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[1] Synoptic-scale pollution plumes in the free troposphere can preserve their identity as
well-defined structures for a week or more while traveling around the globe. Eulerian
chemical transport models (CTMs) have difficulty reproducing these layered structures
due to numerical plume dissipation. We show that this dissipation is much faster than
would be expected from the order of the advection scheme because of interaction between
numerical diffusion and the nonuniformity of the atmospheric flow. The nonuniform flow
stretches out the plume, enhancing the effect of numerical diffusion. For sufficiently
strong stretching, the numerical decay of the plume is independent of the model grid
resolution and is set instead by the flow Lyapunov exponent l. In this regime,
conventional numerical methods are not convergent: upon increasing grid resolution, the
plume still decays with the same decay rate. The critical plume size below which the
numerical scheme does not converge is set by the geometric mean of the grid spacing and
the characteristic length scale l = v/l over which the flow varies, where v is the wind
speed. Above this critical plume size the numerically induced decay rate of the plume
scales like the square root of the grid spacing. Application to an intercontinental pollution
plume in a global CTM with realistic atmospheric flow shows that proper simulation of
such a plume would require an impractical increase in grid resolution. Novel methods such
as adaptive grids or embedded Lagrangian plumes are needed.

Citation: Rastigejev, Y., R. Park, M. P. Brenner, and D. J. Jacob (2010), Resolving intercontinental pollution plumes in global

models of atmospheric transport, J. Geophys. Res., 115, D02302, doi:10.1029/2009JD012568.

1. Introduction

[2] Atmospheric pollutants originate from concentrated
sources such as cities, power plants, and biomass fires. They
are injected in the troposphere where eddies and convective
motions of all sizes act to shear and dilute the pollution
plumes as they are advected downwind. Despite this shear
and dilution, observations from aircraft, sondes, and satel-
lites show that pollution plumes in the remote free tropo-
sphere can preserve their identity as well-defined layers for
a week or more as they are transported on intercontinental
scales [Newell et al., 1999; Thouret et al., 2000; Colette and
Ancellet, 2005]. This structure cannot be reproduced in the
standard Eulerian chemical transport models (CTM) used
for global modeling of tropospheric composition. The
model plumes dissipate far too quickly [Staudt et al.,
2003; Hudman et al., 2004; Fairlie et al., 2007; Vuolo et
al., 2009]. This problem affects the ability of the models to
properly represent the long-range transport patterns, radia-

tive forcing, nonlinear chemical evolution, aerosol dynam-
ics, and surface impacts of the plumes. It compromises the
use of the models for interpreting and assimilating satellite
observations, obviously so for lidar instruments with high
vertical resolution such as CALIOP [Winker et al., 2007]
but also for passive instruments with altitude-dependent
sensitivity.
[3] Modeling the transport of pollution plumes emitted

from point sources is a classic problem in atmospheric
chemistry, first addressed in urban and regional CTMs over
3 decades ago. A Lagrangian approach is obviously most
appropriate to simulate isolated plumes but has difficulties
in dealing with nonlinear chemistry and uniformity in the
solution presentation (avoidance of particle clusters and
voids). For these reasons, modelers have generally preferred
an Eulerian approach for computational simulation of
atmospheric chemical transport.
[4] A standard compromise for urban/regional modeling

has been to embed Gaussian plumes within the Eulerian
framework. The plumes evolve independently from the
background air until they reach grid size, at which point
they merge with the background air. The Gaussian plume is
a standard parameterization of atmospheric turbulence
based on analogy with molecular diffusion, i.e., assuming
that turbulence is driven by eddies much smaller than the
mean advection spatial scale (or, in an Eulerian model, than
the model grid scale). Growth rates for Gaussian plumes can
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be specified as empirical functions of local atmospheric
stability [Seinfeld and Pandis, 1998].
[5] A different but related problem emerged in the

stratospheric modeling community about 2 decades ago
with the need to represent filamented structures (also called
ribbons or streamers) produced by wind shear in the
strongly stratified stratospheric flow [Prather and Jaffe,
1990]. Resolving these structures is of particular importance
for simulating transport at the edge of the polar vortices
[Pierce et al., 1999;Waugh, 1993; Pierce and Fairlie, 1993]
or mass exchange between the tropical pipe and midlati-
tudes [Weaver et al., 2000]. It has motivated the develop-
ment of Lagrangian models of stratospheric transport,
including various algorithms to address the above men-
tioned weaknesses of such models [Fairlie et al., 1999;
McKenna et al., 2002]. The Lagrangian models describe the
deformation and dissipation of the filaments on the basis of
the flow divergence as measured by Lyapunov exponents
[Prather and Jaffe, 1990; Legras et al., 2005]. Comparisons
to observations show that the Lagrangian models are far
more effective than their Eulerian counterparts in generating
and preserving the filamentary structures [Khosrawi et al.,
2005], although this capability can be improved in Eulerian
models by using an isentropic vertical coordinate [Weaver et
al., 2000; Reames and Zapotocny, 1999].
[6] Interest in pollution plumes transported in the tropo-

sphere on intercontinental scales is more recent and presents
yet another type of modeling problem. Instead of diluting
over a timescale �1 day in the planetary boundary layer
(PBL), as in the Gaussian plumes of urban/regional models,
these plumes are lifted to the free troposphere where they
can maintain their structure for a week or more. Instead of
being dissipated by small-scale eddies, they are stretched
and dissipated by large-scale differential motions (wind
shear, chaotic advection), eventually reaching sufficiently
small thicknesses that small-scale eddy diffusion can com-
plete the mixing. These considerations would make them
more similar to stratospheric filaments. However, the tro-
pospheric flow is far more variable than the stratospheric
flow, so that the dispersion and dissipation of tropospheric
plumes may involve different controlling processes than for
the stratospheric filaments. The lifetimes of plumes are also
much shorter in the troposphere than in the stratosphere,
rarely extending beyond 1 week, so that issues such as noise
in the meteorological assimilation fields are less important
[Stohl et al., 2004].
[7] It is in fact not immediately clear why global Eulerian

