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Abstract

Background

Antiretroviral treatments decrease HIVmother-to-child transmission through pre/post exposure

prophylaxis and reduction of maternal viral load. Wemodeled in-utero and intra-partumHIV

transmissions to investigate the preventive role of various antiretroviral treatments interventions.

Methods

We analysed data from 3,759 women-infant pairs enrolled in 3 randomized clinical trials evalu-

ating (1) zidovudine monotherapy, (2) zidovudine plus perinatal single-dose nevirapine or (3)

zidovudine plus lopinavir/ritonavir for the prevention of mother-to-child transmission of HIV in

Thailand. All infants were formula-fed. Non-linear mixed effect modeling was used to express

the viral load evolution under antiretroviral treatments and the probability of transmission.

Results

Median viral load was 4 log10 copies/mL (Interquartile range: 3.36–4.56) before antiretroviral

treatments initiation. An Emaxmodel described the viral load time-course during pregnancy.
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Half of the maximum effect of zidovudine (28% decrease) and lopinavir/ritonavir (72% de-

crease) were achieved after 98 and 12 days, respectively. Adjusted on viral load at baseline

(Odds ratio = 1.50 [95% confidence interval: 1.34, 1.68] per log10 copies/mL increment), anti-

retroviral treatments duration (OR = 0.80 [0.75, 0.84] per week increment) but not the nature

of antiretroviral treatments were associated with in-utero transmission. Adjusted on gesta-

tional age at delivery (<37 weeks, OR = 2.37 [1.37, 4.10]), baseline CD4 (Odds ratio = 0.79

[0.72, 0.88] per 100 cells/mm3 increment) and predicted viral load at delivery (OR = 1.47

[1.25, 1.64] per log10 copies/mL increment), single-dose nevirapine considerably reduced

intra-partum transmission (OR = 0.32 [0.2, 0.51]).

Conclusion

These models determined the respective contributions of various antiretroviral strategies on

prevention of mother-to-child transmission. This can help predict the efficacy of new antire-

troviral treatments and/or prevention of mother-to-child transmission strategies particularly

for women with no or late antenatal care who are at high risk of transmitting HIV to their

offspring.

Trial Registration

This analysis is based on secondary data obtained from three clinical trials. ClinicalTrials.

gov. NCT00386230, NCT00398684, NCT00409591.

Introduction
Mother-to-child transmission (MTCT) of HIV can occur during pregnancy (in-utero), labor/
delivery (intra-partum) or breastfeeding (post-partum). In the absence of antiretroviral treat-
ment (ART), the transmission rate is 10% during pregnancy, 15% during labor and delivery
and 10% during breastfeeding [1]. Viral load (VL) is the main predictor of MTCT [2]. Over
the last two decades, studies have demonstrated that antiretroviral treatment during gestation,
intra-partum, and breastfeeding dramatically reduces MTCT [3–6]. ART reduces MTCT
through two complementary mechanisms: ART can reduce viral load and decrease the infant
exposure to maternal viruses. Antiretrovirals can also cross the placenta and provide pre/post-
exposure prophylaxis to the fetus and infant [7,8]. The 2013 World Health Organization
(WHO) consolidated guidelines on the use of antiretroviral drugs for treating and preventing
HIV infection [9] recommend that all HIV infected pregnant and breastfeeding women should
initiate antiretroviral therapy as early as possible in pregnancy and maintain it at least for as
long as the child is exposed to HIV.

Due to the high efficacy of current strategies leading to transmission rates as low as 2% or
less, the evaluation of new drugs or drug combinations or new strategies for prevention of
mother to child transmission (PMTCT) of HIV requires very large sample sizes to demonstrate
efficacy improvements or non-inferiority. Modelling the efficacy of ARTs on MTCT, taking
into account known risk factors, becomes increasingly important to gain prior information
and optimize clinical trial design.

The objective of this work was to model in-utero and intra-partumHIV transmissions and,
after adjusting for known risk factors, to investigate the role of various antiretroviral drug inter-
ventions for the PMTCT.

Modeling the Effect of ARV Therapy on MTCT
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Material and Methods

Patients
Data were collected from pregnant women and infants who participated in three perinatal HIV
prevention trials in Thailand.

