
Correlational Harmonic Metrics: Bridging
Computational and Human Notions of Musical
Harmony

Citation
Freedman, Dylan. 2015. Correlational Harmonic Metrics: Bridging Computational and Human
Notions of Musical Harmony. Bachelor's thesis, Harvard College.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:14398545

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:14398545
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Correlational%20Harmonic%20Metrics:%20Bridging%20Computational%20and%20Human%20Notions%20of%20Musical%20Harmony&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=830fbf0c4f6ef4951ef7fc3cdb3ac071&department
https://dash.harvard.edu/pages/accessibility

Correlational Harmonic Metrics:

Bridging Computational and Human Notions of Musical Harmony

A thesis presented by

Dylan Freedman

submitted in partial fulfillment of the requirements for an AB degree

with honors in Computer Science and Music

Departments of Computer Science and Music

Harvard College

April 1, 2015

Abstract

The goal of this paper is to show that traditional music information retrieval tasks with

well-chosen parameters perform similarly using computationally extracted chord anno-

tations versus ground-truth annotations. Using a collection of Billboard songs from the

last 60 years with provided ground-truth chord labels, I use established automatic chord

identification algorithms to produce a corresponding extracted chord label dataset. I

devise methods to compare chord progressions between two songs on the basis of their

optimal localized alignment scores, adapting traditional sequence alignment techniques

for transposition-invariance and the chord alphabet. I create a set of chord progression

comparison parameters defined by chord distance metrics, gap costs, and normalization

measures and run a black-box global optimization algorithm to stochastically search for

the best parameter set to perform chordal comparisons on collections of songs across two

primary tasks—fully connected harmonic comparison and query by n-grams. The first

task involves evaluating chord progression similarity between all pairwise combinations

of songs, separately ranking results for ground-truth and extracted chord labels, and re-

turning the Spearman rho rank correlation coefficient of the two resulting rankings. The

second task harmonically compares random chord query sequences of different sizes to

the songs in the datasets, for each query ranking results for ground-truth and extracted

chord labels, and returning the average Spearman rho rank correlation coefficient of all

pairs of resulting rankings. These methods reflect common harmonic music information

retrieval objectives and are robust and rapid, performing more efficiently than existing

chord sequence alignment methods and introducing the use of correlational harmonic

metrics between collections of songs.

i

Acknowledgements

I would like to acknowledge first and foremost my thesis advisors, Professors Eddie Kohler and Hans

Tutschku, for their helpful advice and insights. I extend gratification to the Music Information Retrieval

community for promoting with active fervor an intersection of fields that inspired my research. I am deeply

thankful for the educational opportunities that have afforded me the serendipity to fall into such tracks of

learning, along with friends from the past four years who have offered their own invaluable contributions. I

am wholly indebted in support and heartfelt appreciation to my eccentric family.

ii

Contents

Abstract i

Acknowledgements ii

Introduction 1

1 Overview of Music and Computation 4

1.1 A Primer on Western Music Theory . 4

1.1.1 Notes: The Basic Building Block . 4

1.1.2 Pitch Class . 6

1.1.3 Chords and Harmonies . 7

1.1.4 Key Signature . 8

1.1.5 Chord Progressions . 9

1.2 Audio Files . 10

1.2.1 Storing Audio . 10

1.2.2 Classifying pitches from audio files . 11

1.2.3 Classifying chords from audio files . 13

2 Harmonic Metrics 16

2.1 Chord Distance Metrics . 16

2.1.1 Considerations . 16

2.1.1.1 Notation . 17

2.1.2 Simple equality test . 18

iii

2.1.3 Harte Distance Metric . 19

2.1.4 Tonal Pitch Step . 19

2.1.4.1 Key Finding Using Tonal Pitch Step . 22

2.2 Chord Progression Comparisons . 24

2.2.1 Considerations . 24

2.2.1.1 Notation . 24

2.2.2 Simple Global Comparison . 25

2.2.3 N-Gram Comparison . 26

2.2.4 Minimum Edit Distance . 27

2.2.5 Smith-Waterman . 29

2.2.5.1 Example . 31

2.2.5.2 Use as a Chord Progression Similarity Measure 33

2.2.5.3 Normalization . 34

3 Methodology 37

3.1 Overview of Experimental Design . 37

3.2 Chord Extraction . 39

3.2.1 Chordino . 39

3.3 Datasets . 40

3.3.1 McGill Billboard Annotations . 40

3.3.1.1 Chord Alphabet Used . 40

3.4 Chord Progression Comparison . 41

3.4.1 Smith-Waterman . 41

3.4.2 Chord Metrics . 42

3.4.2.1 Testing Negative Expected Value for Rounded Chord Distance 42

3.5 Harmonic Comparison Tasks . 42

3.5.1 Fully Connected Pairwise Harmonic Comparison . 43

3.5.2 Query by N-gram . 45

3.6 Ranking and Correlating Results . 46

iv

3.6.1 Ranking of a sequence . 46

3.6.2 Metrics for evaluating the similarity between two rankings 47

3.6.2.1 Spearman’s Rho . 47

3.6.2.2 Kendall’s Tau . 48

3.6.3 Use with Harmonic Retrieval Tasks . 48

3.6.3.1 Example . 48

3.6.3.2 Correlational Harmonic Metrics . 49

3.7 Global Optimization with Simulated Annealing . 49

3.7.1 Overview . 50

3.7.2 Simulated Annealing for Harmonic Retrieval Experiments 52

4 Implementation 53

4.1 Using the chord alphabet . 53

4.1.1 Integer representation of chords . 53

4.1.2 Bitwise representation of harmony . 55

4.1.3 Bitwise chord operations . 56

4.2 Smith-Waterman SIMD Implementation . 56

4.2.1 Initial implementations . 56

4.2.2 Adapting an external C implementation . 57

4.2.3 Rounding Chord Distance Metrics . 58

4.3 Dataset Collection . 58

4.3.1 File conversion . 58

4.3.2 YouTube Extraction . 59

4.3.3 Rhapsody . 59

4.3.4 National Anthems . 59

4.3.5 Second Hand Songs . 60

5 Experimental Results 61

5.1 Variables Used and Notation . 61

5.2 Optimizing Fully Connected Pairwise Harmonic Comparison 62

v

5.3 Optimizing Querying by N-Gram Comparisons . 65

5.4 Parameter Optimization . 68

6 Conclusion 71

vi

List of Figures

1.1 Terheardt’s Visual Pitch Analogy . 4

1.2 Context-Free Grammar of a Note Name . 5

1.3 One Octave on a Piano . 6

1.4 Common Chord Qualities and Associated Intervals . 7

1.5 C Major Triad on a Piano . 8

1.6 Intervals Between Notes on a Piano . 8

1.7 Key Signature Mode Intervals . 9

1.8 Visual Quantization Analogy . 10

1.9 Spectrogram of Eleanor Rigby . 11

1.10 Spectrogram of Fourier Transforms by Window Size . 12

1.11 Chromagram of Eleanor Rigby . 13

2.1 Circle-of-Fifths . 20

2.2 4-Gram Sliding Windows . 26

2.3 N-Gram Comparison Histograms . 28

2.4 Minimum Edit Distance Example . 28

2.5 Smith-Waterman Random Permutation Score Distribution . 35

3.1 Flowchart of Experimental Design . 38

3.2 Smith-Waterman Parameters . 41

3.3 Rounded Chord Parameters . 42

3.4 Enumerating Harmonic Comparisons in a Fully Connected Graph 44

vii

3.5 Method of Ranking a Sequence . 47

4.1 Binary Representation of Chords . 55

5.1 Experimental Parameters . 61

5.2 Simulated Annealing Improvements in Fully Connected Comparisons 62

5.3 Optimal Parameters for Fully Connected Harmonic Comparison 63

5.4 Scatter Plot of Optimal Fully Connected Comparison Rankings 63

5.5 3-D Histogram of Optimal Fully Connected Comparison Rankings 64

5.6 Simulated Annealing Improvements in Query by N-Gram Comparisons 65

5.7 Scatter and Density Plots of Optimal N-Gram Query Comparison Rankings 67

All figures copyright of the author.

viii

Introduction

The word “harmony” in its Greek origin, Armonia, represents an ordering and balance [23], a term whose

meaning has transformed and over-accommodated through the musical eras of expression [47]. Harmony is a

combination of distinctly different concords and discords, pleasing and unpleasing sounds to some theorists

[3]; others hear these pleasant and clashing sounds as phenomena describing one and the same1 [40, 41].

Harmony is rooted in a singular note and its natural, physical overtone series to purists [14]; the vertical

combinations of stacked notes to traditionalists [3]; and the cultural contexts of a chord to musicologists [42].

It is to some a sensation [46] and others a rigid set of rules [37, 43]. It has materiality and simultaneously

only exists in the abstract [47]. To one, harmony is love, the genealogical father of melody [14], and to

another, harmony constitutes a multicellular biological organism2 [39].

This paper strives to capture an ambiguous, human, aesthetical notion and faithfully preserve its abstrac-

tion as a computational metric for comparison. While in no way trying to resolve a centuries-old debate on

what exactly harmony is or how it should be labeled, this paper instead asks how different understandings of

harmony—human and computer—can be reconciled, and how works of music can be harmonically compared

in spite of these diverging notions. Within this paper, harmony is extracted from pieces of music in the form

of chord symbols—labels which describe sequential, nonoverlapping vignettes into a song’s vertical combi-

nations of notes. Though describing a complex musical system in terms of a sequence of concise qualitative

descriptors is limiting, this representation is not arbitrary as chord symbols are standardly used. Addition-

ally, the reduction of harmonic content to chord symbols provides a depth of detail neither too verbose nor

too succinct, ripe for computational comparison. Chord symbols, devoid of any duration, tempo, dynamic,

1Arnold Schönberg, modern theorist and philosopher, conceives of an emancipation of dissonance in which consonance and
dissonance are one and the same as they both describe the relation of a note and its overtones. Consonances are based on more
proximal and thus audible overtones, whereas dissonances describe more remote overtones.

2Theorist Heinrich Schenker draws a musical parallel to biology, comparing an individual note to a single cell with the
natural instinct to reproduce, propagating motifs, harmonies, and complete works of music.

1

instrumentation, or timbre, match an intuitive manner in which people discuss harmonic similarity, in terms

of locally and globally matching regions of labels that describe chordal semantics between songs [12].

Existing chord recognition algorithms can convert an audio file into chord labels—a process called extrac-

tion—with an accuracy of up to 80% correct identification per chord compared with human annotation [21,

28]. Though, philosophically, a singular right conception of harmony against which to reference extraction

algorithms is impossible to establish, researchers have released extensively verified human-annotated chord

label datasets for popular Western songs from the 1950s to the 1990s by hiring musical experts and double-

checking all harmonic transcriptions [6]. The difficulty of establishing ground-truth, or manually verified,

reference data in the realm of musical harmony [10] has not suppressed the burgeoning field of music informa-

tion retrieval (MIR), which draws on music theory, psychology, signal processing, and artificial intelligence

to extract information from music. The Music Information Retrieval Evaluation eXchange3 (MIREX), an

international symposium for computational music recognition tasks, includes a chord labelling contest tested

against the reference dataset in [6] and others [18, 31] that has enticed a growing research interest [21, 28,

29, 36, 49].

Chord recognition algorithms provide a tool for converting an audio file into a series of chord labels

representative of the computational understanding of that piece’s harmony. Once this notion of harmony is

extracted, two pieces of music can be computationally compared through the use of metrics of similarity that

explicitly quantify subjective, qualitative harmonic similarity judgments. There are metrics for comparing

two individual chord labels [18, 26, 38] and metrics for comparing entire progressions of chords which usually

rely on subcalculations of the former [2, 10, 11, 16, 17]. These metrics are detailed in depth in chapter 2.

While there is some notion of human-generated ground-truth data for chord extraction, there is no reference

dataset or MIREX competition for harmonic progression similarity [10]—the desire for higher level similarity

metrics motivates the work of this paper.

Many different MIR tasks rely on metrics of harmonic progression similarity, including harmonic content

querying [1], cover song identification [20], and automated harmonic analysis [4]. This paper fundamentally

asks how basic MIR tasks’ results compare between the use of computationally extracted chord data and

human-annotated ground-truth data, leading to my creation of a similarity measure at a higher level of

MIR understanding: correlational metrics. These metrics quantify how similarly a MIR task performs using

3http://www.music-ir.org/mirex/wiki/MIREX_HOME

2

http://www.music-ir.org/mirex/wiki/MIREX_HOME

datasets that reflect differing harmonic understandings. Maximizing a correlational harmonic metric corre-

sponds to optimizing the parameters of a MIR algorithm such that different input datasets yield relatively

similar results. While it could be argued that such a metric only encourages similar results rather than good

results, the experiments in this paper use established effective algorithms to analyze a significantly large-scale

amount of harmonic data. Using correlational metrics, this paper demonstrates established harmonic MIR

algorithms operate productively with large quantities of extracted chord data, resolving the debate on an

exact notion of harmony in massive music informatics applications for a practical computational notion.

This paper begins with an overview of musical harmony and terms in chapter 1, without delving into

historical accounts of rules of harmonic progression or placing subjective judgments of what sounds good or

bad, concordant or discordant. I introduce basic computer algorithms such as the Fourier transform and

visual representations of audio content, emphasizing the inaccuracy inherent in computational extraction at

the note level and the ambiguity which precludes any possibility of perfect extraction. Readers acquainted

with this background on the intersection of music with computation and its briefly discussed physical and

psychological implications are welcome to skip this chapter. Chapter 2 discusses computational metrics for

harmonic comparison, including existing techniques and novel explorations, with discussion of their advan-

tages and disadvantages for harmonically comparing two songs according to outlined subjective principles.

Chapter 3 rationalizes the overall design decisions used to blueprint the experimentation and establishes the

primary tasks in the paper. Chapter 4 elaborates on the implementation mechanics and code used to both

accomplish the objectives and set up the experimentation. Finally, chapter 5 details experimental results

and is followed by a conclusion and overall discussion in chapter 6.

3

Chapter 1

Overview of Music and Computation

1.1 A Primer on Western Music Theory

1.1.1 Notes: The Basic Building Block

In music, a note is the most basic element. A note is based on pitch, a subjective and perceptual property.

Though the pitch of a note is closely related and usually resembles its objective physical frequency (as

measured in Hertz, or cycles per second, of a waveform), pitch differs in that its semantic meaning is derived

from the listener. This distinction can be demonstrated with a visual analogy used by Terheardt [48] in

Figure 1.1 in which the word PITCH is apparent even though the visual information suggests only shadow

– a pitch can be heard even if its perceived frequency is not physically present. A note also consists of a

duration.

PITCHPITCH
Figure 1.1: Terheardt’s visual pitch analogy. In this illusion, the eye perceives contours
not present. Pitch describes the information received by a listener even if physical
frequencies are not present.

4

Western music is based on a division of 12 distinct frequencies per octave. An octave is an interval, or

distance between two frequencies, that corresponds to a power of 2 multiplication. Musical pitch is perceived

in a logarithmic scale—one octave above a given perceived frequency is double that frequency; one octave

below is half that frequency. The progression of notes containing all 12 pitches in succession in an octave

is called a chromatic scale. A semitone, or half-step, is the smallest interval, equal to 1/12 of an octave. n

semitones above a given frequency f0 or −n below can be calculated as f0 ∙ 2n/12.