CTMs would have such difficulties in simulating intercon-
tinental pollution plumes, considering that the typical
dimensions of these plumes (�1000 km in the horizontal,
�1 km in the vertical) are commensurate with the typical
grid resolution of the models. It might seem that a modest
increase in grid resolution, combined with an accurate
advection scheme, would solve the problem. The goal of
the present paper is to explain why this is not so. Modern
advection codes use high order numerical schemes with
minimal numerical diffusion [Colella and Woodward, 1984;
Lin and Rood, 1996]. For highly resolved situations, high
order schemes lead to rapid convergence to the correct
solution with grid refinement. However, at the relatively
coarse resolutions required for global CTMs (with �100 km
horizontal mesh spacing), we demonstrate that the effect of

numerical diffusion, interacting with the complex velocity
field of the atmospheric flow, leads to a greatly enhanced
numerical decay rate of the plume. This is due to the fact
that the dilution rate of a plume advecting in a complex
velocity field is greatly enhanced by even a small amount of
(numerical) diffusion. We argue that in a typical atmospheric
flow, the high order accuracy of the underlying numerical
schemes could only be recovered with an impractical
increase in grid resolution.
[8] The next section illustrates the plume dissipation

problem with simulations using the GEOS-Chem global
CTM [Bey et al., 2001] as a prototype. Section 3 describes
the theory for the plume dilution due to numerical diffusion.
To verify and illustrate the developed theory, section 4
shows simulations of a tracer plume propagating in an ideal
convergent-divergent flow, followed by a tracer plume in a
real atmospheric flow.

2. Dissipation of Pollution Plumes

[9] Atmospheric CTMs describe the three-dimensional
(3-D) concentration fields of chemicals under the influence
of atmospheric transport and chemical reactions. The equa-
tions of motion, in Eulerian form, solve for the evolution of
Ci(x, t), themass fraction (below referred as ‘‘concentration’’)
of the ith chemical species

@Ci

@t
þ u � rCi ¼ Ri þ si x; tð Þ i ¼ 1 . . .N ; ð1Þ

Here u is the wind velocity, Ri is the net chemical
production rate (typically a function of the mass fractions
of other chemicals), and si describes local emissions and
nonchemical sinks. Molecular diffusion is negligible on the
scales of interest. The wind velocity is typically provided by
an assimilated meteorological data base on a (latitude,
longitude) grid. Depending on the problem addressed, the
number of interacting chemical species and chemical
reactions may be large, placing computational limits on
the grid resolution that can be achieved.
[10] In what follows, we consider the transport of a plume

in the free troposphere in the absence of convection (which
would cause rapid vertical mixing and dissipation of the
plume). Under these conditions, the flow is stratified verti-
cally and plume dissipation is expected to take place
primarily as a result of the horizontal flow.
[11] To illustrate the nature of the problem, we first

conducted a prototypical simulation of a global CTM, in
which an inert tracer was released instantaneously in the
free troposphere over China in a 2-D (horizontal) imple-
mentation of GEOS-Chem. All calculations described in
this paper are performed with the PPM scheme. The initial
plume has a size 10�� 15� degrees, resolved by 5 and 6 grid
squares in longitudinal and latitudinal directions, respec-
tively. We first assume that the flow is spatially and
temporally uniform. The blue line in Figure 1 shows the
concentration in the plume as a function of time. Without
any dissipation or dispersion, the concentration Ci remains
constant in time, with a parcel of fluid originating at x0
following the trajectory

dx

dt
¼ u x; tð Þ; ð2Þ
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Instead, there is a slight decay in the maximum concentra-
tion, of order 10% over 10 days, resulting from the
numerical dissipation. Such a small decay is generally
acceptable for practical applications.
[12] Now we examine plume propagation in an actual

horizontal flow field over the Pacific Ocean, shown in

Figure 2. The plume is placed at 4 km over the land surface
and begins its travel on 1 May 2001. The meteorological
data is updated every 6 h.
[13] Again, we turn off convection in the simulation to

ensure there are no vertical flow fields influencing the
propagation of the plume. To extract a 2-D velocity field
from the three dimensional flow, we take the horizontal
velocity field at a vertical layer �4 km off the ground. We
then impose this velocity field at each vertical layer, so that
the flow field is entirely two dimensional. We allow the
velocity field to be time dependent, by modifying the
horizontal flow field globally to mirror the change in our
vertical slice.
[14] The situation here is dramatically different than in

the case of a uniform flow. The plume is rapidly distorted
and dissipated by the advection flow field. The red line in
Figure 1 shows the maximum concentration in the plume as
a function of time: the concentration strongly decays in
time. The peak concentration in the plume decreases to 5%
of the original value after 10 days, in sharp contrast to the
uniform flow situation.
[15] The decay in the concentration field is quite dramat-

ic; to demonstrate that this was not an artifact of our 2-D
implementation, we carried out a number of tests, as shown
in Figure 3. The red line shows the concentration decay for
a simulation with the identical velocity field as Figure 1, but
using the full two-dimensional number column density, as
opposed to the maximum concentration. The blue line shows
the decay of the plume for the fully three-dimensional flow.
The decay rates of all of these cases are nearly identical,
with the fully 3-D plume showing slightly stronger decay.
[16] As a final check that the cause of the strong decay is

indeed caused by the combination of stretching by the flow
and numerical diffusion, we repeat the simulations with a