PHPT-1. (NCT00386230)[4], carried out between 1996 and 2000, was a randomized,
double-blind equivalence trial which compared the efficacy of zidovudine (ZDV) starting at
28 weeks' gestation plus 6 weeks of treatment in infants (the reference, “long-long” regimen)
versus zidovudine starting at 35 weeks' gestation, with 3 days of zidovudine in infants (“short-
short” regimen), and long-short and short-long regimens.

PHPT-2. (NCT00398684) [10], carried out between 2000 and 2004, was a randomized,
double-blind trial of three treatment regimens, which evaluated the efficacy of single dose
nevirapine (sdNVP) in mother during labor and in neonates or in mother only in addition to
zidovudine during the third trimester of pregnancy and at least one week in children. Women
enrolled in two PHPT-2 sub-studies (i) an open-label study for women who presented after
28 weeks gestation and (ii) a nevirapine pharmacokinetic study[11] were also included.

PHPT-5 first phase. (NCT00409591) [12], carried out between 2008 and 2010, was a ran-
domized, 3-arm, double-blind trial. The three ARV strategies initiated during the third trimes-
ter were (i) maternal ZDV plus sdNVP at onset of labour and two infant NVP doses (at birth
and 48 hours of life), (ii) maternal ZDV and two infant NVP doses, (iii) Maternal ZDV plus
lopinavir/ritonavir (LPV/r), with no maternal or infant NVP.

CD4 cell count and viral load were performed before starting antiretrovirals and during
pregnancy. Viral loads were repeated at variable times during pregnancy and at delivery. All in-
fants were formula fed. Of the 3,948 confirmed HIV positive pregnant women, 71 were lost to
follow up, withdrew consent or died before delivery. Therefore, 3,877 women delivered at the
PHPT hospital sites. After exclusion of 28 mothers of a stillborn child, 73 women who had no
VL evaluation and 17 women who were receiving HAART for their own health, the aggregated
dataset included 3,759 women with at least one VL sample during pregnancy.

Maternal plasma HIV-1 RNA levels
In all studies the maternal HIV-RNAmeasurement was planned prior to antiretroviral prophy-
laxis/treatment initiation to assess risk factors of transmission. In PHPT-1 and PHPT-2, VL
samples were primarily collected for measurements at entry and delivery, while for PHPT-5,
VL was measured monthly to assess HIV-RNA kinetics on antiretroviral drugs.

Plasma VL was assessed at the central PHPT laboratory in Chiang Mai University. Samples
from PHPT-1 and PHPT-2 studies were tested using Cobas Amplicor HIV-1 Monitor kit ver-
sion 1.5 (Roche Molecular Systems, USA) with a limit of quantification of 400 copies/mL; and
samples from PHPT-5 first phase using the Abbott m2000 RealTime© HIV-1 assay (limit of
quantification 40 copies/mL).

HIV status in infants and timing of transmission
To determine HIV infection status in infants, peripheral blood was drawn and spotted onto
filter papers, dried and stored at -20°C before shipment to a central laboratory. Each of the
PHPT samples were collected at birth, 6 weeks, 4 and 6 months. PHPT-5 samples were collect-
ed at birth, 7–10 days, 1, 2, 4 and 6 months of age.

In the original trials, infants were considered confirmed HIV-infected if samples obtained
on two separate occasions were found positive by HIV-1 DNA PCR and confirmed HIV-unin-
fected if samples obtained on two separate occasions after one month of age were negative [13].

Modeling the Effect of ARV Therapy on MTCT
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When only one DNA PCR was available and positive, infants were considered unconfirmed
HIV-infected. When only one DNA PCR was available after the 1st week of life and negative,
infants were considered unconfirmed HIV-uninfected. When only one DNA PCR was avail-
able within the 1st week of life and negative, infants were considered as indeterminate [13].
In the present analysis, unconfirmed HIV infected infants were considered HIV-infected and
unconfirmed HIV-uninfected infants were considered HIV-uninfected, while indeterminate
infants were excluded.