Note names are used to classify the pitches in the chromatic scale. Note names consist of a base name

and 0 or more accidentals. The base names of a note correspond to the white keys on a piano—in any one

given octave there are the following names: C, D, E, F , G, A, and B. A base note name can optionally be

decorated with an indefinite number of sharps (]) or flats ([), but not both, in the note name. This can be

illustrated with the following grammar1 (figure 1.2):

NoteName→ BaseNote | BaseNote SharpAccidentals | BaseNote F latAccidentals

BaseNote→ C | D | E | F | G | A | B

SharpAccidentals → # SharpAccidentals | #

FlatAccidentals → b FlatAccidentals | b

Figure 1.2: Context-free grammar of a note name

Sharps and flats are referred to as accidentals. Each additional (#) increases the pitch to which the note

name refers by 1 semitone; likewise, each (b) decreases the pitch by 1 semitone. The black keys on the piano

represent pitches 1 semitone in between the surrounding white keys. Each white key is either 1 semitone

or 2 semitones apart, depending on if a black key is in the middle. For instance, C and D are 2 semitones

apart since there is a black key in between them, whereas E and F are 1 semitone apart. See Figure 1.3 for

a visual of the piano with note names and Figure 1.6 for a diagram depicting intervals on the piano.

The divergence in musical notes—one of the most basic elements—between exactly calculable and sub-

jectively derived from perception gives rise to many questions in music informatics retrieval (MIR), a field

devoted to automatically extracting data and classifying features from works of music.

1A grammar describes production rules that recursively generate acceptable symbol sequences in a language. In the language
of musical notes, these rules structurally outline the syntax of a well-formed note name.

5

C D E F G A B C

C# Db D# Eb F#Gb G#Ab A# Bb

O N E O C T A V E

Figure 1.3: One octave on a piano

1.1.2 Pitch Class

Though the chromatic scale contains 12 notes, there are an infinite amount of ways to represent any singular

pitch within the octave. For instance, a C] pitch can be represented as a D[, a B]] (“B-double-sharp”), or

a F[[[[, among other possibilities. There are notational reasons to represent a pitch in these ways; outside

of equal temperament, the tuning system upon which Western music is based, these notes sound distinct and

have different perceptual frequencies. In equal temperament, which is an assumption guiding this paper, all

these different representations of the same chromatic note have identical pitches.

A pitch class is the collection of all identical pitches across all octaves. The C] pitch class, for instance,

contains all the C] pitches over all the octaves, the D[pitches over all the octaves, and any other pitch that

represents the same chromatic note across all octaves.

6

1.1.3 Chords and Harmonies

A chord consists of a combination of notes sounding simultaneously or close enough in succession to resemble

a texture. The Harvard Dictionary of Music defines a chord as consisting of at least three notes [3]. A chord

perceptually describes the notes that are contained within.

Chords are commonly labeled with qualities, which describe the intervals between the pitch classes

involved, invariant of octave. Notes can be replicated across octaves as long as they occur at least once, and

the ordering can be changed. Different orderings and octave choices in a chord are called voicings.

A major chord consists of a root note, the base pitch class from which successive intervals are constructed,

and pitch classes 4 semitones and 7 semitones above the root note modulus 12. This can be notated as a list

of intervals, 0, +4, +7 mod 12, but for convenience, the root note corresponding to interval 0 can be omitted.

See Figure 1.4 for a sample of commonly named chord qualities and the associated intervals.

Chord Quality Shorthand Intervals from Root (mod 12)

Major +4, +7
Major 6th 6 +4, +7, +8
Major 7th maj7 +4, +7, +11
Minor m +3, +7
Minor 6th m6 +3, +7, +9
Minor 7th m7 +3, +7, +10
Dominant 7th 7 +4, +7, +10
Augmented aug +4, +8
Diminished dim +3, +6
Diminished 7th dim7 +3, +6, +9
Half-diminished 7th m7b5 +3, +6, +10

Figure 1.4: Common Chord Qualities and Associated Intervals

Chords are labeled with their root note followed by their quality, like Eb minor, B augmented, or F

half-diminished 7th. A chord with only 3 notes in which successive intervals are within an octave from the

root note is called a triad. A C major triad is demonstrated in Figure 1.5.

The bass note of a chord is its lowest note. A chord’s bass note is often its root, however this is not

always the case depending on voicing. When the notes of a chord are such that its root note is not the bass

note, that chord is said to be inverted. When the bass note of a chord is not the chord’s root nor any of the

7

C D E F G A B C

C# Db D# Eb F#Gb G#Ab A# Bb

Figure 1.5: A C major triad on the piano. The
notes indicated with the red circle are C, the first
circle on the left; E, 4 semitones above C; and
G, 7 semitones above C.

C D E F G A B C

+1 +1+2 +2 +2 +2 +2

Figure 1.6: The intervals in semitones between
successive white keys on the piano. For instance,
C to E are (2 + 2) = 4 semitones apart; C and
G are (2 + 2 + 1 + 2) = 7 semitones apart.

pitches involved within the chord’s quality, that chord is called a slash chord. The name slash chord refers

to its notation—a D minor chord with a bass of B is notated as Dm/B.

The notation of a chord can be outlined with the following context-free grammar:

Chord→ Root Quality | Root Quality / Bass

Root→ NoteName

Bass→ NoteName

Quality → maj | 6 | maj7 | m | m6 | m7 | 7 | aug | dim | dim7 | m7b5

where NoteName is a note name according to the context-free grammar in Figure 1.2.

1.1.4 Key Signature

The key signature of a song describes the tonic or base harmony against which other chords perceptually

resolve. Key signatures consist of a root note and a mode—major or minor—which describe the mood of

the piece and outline the expected chords and pitch classes used in the song.

The C major key signature consists of all the white keys on the piano. The pitch classes of notes in a

song in C major are expected to fall on these keys. Only certain chords consist of pitch classes that are in

8

C major. Starting with the note C and ascending upwards in triad chords the following list of harmonies is

obtained: (C,Dm,Em,F,G,Am,Bdim).

It can be useful to construct a template of acceptable pitch classes in C major. All the notes in a C major

key signature starting at C are (C,D, E, F , G, A, B). In terms of intervals of each of these notes relative

to the previous, starting at the second element (D), this list can be written (+2, +2, +1, +2, +2, +2). With

this template, it can be easy to obtain a list of acceptable pitch classes in other key signatures. For instance,

the pitch classes F# major can be calculated by adding each interval to the last played note starting at

F# obtaining (F#, G#, A#, B,C#, D#, F). The A minor mode consists of all the white keys on the piano

starting at A, and thus its template can be described (+2, +1, +2, +2, +1, +2). See Figure 1.7 for a key

signature template table.

Key Signature Mode Interval Template (mod 12)

Major +2, +2, +1, +2, +2, +2
Minor +2, +1, +2, +2, +1, +2

Figure 1.7: The intervals from the previous note starting at the root that can be used
to construct all the acceptable pitch classes in a key signature given the mode.

1.1.5 Chord Progressions

Chord progressions are sequences of chords in a song. There is a degree of subjectivity in identifying

progressions of chords as chords can be overlapping, contain notes that straddle and linger between chords,

or involve unknown or difficult to identify chord qualities. There are often perceptually obvious answers to

what chords are playing based on musical cues ingrained in culture, commonalities across songs, and more

advanced techniques in music theory.

Chord progressions are frequently notated with dashes in between, such as Cmaj7−Dm−G7−Cmaj7.

Chord progressions are regarded as identical even if they are transposed, or the pitch class of the root and

bass notes of each chord is shifted a certain amount. For instance, Dmaj7−Em−A7−Dmaj7 describes an

identical progression as each chord is transposed up 2 semitones. A transposition-invariant representation is

useful for classifying relatively similar chord progressions. Music theorists typically use roman numerals to

represent the root and bass notes of the chord relative to the key of the song.

9

The roman numeral I corresponds to the root of the key signature, and successive notes are represented

by successive roman numerals. The chord progression Cmaj7 −Dm − G7 − Cmaj7 could be rewritten as

Imaj7− ii− V7− Imaj7 in the key of C major. It is important to note that minor chords, or chords with

qualities that are described as minor, are represented with lower case numerals, and the normal minor chord

representation (m) can be omitted.

1.2 Audio Files

1.2.1 Storing Audio

Music is stored digitally as a series of amplitudes. Amplitudes capture the energy in the compressions

and rarefactions in the air that give sound to everything one can hear. Periodic fluctuations in amplitude

represent the frequencies which give the listener a perceptual understanding of pitch. Digital storage of music

invariably loses some information through quantization, the process of making the continuous data sound

waves represent into discrete values computers can comprehend. As a visual analogy, in order for a picture to

be rendered on a computer screen it needs to fit into the rectangular shape of pixels (see Figure 1.8)—likewise,

audio needs to fit into discrete bins of amplitude values, thus forfeiting a minute amount of information.

The number of bins per second is referred to as the sample rate of a song.

Figure 1.8: Quantizing data to fit into a computer. The circle on the left represents
continuous data. The circle in the middle shows the grid upon which the data will fit
once its values are made discrete. The circle on the right shows the final quantized
result displayable on a computer. Likewise, audio must be quantized when stored
digitally.

10

1.2.2 Classifying pitches from audio files

The Fourier transform is a mathematical algorithm that can be used to extract frequencies from a series

of amplitudes. Most modern audio files are sampled at 44,100 Hz, which means that there are 44,100 data

points for every second of audio. Let sr denote the sampling rate of an audio file in Hz. For a given segment

of audio consisting of n data points, the Fourier transform returns n values, where the magnitude of the

ith value corresponds to the strength of the frequency sr∙i
n Hz. A graph of these values with time along the

x-axis, frequency along the y-axis, and intensity represented by color is called a spectrogram. An example

spectrogram of the Beatles song Eleanor Rigby is given in Figure 1.9.

Figure 1.9: A spectrogram of an excerpt of The Beatles song Eleanor Rigby. The x-axis
moves linearly with time, and the y-axis has been adjusted to a logarithmic scale to
move linearly with a chromatic scale. The magnitude of each frequency value can be
seen by the intensity of the color in the spectrogram.

The Fourier transform can be applied to an audio file using a sliding window in which the data points are

analyzed in chunks. The window is of a set size to contain a certain number of data points and traverses the

data linearly in equal, potentially overlapping steps. The size of the window is a balance in precision—the

larger the window size the finer the frequency resolution; the smaller the window size the more closely note

onsets and offsets can be detected. This can be illustrated with a diagram of spectrograms sampled at

different window sizes in Figure 1.10.

Pitch classification of a segment of audio corresponds to finding peaks in this array of magnitude values.

Often, spectrograms are condensed into an octave invariant representation called a chromagram in which

11

8,192 sample (0.19 seconds) window size with 50% overlap

16,384 sample (0.37 seconds) window size with 50% overlap

32,768 sample (0.74 seconds) window size with 50% overlap

Time (seconds)

Frequency (Hz)

Figure 1.10: A spectrogram of Fourier transformations by window size on the same
melodic line consisting of synthesized notes A, B, and C] sustained for two seconds
each. As the window size increases, the width of each band depicting the notes being
played narrows, corresponding to more attuned frequency resolution. Likewise, the
vertical band representing error in identifying transitions between notes shrinks as
window size decreases.

each note across all octaves is compounded into a single bin. A chromagram of the same excerpt of Eleanor

Rigby can be found in Figure 1.11.

Automatic pitch identification of audio is inexact. The peak-finding approach only captures salient

frequency values, which does not necessarily imply that the corresponding pitches are present. The complex,

rich sound of instruments and voices have overtones, or frequencies that are multiples of a base frequency,

presenting obscure samples. Noise and extraneous sound clutter recordings. The quantization of audio

files and impreciseness of recording equipment prevent perfect data collection. Multiple melodic parts can

make it hard to isolate regions or discern between instrumental lines. There are more complicated means

of identifying pitches that take into account timbral aspects of instruments, color and overtones, but the

12

Figure 1.11: A chromagram of an excerpt of The Beatles song Eleanor Rigby. The
x-axis moves linearly with time, and the y-axis represents pitch class. Notice the pitch
classes (B,E,G) and (C,E,G) are the most prevalent vertical intensities at different
time values. The chords Emin and C have these respective note representations and
are the guiding harmonies in the song.

subjective nature of pitch interpretation means definitive truths are hard to establish, and the computational

task of hearing as a human might broaches the field of artificial intelligence.

1.2.3 Classifying chords from audio files

Chord identification from audio files is a difficult task that would seem to compound the inexactness of pitch

recognition and musical data collection into a more error-prone procedure; however, advanced chord recog-

nition algorithms perform better than approaches that identify chords through individual notes. These more

complicated techniques rely on harmonic templates, approximate transcription, and artificial intelligence.

Chord recognition algorithms commonly analyze chroma features, which represent the observed intensity

of each pitch class in a segment of audio by compounding intensities of frequencies across different octaves

into a single bin. Algorithms can use chroma features at different window positions to automatically study

songs of known chord progressions and construct a model that learns the patterns of chroma features for

each chord. This method describes supervised machine learning, in which a model is trained on a selection

of ground-truth data and tested for accuracy on unseen ground-truth data. The underlying model in chord

recognition is usually a Hidden Markov model (HMM) or dynamic Bayesian network (DBN), statistical

graphs that depict probabilistic data and have hidden states to represent unknowns such as the chord

13

being identified. The probabilistic relations described by the graph are updated as different chord data are

observed, culminating in a trained model that can classify chords by finding the Viterbi paths, or most likely

paths, through the graphs. The advantage of using machine learning is that the model can automatically

take into account acoustical ways in which certain chords sound that are unexplained by just observing the

strongest intensities within the chroma features. For instance, overtones of the notes within a chord can

pollute the chroma feature vector in ways that the model can learn to understand [28]. Systems that use

supervised machine learning with chroma features to classify chords are frequently employed [24, 25] and

often extended substantively with MIR techniques that take into account other properties of the song, such

as rhythmic beat information.

Matthias Mauch and Simon Dixon designed a chord recognition system in 2010 [28] that was state-

of-the-art at the time of its introduction, having the highest chord identification as measured by chord

symbol recall 2 in the 2010 MIREX Audio Chord Estimation contest3. Mauch and Dixon’s approach contains

a number of improvements on the traditional systems. Their algorithm preprocesses the input audio to

remove inharmonious background noise. It then uses separate beat-synchronous chromagrams for both

bass and treble features, differentiating analysis of lower and upper frequency registers with a window size

synchronized to the rhythmic pulse of the song. Each chromagram is further divided into three bins per pitch

class shifted in 1/3 of a semitone increments to infer the global tuning of the piece based on the strongest

intensities present. The algorithm relies on approximate physical understandings of simultaneously played

notes to determine the onset of each note and uses DBNs that have hidden states for the metric position

of a chord, the song’s key, and the bass notes being played. In later work, Mauch et al. observe higher

levels of a song’s structure such as repeated sections with similar chord information to improve overall chord

recognition accuracy [30].

The research led by Maksim Khadkevich in [21] presents methods that currently have the best chord

symbol recall in the 2014 MIREX Audio Chord Estimation contest4. Khadkevich uses time-frequency reas-

signment (TFR), a technique that “sharpens” spectrograms by remapping cells (spectral coordinates defined

by frequency and time position) to reflect the regions of strongest support. This provides much better time-

frequency resolution, rectifying the problem inherent in spectrograms as described in Subsection 1.2.2 and

2Chord symbol recall is simply the percentage duration of correctly annotated chords
total duration of song

3http://nema.lis.illinois.edu/nema_out/mirex2010/results/ace/
4http://www.music-ir.org/mirex/wiki/2014:Audio_Chord_Estimation_Results

14

http://www.music-ir.org/mirex/wiki/2014:Audio_Chord_Estimation_Results
http://nema.lis.illinois.edu/nema_out/mirex2010/results/ace/

exemplified in Figure 1.10. The algorithm then uses separate trained HMMs for each chord quality, presenting

a robust system to classify chords from audio.

Chord classification brings multiple disciplines within computer science and music cognition together to

make informed predictions on the chord sequences present in an audio file. There is inherent ambiguity

in harmonic classification, even among experts, but existing chord identification algorithms perform well

with regard to human-annotated ground-truth data. Chord classification techniques also require a specific

alphabet of chord qualities—though this collection of all possible identifiable chord qualities is usually a

modular component of a chord recognition algorithm, it presents a necessary design decision. Some use an

expanded palette of chord symbols that includes extended chords in jazz such as 9ths, 11ths, and 13ths [6].