Figure 1. Maximum concentration of a plume as a
function of time, as calculated by GEOS-Chem. An initially
localized plume begins in China and propagates across the
Pacific Ocean. To focus on the role of flow enhanced
numerical dissipation, both chemical reactions and convec-
tion have been turned off. The blue line represents the
maximum plume concentration in a spatially uniform flow;
the red line corresponds to the atmospheric flow shown in
Figure 2. The green line represents a convergent-divergent
flow, in which the Lyapunov exponent l is significant
between times 125 h � t � 200 h, as described in the text.
The arrows denote the times at which the stretching turns on
and off.

Figure 2. Evolution of a plume simulated in the free
troposphere at 4 km altitude using GEOS-Chem in a two-
dimensional representative flow over the Pacific Ocean. The
maximum concentration is given in the red line in Figure 1.
Shown are times (a) t = 0, (b) t = 60 h, (c) t = 150 h, and
(d) t = 210 h, respectively.

Figure 3. Maximum concentration of the plume as a
function of time, as in the atmospheric flow of Figure 1, for
several different representations of the atmospheric velocity
flow. Whereas Figure 1 shows the maximum concentration
in a two-dimensional flow, the red line in Figure 3 shows
the full number density column. The blue line represents
the maximum plume concentration for the fully three-
dimensional calculation.
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simpler flow, with a velocity gradient that is maintained
over only part of the flow. We send the plume through a
flow that is initially uniform, but then let it enter a region of
stretching before reentering a uniform flow. The flow field
used in this experiment is similar to that used in section 4.1,
using equations (20) and (21) with � = 4/5. The green line in
Figure 1 show the decay of the plume; the decay rate of the
plume transiently increases when it enters the region with
stretching.
[17] It is worth noting that the plume decay observed here

is stronger than that observed by Reames and Zapotocny
[1999]. These authors study a gaussian plume which is quite
well resolved in the horizontal direction (with the plume
boundary being resolved by 12–13 grid points (their Figure
2c), which is much higher than 2–3 grid points here). In the
vertical direction, their resolution is much smaller,
corresponding to 2–3 grid points. Therefore whereas the
numerical diffusion in the current study is dominant in
the horizontal, in the work of Reames and Zapotocny
[1999] the diffusion dominates the vertical motion.

3. Rapid Plume Decay in a Variable Flow

[18] The simulations demonstrate that the numerical dis-
sipation of the plume is strongly enhanced by stretching due
to complex atmospheric flow fields. The question now is to
determine which features of the flow fields are the root
cause of the enhanced dissipation in order to determine a
possible cure.

3.1. Numerical Diffusion: A Simple Example

[19] The obvious culprit is numerical diffusion. Numerical
solutions to advection equations necessarily contain artifacts
which cause numerical diffusion or dispersion, well dis-
cussed in both the numerical analysis [LeVeque, 1990;
Hoffman, 1992] and atmospheric chemistry literatures [Lin
and Rood, 1996]. The size of these artifacts, as well as
whether they cause diffusion or dispersion, depends on the
advection scheme chosen, as well as the spatial resolution.
What is particularly curious about the simulations here is that
global CTMs like GEOS-Chem use high order advection
schemes which are designed to minimize these numerical
effects.
[20] Nonetheless, we contend that numerical diffusion is

the root cause of the strong decay. To explain this, it is first
helpful to review the reasons for numerical diffusion or
dispersion. We begin by considering a simple (unsophisti-
cated) numerical method for solving the advection equation

@C

@t
þ v

@C

@x
¼ 0: ð3Þ

We represent C(x, t) as values on a discrete mesh xi = iDx at
times t = tm = mDt, so that Ci

m = C(xi, tm). One of the
simplest numeral schemes for solving this problem is then
given by

Cmþ1
i � Cm

i

Dt
þ v

Cm
i � Cm

i�1
Dx

¼ 0: ð4Þ

Given the solution at a given time tm, we can use this
equation to obtain the solution at a time tm+1. We can

evaluate the error in the numerically computed solution by
studying how the numerical scheme equation (4) reduces to
the original equation when Dx, Dt ! 0. To do this, we
Taylor expand Ci

m+1 = C(x, t + Dt) = C(x, t) + Dt@tC(x, t) +
(Dt2/2)@t

2C + . . . and Ci�1
m = C(x � Dx, t) = C(x, t) �

Dx@xC(x, t) + (Dx2/2)@xxC + . . ., and then insert these into
equation (4). After some algebra we obtain