Infants with a positive DNA PCR result during the first week of life were considered to be
infected during pregnancy (“in-utero” transmission); infants with negative HIV-DNA PCR
results during the first week of life but with a subsequent positive result were considered to be
infected during labor or delivery (“intra-partum” transmission)[13]. Twins were considered a
single entity and discordant twins were counted as one infected infant.

Ethics
Each of the PHPT perinatal study protocols and their amendments, as well as the use of data
for this analysis received ethical clearance from the Thai Ministry of Public Health, the Harvard
School of Public Health and Chiang Mai University Faculty of Medical Associated Sciences
Ethics Committees. The consent procedures were reviewed and approved by the ethics com-
mittees. Before enrollment, all women provided written informed consent for their participa-
tion and that of their infants.

Modeling of viral load time course during pregnancy
An Emax model was chosen since it is based upon pharmacological principles, i.e. the theory
of drug action mediated by ligand-receptor interaction which translates in an hyperbolic equa-
tion. Because ZDV and LPV/r have 2 distinct sites and mechanisms of action, the effects were
considered to be additive [14]. A proportional effect Emax model [14] was applied to describe
the viral load at time T during pregnancy (VL, expressed in log values). The model took into
account VL before treatment initiation (VL0) and the duration and nature of the 2 ARTs in-
cluding ZDV and LPV/r (S1 Dataset) was composed as follows.

VLT ¼ VL0 � 1�
X2
j¼1

EMAX;j � Tgj
j

Tgj
50;j

þ Tgj
j

 !

Model parameters were
VL0: VL before treatment
EMAX: Treatment maximum effect
γ: Hill coefficient for treatment effect
T50: Treatment duration to reach half of EMAX

Since ZDV and LPV/r have distinct sites and mechanisms of action, the effects of ZDV and
LPV/r administered in combination were assumed to be additive [14]. Because the inhibition
cannot exceed 100%, EMAX,LPV was deduced from EMAX,ZDV by

EMAX;LPV ¼ 1� EMAX;ZDV

Where
EMAX,ZDV: ZDV maximum effect
EMAX,LPV: LPV/r maximum effect

Modeling the Effect of ARV Therapy on MTCT

PLOSONE | DOI:10.1371/journal.pone.0126647 May 19, 2015 4 / 16



Interindividual variability was modeled using an exponential error model, with ηi being the
interindividual random effect with mean 0 and variance ω2.

EMAX;i ¼ EMAX;pop � expðZi;EmaxÞ with Zi;Emax � Nð0;o2
EmaxÞ

gi ¼ g;pop � expðZi;gÞ with Zi;g � Nð0;o2
gÞ

T50;i ¼ T50 ;pop � expðZi;T50Þ with Zi;T50 � Nð0;o2
T50Þ

Modeling of in-utero and intra-partum transmissions
In-utero and intra-partum transmissions were treated as independent outcomes. Logistic re-
gression models with random effect (η) were developed to predict in-utero and intra-partum
transmission according to relevant risk factors. For each odds ratio, point estimate and 95%
confidence intervals are provided.

We investigated known risk factors for mother-to-child transmission of HIV [2,15,16].
In-utero transmission was assumed to depend on VL0 (log10copies/mL), drug(s) treatment
duration(s) in weeks, CD4 count before treatment (CD4BASELINE) and gestational age (GA) at
treatment initiation and at delivery (S2 Dataset). The risk of intra-partum transmission was
dependent on VL at delivery (VLDELIVERY), itself predicted by the VL time-course model, peri-
natal NVP (sdNVP administered at onset of labor or during the first hours of life or both), ma-
ternal ZDV loading dose during labor, delivery mode, premature labor (Gestational age (GA)
<37 weeks) and ART(s) administered to infants during the first weeks of life (S3 dataset).