Others consider only looking at whether the chord is major or minor without any extensions [34]. The

alphabet of chord qualities labels presented in Figure 1.4 presents a good compromise between too much and

too little information and is used in the chord identification systems presented in this paper, as described in

chapter 3.

15

Chapter 2

Harmonic Metrics

In chapter 1 notions of theory, human subjectivity, and analytical technique were shown to govern classifi-

cation of information from musical songs. The overview described how systems can be constructed from the

ground up to classify, or extract, chords from a music audio file. This chapter details ways in which extracted

chord labels and sequences of chords can be treated as computational objects for comparison, establishing

the base tools that will build up to this paper’s primary experimentation.

2.1 Chord Distance Metrics

2.1.1 Considerations

To begin to compare progressions of chords, it is essential to first have metrics to compare individual chords.

Recall that a chord has the following components: root, quality, bass. Chord extraction algorithms also

include a symbol to describe the absence of any chordal content in a segment of audio that can arise

during silences or inharmonic sections of a song: nochord. There are multiple approaches to comparing

two chords. Both chords can be represented as the set of their constituent pitch classes and set operations

can be performed to formulate a distance; another approach may emphasize different structures such as the

relationship between two chords’ root notes and bass notes.

16

It can be helpful to outline some basic comparisons of chords and describe subjective expectations how the

chord metric should perform to outline the utility of a distance function. These expectations are somewhat

arbitrary but are founded on my subjective experiences with Western music and extracted chord results.

Assume a chord distance function Cd takes two chords and returns a real number from 0, indicating no

similarity, to 1, indicating perfect similarity:

• Cd(C,Cm) should have a good similarity score since a common chord extraction error is to confuse the

major and minor versions of a given chord based on the similarity of overtone content or ambiguity

that is frequently used as a musical device. In terms of the pitch classes of C major and C minor, they

are similar in that both have C and G but differ in that the former has E and the latter Eb.

• Cd(C,Am) should compare similarly as the chords are relatively similar, which means that the key

signatures formed by taking their roots and using their qualities as modes describe the same set of

pitch classes. The pitch classes in A minor have two overlapping elements with those in C major.

• Cd(C,Cmaj7) should score well as C major 7 is an extension of C major, which means it has the same

root and bass and contains a superset of the pitch classes in C.

• Cd(C6, Am7) should compare nearly perfectly since both chords have the exact same set of pitch classes

but differ in root and bass, which could be an error in chord extraction.

• Cd(C7, C7/Bb) also can be expected to perform well as both chords describe identical sets of pitch

classes and have the same root but differ in bass note.

2.1.1.1 Notation

Pc represents all the pitch classes in a given chord. Pc(nochord) is the empty set, {}. root is a function that

returns the pitch class of the root of the given chord. quality is a function that returns the qualitative label

of a chord that can be used with other functions to extract intervals and other factors. bass is a function

that returns the pitch class of the bass of the chord. nochord is a function that returns whether the given

chord is nochord or not. I is a function that takes a quality and returns a set of intervals in semitones

modulus 12 from the root (excluding the root). V is a function that takes a quality and returns the 5th

interval in the chord. For chords with major, minor, and dominant qualities, regardless of extension, this is

17

the semitone 7 steps above the root. For diminished chords and minor 7 flat 5 chords, this is the semitone

6 steps above the root. Finally, for augmented chords this is the semitone 8 steps above the root.

2.1.2 Simple equality test

This is the most basic implementation of a distance metric. Essentially, it tests whether two chords are equal,

returning 1 if so and 0 otherwise. Equality can be tested in multiple ways. Exact equality first examines

nochord, returning 1 if both chords are nochord; otherwise, it returns whether the root, quality, and bass

of the two chords are identical. Exact equality can be expressed

Cd(c1, c2) =






1 if (nochord(c1) ∧ nochord(c2))∨

(root(c1) = root(c2) ∧ quality(c1) = quality(c2) ∧ bass(c1) = bass(c2))

0 otherwise

where ∧ is the boolean and operator and ∨ is the boolean or operator.

There are other ways to test equality. For instance, only root can be considered if one wishes to reduce

a chord to its simplest element as follows:

Cd(c1, c2) =






1 if (nochord(c1) ∧ nochord(c2)) ∨ root(c1) = root(c2)

0 otherwise

Another reasonable implementation is to consider the set of pitch classes of both chords and whether

they are equal. This is expressed:

Cd(c1, c2) =






1 if Pc(c1) = Pc(c2)

0 otherwise

These simple equality metrics are useful distance functions for simple implementations and computa-

tions and were handy in assessing preliminary results before more detailed distance functions had been

implemented.

18

2.1.3 Harte Distance Metric

This chord function is presented without a name in Christopher Harte’s PhD thesis about extraction of

harmony from audio [18], but I use the name “Harte distance metric” to refer to it. The method is deceptively

simple but effective, consisting of taking the size of the intersection of both chords’ pitch class sets and

dividing it by the size of the union of their pitch class sets, as follows:

Cd(c1, c2) =
|Pc(c1) ∩ Pc(c2)|
|Pc(c1) ∪ Pc(c2)|

Using the Harte distance metric, the score of comparing minor and major chords of the same root (e.g.

Cd(C,Cm)) and a major chord with its relative minor (e.g. Cd(C,Am)) both have the same value of 0.5. A

major chord compared with a major 7th of the same root (e.g. Cd(C,Cmaj7)) that contains a superset of

the first chord’s pitch classes has a score of 0.75. Comparing chords with identical pitch sets, even if root or

bass notes vary (e.g. Cd(C6, Am7) Cd(C7, C7/Bb)), results in a perfect score of 1.

This metric has the advantage that it is very versatile and fast, but potentially loses some information

about a chord in disregarding distinctions of elements within the chord such as root and bass, instead focusing

only on the pitch classes within.

2.1.4 Tonal Pitch Step

Tonal Pitch Step is a distance measure that is grounded in cognitive psychology, algebra, and tonal music

theory, proposed by Fred Lerdahl in [26]. The measure is unique from the others in that it takes into account

the key of a song, which can be recalled as:

Key → Root Mode

Root→ NoteName

Mode→ Major Minor

Given all possible combinations of a pitch class describing root and mode, there are 24 distinct key signatures.

It is important to note that the acceptable pitch classes within relative keys are identical, such as C major

and A minor.

19

The tonal pitch step algorithm is calculated, with revisions courtesy of [10] to only include one key, as

Cd(c1, c2, k) = i(root(c1), root(c2)) + j(c1, c2, k)

where i calculates the circle-of-fifths distance between two pitch classes. The circle-of-fifths (see Figure 2.1)

distance describes how many ±7 semitone traversals are needed to reach one note from another. It can be

calculated for any two pitches p1 and p2 as

i(p1, p2) = min(((p1− p2) ∙ 7) mod 12, ((p2− p1) ∙ 7) mod 12)

where the difference between p1 and p2 is the number of semitones between them.

C G
D

A

E
BF#/

 Gb

C#/
 Db

G#/
 Ab

D#/
 Eb

A#/
 Bb

F
+7

+7

+7

+7

+7

+7+7
+7

+7

+7

+7

+7
-7

-7

-7

-7

-7
-7-7

-7

-7

-7

-7

-7

Figure 2.1: The circle-of-fifths. Keys highlighted in red are spaced 7 semitones apart,
an interval referred to in music theory as a fifth. Each successive note clockwise cor-
responds to an interval of 7 semitones, and each step counterclockwise corresponds to
a -7 semitone jump. The circle-of-fifths distance is used as a component in Lerdahl’s
Tonal Pitch Step metric.

20

The calculation of j consists of deriving four sets of tonal space for each chord Lerdahl outlines in which

each subsequent level is a superset of the previous level. Level 1, L1, of a chord c returns a set only containing

the chord’s root note:

L1(c) = {root(c)}

Level 2, L2, returns a set containing a given chord’s root note and fifth interval:

L2(c) = {root(c), V (c)}

Level 3, L3, returns a set containing all the pitch classes in a given chord:

L3(c) = Pc(c)

Finally, level 4, L4, consists of all the pitch classes in the key signature given:

L4(c, k) = Pc(k)

With each level, two sets, one from each chord being compared, are used and the cardinality of the symmetric

difference (4) is computed. The symmetric difference corresponds to the size of the set of unique elements

between both sets being compared. For instance, {1, 2, 3}4{2, 3, 4} = {1, 4}. j is calculated as follows:

j(c1, c2, k) =
|L1(c1)4L1(c2)|+ |L2(c1)4L2(c2)|+ |L3(c1)4L3(c2)|+ |L4(c1, l)4L4(c2, l)|

2

Tonal Pitch Space (TPS) returns a value from 0.0 to 13.0 (in the case of more advanced key signature

modes the upper bound is 14.0) in which lower scores correspond to higher similarity between two chords. To

make this measure comparable with the Harte distance metric, it is a matter of normalization and inversion

to give TPS a range of 0 to 1 in which 1 indicates perfect similarity:

Cd(c1, c2, k) =
13.0− (i(root(c1), root(c2)) + j(c1, c2, k))

13.0

21

In the key of C major, some example TPS results are calculated based on the chord comparisons of

interest.

Cd(C,Cm,C major) = 0.884 (11.5÷ 13)

Cd(C,Am,C major) = 0.462 (6.0÷ 13)

Cd(C,Cmaj7, C major) = 0.962 (12.5÷ 13)

Cd(C6, Am7, C major) = 0.538 (7.0÷ 13)

Cd(C7, C7/Bb,C major) = 1.0 (13.0÷ 13)

Intriguingly, the comparison of C6 and Am7 has a significantly lower score of 0.538 than its perfect score

under the Harte metric. The key information required in TPS penalizes Am7 in the context of C major even

though both C6 and Am7 describe the same set of pitch classes.

TPS does not take significantly longer to compute than the Harte metric and is grounded in more cognitive

models of human chord perception, though this does not imply it is necessarily a better algorithm for chord

comparisons.

2.1.4.1 Key Finding Using Tonal Pitch Step

One pitfall of TPS is that it requires advance knowledge of the key signature over which chords are being

compared. Given a sequence of chords s this factor can be estimated by finding the key k that maximizes

the sum of the TPS distance of every chord in s against the chord describing the key. Labeling the algorithm

Ke, key finding can be expressed as

Ke(s) = max
k

s∑

c

Cd(c, one(k), k)

where k iterates through all 24 combinations of key signature root and mode, and the function one returns

the chord describing the given key with the root of k and the quality corresponding to the key’s mode.

In the paper Comparing Harmonic Similarity Measures [15], where this algorithm was proposed, the

authors found that this formula produced many false positives, and accordingly modified the algorithm for

use with the Western music they were testing to incorporate information about the IV , V , and vi chords

22

of the tested key (in major modes; in minor modes, this is expressed as the iv, V , and V I chords). This

additional information gave enough data about the salient harmonies in a key to have an accuracy rate of

88.8% over the corpus of music tested by the authors. Functions to derive these chords are based on a root

and mode of a key signature. Given a function chord that constructs a chord with a given root and mode,

these functions are as follows:

one(root,mode) = chord(root,mode)

four(root,mode) = chord((root + 5) mod 12,mode)

five(root,mode) = chord((root + 7) mod 12, major)

six(root,mode) =






chord((root + 9) mod 12, minor) if mode = major

chord((root + 8) mod 12, major) if mode = minor

Let rank denote the rank function that returns the ranking of an element in a list or sequence (see

Figure 3.5 for a more in-depth treatment of ranking). The rank corresponds to the number of elements less

in value than that one, such that rank(1, [2, 3, 1]) = 0, rank(2, [2, 3, 1]) = 1, and rank(3, [2, 3, 1]) = 2. r

is a function that takes in a sequence, one of the key-to-chord functions ({one, four, five, six}), and the

key being tested. It then returns the ranking of the key being tested out of all possible keys’ summed TPS

distances between every chord in s against the key-to-chord function of the key, as follows:

r(s, cf , k0) = rank(k0, {k :
s∑

c

Cd(c, cf (k), k)})

The revised key finding algorithm takes a summation of r calculations involving every key-to-chord

function, with an emphasis on one, and incentivizes matching first and final chords with the key, returning

the key that satisfies:

Ke(s) = min
k0

(

4 ∙ r(s, one, k0) + r(s, four, k0) + r(s, five, k0) + r(s, six, k0)+






−4 if the first chord of s matches k0, and

−4 if the last chord of s matches k0

)

23

In my implementation, a chord was determined matching in the last sum of this formula if its raw TPS

score (0.0-13.0) was at most 2.0 when compared with one(k0).

2.2 Chord Progression Comparisons

2.2.1 Considerations

Computationally comparing chord progressions and approximating subjective human notions of similarity

is a difficult task. Influential or unique chord progressions are frequently discussed in cultural contexts [35].

Looking for local similarities between chord progressions has proved effective [16] and seems to match human

intuition. When a pair of songs are said to be similar it does not mean that both songs’ progressions are

similar globally, or throughout the entire song, but rather that there are identical or near-identical local

sections of similarity. For instance, The Beatles song Let It Be has a progression of I−V −vi−IV occurring

at the beginning and frequently during the song. The chorus starts with a different progression but Let It

Be is still classed with songs of the progression I−V −vi− IV and is included on Wikipedia’s “List of songs

containing the I–V–vi–IV progression,” which at the time of writing includes 189 songs [51]. Another famous

progression, vi− IV − I − V (which is a cyclic shift of the previous progression), has even been dubbed the

“Sensitive Female Chord Progression” for its use in countless pop songs [19].

Chord progression identity is a salient factor in harmonically understanding a song, and preserving notions

of local similarity is essential. The following sections detail algorithms that can be used to compare two

chord progressions, their advantages and disadvantages, and preliminary experimental results, if any.

2.2.1.1 Notation

The following notation will be used:

c1 and c2 The chord progressions of the two songs being compared, respectively

ci The ith element of chord progression c

n1 and n2 The length of c1 and c2, respectively

Cd A chord distance function that takes two chords and returns a value in which higher scores

indicate stronger similarity

ts A transposition function that takes a chord as an argument and transposes it s semitones

24

2.2.2 Simple Global Comparison

This is perhaps the most basic implementation of chord progression comparison. For two songs with chord

progressions of an identical length n, the algorithm iterates through one chord from each song simultaneously

and computes Cd. The resulting score is:
n∑

i=0

Cd(c1i, c2i)

Since the songs may be in different keys, the algorithm can iterate over all 12 transpositions of a song

and pick out the maximal result. With the chord transposition function ts, the algorithm can be written:

12
max
s=0

n∑

i=0

Cd(c1i, ts(c2i))

For songs of unequal length n1 and n2, respectively, the algorithm can be revised by computing the

maximum resulting score at each position of the shorter song’s chords shifted along the longer song’s chords.

Assuming the second song is the shorter song (n2 < n1), the revised resulting score can be computed:

12
max
s=0

n1−n2
max
i=0

n2∑

j=0

Cd(c1i+j , ts(c2j))

The advantages of the simple global comparison are that the algorithm is simple to implement and

compute. Its computation costs are relatively low with a linear running time in the case of equal chord

progression lengths. Unfortunately, in unequal song length comparisons, the running time is quadratic

in terms of both songs’ chordal lengths. These computation times are assuming a constant-time distance

function.

The disadvantages of global comparison are that it neglects the power of local comparisons and does not

correct well for errors in automated chord progression analysis. For instance, let c1 be the chord progression

(Am,Dm,E7, Am, ..., Am,Dm,E7, Am), where the four chords (Am,Dm,E7, Am) repeat 100 times. Let c2

be the same chord progression but with an extra E chord after the 50th iteration due to a flawed extraction.

The global comparison score using c1 and c2 will be roughly cut in half due to that singular error and the

issue with the ensuing alignment, with more errors resulting in potentially worse scores.