@C

@t
þ v

@C

@x
¼ D

@2C

@x2
þ . . . ; ð5Þ

where

D ¼ Dx2

2Dt
1� s2
� �

; ð6Þ

and s = vDt/Dx is the Courant number.
[21] Equation (5) shows that the largest error in the

numerical scheme is caused by the D@xxc term; If we fix
the ratio of Dx/Dt, then as Dx ! 0, this numerical error
vanishes, proving that the numerical scheme converges to
the desired equation. (This is required for numerical stabil-
ity; note that if s > 1 the diffusion constant is negative and
the method is therefore unstable.) However at any finite Dx,
Dt the effect of the numerical error is precisely analogous to
physical diffusion. This numerical scheme is said to be first
order, since the error vanishes linearly in the mesh spacing
Dx.
[22] The effect of numerical diffusion can be mitigated by

using a more sophisticated advection scheme. For example,
GEOS-Chem uses the TPCORE algorithm [Lin and Rood,
1996] for tracer advection. TPCORE is a multidimensional
flux-form conservative upstream-based transport scheme.
The algorithm uses the Piecewise Parabolic Method (PPM)
[Colella and Woodward, 1984] for Courant numbers smaller
than unity and a semi-Lagrangian approach for Courant
numbers larger than unity. The latter is mainly for polar
regions where gridboxes shrink to small sizes.
[23] For smooth solutions, when the magnitude of c(x, t)

varies slowly on the length scale of the mesh spacing, such
higher order methods lead to corrections that are second or
third order accurate in the mesh spacing, depending on the
scheme used (e.g., second order for the Van Leer method
and third order for PPM). For higher order equations, the
numerical effects are qualitatively different. For example, if
a scheme were second order accurate, the analogue of
equation (5) would be

@C

@t
þ v

@C

@x
¼ k

@3C

@x3
þ . . . ; ð7Þ

where k � (Dx)3/Dt. The numerical error introduces
dispersion into the solution.
[24] During the model transport of a pollution plume, it is

often the case that the size of the plume is of order of only a
few mesh boxes; there are in that case large gradients from
one mesh box to the next. Whenever such large gradients
exist, the numerical method will be first order accurate, and
the dominant numerical effect will be diffusion. Indeed, in
Appendix A we analyze the van Leer method with a similar
method outlined here and demonstrate that the numerical
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error for such discontinuous solutions again corresponds to
first order diffusion, with D scaling linear with the mesh
spacing Dx

D ¼ hvDx; ð8Þ

where v is the advection speed and h is a method-dependent
constant. For example for the Van Leer method, h = (1� s)/4
[Van Leer, 1974].

3.2. Numerical Diffusion and Plume Decay

[25] The numerical solutions for pollution plumes whose
extent is of order the mesh spacing therefore corresponds to
the dynamics of a plume under the modified equation

@C

@t
þ u � rC ¼ Dr2C; ð9Þ

where D is the numerical diffusivity. As emphasized above,
in the absence of numerical diffusion (D = 0), a plume with
initially constant concentration will maintain constant
concentration for all time; with nonzero D, the concentra-
tion will decay with time. Naively, one would expect that
the numerically induced decay rate of the plume will scale
linearly with D and hence approach zero linearly asDx! 0.
Indeed, the order of convergence of a numerical scheme is
defined as the rate at which the numerical error decreases as
Dx! 0; a scheme is first order if the error vanishes linearly
in Dx, second order if it vanishes quadratically (Dx2), etc.
We will see below that the physics of advection-diffusion
can lead to reduction of the order of convergence of the
numerical scheme and hence to much higher numerically
induced decay rates, especially when the numerical solution
is not highly resolved.
[26] To determine the rate at which plumes diffuse, we

now consider how the decay rate of the plume depends on
both D and the velocity field u. For typical atmospheric
simulations, the transport due to numerical diffusion is
much smaller than the transport by the flow. A plume in a
complex velocity follows the streamlines of the flow, with
the shape of the tracer plume being stretched by the flow
field. If we assume for conceptual simplicity that the tracer
concentration is uniform in the plume, then the rate of decay
of C is given by the diffusive outflux through the boundary,
namely

V
dC

dt
¼ DSn � rC; ð10Þ

where n is the direction normal to the plume, V is the
volume of the plume, and S is the surface area of the plume.
Now, let us define the characteristic length scale rb over
which the tracer concentration decays from the concentra-
tion C inside the plume to zero outside the plume. With this
length scale defined, we can express the decay rate of a
plume as

V
dC

dt
¼ �DS C

rb
; ð11Þ

or setting V/S = W, where W is the width of the plume, we
have

dC

dt
¼ �D C

rbW
: ð12Þ

(In reality, V/S = kW, where k is a shape-dependent
prefactor of order unity. Here, we assume that k = 1.)
Equation (12) then implies that the concentration in the
plume decays exponentially, C � e�at, with the decay rate

a ¼ D

rbW
: ð13Þ

[27] On the surface, equation (13) suggests that the
concentration in the plume decays exponentially, with the
decay rate proportional to the numerical diffusivity D.
However, this argument is fallacious, since we still have
not yet determined what sets the characteristic length scale
rb. Indeed, we will now show that depending on the
circumstance, rb can itself depend on the numerical diffu-
sivity D; when this happens the decay rate of the plume is
greatly enhanced over the naive estimate.
[28] What sets the length scale rb, over which the con-

centration in the plume decays from C to zero? This length
scale is determined by a balance between diffusion and the
stretching of the plume along the streamlines of the flow.
Intuitively, if rb is small, diffusion will dominate and the
plume boundary (rb) will thicken; on the other hand, if
the plume edge scale rb is big, stretching dominates and the
plume boundary (rb) will shrink. In between these two
extremes, there is an equilibrium plume thickness rb for
which diffusion and stretching are in balance.
[29] The stretching of the flow field is quantified by the

Lyapunov exponent l, defined as the exponential rate at
which nearby trajectories diverge from each other [Balkovsky
and Fouxon, 1999]; in a convergent flow

l ¼ � @v
@y
¼ @u
@x
; ð14Þ

where v (u) is the y (x) component of the velocity.
[30] We can now translate the physical argument into

mathematical terms: the diffusive broadening of the front
happens with a rate D/rb