Data analysis
VL time-courses and MTCT events were analysed using a non-linear mixed effect modeling
approach. Parameters were estimated by computing the maximum likelihood estimators
without any approximation of the model (no linearization) using the stochastic approximation
expectation maximization (SAEM) algorithm combined to a Markov Chain Monte Carlo
(MCMC) procedure. Data were analysed using MONOLIX (version 4.1.2, http://www.lixoft.
com/) [17,18]. VL counts were log transformed and residual variability was described by an ad-
ditive error, whereas an exponential model was used for between-subject variabilities (η). Data
below the limit of quantification were left-censored [19]. The effect of a covariate on a structur-
al parameter was retained if it produced a decrease in the Bayesian Information Criterion
(BIC) compared to the baseline model i.e. the covariate-free model. A smaller BIC value signi-
fies a model that better fits the data [20].

The logistic model for MTCT events analysis was written in a MLXTRAN script file (S1
MLXTRAN scripts); the random effect η was assumed to be normally distributed. In the uni-
variate analyses, variables that both decreased BIC and had acceptable relative standard error
(RSE<50%) were considered as significant factors to be included in the multivariable analyses.
In the multivariable analysis, these variables were added one by one considering the largest
drops in the BIC value to define the final model.

Visual predictive check (VPC) evaluation
Simulated VL time-courses were compared with the observed data to evaluate the performance
of the model. The vector of model parameters from 400 replicates of the database was simulat-
ed. The 5th, 50th and 95th percentiles of the simulated dependent variables at each time were

Modeling the Effect of ARV Therapy on MTCT
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then overlaid on the observed data. The proportion of observed MTCT with their confidence
intervals were plotted as a function of significant predictors. The 5th, 50th and 95th percentiles
of the model predictions were simultaneously plotted. Visual inspection was used to confirm
that the observed proportions were included in the limits defined by the percentiles curves.
The residual sum of square (RSS) was provided in addition to graphical check.

Results

Characteristics of the study population
A total of 3,759 HIV-infected pregnant women enrolled in the PMTCT studies from 1996 to
2010 were included (Fig 1). Table 1 presents the baseline and delivery characteristics of the
women included in the analysis and the treatments they received.

The HIV status of the infants were as follows: 174 (5%) confirmed HIV-infected, 3,411
(91%) confirmed HIV-uninfected, 9 (<1%) unconfirmed HIV-infected, 113 (3%) uncon-
firmed HIV-uninfected and 52 (1%) indeterminate. According to the definition for this analy-
sis, there were 183 HIV transmissions and 52 indeterminate infants were excluded from the
transmission analysis. Among the infected infants, there were 80 in-utero and 103 intra-par-
tum transmissions.

ARTs during pregnancy
Of the 3,759 mother-infant pairs analysed, 1,751 (47%) received mother-infant ZDV mono-
therapy and 1,851 (49%) mother-infant ZDV plus perinatal sdNVP. In addition 145 (4%)
mothers received ZDV plus LPV/r during the third trimester, without perinatal sdNVP.

VL time-course modeling
A total of 5,576 VL measurements in 3,759 subjects were available for modeling (median 1
measurement per patient, range 1 to 6). Sixty five percent of the women had only 1 measure-
ment (all but 5% of these at ART initiation), and 35% had at�2 measurements. Median VL
was 4 log10 copies/mL (IQR: 3.36–4.56) before ART initiation and 3.51 log10copies/ mL (IQR:
2.89–3.34) at delivery. VL at any time point during pregnancy was dependent on baseline VL
and ZDV and LPV/r treatment durations and was well described by a combined Emax model.
The Hill coefficient for ZDV effect (γZDV) γZDV was close to 1 and thus was fixed to 1. The η pa-
rameters for γZDV, LPV/r duration to reach half of EMAX,LPV (T50,LPV) and the Hill coefficient
for LPV/r (γLPV) γZDV were not statistically significant. Removing them from the model did
not alter the quality of the fit or further decreased the BIC value (final model, BIC = 2113.33).
None of the other covariates, including CD4 cell count and GA at baseline, had a significant ef-
fect on model parameters. All parameters were well estimated with RSE below 30% (Table 2).
The model estimated that half of the maximum effect of ZDV (28% VL decrease from baseline)
and LPV/r (72% decrease) were observed after 98 and 12 days respectively. Using the popula-
tion parameter, the RSS was 747.39 while it was 369.20 when using individual parameter. The
observed vs. model-predicted plots are shown in Fig 2A and 2B (top). The visual predictive
checks are shown in Fig 2C and 2D (bottom).