25

2.2.3 N-Gram Comparison

G G Dm G A A7

Dm Em A7 Dm Dm7 G C F

Dm Dm

Figure 2.2: An example of sliding n-gram windows of length 4 traversing two songs. At
the given position, both 4-grams would be compared by summing the chordal distance
between each pair of chords represented by the dotted arrows.

To attempt to enhance the power of localized comparisons, n-grams can be used to measure distances

between chord subsequences. An n-gram is just a sequence of a fixed length n, where 2-gram would refer to

a sequence of length 2, 3-gram would refer to a sequence of length 3, and so on. Using two sliding windows

fixed at length ng, both songs can be traversed to calculate chordal distances between every n-gram in both

songs and sum the distances. The chordal distance between two n-grams can be calculated by summing the

chordal distance of each vertical pair of chords within the n-gram (see Figure 2.2), essentially the global

comparison algorithm of equal length applied within a small window. This can be expressed:

n1−ng∑

i=0

n2−ng∑

j=0

(
ng∑

k=0

Cd(c1i+k, c2j+k)

)

To take into account songs in different keys, transpositions can easily be factored in to find the key with

the maximal score:

12
max
s=0

n1−ng∑

i=0

n2−ng∑

j=0

(
ng∑

k=0

Cd(c1i+k, ts(c2j+k))

)

An advantage of using n-grams is that all local regions of similarity are included, even if it’s the last ng

chords of one song and the first ng of another. A disadvantage is the running time of the algorithm, which is

quadratic and in practice proved to be slower than other measures. Another disadvantage is that the window

size, ng, must be decided ahead of time and thus limits the flexibility of the algorithm. Finally, there is still

26

not a good means of compensating for small errors, like scattered occurrences of erroneous chords. N-gram

count metrics are considered for profiling in [35] and for melodic retrieval in [50].

I implemented a simple Python program that calculates this algorithm using 4-grams and the Harte

chord distance metric (see Section 2.1.3) to show pairwise comparisons between extracted chord progressions

of the songs Let It Be by The Beatles, When I Come Around by Greenday, and a live rendition of Let It Be.

All these songs have the same base chord progression, but I expected Let It Be and its live rendition to have

the maximal similarity. For the maximal key transposition between each comparison of the songs, I collected

every pair of 4-grams between each comparison, placed the distances in bins, and plotted each comparison

as 3 histograms. The maximum distance between any two 4-grams is 4.0, and I chose a bin size of 0.2. On

the resulting graphic, the x-axis corresponds to the 4-gram distance bins, and the y-axis corresponds to the

frequency of occurrence of all the n-grams that were placed in the bins in the pairwise comparison between

the two songs. I also list the average 4-gram distance and the frequency of 4-gram’s with distances greater

than or equal to 3.0 to observe the rate of occurrence of more similarly matched 4-grams. The transposition

in semitones used to obtain the maximal score displayed is listed above each histogram. I manually checked

the key of each song and found that both Let It Be renditions to be in the key of C major and When I Come

Around to be in F# major, corresponding accurately to the transpositions shown. The resulting graphic is

in Figure 2.3.

2.2.4 Minimum Edit Distance

Minimum edit distance, or the Levenshtein distance, is a distance metric that computes the minimum number

of operations needed to transform one sequence into the other using deletion, insertion, and substitution [27].

Deletion entails removing an item from the sequence being transformed, insertion adding one item to the

sequence, and substitution replacing an item from the sequence with another item. Each operation has an

associated cost, and the function finds the minimal cost to transform one sequence into the other.

The technique is most commonly applied to string matching in which two strings of text are compared.

For instance, assuming all operations are of equal cost, the minimum number of transformations needed to

transform MORDENT, a rapid alteration of notes, to MODESTO, a modest musical mood, is 3 as exemplified in

Figure 2.4.

27

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Chordal Difference Measure across Sequences of Four Chords

0.00

0.05

0.10

0.15

0.20

O
cc

u
rr

e
n
ce

 F
re

q
u
e
n
cy

Let It Be vs. When I Come Around (Avg: 1.68; [3-4] count ratio: 4.38%; transposition: 6)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Chordal Difference Measure across Sequences of Four Chords

0.00

0.05

0.10

0.15

0.20

O
cc

u
rr

e
n
ce

 F
re

q
u
e
n
cy

Let It Be vs. Let It Be [Live] (Avg: 1.69; [3-4] count ratio: 8.56%; transposition: 0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Chordal Difference Measure across Sequences of Four Chords

0.00

0.05

0.10

0.15

0.20

O
cc

u
rr

e
n
ce

 F
re

q
u
e
n
cy

When I Come Around vs. Let It Be [Live] (Avg: 1.65; [3-4] count ratio: 3.81%; transposition: 6)

Figure 2.3: A histogram plot of 4-gram comparisons between 3 songs using the Harte
distance metric. Higher x-values correspond to higher n-gram similarity scores, with
a 4.0 corresponding to a perfect match. The two renditions of Let It Be (middle
graph) have 8.56% of their values with scores of at least 3.0, the highest of any of the
comparisons.

MORDENT

Apply deletion on R:

MODENT

Apply substitution to change N to S:

MODEST

Apply insertion to add an O at the end:

MODESTO

Figure 2.4: A minimum edit distance transformation from MORDENT to MODESTO with a
cost of 3.

28

This alignment can be represented as follows:

M O R D E N T *

| | Del | | Sub | Ins

M O * D E S T O

Though minimum edit distance is frequently run on plaintext strings, there are no limitations to its

alphabet. It can be easily abstracted to the alphabet of musical chords and is done so as a harmonic chord

progression similarity measure in [20].

The advantages of minimum edit distance are that it can compensate for small errors at the global level

of comparison. For instance, if there are two sequences of chords that are identical except for one minor error

of transcription in the middle of the first chord progression, minimum edit distance will only penalize the

error with one deletion operation, a cost of 1, rather than an exponential decrease in score as is the case with

simple global comparison (see Section 2.2.2). Additionally, minimum edit distance is a dynamic programming

algorithm, which means it solves a seemingly complex problem by breaking it down into subproblems, and

its overall runtime is quadratic.

The primary disadvantage of minimum edit distance is that it can only be used to find global alignments

between songs and does not harness the power of local alignments.

2.2.5 Smith-Waterman

The Smith-Waterman algorithm [44] combines the power of minimum edit distance with extensible substitu-

tion and gap costs, serving to find the region of optimal local similarity between two sequences rather than

the global. This means that the algorithm can locate, similar to the n-grams approach, similar subsequences

at all positions of both sequences and optimize a similarity measure; unlike n-grams, Smith-Waterman also

optimizes all possible lengths of subsequences. Like minimum edit distance, the algorithm can be solved in

quadratic time as it breaks down the complex task into computationally tractable subproblems. Though

often used in bioinformatics and molecular applications with DNA or Protein alphabets, there is no reason

the alphabet used cannot be abstracted to chord symbols.

The algorithm runs with the following functions, S and W . S is the substitution function, also referred to

as a cost matrix, and defines the cost of transforming one symbol to the other. W refers to the gap function

29

and assigns a cost to a gap of integer length, where a gap is essentially a combination of insertion or deletion

operators. It is common to define a gapopen constant and a gapextension constant such that

W (i) =






(−gapopen − gapextension) ∙ (i− 1) if i >= 1

−gapopen if i = 0

Given two sequences a and b of length m an n, a matrix H of size m× n is constructed in the following

manner by first populating the first row and column with zeros (H(x, y) is the matrix element retrieval

notation where x corresponds to column and y corresponds to row):

H(i, 0) = 0, 0 ≤ i ≤ m

H(0, j) = 0, 0 ≤ j ≤ n

Subsequently, the matrix is traversed from the top-left across rows to the bottom-right, building off of

previous elements with a recurrence relation as follows:

H(i, j) = max






0

H(i− 1, j − 1) + S(ai, bj)

maxk≥1 {H(i− k, j) + W (k)}

maxl≥1 {H(i, j − l) + W (l))}

The maximal element of the resulting matrix, max H, defines the Smith-Waterman score (SW), which

corresponds to the maximum score within any two localized regions between two sequences based on the

cost of transformation and gap penalties. This localized region can be thought of as two sliding windows,

one for each song, similar to the approach in the n-grams chord progression comparisons; however, in this

approach, each window allows transformative operators and can be of arbitrary size. The combination of

window sizes and positions in each sequence that maximizes the resulting score is chosen.

30

2.2.5.1 Example

To retrieve positional information from a completed H matrix, it is helpful to look at an example of the

Smith-Waterman algorithm in action. Let the following chord progressions be represented as sequences a

and b:

a = [F,C,Dm,G, F,C,Dm,C, F]

b = [C,F,C,G, F,C,G,Dm,C]

This example uses an application of the simple equality chord distance measure

Cd(c1, c2) =






4 if root(c1) = root(c2) ∨ (nochord(c1) ∧ nochord(c2)

−3 otherwise

and a simplified gap cost of:

W (i) = −i

The matrix is constructed with an empty first row and column (represented with a —) and then completed

according to the recurrence relation:

31






































− Cmaj Fmaj Cmaj Gmaj Fmaj Cmaj Gmaj Dmin Cmaj

− 0 0 0 0 0 0 0 0 0 0

Fmaj 0 0 4 0 0 4 0 0 0 0

Cmaj 0 4 0 8 4 0 8 4 0 4

Dmin 0 0 1 4 5 1 4 5 8 4

Gmaj 0 0 0 0 8 4 0 8 4 5

Fmaj 0 0 4 0 4 12 8 4 5 1

Cmaj 0 4 0 8 4 8 16 12 8 9

Dmin 0 0 1 4 5 4 12 13 16 12

Cmaj 0 4 0 5 1 2 8 9 12 20

Fmaj 0 0 8 4 2 5 4 5 8 16






































The numbers colored blue show the elements that were used in the path to the maximal score, 20, colored

red. The path can be backtracked using arrows:






































− Cmaj Fmaj Cmaj Gmaj Fmaj Cmaj Gmaj Dmin Cmaj

− 0 0 0 0 0 0 0 0 0 0

Fmaj 0 0 ↖ 0 0 4 0 0 0 0

Cmaj 0 4 0 ↖ 4 0 8 4 0 4

Dmin 0 0 1 ↑ 5 1 4 5 8 4

Gmaj 0 0 0 0 ↖ 4 0 8 4 5

Fmaj 0 0 4 0 4 ↖ 8 4 5 1

Cmaj 0 4 0 8 4 8 ↖ ← 8 9

Dmin 0 0 1 4 5 4 12 13 ↖ 12

Cmaj 0 4 0 5 1 2 8 9 12 ↖

Fmaj 0 0 8 4 2 5 4 5 8 16






































Enumerating the path from the red arrow results in the following sequence of arrows

[↖,↖,←,↖,↖,↖, ↑,↖,↖]

32

which can be applied to a bijection

operationFromArrow(arrow) =






substitution if arrow =↖

deletion if arrow =←

insertion if arrow =↑

and reversed to produce the sequence:

[substitution, substitution, insertion, substitution, substition, substitution, deletion, substitution, substitution]

To show the optimal local alignment between both sequences, the appropriate subsections of both se-

quences need to be extracted. From a this corresponds to the chords whose rows feature blue and red

text

[F,C,Dm,G, F,C,Dm,C]

and from b this corresponds to the chords corresponding to the columns that feature blue and red text

[F,C,G, F,C,G,Dm,C]

Like the example in minimum edit distance, both sequences are aligned with one another. Substitution

operators are represented with vertical lines between corresponding elements. Insertion operators indicate a

gap in the first sequence (represented with *) and a chord in the second sequence. Finally, deletion operators

correspond to a gap in the second sequence and a chord in the first sequence. a and b can then be stitched

together, or aligned, as follows:

F C Dm G F C * Dm C

| | Ins | | | Del | |

F C * G F C G Dm C

2.2.5.2 Use as a Chord Progression Similarity Measure

Smith-Waterman is useful in the context of comparing chord progressions as it has mechanisms to deal well

with inexact data, using different gap costs and chord distance substitution functions that compensate for

33

small errors. Both the Harte distance metric and TPS can be easily used as a substitution function. For a

given distance function Cd, gap costs gapopen and gapextension, the Smith-Waterman algorithm is:

12
max

k
SW (c1, tk(c2), Cd,Wi)

where Cd corresponds to the S substitution cost function in the Smith-Waterman algorithm and Wi the gap

penalty function:

W (i) =






−gapopen − gapextension ∙ (i− 1) if i >= 1

0 if i = 0

Essentially, the score that is returned is the maximum of all twelve transpositions of one sequence relative to

the other. It is important to have an expected value below 0 for the chord distance metric for use with Smith-

Waterman so that regions of similarity are localized. This can be accomplished by scaling and subtracting

an existing metric by a certain factor (see Section 4.2.3).

Because of all its advantages and research that supports its efficacy [16], the Smith-Waterman algorithm

will be used to compare chord progressions in this paper as discussed in chapter 3. There are downsides

to the Smith-Waterman algorithm. In its current form it can only be used to extract one optimal local

alignment, and the score returned reflects only that local alignment, whereas n-grams comparison does well

with multiple like regions of local similarity. There are adjustments to the algorithm to return multiple good

alignments, but they prove computationally expensive. Allali et al. [2] describe a process for constructing a

3-dimensional Smith-Waterman algorithm that can account for modulations, or transpositions to a new key

signature mid-song. These adaptations leave room for future experimentation. This paper focuses on only

returning one good alignment using the optimized Smith-Waterman implementation discussed in Section 4.2.

2.2.5.3 Normalization

A difficulty with the Smith-Waterman algorithm is that of comparing scores from different Smith-Waterman

results. Normalization measures refer to attempts to make raw Smith-Waterman scores, which have a positive

correlation with increased sequence length, invariant of sequence length through formulaic and statistical

means. For notational convenience, SW (c1, c2) will refer to a Smith-Waterman chord progression comparison

34

score between two chord progressions without bothering with notating the chord distance and gap penalty

function.

Statistical techniques comprise of collecting many samples of SW scores of the sequences being tested in

different shuffled permutations and deriving mean and standard-deviation factors [45]. I wrote a program to

collect this kind of data using two chord progressions and constructed a line plot of the result (see Figure 2.5)

in which SW score is along the x-axis and number of occurrences out of 100,000 samples is on the y-axis.

As can be seen, based on the chord distance function used (in this case simple equality), odd and even SW

score values have drastically different empirical probabilities of occurring. I did not use this technique in my

experimentation, but it could well be explored in future work.

180 200 220 240 260

1000

2000

3000

4000

Figure 2.5: A line plot representing the score distribution for a Monte Carlo simulation
of Smith-Waterman scores for random permutations of the input data over 100,000
trials. The x-axis corresponds to Smith-Waterman score, and the y-axis is number of
occurrences.

Another measure to normalize the Smith-Waterman score is

SWnorm(c1, c2) =
SW (c1, c2)

max[SW (c1, c1), SW (c2, c2)]

which involves running the Smith-Waterman algorithm over chord progressions against themselves. This

returns the score of identity in the distance metric multiplied by the length of the sequence being tested,

which has a direct linear correlation with sequence length. Essentially, this is linearly equivalent to a

35

normalization by dividing by the maximal length of the sequences being tested and returns values from 0 to

1.

The only normalization measures considered in this paper are raw score and this measure I call SWnorm.

36

Chapter 3

Methodology

3.1 Overview of Experimental Design

This paper tests how similarly various harmonic music informatics retrieval tasks perform using extracted

chord data versus human produced data. A collection of musical songs is acquired for which verified human

ground-truth annotations exist. An established chord identification algorithm is run with default settings

to produce a set of extracted chord annotations. Two different primary harmonic comparison tasks are

performed in isolated experiments on the ground-truth and extracted chord annotations separately—full

pairwise chordal connections between all songs and query by n-gram. These harmonic comparison tasks are

performed using the Smith-Waterman sequence alignment algorithm (2.2.5) and the Harte or TPS chord

distance metric (2.1). In each harmonic comparison task, lists of ground-truth and extracted comparison

results are produced. These lists are ranked and correlated using established ranking metrics, producing a

correlational harmonic metric between the two lists of results. These procedures will be outlined in greater

depth in the following sections.