2; the stretching of the plume
happens with a rate l. Diffusion balances stretching when
these two rates perfectly balance, namely

D

r2b
¼ l: ð15Þ

This implies that rb =
ffiffiffiffiffiffiffiffiffi
D=l

p
. Note that if rb is smaller thanffiffiffiffiffiffiffiffiffi

D=l
p

diffusion beats stretching, causing the front to
broaden, whereas in the opposite limit stretching beats
diffusion so the front sharpens. Using this result for rb in
equation (13) implies that

a ¼
ffiffiffiffiffiffiffi
Dl
p

W
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hvDxl

p
W

: ð16Þ

[31] Note that equation (16) implies that the decay rate a
of the plume increases with decreasing width W. But the
width of a plume does not remain constant: as the plume
stretches, W will become smaller and smaller. The width
cannot decrease indefinitely: the smallest the plume width
can become is W = rb. If the plume width were to decrease
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below rb, then diffusion would dominate stretching, causing
the plume to thicken.
[32] What is the stretching rate of the plume when it is

fully stretched, with W = rb? Equation (16) implies that the
decay rate of the plume

a ¼
ffiffiffiffiffiffiffi
Dl
p

=
ffiffiffiffiffiffiffiffiffi
D=l

p
¼ l; ð17Þ

namely the decay rate is equal to the Lyapunov exponent,
and is independent of the numerical diffusivity D.
[33] This is a remarkable fact [Chella and Ottino, 1984;

Balkovsky and Fouxon, 1999; Chertkov and Lebedev, 2003]
and has an important consequence for the numerical
scheme, as we will see below: once the plume is fully
stretched, i.e., W = rb, the argument implies that the
numerical scheme is not convergent. Initial decreasing of
the mesh spacing will not change the decay rate of the
plume until the mesh is refined enough to decrease rb
(rb changes as a square root of Dx, i.e., rb �

ffiffiffiffiffiffiffi
Dx
p

), so that
W > rb. As is shown below, further mesh refinement will
cause slow (below first order) convergence of the numerical
scheme.
[34] At what rb does this transition to a = l occur? Since

the numerical diffusivity D = hvh, we can evaluate

rb ¼
ffiffiffiffi
D

l

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
hvDx

l

r
: ð18Þ

Estimating l � ru � U/‘, where ‘ is the characteristic
length scale over which the flow is varying, and U is the
characteristic wind speed, we see that

rb �
ffiffiffi
h
p ffiffiffiffiffiffiffiffi

‘Dx
p

: ð19Þ

The length scale rb scales with the geometric mean of the
mesh spacing and the length scale over which the velocity
field varies. Note that if the flow field is well resolved, then
‘ � Dx, so that rb > Dx.
[35] Note that this derivation implicitly assumes that the

stretching dominates the flow. In the opposite limit where D
is very large, or the Lyapunov exponent l is small, the
length scale rb always remains much larger than the plume
width. In either case the plume will decay according to
normal diffusive dynamics. But the limit where stretching
dominates diffusion is precisely the relevant one for analyz-
ing numerical schemes relevant in atmospheric dynamics,
since numerical diffusivities are designed to be very small.

3.3. Dependence of Plume Decay Rate on the Mesh
Spacing

[36] We can now consider howmesh refinement influences
the decay rate of the plume. If the plume width approaches
rb the decay rate a � l, so mesh refinement has no effect on
plume decay. For plumes with width W > rb the decay rate

decreases like
ffiffiffiffiffiffiffi
Dx
p

according to (16) and also correlates
with the Lyaponuv exponent l. When rb > W, the plume
dissipates according to standard diffusive broadening. If the
plume is well resolved, this dissipation rate is determined by
the order of the numerical method. However, for a plume
with sharp boundaries of order the mesh spacing, the

numerical scheme is effectively first order, so the decay
rate is set by the numerical diffusivity and thus decreases
approximately as a first order of the spatial refinement.
[37] A numerical scheme is said to converge if it

approaches the desired behavior upon mesh refinement.
This means that the decay rate a ! 0 as Dx ! 0. In the
first case when W � rb a decrease in mesh spacing has no
effect on the decay rate. In the second case a �

ffiffiffiffiffiffiffi
Dx
p

,
which vanishes much more slowly compared with the linear
decay of a expected from D � Dx.
[38] The poor convergence described herein could be

exacerbated by the resolution effect discussed in a recent
paper of Wild and Prather [2006] where it was shown that
better resolution also improves the resolution of the velocity
gradients and hence leads to increased stretching of the
flow.

3.4. A Consistency Check

[39] There is one important consistency check on our
analysis that is worth pointing out explicitly. Our entire
derivation assumed that the plume was governed by the
advection diffusion equation (9) and not by a higher-order
equation (7). However, as emphasized there, the diffusion
equation only describes the numerical error when the
boundary of the plume is sharp; for smoothly varying
solutions, the TPCORE algorithm used in GEOS-Chem is
higher order, and equation (9) would not apply.
[40] According to our arguments above, the plume even-

tually will be smoothed out on the length scale rb. Using

equation (19), this corresponds roughly to rb/Dx �
ffiffiffiffiffiffiffiffiffiffiffi
‘=Dx

p
mesh boxes, where ‘ is the characteristic length scale of the
flow. If we take ‘ = 1000 km as the typical scale for horizontal
flow variation over the Pacific Ocean, and Dx = 100 km as
a typical mesh spacing, then rb corresponds to about three
grid boxes. Thus typical plumes will be quite underresolved,
implying that our analysis is self consistent, in that the
numerical error for propagating pollution plumes will be
described by the diffusion equation. To resolve rb by
10 mesh points (and hence be able to utilize the higher-
order nature of the advection scheme) requires an approx-
imately 10-fold reduction in the mesh spacing Dx.