MTCTmodeling
The MTCT models were built step by step from the basic model (without explanatory variable).
Viral load at delivery (VLDELIVERY) was estimated through the VL time course final model
using individual parameters.

Modeling the Effect of ARV Therapy on MTCT
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In-utero transmission. Upon univariate analysis, CD4 count, gestational age, VL before
treatment initiation and ZDV duration caused a drop in the BIC, indicating significant effects
of these variables. In the multivariable analysis, only ZDV duration and VL before treatment
initiation remained independently associated with in-utero transmission (Table 3). LPV/r du-
ration and baseline CD4 count were not significantly associated with in-utero transmission.

The final model was:

LogitðtransmissionÞ ¼ �3:91þ 0:41�VL0 � 0:23�ZDVDURATION

where ZDVDURATION is the ZDV duration during pregnancy (weeks).
The probability of in-uteroHIV transmission as a function of zidovudine duration is shown

in Fig 3A, and that of in-uteroHIV transmission as a function of viral load at baseline in Fig 3B.

Fig 1. Population disposition.

doi:10.1371/journal.pone.0126647.g001
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Intra-partum transmission. Perinatal sdNVP, duration of ZDV, premature labor (GA at
delivery<37 weeks)viral load at delivery and CD4 cell count were significantly associated with
intra-partum transmission in the univariate analyses, while mode of delivery, ZDV loading
dose and infants ZDV prophylaxis were not.

In the multivariable analysis, final model included VL at delivery, perinatal sdNVP adminis-
tration, CD4 cell count and premature labor (Table 4). The duration of ZDV was no longer sig-
nificant when other factors were included.

Table 1. Characteristics of pregnant women and ARTs for perinatal HIV prevention according to study.

Variable PHPT-1 PHPT-2 PHPT-2 OPEN Label PHPT-2 PK PHPT-5 Total

Number of women with at least 1 VL sample 1,398 1,784 128 26 423 3,759

Characteristics of pregnant women

Gestational age at enrollment (weeks)

Median 28.0 31.0 38.4 33.9 29.0 29.6

Interquartile range 27.7 to 28.2 30.1 to 33.1 36.5 to 40.0 31.3 to 37.3 28.0 to 30.0 28.0 to 31.6

CD4 at enrollment (cell count/ mm3)

Median 360 376 368 454 458 385

Interquartile range 240 to 500 247 to 528 243 to 542 270 to 582 368 to 576 260 to 526

Gestational age at delivery (weeks)

Median 39.0 38.6 38.6 39.4 38.7 38.7

Interquartile range 38.0 to 40.0 37.9 to 39.6 37.0 to 40.0 38.1 to 40.6 37.8 to 39.7 37.9 to 39.7

Type of delivery

1) emergency C/section 141 (10%) 265 (15%) 21 (16%) 7 (27%) 0 (0%) 434 (11%)

2) planned C/section 111 (8%) 105 (6%) 9 (7%) 3 (11%) 59 (14%) 287 (8%)

3) vaginal delivery 1,146 (82%) 1,414 (79%) 98 (77%) 16 (62%) 364 (86%) 3,038 (81%)

Maternal treatment

ZDV during pregnancy 1,387 (>99%) 1,784 (100%) 73 (57%) 23 (88%) 423 (100%) 3,690 (98%)

ZDV duration (days)

Median 57 67 0 52 71 65

Interquartile range 30 to 79 52 to 77 0 to 11.5 30 to 61 60 to 78 39 to 77

LPV during pregnancy - - - - 145 (4%) 145 (4%)

LPV duration (days)

Median - - - - 69 69

Interquartile range - - - - 55 to 77 55 to 77

NVP at onset of labor - 1407 (79%) 110 (86%) 26 (100%) 133 (31%) 1,676 (45%)

ZDV loading dose at onset of labor 1,336 (96%) 1,777 (>99%) 119 (93%) 26 (100%) 410 (97%) 3,668 (98%)

Infant treatment

ZDV prophylaxis 1,381 (99%) 1,779 (>99%) 127 (99%) 26 (100%) 420 (99%) 3,733 (99%)