In order to maximize the correlation between these different annotated datasets that describe the same

musical content, I use global optimization techniques to search for optimal variables for the Smith-Waterman

algorithm and chord distance metrics, repeating and assessing many iterations of the same harmonic compar-

ison tasks with changing parameters. As the search space is too large to perform an exhaustive evaluation,

the returned set of parameters and corresponding correlational metric present a good approximation of the

37

optimum configuration. The goal of this experiment is to show that computationally extracted chord annota-

tions perform similarly to ground-truth annotations in harmonic comparison tasks that use traditional chord

sequence alignment algorithms and distance metrics with well-chosen parameters. This process is outlined

in a flowchart in Figure 3.1.

Collection of
Musical Songs

Ground-Truth
Chord Annotations

Extracted
Chord Annotations

Evaluate Fully Connected
Chordal Comparisons

Query Harmonically
by Random N-Grams

Harmonic Music Information Retrieval Task

Ground-Truth
Result Rankings

Extracted Chord
Result Rankings

Rank Correlation
Coe�cient

Output Result

Black-box
Optimization

Initial Set
of Parameters

Acceptable Result?
Yes

Decrease Temperature

Adjust Parameters

No

More Iterations?
YesReturn Optimal

Set of Parameters
No

Run Retrieval Task

Figure 3.1: Flowchart of experimental design. This experiment requires a collection of
songs with corresponding ground-truth and computationally extracted chord annota-
tions. These different chord datasets describing the same collection of songs are fed into
a harmonic retrieval task in isolated experiments, each producing a different result list.
These result lists are ranked and correlated to return a correlational harmonic metric.
Global optimization techniques search for maximum correlational harmonic metrics by
running many iterations of the retrieval task with changing parameters based on how
well the correlational result is relative to previous iterations. The returned set of pa-
rameters represent an approximate optimal configuration for minimizing algorithmic
differences between human and computationally extracted chord inputs.

Each of these tasks and parameters will be outlined in more depth in the following sections, along with

details of the datasets and their collection process. This chapter primarily serves to overview the paper’s

38

design choices and considerations, setting up the background knowledge for and mechanics of the experiments

covered in chapter 5. Many of the experimental choices made are arbitrary but are guided by intuition. I

will discuss rationales and limitations, along with possible extensions.

3.2 Chord Extraction

3.2.1 Chordino

Chordino1 is an open-source chord extraction software program written by Matthias Mauch based off his

winning 2009 and 2010 MIREX chord estimation algorithm submissions [7, 28]. Chordino achieves an 80%

chord symbol recall and is still considered state-of-the-art [32]. The working mechanics of the algorithm are

detailed in Subsection 1.2.3. Though Khadkevich’s algorithm [21] currently has the highest chord symbol

recall in the 2014 MIREX audio chord estimation task, there is not publicly released source code for his work.

Chordino is intended for the public and has been made available in the form of a plugin for the VAMP2 plugin

system architecture which enables different audio analysis programs to access provided external analytical

methods. Additionally, the primary dataset of extracted human chord annotations used by my experiments

(3.3) was compiled in 2011. Unlike Khadkevich’s chord identification algorithm released in 2014, there is no

possibility that Chordino could have been influenced by or tested against this dataset, maintaining a purity

of separation between data and system.

Chordino is the only chord extraction algorithm considered in this paper and is used with default set-

tings. In these settings, chords are returned within a finite set of qualities consistent with those detailed

in Figure 1.4. Further experimentation would benefit from testing different chord extraction algorithms at

a range of settings and variant alphabets of chord qualities. As is, my paper leaves room for expansion

and demonstrates the efficacy of Chordino settings used in their initial configuration, solely optimizing for

parameters in the Smith-Waterman algorithm and chord distance metrics.

1http://isophonics.net/nnls-chroma
2http://www.vamp-plugins.org/

39

http://www.vamp-plugins.org/
http://isophonics.net/nnls-chroma

3.3 Datasets

3.3.1 McGill Billboard Annotations

The McGill Billboard annotations collected in [6] and freely available online3 are a state-of-the-art human-

annotated chord dataset. The dataset is comprised of over 1,000 songs sampled from different decades

from the 1950s to the early 1990s across different Billboard charts from the United States “Hot 100”4. The

researchers hired music experts and professional jazz musicians to annotate the songs randomly sampled from

the Billboard charts, financially incentivizing the participants and creating an online system that managed

the task and rewarded songs that were more difficult to transcribe. Each song was annotated twice to

maintain a standard of accuracy. The resulting dataset is the most comprehensive current ground-truth set

of chord annotations and is used in recent MIREX chord annotation competitions. Importantly, the dataset

was released in 2011, which postdates the Chordino chord extraction algorithm used in experimentation (see

Section 3.2) and thus obviates the possibility of training bias (that the algorithm was trained to produce

good results with these songs).

In my implementation I describe how I obtained the corresponding audio files from which to extract

chord annotations (see Section 4.3.3). 529 songs’ audio files were successfully collected corresponding to

ground-truth annotations. This led to the creation of the primary datasets used in this experiment—the

ground-truth McGill dataset and the extracted McGill dataset.

3.3.1.1 Chord Alphabet Used

The ground-truth McGill dataset uses a detailed chord alphabet with 99 classes of distinct chord qualities.

Though the website provides simplified chord annotations, the qualities used in these annotations are not

consistent with the qualities used in Chordino by default. To maintain the greatest precision, a simplification

process can be outlined to convert McGill chord annotations to Chordino chord qualities to have a consis-

tent chord quality alphabet used throughout the experimentation. For each chord c and given a function

chordFromParts(root, quality, bass) that constructs a chord from its components, the algorithm proceeds

as

Simplify(c) =
Chordino qualities

min
q

Harte(chordFromParts(root(c), q, bass(c)), c)

3http://ddmal.music.mcgill.ca/billboard
4http://www.billboard.com/charts/hot-100

40

http://www.billboard.com/charts/hot-100
http://ddmal.music.mcgill.ca/billboard

where Chordino qualities refers to the set of chord qualities used in Chordino (see Figure 1.4), essentially

finding the chord with the same root and bass notes that has the minimal Harte distance with c.

The simplification process may seem to lower the precision afforded by manually annotated chord labels

and deliberate human consideration. Apart from consistency, the motivation of the simplification is to not

have too detailed a semantic depiction of chords (see the last paragraph of 1.2.3), though it is noted this

could be a potential limitation of this experiment. Future experimentation could test leaving these chord

labels as is and using richer chordal depictions.

3.4 Chord Progression Comparison

To compare chord progressions, I use the Smith-Waterman local sequence alignment algorithm (2.2.5). I test

two distance functions with the Smith-Waterman algorithm: Harte distance (2.1.3) and Tonal Pitch Space

(2.1.4)—these will be referred to algorithmically as Harte and TPS.

3.4.1 Smith-Waterman

The Smith-Waterman algorithm takes several parameters: gapopen, gapext, and Cd (2.2.5.2). Due to imple-

mentation details of the Smith-Waterman algorithm (4.2), the gapopen and gapext parameters are restricted

to certain ranges and integer values. While the implementation allows values up to 255, I chose 128 ar-

bitrarily as a maximal range. The result score can also optionally be normalized (2.2.5.3)—the parameter

norm will be used and can be either raw (no normalization) or SW norm. These parameters are charted in

Figure 3.2.

Parameter Range

gapopen [0− 128] (inclusive)
gapext [0− 128] (inslusive)
Cd {Harte, TPS}
norm {raw, SW norm}

Figure 3.2: Smith-Waterman Parameters

41

3.4.2 Chord Metrics

The Harte and TPS chord metrics can be normalized to fall within a range from 0 to 1, where 1 indicates

perfect similarity and 0 indicates no similarity. Let this quantity be denoted cnorm(Cd). Subsection 4.2.3

introduces measures mx and ms used to round a chordal distance to an integer for use with the Smith-

Waterman implementation. mx denotes a multiplier constant and ms a subtraction constant, such that the

rounded chord distance Crd = round(cnorm(Cd) ∙ mx) − ms. This introduces two additional parameters

which I have restricted to the following ranges (see Figure 3.3):

Parameter Range

mx [1− 30] (inclusive)
ms [0− 30] (inslusive)

Figure 3.3: Rounded Chord Parameters

As the expected value of the chord distance function Cd has to be negative to isolate localized alignments,

these values are further restricted.

3.4.2.1 Testing Negative Expected Value for Rounded Chord Distance

To ensure the expected value of the rounded chord distance function Crd is negative, I iterate through all

possible chord-to-chord comparisons and verify that the average (sum
length) is negative. For simplicity, this can

be tested with just the sum:
all chords∑

c1

all chords∑

c2

Crd(c1, c2)

This is the approach I use; however, sampling chords that actually occur in the songs being tested may

provide a more meaningful notion of experiment-dependent expected value. Sampling for expected value

should be explored in future work.

3.5 Harmonic Comparison Tasks

This section describes two high-level tasks that form the substance of the experiments. Inputted with pa-

rameters and a database of chord annotations for a collection of songs, these algorithms perform chord

42

progression comparisons using the harmonic metrics previously outlined. The result is a collection of har-

monic comparison scores that can be enumerated in an ordered fashion as a sequence.

These tasks are used in a more high-level optimization process. Each task is run separately with ground-

truth chord annotations and computationally extracted chord annotations. The two sequences corresponding

to the resulting comparison scores are ranked and assigned a correlation score with traditional statistical

methods. This final ranked score, a correlational metric of harmonic similarity, is cycled into a global opti-

mization process. This section is not concerned with these higher level processes or the distinction between

the ground-truth and computationally extracted chord annotations. Each task can be viewed singularly in

terms of taking a dataset of chord annotations and associated harmonic parameters and returning a sequence

of results.

3.5.1 Fully Connected Pairwise Harmonic Comparison

This first retrieval task is the most simple—given parameters and a dataset of chord annotations, this method

returns every pairwise combination of songs’ chord progression comparison scores. The parameters inputted

to this task are the Smith-Waterman gap parameters (see Figure 3.2) and the rounded chord parameters

(see Figure 3.3). The algorithm starts by iterating through each pairwise connection between any two

chord progressions in the dataset, proceeding in an ordered and well-defined fashion such that results are

consistent. The algorithm takes each pair of songs’ chord progressions and calculates the Smith-Waterman

chord progression similarity score using the inputted parameters, returning the results to a list in the same

ordering used for iteration.

This task is called fully connected pairwise harmonic comparison in reference to a fully connected graph

in which each node is connected to every other node. If the songs are represented as nodes, each edge

corresponds to a chord progression comparison. A visual depiction of a fully connected graph and the

iteration procedure is illustrated in Figure 3.4.

Given a Smith-Waterman algorithm that takes a parameter set p and two songs c1 and c2 as argument

and a dataset of songs D of length n, the fully connected pairwise harmonic comparisons between two songs

in D can be enumerated without redundancies:

{{SW (p,Di, Dj) : i + 1 ≤ j ≤ n} : 0 ≤ i ≤ n− 1}

43

A

B

C

D

E

Figure 3.4: Enumerating edges in a fully connected graph. (A) is a fully connected
graph with 5 colored nodes. Each node represents a song, and each edge represents the
pairwise harmonic comparison between two songs. These edges are normally assigned
a weight, or number, that describes the chord progression similarity score between
the two connecting songs; these weights are not visually depicted. To enumerate all
pairwise comparisons, one node is selected arbitrarily and all edges from that node
are listed. Starting with the red node, for example, each edge and connecting node
can be iterated counter-clockwise. Then, the same procedure can be repeated on the
blue node, one step counter-clockwise from the red node, and so on until the graph is
exhausted (B). It is not necessary to include redundant edges. For instance, the edge
connecting the red and blue nodes and the edge connecting the blue and red nodes are
identical. Redundancies can be eliminated by only listing each edge once and omitting
repeat occurrences (C). The representation can now be expanded (D) and stacked (E)
to produce an ordered sequence of comparisons that represent all connections in the
fully connected graph (A).

Or in pseudocode:

44

function HarmonicComparisonSequence(D,n,p):

result = []

for (i = 0, i < n - 1, i++)

for (j = i + 1, j < n, j++)

result += [SW(p, D[i], D[j])]

return result

3.5.2 Query by N-gram

This retrieval task involves searching a database of songs’ chord progressions with a chord sequence query.

The query sequence is compared with every song in the database and the maximal chord progression similarity

score is returned. The query sequence is padded in length by repeating itself such that the length is at least

that of the longest song. I chose this repetition of the query sequence to imitate the repetitive structure

of musical songs and emphasize the cyclic nature of chord progression perception, though it is an arbitrary

choice. Further experimentation could involve testing the effects of not including padding or using another

means of expanding the query sequences.

As a singular query and its results provide limited data about the efficacy of a system, I decided to

fabricate 100 query sequences, randomly generated initially but consistently used across experiments. I

divided the 100 query sequences into 25 query sequences of lengths 4, 8, 16, and 32. For each query

sequence, this method collects Smith-Waterman scores for each comparison of the query sequence with every

song in the database, returning a 2-dimensional array of 100 sequences of Smith-Waterman score sequences.

In pseudocode, my method can be expressed:

45

function NgramQuerySequences(D, n, ngrams, p):

padNgrams(ngrams) // pad lengths of n-grams to at least length of longest song

result = []

for (i = 0, i < 100, i++)

subresult = []

for (j = 0, j < n, j++)

subresult += [SW(p, ngrams[i], D[j])]

result += [subresult]

return result

3.6 Ranking and Correlating Results

3.6.1 Ranking of a sequence

Recall the ranking of a sequence is a mapping of every element of the sequence to its position in the sequence.

For instance, ranking([5, 2, 3]) = [3, 1, 2], since 5 is the 3rd element of the list in order, 2 is the 1st element,

and 3 is the 2nd element. In the case of ties, half numbers are used at the midpoint of the ties, such that

ranking([1, 2, 3, 3, 4]) = [1, 2, 3.5, 3.5, 5] and ranking([1, 2, 3, 3, 3, 4]) = [1, 2, 4, 4, 4, 6]. The ranking method

is explained in greater depth with an example in Figure 3.5.

Ranking can be applied to a sequence of chord progression similarity scores. For instance, consider the

raw Smith-Waterman result data showing the fully connected chordal comparisons for the songs When I

Come Around, by Greenday, and Let It Be, by the Beatles (studio and live version):

"Let It Be" "When I Come Around" 102

"Let It Be" "Let It Be [Live]" 108

"When I Come Around" "Let It Be [Live]" 85

After the sequence is ranked, the output should resemble the following:

"Let It Be" "When I Come Around" 2

"Let It Be" "Let It Be [Live]" 3

"When I Come Around" "Let It Be [Live]" 1

46

(A) (B) (C) (D) (E)

Figure 3.5: The method of ranking a sequence. First, all the elements of the sequence
are sorted (B). Then, each element in the sorted sequence is assigned a rank starting
at 1 and incrementing with each subsequent element (C). In the case of tied sorted
elements, the ranks assigned are the average of the collective ranks of the sorted ele-
ments (D). This is demonstrated with the two 7’s in the sorted column (B), assigned
a rank of 2 and 3, respectively, which averages to two 2.5’s (D). Lastly, all the sorted,
ranked elements are rearranged back to their original positions, obtaining the ranking
for the original sequence (E).

3.6.2 Metrics for evaluating the similarity between two rankings

To compare two identically sized ranked sequences s1 and s2 of length n, two metrics are used: ρ and τ .

Both metrics return values from -1 to 1, with 1 indicating a perfect positive correlation, -1 a perfect nega-

tive correlation, and 0 no correlation. Two sequences are monotonically increasing if they have a positive

correlation, and monotonically decreasing if they have a negative correlation.