4. Numerical Tests

[41] We now carry out a set of numerical experiments to
test the dependence of the decay rate on mesh spacing in the
manner described above. To do this, we need to test the
variation of the decay rate a with both Lyapunov exponent
l and mesh spacing Dx. In the first part of this section we
consider pollution plume propagation in a model conver-
gent-divergent flow, while in the second part we consider
the plume dynamics in a real atmospheric flow.

4.1. Convergent-Divergent Flow

[42] Here we construct an incompressible convergent-
divergent flow in two dimensions, as a testing ground for
how the plume decay depends on the structure of the flow.
We need a flow in which we can systematically control the
Lyapunov exponent, in order to probe the various regimes
described above.
[43] The flow that we choose has two phases: in the first,

a plume is compressed in latitude direction and stretched in
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longitudinal direction, and in the second it is reexpanded to
its original size. The model flow field is as follows:

u ¼ V

1þ � cos 2xð Þ ð20Þ

v ¼ � 2V � y� y0ð Þ sin 2xð Þ
1þ � cos 2xð Þð Þ2f yð Þ

; ð21Þ

with (u, v) the horizontal components, depending on
longitude 0 � x � 2p and latitude �p/2 � y � p/2, and

f yð Þ ¼ 1 for flat surface geometry

cos yð Þ for spherical surface geometry;

�
ð22Þ

The convergent-divergent flow field is selected to be
smooth, incompressible, and periodic in x direction.
[44] The flow is characterized by three parameters: V is

the mean westerly wind speed, � controls the magnitudes of
the velocity gradients, and y0 measures the location of the
stagnation points. We choose y0 = 0.43. The parameters V, �
then control the Lyapunov exponent of the flow through the
relation

l 	 �ry f yð Þvð Þ ¼ 2V � sin 2xð Þ
1þ � cos 2xð Þð Þ2

ð23Þ

[45] Figure 4 shows the flow streamlines for � = 5/7 for
spherical geometry. The flow has periodic regions of
compression and dilation, with maximum (minimum) com-
pression occurring when cos(2x) = �1 (cos(2x) = 1), where
the maximum (minimum) longitudinal flow velocity reaches
umax = V/(1 � �) (umin = V/(1 + �)). A plume passing
through the compression zone in the absence of diffusion is
squeezed from an initial width W to a size

W0 � Wumin=umax ¼ W 1� �ð Þ= 1þ �ð Þ: ð24Þ

[46] Let us summarize our expectations for a plume
propagating through this flow. The critical length scale

rb �
ffiffiffiffiffiffiffiffiffi
Dx‘
p

, where ‘ is the characteristic length scale of
the flow. For this flow, (21) and (23) imply that ‘ = v/l =
(y � y0)/cos(y), where v is the meridional velocity compo-
nent value (21). The characteristic length scale over which
the flow varies is set by the plume width itself, so ‘ = W.
[47] If an underresolved plume propagates in an essen-

tially uniform flow, we expect decay rate a � Dx. In the
convergent flow, if the plume width W > rb, then the decay
rate scales like

ffiffiffiffiffiffiffi
Dx
p

. If the width value in the convergence
zone W0 < rb, the plume will broaden so that W � rb; the
decay rate a then should be independent of h.
[48] To test this theory, we consider the propagation of an

initial plume with size 12� � 15� (1330 km � 1680 km); we
consider three different resolutions 4� � 5�, 2� � 2.5� and
1� � 1.25�. These choices imply rb � 800 km, 560 km,
400 km for each of the three resolutions.
[49] We perform numerical tests for each resolution at

two values of �. The values of � = 5/7 and � = 0.5
correspond to the convergence ratio umax/umin = 6 and
umax/umin = 3 accordingly. Equation (24) then implies that
the width decreases by a factor of 6 and 3 as the plume
traverses the compression zone, so that W0 = 230 km for the
first case and 460 km for the second case.
[50] We simulate the advection equation using the Piece-

wise Parabolic Method. If all spatial scales are well resolved
it is possible to achieve a third-order convergence rate, but
since the plume boundaries are underresolved the conver-
gence is close to first order in a quasi-uniform flow. Figure 5a
shows the maximum concentration Ymax = max(Y ) decay
versus time for the three aforementioned resolutions 4�� 5�,
2� � 2.5� and 1� � 1.25�.
[51] We are interested in the dependence of the decay rate

on resolution. The flow moves from near-uniform regime
(region I) to a compression regime (region II) to a regime
where W < rb (region III). The average decay rates
corresponding to the dashed lines in Figure 5a are plotted
in Figure 5b. For � = 5/7 in region I the decay rate depends
roughly linearly on the mesh spacing �Dx; in region II the
decay rate depends roughly �Dx1/2 and in region III, the
decay rate is essentially independent of mesh spacing
�Dx0. In region I, the plume size W � 1600 km is much
larger than the largest critical value rb = 800 km for the
coarsest resolution. In region II, the plume sizeW� 1000 km
is close to the critical value for the coarsest resolution,
causing the error to decrease more slowly. In region III,
rb = 400 km for the finest grid. This is larger than the
compressed width of the plume W0 = 230 km, implying that
the decay rate becomes independent of the mesh resolution
in this region for the considered resolutions. This conclu-
sion is fully confirmed by our calculation (see Figure 5b).
[52] Figure 5c shows maximum concentration decay

