47–60, 2002.

93

[14] Graham Cormode and S. Muthukrishnan. What’s new: Finding significant dif-
ferences in network data streams. IEEE/ACM Trans. Netw., 13(6):1219–1232,
December 2005.

[15] Graham Cormode, Mike Paterson, Süleyman Cenk Sahinalp, and Uzi Vishkin.
Communication complexity of document exchange. In Proceedings of the Eleventh
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’00, pages 197–
206, Philadelphia, PA, USA, 2000. Society for Industrial and Applied Mathe-
matics.

[16] Supratim Deb, Muriel Médard, and Clifford Choute. Algebraic gossip: A net-
work coding approach to optimal multiple rumor mongering. IEEE/ACM Trans.
Netw., 14(SI):2486–2507, June 2006.

[17] David Eppstein, Michael T. Goodrich, and Pierre Baldi. Privacy-enhanced meth-
ods for comparing compressed DNA sequences. CoRR, abs/1107.3593, 2011.

[18] David Eppstein, Michael T. Goodrich, Frank Uyeda, and George Varghese.
What’s the difference?: Efficient set reconciliation without prior context. SIG-
COMM Comput. Commun. Rev., 41(4):218–229, August 2011.

[19] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate
l1-difference algorithm for massive data streams. In Proceedings of the 40th
Annual Symposium on Foundations of Computer Science, FOCS ’99, pages 501–
, Washington, DC, USA, 1999. IEEE Computer Society.

[20] Philippe Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data
base applications. J. Comput. Syst. Sci., 31(2):182–209, September 1985.

[21] Michael T. Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables.
CoRR, abs/1101.2245, 2011.

[22] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards
removing the curse of dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, pages 604–613, New York,
NY, USA, 1998. ACM.

[23] Jiayang Jiang, Michael Mitzenmacher, and Justin Thaler. Parallel peeling algo-
rithms. CoRR, abs/1302.7014, 2013.

[24] Richard M. Karp and M.O. Rabin. Efficient randomized pattern-matching al-
gorithms. IBM Journal of Research and Development, 31(2):249–260, March
1987.

[25] Purushottam Kulkarni, Fred Douglis, Jason LaVoie, and John M. Tracey. Redun-
dancy elimination within large collections of files. In Proceedings of the Annual
Conference on USENIX Annual Technical Conference, ATEC ’04, pages 5–5,
Berkeley, CA, USA, 2004. USENIX Association.

94

[26] RichardJ. Lipton. Efficient checking of computations. In Christian Choffrut and
Thomas Lengauer, editors, STACS 90, volume 415 of Lecture Notes in Computer
Science, pages 207–215. Springer Berlin Heidelberg, 1990.

[27] Udi Manber. Finding similar files in a large file system. In Proceedings of the
USENIX Winter 1994 Technical Conference on USENIX Winter 1994 Technical
Conference, WTEC’94, pages 2–2, Berkeley, CA, USA, 1994. USENIX Associa-
tion.

[28] J. J. Metzner. A parity structure for large remotely located replicated data files.
IEEE Trans. Comput., 32(8):727–730, August 1983.

[29] John J. Metzner. Efficient replicated remote file comparison. IEEE Trans. Com-
put., 40(5):651–660, May 1991.

[30] Yaron Minsky, Ari Trachtenberg, and Richard Zippel. Set reconciliation with
nearly optimal communication complexity. In in International Symposium on
Information Theory, page 232, 2000.

[31] Michael Mitzenmacher and Rasmus Pagh. Simple multi-party set reconciliation.
CoRR, abs/1311.2037, 2013.

[32] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, New York,
NY, USA, 2005.

[33] Athicha Muthitacharoen, Benjie Chen, and David Mazières. A low-bandwidth
network file system. SIGOPS Oper. Syst. Rev., 35(5):174–187, October 2001.

[34] Norman Ramsey and Elod Csirmaz. An algebraic approach to file synchroniza-
tion. In Proceedings of the 8th European Software Engineering Conference Held
Jointly with 9th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-9, pages 175–185, New York, NY, USA, 2001.
ACM.

[35] Saul Schleimer, Daniel S. Wilkerson, and Alex Aiken. Winnowing: Local algo-
rithms for document fingerprinting. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’03, pages 76–85,
New York, NY, USA, 2003. ACM.

[36] Devavrat Shah. Gossip Algorithms. Foundations and Trends in Networking, Now
Publishers Inc, 2009.

[37] David Starobinski, Ari Trachtenberg, and Sachin Agarwal. Efficient pda syn-
chronization. IEEE Transactions on Mobile Computing, 2(1):40–51, January
2003.

95

[38] Torsten Suel, Patrick Noel, and Dimitre Trendafilov. Improved file synchroniza-
tion techniques for maintaining large replicated collections over slow networks.
In Proceedings of the 20th International Conference on Data Engineering, ICDE
’04, pages 153–, Washington, DC, USA, 2004. IEEE Computer Society.

[39] Andrew Tridgell. Efficient algorithms for sorting and synchronization, 1999.

[40] Hao Yan, Utku Irmak, and Torsten Suel. Algorithms for low-latency remote
file synchronization. In INFOCOM 2008. 27th IEEE International Conference
on Computer Communications, Joint Conference of the IEEE Computer and
Communications Societies, 13-18 April 2008, Phoenix, AZ, USA, pages 156–
160, 2008.

[41] Benjamin Zhu, Kai Li, and Hugo Patterson. Avoiding the disk bottleneck in the
data domain deduplication file system. In Proceedings of the 6th USENIX Con-
ference on File and Storage Technologies, FAST’08, pages 18:1–18:14, Berkeley,
CA, USA, 2008. USENIX Association.

96

	Introduction
	Motivation
	Model
	Proposed Solution
	Applications
	Individual File and File Directory Synchronization
	Gossip Protocols
	Other Applications

	Outline

	Set Reconciliation
	Exact Methods
	Naïve Approach
	Characteristic Polynomials

	Methods That Succeed with High Probability
	Bloom Filter
	Approximate Reconciliation Trees
	Basic Invertible Bloom Lookup Tables
	Multi-party Invertible Bloom Lookup Tables

	Estimating the Size of the Set Difference
	Strata Estimator
	Min-wise Sketches
	Repeated Doubling and Using Number of Listed Keys

	File Synchronization
	rsync
	Protocol

	Set Reconciliation for File Synchronization
	String Reconciliation Using Multisets and de Bruijn Digraphs

	Content-Dependent File Partitioning
	Point Filter Chunking
	Winnowing

	Our Algorithms
	File Synchronization
	Motivation
	Protocol
	Choosing Parameter Settings

	Extension: File Directory Synchronization
	Protocol

	File Synchronization Experiments
	Setup
	Random Error Model
	Block Error Model
	Practical Workload

	Gossip Algorithms
	Background
	Protocols

	Gossip Algorithms with Invertible Bloom Lookup Tables
	Motivation
	Protocol

	Experiments
	Dissemination Completion Time
	Listing Success Rate

	Conclusion
	Future Work

	Bibliography