3.6.2.1 Spearman’s Rho

Spearman’s rho [13] (ρ) is the primary rank correlation metric I use for optimization. ρ is inversely propor-

tional to the square of the difference between two ranking sets and is also known as Spearman’s footrule. ρ is

simple and can be evaluated in linear time as

ρ(s1, s2) = 1−
6
∑n

i (s1i
− s2i

)2

n(n2 − 1)

47

3.6.2.2 Kendall’s Tau

Kendall’s tau (τ) takes into account the number of inversions needed to correctly “swap” the two ranking

sets such that they are the same. τ can be calculated as

τ(s1, s2) =
2 ((number of identically ranked pairs) − (number of non-identically ranked pairs))

n(n− 1)

3.6.3 Use with Harmonic Retrieval Tasks

3.6.3.1 Example

Now that metrics have been established to calculate the correlation between two sequences of data, these

correlational metrics can be applied to chord progression similarity scores. Given the fully connected song

comparisons used in 3.6.1, here is an example showing how correlational harmonic metrics (see 3.6.3.2) are

established with different chord progression datasets describing the same songs:

=========Ground-Truth Chord Annotations========= ------------Extracted Chord Features------------

"Let It Be" "When I Come Around" 102 "Let It Be" "When I Come Around" 106

"Let It Be" "Let It Be [Live]" 108 "Let It Be" "Let It Be [Live]" 105

"When I Come Around" "Let It Be [Live]" 85 "When I Come Around" "Let It Be [Live]" 92

After both sequences are ranked, the output is as follows:

=========Ground-Truth Chord Annotations========= ------------Extracted Chord Features------------

"Let It Be" "When I Come Around" 2 "Let It Be" "When I Come Around" 3

"Let It Be" "Let It Be [Live]" 3 "Let It Be" "Let It Be [Live]" 2

"When I Come Around" "Let It Be [Live]" 1 "When I Come Around" "Let It Be [Live]" 1

Now that there are two sequences of rankings, rank metrics can be used to compare relative algorithm

output similarity between inputted ground-truth and extracted chord annotations. Let s1 be the ground-

truth rankings [2, 3, 1] and s2 be the extracted chord rankings [3, 2, 1]. ρ is calculated as follows:

ρ(s1, s2) = 1−
6
∑n

i (s1i
− s2i

)2

n(n2 − 1)

= 1−
6((2− 3)2 + (3− 2)2 + (1− 1)2)

3(32 − 1)

= 1−
6(1 + 1 + 0)

24
= 1−

12
24

= 0.5

48

The ρ score between the two sets of rankings is thus 0.5, indicating a mild positive correlation. As the next

section explains, I call this value a correlational harmonic metric. As the length of the input sequences

increases, smaller positive correlation results become more statistically significant.

3.6.3.2 Correlational Harmonic Metrics

As shown in the boxed region of the flowchart (Figure 3.1), ranking is a tool that is applied in this paper to

the results of harmonic retrieval tasks. Ground-truth and extracted chord annotations corresponding to a

collection of musical songs can be evaluated through one of the tasks and their result sequences can be ranked

and then compared through one of the ranking metrics. In the case of fully connected pairwise comparisons,

the resulting scores of both the ground-truth and extracted chord annotations are ranked separately, and

then ρ is used to return a similarity score. I call this resulting score a correlational harmonic metric as it

reflects how similarly ground-truth and extracted chord annotations perform through a harmonic retrieval

task.

In the query by n-gram task, each of the 100 query sequences across both the ground-truth and extracted

datasets have a chord progression comparison results sequence. Each of these results sequences is individually

ranked, then for each query sequence, ρ is calculated using the ground-truth chord progression comparison

rankings and the extracted chord progression comparison rankings. The returned correlational harmonic

metric is the average of these 100 ρ values, effectively calculating the average correlational harmonic metric

for each query sequence across ground-truth and extracted chord datasets.

3.7 Global Optimization with Simulated Annealing

This section presents the final process of the flowchart (Figure 3.1)—black-box optimization. Optimization

refers to the task of trying to find parameters to a problem that maximize or minimize the output. Black-box

means that the problem, or function, being considered is not described in mathematical or algebraic terms.

In my use of global optimization, the problem is one of the harmonic retrieval tasks, a function that takes

a set of parameters p and compares ground-truth and extracted chord progression comparisons, ultimately

returning a correlational harmonic metric indicating how well that set of parameters produces well-correlated

49

output results. The goal of optimization is to select good parameters such that the output of the algorithm

correlates well across ground-truth and extracted chord datasets representing an identical collection of songs.

While mathematical intuitions may help select parameters, the experimental terrain is unknown and the

behavior of the harmonic tasks are unexplained by simple models. The technique presented here, simulated

annealing, is an established and simple optimization algorithm that makes no assumptions about the behavior

of the function and is able to find good approximations of global optimums for the parameters.

3.7.1 Overview

Simulated annealing is an optimization technique that references heat treatment in metallurgy in which

a material is warmed up and then cooled, hardening in the process [8, 22]. The computer optimization

algorithm tries to minimize a function f(st) in it iterations, where f returns a number and st is a set of state

variables. A function, move(st), is applied with each iteration of the algorithm. move performs some change

to the inputted set of state variables st, returning a new slightly changed state and leaving the original value

intact. f is then recalculated with the new state to see if the move was fruitful based on its delta with the

old state. The acceptable delta of values is called temperature, or T , and exponentially decreases with each

iteration. If the move results in a state with an f that differs by more than T from the previous iteration,

that move is rejected and the state is left unchanged. This essentially gives the algorithm more exploratory

freedom in the initial stages as the temperature T is higher. The exponential decrease of the temperature T

results in a “cooling off” in which more and more moves are rejected. At the defined end of the algorithm,

after it iterations, the resulting state should be a good approximation of a minimum of f . The optimal st

that returns the minimum f is returned, though this is not necessarily the final state. The algorithm can be

outlined in pseudocode as follows:

function f(s_t) // energy function

return ...

function move(s_t) // move function

return ...

50

function simulatedAnnealing(init_state, i_t, T_start, T_end)

s_t = init_state

i = 0

T = T_start

T_factor = -log(T_start / self.T_end) // where log is the natural logarithm

previous_f = null // keeps track of each previous f value

min_f = null // stores the minimum f value encountered

min_s_f = null // stores the associated state

new_s_t = s_t

while i < i_t

// calculate next f

new_f = f(new_s_t)

// set a new minimum if the next f value is the lowest encountered

if (min_f = null or new_f < min_f)

min_f = new_f

min_s_f = new_s_t

// if the next f value is within the appropriate temperature range, update the state

if (prev_f = null or abs(new_f - prev_f) <= T) // where abs is the absolute value

s_t = new_s_t

previous_f = new_f

// update values at end of every iteration

i = i + 1

// set T to an exponential interpolation between the starting and ending temperatures

T = T_start * exp(T_factor * i / i_t) // where exp is the natural exponential function

// calculate next state

new_s_t = move(s_t)

51

// return the minimum state and f values encountered

return min_s_f, min_f

3.7.2 Simulated Annealing for Harmonic Retrieval Experiments

To use simulated annealing to optimize different harmonic comparison tasks, the state st can represent the

different variables being used {norm,Cd, gapopen, gapext,mx,ms}. The move function in this case is intended

to represent a transition to a nearby state—as each variable is an integer, the jump should be discrete. My

implementation takes a random step following a normal distribution for each variable in the state, rounding

the result to the nearest integer and ensuring the value falls within the bounds of the variable. The standard

deviation of this random step for each variable is chosen to be a certain fraction of that specified variable’s

range, a constant denoted by the friction variable fr. In the experiments run, the friction chosen was 1
3 .

Variables that take two qualitative labels rather than numbers—norm and Cd—can be treated as integer

variables taking a range of [0− 1] inclusive. With an fr of 1
3 , this represents approximately a 7% chance of a

toggle of state from 0 to 1, or vice-versa; in practice, binary jumps occurred around 9% of the time in a single

variable and 18% of the time in one or more of the variables norm and Cd considered simultaneously. If a

move results in a mx/ms combination such that the expected value of the rounded chord distance function

(3.4.2.1) is positive, the mx and ms components are randomized again from their last values following the

same normal distribution jump process. This process is repeated until a negative expected value is obtained

such that the Smith-Waterman algorithm can run as intended, isolating localized chord comparison results.

In experiments, I ran 1,000 iterations of simulated annealing as described above with a temperature

T that started at 1 and decreased exponentially to 0.005 at the final iteration. In the fully connected

comparison (FCC) task, the optimization algorithm searched for maximum parameter sets to maximize ρ,

the harmonic correlational metric. In query by n-gram (QBN), the optimization algorithm searched for

maximum parameter sets to maximize the average ρ across all 100 query sequences. It is important to note

in QBN the queries were randomly selected only once at the start of the simulated annealing algorithm and

consistently used throughout subsequent iterations.

52

Chapter 4

Implementation

This chapter discusses in brief the manner in which I implemented my code. The full project is over 6,000

lines of C, Python, HTML, and Javascript code. This chapter will only overview notable features of the

code.

4.1 Using the chord alphabet

4.1.1 Integer representation of chords

The Smith-Waterman algorithm is typically used in bioinformatic applications in which the alphabet is

restricted to DNA or protein characters. To use an alphabet that contains all the chord symbols, a bijective

function can be established between every type of chord and a unique 16 bit integer. Recall a chord can be

described with the following grammar:

Chord→ Root Harmony Bass | NoChord

Root→ PitchClass

Bass→ PitchClass

P itchClass→ A | A#/Bb | B | C | C#/Db | D | D#/Eb | E | F | F#/Gb | G | G#/Ab

Harmony →maj | 6 |maj7 |m |m6 |m7 | 7 | aug | dim | dim7 |m7b5 | UnknownHarmony

53

Notice that |Root| = |Bass| = |PitchClass| = 12 and |Harmony| = 12. A bijective function p between

PitchClass and an integer from 0 through 11 can be established, along with a bijective function h between

Harmony.

PitchClass p(PitchClass) Harmony h(Harmony)

A 0 maj 0

A#/Bb 1 6 1

B 2 maj7 2

C 3 m 3

C#/Db 4 m6 4

D 5 m7 5

D#/Eb 6 7 6

E 7 aug 7

F 8 dim 8

F#/Gb 9 dim7 9

G 10 m7b5 10

G#/Ab 11 UnknownHarmony 11

In base 12, a chord that is not NoChord can be represented as an integer in which the digits are

positioned as follows:

p(Bass) (0-11) p(Root) (0-11) h(Harmony) (0-11)

This can be calculated as (12 ∙ 12) ∙ p(Bass) + 12 ∙ p(Root) + h(Harmony). To include NoChord, the

base 12 representation of a chord can be shifted by 1 and 0 can be reserved for NoChord, thus a bijective

function ChordToInt to map any chord c to an integer can be calculated as follows:

ChordToInt(c) =






0 if c = NoChord

144 ∙ p(Bass) + 12 ∙ p(Root) + h(Harmony) + 1 otherwise

Extracting features from an integer i representing a chord is then a simple task that can be represented

in pseudocode as follows:

54

function ExtractFeatures(i)

if (i = 0)

return NoChord

else

Bass = (i - 1) / 144

Root = ((i - 1) / 12) mod 12

Harmony = (i - 1) mod 12

return (Bass, Root, Harmony)

4.1.2 Bitwise representation of harmony

Chord quality can be represented as a 12-bit integer in which each bit corresponds to whether a certain

interval is included. This compact form provides a means for quick computation and allows chord set

operations to be expressed with bitwise operators.

Let i be a 12-bit integer representing chord quality in which each bit corresponds to whether a certain

interval is included in the chord or not. Since leading 0’s are excluded, the representation can start with 1 in

the first binary position (right-to-left) to represent the root of the chord and each subsequent binary position

i, 1 ≤ i ≤ 12 can represent whether the interval i is included (where 0 is the root note) (see Figure 1.4). All

harmonies used in the program and associated intervals can be seen in Figure 4.1. Let hb be the function

that extracts the binary mask from a given harmony.

Chord Quality Shorthand Binary Representation Base 10 Representation

Major 10010001 145
Major 6th 6 10001001 137
Major 7th maj7 1001001 73
Minor m 100010001 273
Minor 6th m6 100010010001 2193
Minor 7th m7 10010001001 1161
Dominant 7th 7 10010010001 1169
Augmented aug 1001001001 585
Diminished dim 10001001001 1097
Diminished 7th dim7 1010010001 657
Half-diminished 7th m7b5 1010001001 649

Figure 4.1: Binary Representation of Chords

55

4.1.3 Bitwise chord operations

Basic chord operations can then be constructed. For instance, to get Pc(c) as a 12-bit integer in which each

bit i from right-to-left corresponds to whether p(i) ∈ Pc(c) one need only construct a bit cycling algorithm

function CycleBits(value, shift)

return ((value << shift) | (value >> (12 - shift))) & b111111111111

where b111111111111 refers to the binary bitmask of all 1’s for 12 places, << and >> are the bit shift left

and right operators, and | and & are the bit operators and and or, respectively. Pc(c) can then be calculated:

Pc(c) = CycleBits(hb(quality(c)), p(root(c)))|p(bass(c))

Cleverness with representing chords and harmonies as integers allows effective methods to be constructed

with simple bitwise operations and bitmasks.

4.2 Smith-Waterman SIMD Implementation

4.2.1 Initial implementations

To get my ideas off the ground, I initially implemented the Smith-Waterman algorithm for use with chords in

Python, using high-level data types rather than integers to represent chords and calculating chord distances

on the fly rather than pre-populating a distance matrix.

This implementation was effective for rapid prototyping, developing a deeper understanding of the algo-

rithm, and being able to quickly add features like matrix output harnessing the power of Python’s external

libraries. Unfortunately, the code was extremely slow, taking in the ballpark of 4 seconds to compare

two songs with around 150 chords each using adaptations of the simple equality chord distance metric. A

limitation in the current research of chord sequence alignment systems (CSAS) is the slow runtime.

I attempted to improve the runtime by reimplementing the algorithm in its entirety in C, using bit

representations of chords and precomputing distance matrices, achieving a speed increase of about 130x

from the Python implementation. This speed compares with another paper that details implementation of

56

a chord progression distance comparison based off of Smith-Waterman that had a runtime of 2-9 days to

compare 5000 songs [15].

4.2.2 Adapting an external C implementation

To attempt to increase the speed of the Smith-Waterman algorithm even more, to leverage maximal algorith-

mic performance, I adapted a Smith-Waterman C implementation that uses Single-Instruction, Multiple-Data

(SIMD) parallel computing instructions for use with the chord alphabet [52]1. SIMD instructions, which

almost all modern computer architectures have, operate on vectors of small data in parallel by representing

the vectors as single integers. For instance, two 128-bit integers containing 16 8-bit integers can be operated

on simultaneously to achieve tasks like adding all 16 of the 8-bit integers within each 128-bit integer in a

single computer instruction.

The SIMD Smith-Waterman algorithm uses advances in Smith-Waterman calculations [9] in combination

with SIMD instructions that can massively parallelize the algorithm at no additional computational cost. A

problem I encountered was that this particularly SIMD implementation was only attuned for 8-bit integer

alphabets preset to accommodate the few characters used in DNA sequences and protein sequences. I

modified the source code to support the 16-bit representation I constructed of chords detailed in Section 4.1.1

while preserving the runtime of the algorithm, facilitating the use of the SIMD Smith-Waterman algorithm

to chord progressions. To my knowledge, this is the fastest implementation of chord sequence alignment that

currently exists. The runtime of this adapted algorithm compared with the initial Python implementation has

a speed-up of over 113,000x. To compare my performance results with the researchers in [15] who achieved

2 days as their fastest fully connected harmonic comparison for a 5,000 song dataset, I constructed a dataset

of 5,001 popular cover songs from Second Hand Songs2 (see 4.3.5). My fully connected harmonic evaluation

involved 149,970,000 iterations of the Smith-Waterman algorithm (12,497,500 iterations for each of the 12

transpositions) and took 18 minutes and 49 seconds, a speed-up factor of 154x. While this result is by no

means official, the speed of this algorithm provides a greater leverage to run large-scale data experiments.