Ymax = max(Y) versus time for the same resolutions 4� � 5�,
2� � 2.5� and 1� � 1.25� for the less stretched flow with
� = 0.5. Note that in Figure 5, the plume stops decaying as
soon as the flow stops constricting and begins expanding.
[53] Here the most illustrative plume behavior is observed

in the zone of maximum plume stretching. The average
decay rates in this region corresponding to dashed lines in
Figure 5c are plotted in Figure 5c. In this zone, the decay
rate does not change when the plume resolution increases

Figure 4. Streamlines of the model convergent-divergent
flow introduced in equations (20) and (21), for � = 5/7 for
spherical geometry. A plume entering at the left boundary at
x � �0.28 first expands (region I), then compresses
(regions II and III), and then after the first constriction
expands again.
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twice from the crudest resolution 4� � 5� to the intermediate
resolution 2� � 2.5�, which is expected since W0 = 460 km
size is below the critical values rb for both resolutions
(800 km and 560 km). The numerical decay rate, however,
drops �1.6 fold when the plume resolution increases twice
from the intermediate 2� � 2.5� to the finest resolution 1� �
1.25�. Since W0 = 460 km is close but higher than the
critical value rb = 400 km the numerical scheme demon-
strates slow convergence below the first-order rate. These
numerical results agree with our theoretical description: the
decay rate does not decrease with the grid refinement if the
pollution plume size is below rb. The simulations show that
this critical size rb decreases with spatial resolution and the
flow nonuniformity. In compliance with the theory predic-
tions the nonconvergence has been observed for the flow
described in the first part of this section when the plume
passes through the zone III (refer to Figure 5a) where its

size is below the critical value. If the plume size is larger
than the critical value, the numerical decay rate decreases
with the grid refinement. This regime has been observed for
the second case of moderately stretched flow where the
plume size is estimated to exceed the critical size while the
grid is refined from the resolution 2� � 2.5� to 1� � 1.25�.

4.2. Geophysical Flow

[54] Finally, we examine the efficacy of our theory for
pollution plume propagation in a realistic (though 2-D)
geophysical flow, using the same implementation of
GEOS-Chem used for Figures 1–2. Here we examine
the plume dynamics at the same resolutions for the initial
12� � 15� (1330 km � 1680 km) plume as in the previous
subsection, where the plume begins its trajectory above
northeastern China (refer to Figure 2) on 15 June 2004. The
maximum concentration versus time for three different

Figure 5. (left) Decay of a plume as a function of time, entering the convergent-divergent flow with
velocity field given by equations (20) and (21), and (right) the corresponding average decay rates with
(a and b) � = 5/7 and (c and d) � = 0.5. The initial width of the plume is 12� � 15� (1330 km � 1680 km).
The blue, green, and red lines correspond to resolutions of 4� � 5�, 2� � 2.5�, and 1� � 1.25�,
respectively. The dashed lines show the average decay rate in the corresponding region. In Figure 5a,
regions I, II, III correspond to the decay rate depending roughly �Dx, �

ffiffiffiffiffiffiffi
Dx
p

, and independent of Dx,
respectively. In Figure 5b, the decay rate is roughly independent of Dx when the resolution increases
from 4� � 5� to 2� � 2.5�, but it reduces with further refinement to 1� � 1.25�.
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resolutions 4� � 5�, 2� � 2.5�, and 1� � 1.25� is presented
in Figure 6a. The numerical decay rate drops, albeit slightly,
with increasing resolution. Our numerical calculations show
that the average characteristic length scale over which the
flow varies �‘ =

R T
0
‘ dt/T � 2800 km for the crudest

resolution 4� � 5�. This gives us the estimate for the critical
plume size rb � 1000 km which means that W � rb for the
crudest resolution. The slow convergence confirms that the
plume size W is in the range of the critical value rb. In order
to show this more clearly, we must measure the value of the
Lyapunov exponent l along the pollution plume path.
[55] We define the plume path as the path corresponding

to the maximum concentration. The most striking demonstra-
tion of the effect argued in this paper is shown in Figure 6b,
which shows both the Lyapunov exponent l (the velocity
gradient along the transport direction) and the decay coef-
ficient a along the plume path. The correlation between
a and l is striking; throughout the evolution, a < l,
suggesting that the propagating plume is in the regime of
equation (16), in correspondence with our resolution studies
of Figure 6a. The scheme convergence rate however is
smaller than

ffiffiffiffiffiffiffi
Dx
p

predicted by equation (16). This reduc-
tion of the scheme convergence is likely caused by
increased stretching of the flow for higher resolutions
discussed by Wild and Prather [2006]. In order to quantify
this effect we consider the dependence of the average value
of plume decay rate �a =

R T
0

a dt/T and the average
flow stretching �l =

R T
0
l dt/T. Here we average over a time

interval T = 240. Note that although these are time averages,
since the plume is moving through the flow field, they are
also effectively averaging over the spatial path of the plume.
Table 1 presents the values of �a and �l for three resolutions
considered in the paper. We estimate that �l � Dx�0.5 for
the considered resolutions from the data given in Table 1.
After substituting this expression for �l into (16) we get

�a � Dx0.25 which is consistent with the �a dependence from
the spatial resolution step given in the Table.