ZDV duration (days)

Median 41 11 44 7 7 11

Interquartile range 3 to 42 10 to 14 41 to 48 6 to 7 7 to 7 7 to 41

Postnatal NVP (infants) - 729 (41%) 134 (97%) 26 (100%) 275 (65%) 1,154 (31%)

Perinatal NVPa - 1,424 (80%) 126 (98%) 26 (100%) 276b (65%) 1,852 (49%)

a sdNVP either in the woman at onset of labor, in the infant or in both
b only in women who did not receive LPV/r

doi:10.1371/journal.pone.0126647.t001
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The final model was:

LogitðtransmissionÞ
¼ �3:96þ 0:36xVLDELIVERY � 1:13xsdNVPþ 0:86xPremature�0:23xCD4BASELINE

where 1 CD4BASELINE unit is 100 cells /mm3, NVP and GADELIVERY are binary (YES = 1 or
NO = 0)

Fig 3C and 3D show the probability of intra-partumHIV transmission as a function of viral
load at delivery without and with single dose nevirapine, respectively.”

Discussion
The VL time-course model during pregnancy developed as a function of the type of treatment
administered, its duration and the VL level at baseline, provided a good prediction of the VL
level at delivery. This predicted VL could be used in the MTCT models. VL at treatment initia-
tion and treatment duration were the main determinants of in-utero transmission, regardless
of the ARV regimens used. High VL at delivery, absence of perinatal sdNVP and premature
labor were associated with intra-partum transmission.

As previously shown in PACTG 076 [21], although ZDV monotherapy had only a slight ef-
fect on maternal VL (only 0.43 Log decrease in this analysis), it was very effective in reducing
in-utero transmission. This is consistent with the accepted concept that ZDV, which cross the
placenta freely, exerts its prophylactic effect largely through pre-post exposure prophylaxis
[21]. In the late 1990, it was hypothesized that in-utero transmission would occur late in preg-
nancy [22]. This justified for the launch of several short ZDV course trials in developing coun-
tries [23–25]. However, this was not confirmed by the PHPT-1 trial where the rates of in-utero
transmission were 1.6 versus 5.1% with long and short ZDV treatments, respectively [4,15].
This supports the WHO PMTCT 2013 guidelines recommending ART initiation as early as
possible during pregnancy [9]. Although ZDV plus LPV/r was much more effective than ZDV
alone in reducing VL, adding LPV/r to ZDV did not decrease further in-utero transmission
[26].

Table 2. Population parameter estimates of HIV time-coursemodel for 3,759 HIV-1-infectedmothers
enrolled in the PHPT-1, PHPT-2, and PHPT-5 studies.

Parameters Estimate SEa RSEb (%)

Structural model

T50,ZDV 98.3 12 12

γZDV 1 (fixed) - -

T50,LPV 11.6 3.3 29

γLPV 0.28 0.049 18

EMAX,ZDV 0.285 0.016 6

EMAX,LPV 0.715 - -

Statistical model

oZT50;zdv
2.34 0.15 6

oZEmax;zdv
0.852 0.043 5

σVL
c 0.197 0.0028 1

a SE, standard error of estimate
b RSE%, relative standard error (standard error of estimate / estimate*100)
cσVL, residual (square roots of variances)

doi:10.1371/journal.pone.0126647.t002
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Fig 2. Diagnostic plots for viral load time-course model. Top: 2a and 2b: Observed versus model predicted viral load values (expressed as log10 copies)
of the population and individual predictions respectively. Solid black circles, measure values; grey symbols, simulation of below the limit of quantification
data. Line, identity line. Bottom: Visual predictive check plots. (2c) Women receiving only zidovudine (ZDV); (2d) women receiving zidovudine plus lopinavir/
ritonavir (ZDV+LPV/r).The lines denote the median, 5th and 95th percentiles for the observed data. The grey areas stand for the 95% confidence intervals of
the median, 5th and 95th model prediction percentiles.

doi:10.1371/journal.pone.0126647.g002
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Although it had no effect on in-utero transmission, the addition of LPV/r, which has limited
perfusion through the placenta, had as expected a major effect on the VL at delivery (mean re-
duction, 2.18 log10copies/mL), and thus a major effect on intra-partum transmission. More im-
portantly, after adjusting for all factors associated with transmission, perinatal sdNVP, in the
mother only, the mother and her infant, or the infant only, markedly reduced the risk of intra-
partum transmission at all viral load levels (Fig 3C and 3D).