1https://github.com/mengyao/Complete-Striped-Smith-Waterman-Library
2http://secondhandsongs.com/

57

http://secondhandsongs.com/

4.2.3 Rounding Chord Distance Metrics

Chord distance values, in the SIMD implementation of Smith-Waterman, are represented as 8-bit integers;

this is incompatible with the floating point data the chord distance metrics proposed in Section 2.1. A

workable solution is to take the normalized chord distance score norm(Cd) and round it to the nearest

integer after multiplying it

Crd = round(Cd ∙mx)

for some multiplication factor mx. To produce chord distance scores with an expected value below 0, a

subtraction factor ms can also be introduced:

Crd = (round(Cd) ∙mx)−ms

4.3 Dataset Collection

Scraping refers to the task of writing scripts to automatically extract files and download them. What follows

is a brief overview of how I collected, or scraped, the datasets I use in my primary evaluation and other

minor veins of experimentation.

4.3.1 File conversion

To convert collected files—which come in a variety of audio formats such as mp3, aac, and ogg, and video

formats such as mp4—to wav files necessitated using the external library ffmpeg3. ffmpeg contains code

to convert a wide range of audiovisual file types to other file types. To feed chord data into Chordino via

a command line script requires the use of wav files, so all input audio files were converted to wav for the

purpose of chord extraction. I wrote a wrapper to convert files and analyze their chordal content with

Chordino in Python.

3https://www.ffmpeg.org/

58

4.3.2 YouTube Extraction

This method of data collection concerns downloading from YouTube4 videos and playlists. Using the Python

extension youtube dl5, I bulk downloaded videos from external user-created playlists corresponding to the

data I wanted to extract. I used this technique to collect the Billboard 2014 Dataset, which consists of

over 200 top contemporary billboard charts in the United States. This dataset was not used in the primary

experimentation but solidified notions on the harmonic nature of pop songs. After downloading these files

in mp4 format, I converted them to wav files and extracted their chord progressions using Chordino.

4.3.3 Rhapsody

Rhapsody6 is a popular music streaming service that allows users to listen to a huge database of music for a

low monthly fee. Already being a Rhapsody member, I used a Python script called rapi.py7, an unofficial

Rhapsody API that can be used to download streams given valid login credentials.

The McGill Billboard Project Dataset [6], the primary dataset used in this paper which consists of a

large collection of ground-truth annotations for Billboard charts from the 1950s through the 1990s, does not

contain the corresponding audio files that could be used to create extracted annotations for comparison. I

wrote a Python program that looks up the title, artist, and duration of the included metadata in the dataset

using the Python extension pyechonest8 which queries the Echonest9 API, a musical intelligence project that

stores a massive amount of musical metadata. Some Echonest results include Rhapsody track IDs that can

be used to find the corresponding stream on Rhapsody. The Python program, for every successful match

to Rhapsody, downloads the corresponding audio file, converts it to the wav format, and extracts chord

progressions, leading to the creation of the McGill Extracted Dataset.

4.3.4 National Anthems

The National Anthems Dataset was collected from the Wikipedia page “List of national anthems”10 which

collects open source recordings of national anthems for every country recognized by the United Nations and

4https://www.youtube.com/
5https://pypi.python.org/pypi/youtube dl
6https://www.rhapsody.com/
7https://github.com/davekilian/rapi/blob/master/rapi.py
8https://github.com/echonest/pyechonest
9http://the.echonest.com/

10http://en.wikipedia.org/wiki/List of national anthems

59

a few other states and territories not officially recognized. This dataset was used to observe the nature of

harmonic comparisons outside the realm of pop music. Using Python to parse this web page, I downloaded

all the audio files, which were in the ogg format, an open-source alternative to mp3, converted the files to

the wav filetype, and ran chord extraction.

4.3.5 Second Hand Songs

Second Hand Songs11 catalogues collections of cover songs, versions of songs recorded by someone other

than the original artist. Intuitively, cover songs often have the same harmonic progressions as their original

versions [20], thus Second Hand Songs provides a useful tool for harmonic comparison, ground-truthing by

title of song [15]. Second Hand Songs fortunately contains YouTube links for some of its catalogued songs,

so I wrote a program that iterates through the top songs on the “Most covered song” list12 and picks out the

first 50 song titles for which more than 20 YouTube versions of cover songs are listed. The first 20 YouTube

videos in each of these songs is scraped according to the methods in 4.3.2, resulting in a dataset containing

1,000 songs. This dataset was used in informal experimentation evaluating the modularity [33] of its fully

connected harmonic comparison graph with respect to neighborhoods defined by cover communities. A more

large-scale cover song identification MIR project using SecondHandSongs is covered in [5].

11http://secondhandsongs.com/
12http://secondhandsongs.com/statistics?id=stat-most-covered-song

60

http://secondhandsongs.com/statistics?id=stat-most-covered-song
http://secondhandsongs.com/

Chapter 5

Experimental Results

5.1 Variables Used and Notation

This chapter details the primary experiments run on the data as laid out in chapter 3. To compare chord

progressions, only the Smith-Waterman algorithm (SW) is used, with normalization measures raw score and

SW norm being tested. Gap costs (gapopen and gapext) are allowed to vary from 0 through 128. The Harte

(Harte) and Tonal Pitch Space (TPS) chord distance metrics are used to evaluate chord distances. Lastly,

multiplication and subtraction factors mx and ms are used to round the chord distance metrics to integers

with an expected value below 0. A full summary of the variables and their tested ranges is as follows:

Variable Notation Values

Normalization norm {raw score, SW norm}
Gap open cost gapopen [0− 128]

Gap extension cost gapext [0− 128]
Chord Distance Metric Cd {Harte, TPS}

Chord Distance Multiplier mx [1, 30]
Chord Distance Subtraction Factor ms [0, 30]

Figure 5.1: Summary of experimental parameters.

The two primary experiments run, Fully Connected Pairwise Harmonic Comparison and Query by N-gram

are denoted FCC and QBN, respectively. The ground-truth and computationally extracted annotations from

the McGill dataset (3.3) are labeled McGillg and McGille. As I was only able to automate the download

of 529 songs from the McGill dataset (4.3.3), the size of McGille (|McGille|) is 529. I limit the songs of

61

McGillg to only include those that were successfully chordally extracted in the same order as McGille, thus

|McGillg| = |McGille| and the datasets are fit for comparison.

5.2 Optimizing Fully Connected Pairwise Harmonic Comparison

As outlined in 3.7.2, my simulated annealing optimization procedure over FCC (3.5.1) involves 1,000 itera-

tions and a temperature gradient that decreases exponentially from 1 to 0.005 throughout the course of the

algorithm. On an AMD Phenom II X4 965 3.4GHz Ubuntu quad-core desktop, FCC optimization took 9

hours and 25 seconds to run, averaging 33.9 seconds per iteration. The scoring performance of the simulated

annealing algorithm can be depicted with a graph of the resulting harmonic correlational metrics updated as

the iterations progress. I chart these results along with an exponential moving average1 line in Figure 5.2.

0 200 400 600 800 1000

0.45

0.50

0.55

0.60

0.65

0.70

0.75

������

ρ

Figure 5.2: Simulated annealing performance in FCC. Each dot represents an iteration
of the algorithm and correlational harmonic metric performance ρ. The blue line, an
exponential moving average, demonstrates the increase in performance as iterations
progress. FCC performance increases at a relatively constant pace as the algorithm
progresses.

The maximal correlational harmonic metric ρ returned by the simulated annealing was 0.761905, evidenc-

ing a strong correlation. Multiple parameter sets returned this correlation. They are as follows (Figure 5.3):

1An exponential moving average is a running average of a dataset that assigns the most weight to recent observations. The
weights that constitute the calculation of the average decrease exponentially, tracing the observations from their beginning.

62

Iteration norm Cd gapopen gapext mx ms

472 raw TPS 0 28 5 9
540 raw TPS 0 95 30 9
636 raw TPS 0 16 29 9
656 raw TPS 0 4 1 9
657 raw TPS 0 28 9 9
820 raw TPS 0 23 14 9
824 raw TPS 0 54 1 9
843 raw TPS 0 0 18 9
916 raw TPS 0 105 11 9
945 raw TPS 0 128 1 9
976 raw TPS 0 5 3 9

Figure 5.3: The tying optimal candidate parameters for FCC returning a ρ of 0.761905.
All parameters include the raw normalization and the TPS chord distance metric.

The optimal FCC result can be visualized by constructing a scatter plot in which each point describes

a corresponding pair of ranking results from the ground-truth dataset and the extracted chord dataset

(McGillg and McGille). The x- and y- axes both describe the range of rank values present. This type of

correlational plot should ideally have a strong diagonal line spanning from (0,0) to the top-right corner. A

scatter plot of the first of the optimal FCC parameters is provided in Figure 5.4.

Figure 5.4: Scatter plot of the optimal fully connected comparison rankings. The corre-
lation (ρ=0.76) is clearly visible through the strong diagonal band running through the
results. The bottom-left corner corresponds to pairwise chord progression comparisons
ranked poorly in both ground-truth and extracted datasets, while the top-left corner
represents comparisons consistently ranked well.

63

The density of different regions of the scatter plot can be clarified with a 3-dimensional histogram in which

square bins have heights corresponding to the frequency of occurrences of pairs with coordinates within the

bounds of the square. A 3-dimensional histogram representation of FCC rankings is given in Figure 5.5.

0

50000

100000

0

50000

100000

0.00

0.01

0.02

0.03

0.04

Ground-Truth Ranking
Extracted Chord Ranking

Occurrence Frequency

Figure 5.5: 3-dimensional histogram of the optimal fully connected comparison rank-
ings. The correlation (ρ=0.76) is visible through the elevated orange diagonal band.
The density of points along this band is greatest at the corners as evidenced by bin
heights—this means salient strongly and weakly ranked chord progression results are
most preserved by the parameters that led to this result.

The first of these optimal parameters with a ρ of 0.761905 has a corresponding τ (see Section 3.6.2.2) of

0.590498. The software program Mathematica2 can analyze the statistical significance of these rank metrics.

The p-value of ρ is 1.082 × 10−26346, describing a next-to-zero chance that such a monotonically increasing

relationship could have occurred by chance. The p-value of τ is 7.33 × 10−23749. For reference, the lowest

scoring FCC parameter set found in the simulated annealing run

{norm : raw, Cd : Harte, gapopen : 35, gapext : 60,mx : 30, ms : 29}

had a ρ of 0.431419 (p-value 2.03× 10−6248) and a τ of 0.369491 (p-value 7.43× 10−5968).

2http://www.wolfram.com/mathematica/

64

http://www.wolfram.com/mathematica/

5.3 Optimizing Querying by N-Gram Comparisons

Optimizing QBN (3.5.2), like FCC, involves 1,000 iterations of simulated annealing and a temperature

gradient that decreases from 1 to 0.005. Unlike FCC, QBN’s correlational harmonic metric is derived from

an average of rank correlations (ρ) over 100 pregenerated n-gram queries divided equally into lengths of 4, 8,

16, and 32. These correlations are taken between the algorithmic results inputted with ground-truth chord

annotations and extracted chord annotations. QBN optimization took 10 hours and 21 minutes, averaging

37.2 seconds per iteration (372 milliseconds per query). A chart depicting the scoring performance of the

simulated annealing algorithm for QBN is given along with an exponential moving average line in Figure 5.6.

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

������

ρ

Figure 5.6: Simulated annealing performance in QBN. Each dot represents an iter-
ation of the algorithm and correlational harmonic metric performance ρ. The blue
line, an exponential moving average, demonstrates the increase in performance as iter-
ations progress. QBN performance increases the most in the beginning iterations but
consistently increases throughout the entirety of the optimization.

The maximal average correlational harmonic metric between all n-gram queries returned by the simulated

annealing algorithm was 0.779 and occurred singularly with the following parameters:

{norm : SW norm, Cd : TPS, gapopen : 1, gapext : 82,mx : 1, ms : 10}

65

This optimal QBN result can be visualized as a series of scatter plots corresponding to the output rankings

of each query n-gram. Rather than use a 3-dimensional histogram to show the density of the scatter plots,

a more compact 2-dimensional density plot can be used in which colors range according to a color scale and

represent the same information as a 3-dimensional histogram bin without visual depiction of height. The

resulting scatter plots and density plots can be grouped by length of n-gram. These results are shown in

Figure 5.7.

66

4-grams

8-grams

16-grams

32-grams

0

0.02

0.04

0.06

Oc
cu

rre
nc

e F
re

qu
en

cy

Figure 5.7: Scatter plots and density plots of the optimal n-gram query comparison
rankings. Each of the 100 random queries used are distributed equally into 4-, 8-, 16-,
and 32-grams. Each n-gram length contains 5x5 subplots showing rank correlation
scatter and density plots of the individual query’s chord progression rankings. All the
density plots are normalized to the same color scale, corresponding with frequency
of bin occurrence. The similar shape of all the scatter and density plots with strong
diagonal bands shows that each query performed well, maintaining a significant positive
correlation of output comparison result between inputted ground-truth (x-axis on each
subplot) and human-annotated (y-axis on each subplot) datasets (average ρ = 0.78).

67

5.4 Parameter Optimization

The harmonic retrieval tasks presented in this paper, FCC and QBN, rely on a common set of parameters

p. As the optimization algorithms only surveyed a limited realm of the search space, generalizations on

effective values for the parameter set cannot be fully founded. Nonetheless, it can still be useful to future

experimentation to detail average correlational harmonic metric values associated with ranges of parameter

values. These inform Smith-Waterman algorithm inputs that seem to work well. Future experimentation is

needed to form more definitive conclusions.

norm and Cd are the variables that perhaps change the nature of the Smith-Waterman function the most

fundamentally. Average output correlational harmonic metric values for inputted choices of norm and Cd

based on parameter movements in the simulated annealing optimization algorithm are as follows for FCC:

Cd

Harte TPS

norm
raw 0.59 0.68

SW norm 0.56 0.62

where maximum values are underlined. Correlational harmonic metric values for QBN based on the same

set of parameters are:

Cd

Harte TPS

norm
raw 0.40 0.49

SW norm 0.35 0.53

According to these observational resutls, TPS outperforms the Harte chord distance metric in both

experiments in terms of maximizing correlation.

gapopen and gapext take a wider range of values, and it is thus more useful to look at variable ranges

and their average outputs. The following table shows average FCC and QBN correlational harmonic metrics

corresponding to ranges of gap variable values:

68

FCC QBN

Range gapopen gapext gapopen gapext

0 0.71 0.64 0.69 0.49

≤ 8 0.67 0.62 0.46 0.49

> 8 0.61 0.64 0.34 0.47

These results suggest that gap opening penalties of 0 influence higher correlational harmonic metric score.

One hypothesis for this behavior is that extracted chord data may frequently be offset by a single chord from

corresponding ground-truth data due to an error in extraction. A gap opening penalty is the most forgiving

in these cases.