5. Conclusions

[56] It this paper we studied the parasitic dilution of
synoptic-scale pollution plumes (and more generally any
well-defined chemical layer structure) transported by atmo-
spheric chemical transport models (CTMs) on a global
scale. The parasitic dilution is caused by numerical mixing
which is due to combined effect of numerical diffusion and
stretching of the complex and variable geophysical flow. We
showed that the effect of plume dilution due to numerical
mixing is much stronger in a nonuniform atmospheric flow
than in a homogeneous flow. Computational experiments
for a plume transported in the free troposphere at midlati-
tudes at typical resolutions of global CTMs indicate numer-
ical decay rates 40 times faster for a realistic atmospheric
flow than for a uniform flow.
[57] We also find that in the regime of global CTMs, the

numerical decay rate depends much more slowly on mesh
resolution than expected from high order advection
schemes. The dependence of the decay rate on mesh spacing
Dx is defined by the relative size of the plume width W and
rb =

ffiffiffiffiffiffiffiffiffi
Dx‘
p

, where ‘ is the characteristic scale of the flow

a)� � � � � �         b)

Figure 6. (a) Decay of a pollution plume in a geophysical flow. The initial plume position is identical to
that of Figure 2a, though the flow field corresponds to a different initial time. The blue, green, and red
curves represent spatial resolutions 4� � 5�, 2� � 2.5�, and 1� � 1.25�, respectively. (b) The decay rate of
the plume a 	 j1

n
dn
dt
j (red triangles), and the local flow Lyapunov exponent l (blue circle) along the path

of the pollution plume for the resolution 4� � 5�. The plume path is defined as the track followed by the
maximum concentration of the plume.

Table 1. Average Values of Plume Decay Rate �a and Lyapunov

Exponent �l Along the Pollution Plume Path for Different

Resolutions

Resolution �a � 106 (s�1) �l � 106 (s�1)

4� � 5� 5.5 9.0
2� � 2.5� 4.5 13.1
1� � 1.25� 3.7 18.3
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variation. Our findings here are not inconsistent with a
recent study comparing the results of two different global
CTMs, upon increasing the resolution [Prather et al., 2008].
[58] For a synoptic-scale �1000–2000 km plume with

4� � 5� resolution, the plume width is of order rb, so that
the decay rate depends slowly on the mesh spacing,
decreasing like

ffiffiffiffiffiffiffi
Dx
p

. This dependence is even weaker if
we account for the effect of increased flow stretching for
higher resolution. A numerical scheme will recover its
normal convergence rate only if W � rb. Since the critical
plume size rb also decreases like

ffiffiffiffiffiffiffi
Dx
p

with grid refinement,
a tenfold decrease in rb requires a hundredfold decrease in
the mesh spacing. Hence in order for the atmospheric flow
shown in Figure 2 to have a decay rate that is comparable to
the uniform flow at the current resolution, we must decrease
the mesh spacing in the simulation to a few kilometers. This
is unrealistic at a global scale with current computational
resources.
[59] More efficient algorithms are needed, examples of

which include either spatial reduction algorithms [Rastigejev
et al., 2007], which use the spatial separation of the fast
reactions to lower computational costs (the algorithm has
the potential of reducing computational cost by at least an
order of magnitude for a typical atmospheric chemical kinetic
mechanism, which would allow finer grids), or adaptive
mesh refinement. A final approach is to embed Lagrangian
plumes into global atmospheric chemical transport.

Appendix A: Numerical Diffusion Estimates

[60] Here we discuss the numerical diffusion of the
numerical schemes used in global CTMs for plumes whose
characteristic size is of order the mesh spacing. Consider the
second-order Van Leer method (VLM) [Van Leer, 1974] or
for solving the advection equation with constant wind
speed u

@n

@t
þ u

@n

@x
¼ 0: ðA1Þ

The scheme can be written as follows:

nDt
0 � n00 ¼ �sD�1=2n
� s 1� sð Þ D1=2n�D�3=2nþ S J0ð Þ D1=2n�D�1=2n

� ��
� S J�1ð Þ D1=2n�D�3=2n

� ��
=4: ðA2Þ

The symbols Di�1/2, Ji, S(J), s are defined as follows:

Di�1=2n ¼ ni � ni�1; ðA3Þ

Ji ¼
Diþ1=2n

Di�1=2n
; ðA4Þ

S Jð Þ ¼ Jj j � 1

Jj j þ 1
ðA5Þ

s ¼ uDt

Dx
ðA6Þ

[61] To analyze the scheme, we proceed as discussed in
section 3 of the text, and first expand each term of the finite
difference equation into Taylor series. The first several
terms in the resulting Taylor series expansion are thus as
follows:

@n

@t
þ u

@n

@x
¼ u 1� sð Þ

4
S J0ð Þ � S J1ð Þð ÞDx

@2n

@x2

þ u 1� sð Þ
4

S J0ð Þ þ
1

3

� �
Dxð Þ2 @

3n

@x3
ðA7Þ

From (A5) the difference S(J0) � S(J1) depends on the
smoothness of the solution; when the n varies smoothly, we
have that S(J) � Dx, so that S(J0) � S(J1) � Dx2; on the
other hand near a sharp boundary the difference between n
at neighboring mesh points is order one, so that S(J0) �
S(J1) � 1. Hence in the vicinity of the plume boundaries the
VLM is a first-order diffusive scheme with the value of
numerical viscosity D � u(1 � s)Dx/4. Indeed, this result is
a general property of advection schemes.
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