Modeling of VL during LPV/r plus ZDV treatment (Fig 2D) showed that with a treatment
duration less than 8–10 weeks before delivery, VL at delivery remained detectable in a large
proportion of women. Accordingly, when mothers start HAART late in pregnancy, it is advis-
able to intensify the ART regimen by providing sdNVP to both mother and infant and a brief
course of combined ART to the newborn in order to reduce the probability of intra-partum
transmission [27–28]. Interestingly, in the presence of perinatal sdNVP, intra-partum trans-
mission was only weakly associated with VL at delivery, indicating the potent pre/post expo-
sure prophylactic effect of this drug.

Prematurity has been found to be associated with perinatal transmission in several studies
[15,16,29]. It has been debated whether prematurity was a consequence of in-utero transmis-
sion or if premature infants were more vulnerable to HIV infection [30]. The fact that in this
study prematurity was associated with intra-partum but not with in-utero transmission sup-
ports a higher vulnerability of premature children.

Several studies reported that planned caesarean section (CS) [31,32] reduced the risk of
intra-partum transmission in particular when VL at delivery is high but, in this study, the per-
centage of women with planned C-section was too low (8%) to assess this factor.

Table 3. The univariate andmultivariable analyses of the HIV in-uteromodel using data from 3,707 HIV-1-infected mothers enrolled in the PHPT-1,
PHPT-2, and PHPT-5 studies.

Predictors Logit coefficient(95%CI) Odds ratio(95%CI) RSE (%)a BICb

Univariate analysis

Baseline model -3.71 (-3.89, -3.53) - 2 791.42

ZDV duration (weeks) -0.09 (-0.15, -0.04) 0.91 (0.86, 0.96) 29 772.04

VL before treatment initiation (log10 copies/mL) 0.23 (0.158, 0.31) 1.26 (1.17, 1.36) 17 778.06

CD4 (per 100 cell count) -0.13 (-0.22, -0.04) 0.88 (0.80, 0.96) 34 784.04

Gestational age at baseline (days) 0.003 (0.001, 0.005) 1.003 (1.001, 1.005) 33 794.26

Multivariable analysis

Model 1 740.13

VL 0.43 (0.29, 0.58) 1.54 (1.34, 1.78) 17

ZDV duration -0.21 (-0.27, -0.15) 0.81 (0.77, 0.86) 15

CD4 -0.19 (-0.30, -0.08) 0.83 (0.74, 0.92) 30

Model 2 746.69

VL before treatment 0.44 (0.22, 0.66) 1.55 (1.25, 1.93) 26

ZDV duration -0.22 (-0.28, -0.16) 0.80 (0.76, 0.85) 13

GA at baseline 3.44e-007 (-0.004, 0.004) 1.00 (0.99, 1.004) 6.25e+005

Final modelc 735.96

VL before treatment 0.41 (0.30, 0.52) 1.50 (1.34, 1.68) 14

Duration of ZDV -0.23 (-0.28,-0.17) 0.80 (0.75, 0.84) 13

a RSE%, relative standard error (standard error of estimate / estimate*100)
b Bayesian Information Criterion
c Random effect of individuals: η~N(0,0.5272)

doi:10.1371/journal.pone.0126647.t003
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This study has several limitations. In our definition of HIV status of the infants, we consid-
ered as infected or uninfected, infants with unconfirmed HIV status and excluded those who
were indeterminate. However, a sensitivity analysis restricted to infants with confirmed HIV
status provided very close results (data not shown). Datasets from other trials with different an-
tiretroviral prophylaxis regimens could have been incorporated into the model but this would