Lastly, I chart which rounded chord metric variables (mx and ms) produced the highest average correla-

tion harmonic metric scores. In FCC:

mx

≥ 0 and < 10 ≥ 10 and < 20 ≥ 20

ms

≥ 0 and < 10 0.67 0.64 0.69

≥ 10 and < 20 0.68 0.65 0.65

≥ 20 0.58 0.58 0.57

And in QBN:

mx

≥ 0 and < 10 ≥ 10 and < 20 ≥ 20

ms

≥ 0 and < 10 0.62 0.51 0.65

≥ 10 and < 20 0.51 0.43 0.49

≥ 20 0.39 0.38 0.30

These results are both consistent in assigning higher correlational harmonic metric scores to large multipli-

cation factors and small subtraction factors. A possible explanation for this behavior is that these factor

choices result in the highest Smith-Waterman chord distance expected values. Though this expected value

is ensured to be negative by forcing parameter choices such that this is the case, a value close to 0 will more

frequently match chords positively by chance and result in longer local alignment scores that resemble global

69

alignment scores. It is possible that global sequence alignment techniques used in FCC and QBN have strong

correlational harmonic metric scores. Further research in global sequence alignment could present promising

correlational harmonic metric results.

70

Chapter 6

Conclusion

This project explored the use and creation of a new class of metrics in MIR—correlational metrics. Through

the lens of harmony, I endeavored to show that traditional MIR tasks can be configured with established

algorithms such that they perform as effectively with computationally extracted chord data as they do with

human-annotated ground-truth chord data. There are few research-backed datasets of the latter class of

chord annotations, whereas extracted chord data can be automatically generated from audio files. The

implications of my methods suggest that practical MIR systems can be constructed and optimized to work

without the guide of human ground-truthing, infinitely expanding the possible realm of chord datasets to

harmonically compare.

In the process of constructing my system, I modified existing hyper-efficient sequence alignment algo-

rithms traditionally used in bioinformatics to the alphabet of musical chords. I developed a bitwise represen-

tation of harmony that facilitated rapid computation, and my end methods surpassed the speeds of similar

documented techniques in other research by a factor of over 100x. These speed-ups further encourage the

use of localized sequence alignment techniques in large-scale MIR systems.

In its current form, my research is limited to Western harmonies, and more specifically, pop songs from

the 1950s onwards. There is ample room for further experimentation. Many other features could have been

investigated, from those directly supplemental to harmony, such as chord duration and melody, to external

factors, such as song popularity or artist. Incorporating and testing more chord distance metrics and different

parameters would enrich the range of my work.

71

One particular facet of unexplored MIR research that could substantively advance understandings of

harmony is multiple sequence alignment. Multiple sequence alignment methods are similar to traditional

sequence alignment methods such as the Smith-Waterman algorithm; they differ in that they can be utilized

to compare more than two sequences simultaneously. In the context of chord progression sequences, these

methods can be used to construct phylogenetic musical trees and run evolutionary analyses. I minimally

explored these techniques, though a proper implementation would fit well in a system to assess correlational

harmonic metrics.

As modern theorist Arnold Schönberg muses in his Theory of Harmony, “the Evolution of no other art is

so greatly encumbered by its teachers than that of music” [41]. Only by detaching strict theoretical under-

pinnings of ground-truth from harmonic MIR tasks can practice precede theory and evolve computational

music understanding. Correlational harmonic metrics provide the tools for liberating a nascent field bound

by its subjective principles.

72

Bibliography

[1] Elie Adam, Elie El Nouné, and Yasmina Yared. A System for Music Similarity Search Based on

Harmonic Content.

[2] Julien Allali et al. “Local transpositions in alignment of polyphonic musical sequences”. In: String

Processing and Information Retrieval. Springer. 2007, pp. 26–38.

[3] Willi Apel. Harvard Dictionary of Music, 2nd Revised and Enlarged Edition. Belknap Press, 1969.

isbn: 0435810006.

[4] S. Bechhofer et al. “Computational Analysis of the Live Music Archive”. In: Presented at the 15th

International Society of Music Information Retrieval (ISMIR) Conference late-breaking workshop, Oct

27-31, 2014, Taipei, Taiwan. 2014.

[5] Thierry Bertin-Mahieux and Daniel PW Ellis. “Large-scale cover song recognition using hashed chroma

landmarks”. In: Applications of Signal Processing to Audio and Acoustics (WASPAA), 2011 IEEE

Workshop on. IEEE. 2011, pp. 117–120.

[6] John Ashley Burgoyne, Jonathan Wild, and Ichiro Fujinaga. “An Expert Ground-Truth Set for Audio

Chord Recognition and Music Analysis”. In: Proceedings of the 12th International Society for Music

Information Retrieval Conference. http://ismir2011.ismir.net/papers/OS8- 1.pdf. Miami

(Florida), USA, 2011, pp. 633–638.

[7] Chris Cannam et al. MIREX 2013 entry: Vamp plugins from the centre for digital music. 2013.

[8] Vladimı́r Černỳ. “Thermodynamical approach to the traveling salesman problem: An efficient simula-

tion algorithm”. In: Journal of optimization theory and applications 45.1 (1985), pp. 41–51.

73

http://ismir2011.ismir.net/papers/OS8-1.pdf

[9] Kun-Mao Chao, William R Pearson, and Webb Miller. “Aligning two sequences within a specified

diagonal band”. In: Computer applications in the biosciences: CABIOS 8.5 (1992), pp. 481–487.

[10] Bas De Haas, Remco Veltkamp, and Frans Wiering. “Tonal Pitch Step Distance: A Similarity Measure

for Chord Progressions”. In: Proceedings of the 9th International Conference on Music Information

Retrieval. http://ismir2008.ismir.net/papers/ISMIR2008_252.pdf. Philadelphia, USA, 2008,

pp. 51–56.

[11] W Bas De Haas, Frans Wiering, and Remco C Veltkamp. “A geometrical distance measure for de-

termining the similarity of musical harmony”. In: International Journal of Multimedia Information

Retrieval 2.3 (2013), pp. 189–202.

[12] W Bas De Haas et al. “Comparing approaches to the similarity of musical chord sequences”. In:

Exploring Music Contents. Springer, 2011, pp. 242–258.

[13] Persi Diaconis and Ronald L Graham. “Spearman’s footrule as a measure of disarray”. In: Journal of

the Royal Statistical Society. Series B (Methodological) (1977), pp. 262–268.

[14] “Harmony and Melody”. In: Dwight’s Journal of Music: A Paper of Art and Literature, Volumes 23-24 .

Ed. by John Sullivan Dwight. Vol. 3. 1864.

[15] W Bas de Haas et al. “Comparing Harmonic Similarity Measures”. In: Málaga (Spain) (2010), p. 299.

[16] Pierre Hanna, Matthias Robine, and Thomas Rocher. “An alignment based system for chord sequence

retrieval”. In: Proceedings of the 9th ACM/IEEE-CS joint conference on Digital libraries . ACM. 2009,

pp. 101–104.

[17] Pierre Hanna et al. “Improvements of alignment algorithms for polyphonic music retrieval”. In: Com-

puter Music Modeling and Retrieval 2008. 2008, pp. 244–251.

[18] Christopher Harte. “Towards automatic extraction of harmony information from music signals”. PhD

thesis. Department of Electronic Engineering, Queen Mary, University of London, 2010.

[19] Marc Hirsh. “Striking a chord”. In: The Boston Globe (2008).

[20] Maksim Khadkevich and Maurizio Omologo. “Large-scale cover song identification using chord pro-

files”. In: Proceedings of the 14th International Society for Music Information Retrieval Conference .

http://www.ppgia.pucpr.br/ismir2013/wp-content/uploads/2013/09/67_Paper.pdf. 2013.

74

http://www.ppgia.pucpr.br/ismir2013/wp-content/uploads/2013/09/67_Paper.pdf
http://ismir2008.ismir.net/papers/ISMIR2008_252.pdf

[21] Maksim Khadkevich and Maurizio Omologo. “Time-frequency reassigned features for automatic chord

recognition”. In: Acoustics, Speech and Signal Processing (ICASSP), 2011 IEEE International Con-

ference. IEEE. 2011, pp. 181–184.

[22] Scott Kirkpatrick et al. “Optimization by simulated annealing”. In: Science 220.4598 (1983), pp. 671–

680.

[23] Arthur Koestler. The Sleepwalkers. Grosset & Dunlap, New York, 1959.

[24] Kyogu Lee. “A System for Acoustic Chord Transcription and Key Extraction from Audio Using Hidden

Markov Models Trained on Synthesized Audio”. PhD thesis. 2008. isbn: 978-0-549-49012-8.

[25] Kyogu Lee and Malcolm Slaney. “Acoustic chord transcription and key extraction from audio using

key-dependent HMMs trained on synthesized audio”. In: Audio, Speech, and Language Processing,

IEEE Transactions on 16.2 (2008), pp. 291–301.

[26] Fred Lerdahl. “Tonal pitch space”. In: Music Perception (1988), pp. 315–349.

[27] VI Levenshtein. “Binary Codes Capable of Correcting Deletions, Insertions and Reversals”. In: Soviet

Physics Doklady. Vol. 10. 1966, p. 707.

[28] Matthias Mauch and Simon Dixon. “Approximate note transcription for the improved identification

of difficult chords”. In: in Proc. 11th Int. Soc. Music Inf. Retrieval Conf. (ISMIR). 2010, pp. 135–140.

[29] Matthias Mauch and Simon Dixon. “Simultaneous estimation of chords and musical context from

audio”. In: Audio, Speech, and Language Processing, IEEE Transactions on 18.6 (2010), pp. 1280–

1289.

[30] Matthias Mauch, Katy Nol, and Simon Dixon. “Using musical structure to enhance automatic chord

transcription”. In: Proc. ISMIR. 2009.

[31] Matthias Mauch et al. OMRAS2 Metadata Project 2009. Tech. rep. 2009.

[32] Matt McVicar et al. “Automatic chord estimation from audio: A review of the state of the art”. In:

Audio, Speech, and Language Processing, IEEE/ACM Transactions on 22.2 (2014), pp. 556–575.

[33] Mark EJ Newman. “Modularity and community structure in networks”. In: Proceedings of the National

Academy of Sciences 103.23 (2006), pp. 8577–8582.

75

[34] Mitsunori Ogihara and Tao Li. “N-Gram Chord Profiles for Composer Style Representation.” In:

ISMIR. Ed. by Juan Pablo Bello, Elaine Chew, and Douglas Turnbull. Dec. 28, 2009, pp. 671–676.

isbn: 978-0-615-24849-3. url: http://dblp.uni- trier.de/db/conf/ismir/ismir2008.html#

OgiharaL08.

[35] Mitsunori Ogihara and Tao Li. “N-Gram Chord Profiles for Composer Style Representation.” In:

ISMIR. 2008, pp. 671–676.

[36] Laurent Oudre, Yves Grenier, and Cédric Févotte. “Template-Based Chord Recognition: Influence of

the Chord Types”. In: (2009).

[37] Jean-Philippe Rameau. Treatise on Harmony. Trans. by Philip Gossett. Dover Publications, New York,

1971.

[38] Thomas Rocher et al. “A Survey of Chord Distances With Comparison for Chord Analysis”. In:

International Computer Music Conference (ICMC). 2010, pp. 187–190.

[39] Heinrich Schenker. Harmony. Ed. by Oswald Jonas. The University of Chicago Press, Chicago, 1954.

[40] Arnold Schoenberg. Structural Functions of Harmony. Ed. by Leonard Stein. Ernest Benn Limited,

London, 1969.

[41] Arnold Schoenberg. Theory of Harmony. Trans. by Roy E. Carter. Faber and Faber, London, 1978.

[42] Tibor Serly. A Second Look at Harmony. Samuel French, New York, 1964.

[43] Frederick G. Shinn. A Method of Teaching Harmony. The Vincent Music Company, London, 1904.

[44] Temple F Smith and Michael S Waterman. “Identification of common molecular subsequences”. In:

Journal of molecular biology 147.1 (1981), pp. 195–197.

[45] Temple F Smith, Michael S Waterman, and Christian Burks. “The statistical distribution of nucleic

acid similarities”. In: Nucleic Acids Research 13.2 (1985), pp. 645–656.

[46] L. H. Southard. Course of Harmony. George P. Reed & Company, Boston, 1855.

[47] James Tenney. A History of ‘Consonance’ And ‘Dissonance’. Excelsior Music Publishing Company,

New York, 1988.

[48] Ernst Terhardt. “Pitch, consonance, and harmony”. In: The Journal of the Acoustical Society of Amer-

ica 55.5 (1974), pp. 1061–1069.

76

http://dblp.uni-trier.de/db/conf/ismir/ismir2008.html#nameddest=OgiharaL08
http://dblp.uni-trier.de/db/conf/ismir/ismir2008.html#nameddest=OgiharaL08

[49] Yushi Ueda et al. “HMM-based approach for automatic chord detection using refined acoustic features”.

In: Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference . IEEE.

2010, pp. 5518–5521.

[50] Alexandra L Uitdenbogerd and Justin Zobel. “An architecture for effective music information retrieval”.

In: Journal of the American Society for Information Science and Technology 55.12 (2004), pp. 1053–

1057.

[51] Wikipedia. List of songs containing the I–V–vi–IV progression — Wikipedia, The Free Encyclopedia .

[Online; accessed 14-February-2015]. 2015. url: http://en.wikipedia.org/wiki/List_of_songs_

containing_the_I%E2%80%93V%E2%80%93vi%E2%80%93IV_progression.

[52] Mengyao Zhao et al. “SSW Library: An SIMD Smith-Waterman C/C Library for Use in Genomic

Applications”. In: PLoS ONE 8.12 (2013). Ed. by Leonardo Mariño-Ramı́rez, e82138. doi: 10.1371/

journal.pone.0082138. url: http://dx.doi.org/10.1371/journal.pone.0082138.

77

http://dx.doi.org/10.1371/journal.pone.0082138
http://dx.doi.org/10.1371/journal.pone.0082138
http://dx.doi.org/10.1371/journal.pone.0082138
http://en.wikipedia.org/wiki/List_of_songs_containing_the_I%E2%80%93V%E2%80%93vi%E2%80%93IV_progression
http://en.wikipedia.org/wiki/List_of_songs_containing_the_I%E2%80%93V%E2%80%93vi%E2%80%93IV_progression

	Abstract
	Acknowledgements
	Introduction
	Overview of Music and Computation
	A Primer on Western Music Theory
	Notes: The Basic Building Block
	Pitch Class
	Chords and Harmonies
	Key Signature
	Chord Progressions

	Audio Files
	Storing Audio
	Classifying pitches from audio files
	Classifying chords from audio files

	Harmonic Metrics
	Chord Distance Metrics
	Considerations
	Notation

	Simple equality test
	Harte Distance Metric
	Tonal Pitch Step
	Key Finding Using Tonal Pitch Step

	Chord Progression Comparisons
	Considerations
	Notation

	Simple Global Comparison
	N-Gram Comparison
	Minimum Edit Distance
	Smith-Waterman
	Example
	Use as a Chord Progression Similarity Measure
	Normalization

	Methodology
	Overview of Experimental Design
	Chord Extraction
	Chordino

	Datasets
	McGill Billboard Annotations
	Chord Alphabet Used

	Chord Progression Comparison
	Smith-Waterman
	Chord Metrics
	Testing Negative Expected Value for Rounded Chord Distance

	Harmonic Comparison Tasks
	Fully Connected Pairwise Harmonic Comparison
	Query by N-gram

	Ranking and Correlating Results
	Ranking of a sequence
	Metrics for evaluating the similarity between two rankings
	Spearman's Rho
	Kendall's Tau

	Use with Harmonic Retrieval Tasks
	Example
	Correlational Harmonic Metrics

	Global Optimization with Simulated Annealing
	Overview
	Simulated Annealing for Harmonic Retrieval Experiments

	Implementation
	Using the chord alphabet
	Integer representation of chords
	Bitwise representation of harmony
	Bitwise chord operations

	Smith-Waterman SIMD Implementation
	Initial implementations
	Adapting an external C implementation
	Rounding Chord Distance Metrics

	Dataset Collection
	File conversion
	YouTube Extraction
	Rhapsody
	National Anthems
	Second Hand Songs

	Experimental Results
	Variables Used and Notation
	Optimizing Fully Connected Pairwise Harmonic Comparison
	Optimizing Querying by N-Gram Comparisons
	Parameter Optimization

	Conclusion