Fig 3. Transmission probabilities according to zidovudine duration, viral load at baseline/delivery, and nevirapine intake. A. Probability of in-utero
HIV transmission as a function of zidovudine duration; B. Probability of in-uteroHIV transmission as a function of viral load at baseline. The lines denote the
median, 5th and 95thpercentiles of the model predictions. The open circles stand for the observed mean proportion of transmission, the solid vertical
segments denote the corresponding 95% confidence intervals (numbers at top of each segment stand for the number of women in each time interval or VL
interval). C. Probability of intra-partum HIV mother-to-child transmission as a function of viral load at delivery without single dose nevirapine; D. Probability of
intra-partumHIV mother-to-child transmission as a function of viral load at delivery with single dose nevirapine.

doi:10.1371/journal.pone.0126647.g003
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have perhaps offset the advantages of using data from trials performed in the same setting by
the same team. Also, all subjects were from Thailand although there is no indication that risks
of transmission and intervention effectiveness differ across ethnic groups.

In conclusion, our models provide insights on the respective roles of pre-exposure prophy-
laxis and maternal viral load reduction in preventing mother-to-child transmission according
to the preventive strategy. With the regimens considered in this analysis, while the preventive
effect of ART during pregnancy was essentially driven by transplacental pre/post exposure pro-
phylaxis, both viral load reduction by the time of delivery and infant prophylaxis were impor-
tant in preventing intra-partum transmission. Given the high efficacy of current interventions,
clinical trials to test the efficacy of new antiretrovirals or PMTCT strategies have become more
and more difficult to implement. A Bayesian approach with data from previous clinical trials
could reduce sample sizes and help optimize trial design.

Table 4. The univariate andmultivariable analyses of the HIV intra-partum transmission model using data from 3,707 HIV-1-infected mothers en-
rolled in the PHPT-1, PHPT-2, and PHPT-5 studies.

Predictors Logit coefficient(95%CI) Odds ratio(95%CI) RSE (%)a BICb

Univariate analysis

Baseline model -3.29 (-3.43, -3.15) - 2 968.77

ZDV duration (weeks) -0.049 (-0.09, -0.01) 0.95 (0.91, 0.99) 46 956.07

VL at delivery (log10 copies/mL) 0.17 (0.08, 0.26) 1.18 (1.08, 1.30) 26 953.04

CD4 (per 100 cell count) -0.18 (-0.27, -0.09) 0.83 (0.77, 0.91) 25 942.79

Premature labor 0.81 (0.30,1.32) 2.25 (1.35, 3.75) 32 957.50

Perinatal NVP -1.10 (-1.53, -0.67) 0.33 (0.22, 0.51) 20 943.94

Multivariable analysis

Model 1 926.61

Perinatal NVP -0.97 (-1.44, -0.50) 0.38 (0.24, 0.61) 25

CD4 -0.22 (-0.33, -0.12) 0.80 (0.72, 0.88) 23

Model 2 916.58

Perinatal NVP -1.13 (-1.58, -0.68) 0.32 (0.21, 0.51) 21

CD4 -0.23 (-0.33, -0.12) 0.80 (0.72, 0.88) 16

VL at delivery 0.42 (0.29, 0.55) 1.52 (1.34, 1.74) 23

Model 3 922.80

Perinatal NVP -1.15 (-1.62, -0.68) 0.32 (0.20, 0.51) 21

CD4 -0.153 (-0.25, -0.05) 0.86 (0.78, 0.95) 33

VL at delivery 0.634 (0.51, 0.76) 1.88 (1.67, 2.13) 10

ZDV duration 0.0001 (-0.0072, 0.0073) 1.00 (0.99, 1.01)) 3.67e+004

Final modelc 916.61

Perinatal NVP -1.13 (-1.58, -0.68) 0.32 (0.21, 0.51) 21

CD4 -0.23 (-0.34, -0.13) 0.79 (0.72, 0.88) 22

VL at delivery 0.36 (0.23, 0.50) 1.44 (1.26, 1.64) 19

Premature labor 0.86 (0.31, 1.41) 2.37 (1.37, 4.10) 32

aRSE%, relative standard error (standard error of estimate / estimate*100)
b Bayesian Information Criterion
c Random effect of individuals: η~N(0,0.732)

doi:10.1371/journal.pone.0126647.t004
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