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Abstract

Kidney exchanges enable transplants when a pair of a patient and an incom-
patible donor is matched with other similar pairs. In multi-hospital kidney
exchanges pairs are pooled from multiple hospitals, and each hospital is able
to decide which pairs to report and which to hide and match locally. Mod-
eling the problem as a maximum matching on a random graph, we first
establish that the expected benefit from pooling scales as the square-root of
the number of pairs in each hospital. We design the xCM mechanism, which
achieves efficiency and incentivizes hospitals of moderate-to-large size to fully
report their pairs. Reciprocal pairs are crucial in the design, with the proba-
bilistic uniform rule used to ensure incentive alignment. By grouping certain
pair types into so-called virtual-reciprocal pairs, xCM extends to handle 3-
cycles. We validate the performance of xCM in simulation, demonstrating
its efficiency and incentive advantages over the Bonus mechanism [3].
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matching, integer programming, incentive compatible design.
JEL-Classification: C72, C78, D47, D82.

1. Introduction

The scarcity of cadaver kidneys coupled with the significant medical ben-
efits from live kidney transplants has prompted the advance of kidney-paired
donation (KPD), also referred to as kidney exchanges, in recent years [11].
In KPD, a patient with an incompatible donor can form a patient-donor pair
and, by entering a kidney exchange program, match with one or more other
pairs, so that the patient receives a compatible kidney and the donor do-
nates a kidney to some other patient. In the simplest case this match occurs
through a 2-cycle (or swap) involving the transplant of two kidneys. Longer
cycles, and in particular 3-cycles, are also practical but beyond 3-cycles the
logistics of the simultaneous operations become difficult.1

Kidney exchange programs exist around the world [18], although their
large-scale expansion has been hindered by ethical, logistical and incentive
issues [15, 5]. In the U.S., there is a growing number of multi-hospital ex-
changes which seek to pool the patient-donor lists from multiple hospitals in
order to facilitate thicker markets and identify additional transplants [13],
providing patients with access to larger pools of paired donations.2 Each
patient-donor pair is associated with a hospital, and hospitals can choose to
share lists of pairs with a multi-hospital exchange.

The matching problem in a kidney exchange can be modeled as a compat-
ibility graph, with a vertex corresponding to a patient-donor pair and edges

1Simultaneous operations are required for ethical reasons because, for instance, it is
possible that a donor could otherwise give up a kidney without the paired patient receiv-
ing a kidney. Since 2007, a growing practice is to adopt non-simultaneous altruistic donor
chains in which a donor with no designated recipient can initiate a chain of transplants.
Chains can be longer than cycles because transplants typically take place in an asyn-
chronous manner without the need to coordinate multiple simultaneous operations [14, 7].
We focus on transplants that occur through simultaneous cycles rather than chains. Ex-
tending our results to chains is left as an open problem for future work.

2The largest pool in the U.S. is the National Kidney Register (NKR), which has hun-
dreds of active donors and has facilitated more than 1,000 kidney transplants. Large
exchanges are operated by the Alliance for Paired Donation (APD) and the United Net-
work for Organ Sharing (UNOS).
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representing compatibility between pairs. For 2-cycles, the edges are undi-
rected and indicate mutual compatibility between pairs. We take a welfare
maximizing outcome to be a maximum cardinality matching.3 If 3-cycles are
also possible, a directed graph is adopted, with a directed edge from pair u
to v indicating that the donor in pair u is compatible with the patient in
pair v. In this setting, we take a maximum cardinality, vertex-disjoint set of
directed 2- or 3-cycles to be welfare maximizing.

We model the matching problem as one of finding maximum matchings
on a random graph. This random graph arises from the blood-type and tis-
sue type compatibility relationships of patient-donor pairs sampled from a
population (see also Ashlagi and Roth [3]). Characterizing the structural
properties of maximum matchings on this random graph provides the prob-
abilistic foundation for the analysis of multi-hospital exchange mechanisms.
We first quantify the benefit of multi-hospital exchanges through a square-
root law. This expresses the expected increase in the number of transplants
that arises from pooling patient-donor lists in terms of the square-root of the
size of each hospital’s list. This analytical result is established for 2-cycles
and a uniform tissue-type compatibility model (the same tissue-type com-
patibility model is also adopted in [1, 17, 22]). The square-root law explains
simulation results in earlier papers [1, 17].

A multi-hospital exchange mechanism receives hospitals’ reports of lists
of patient-donor pairs, and determines a matching on reported pairs. An effi-
cient mechanism achieves a maximum cardinality matching, either restricted
to 2-cycles or 3-cycles depending on design constraints. A known challenge is
to align incentives, so that each hospital reports its complete list of patient-
donor pairs. We assume that each hospital seeks to maximize the number of
pairs on its own list that are matched. In a poorly designed mechanism, a
hospital may benefit by revealing only hard-to-match pairs to the exchange
and free-riding on the reports of others, while completing other matches on
pairs that it chooses not to report [16, 3].

We design an efficient and ex post incentive compatible multi-hospital
exchange mechanism which we term xCM. The xCM mechanism achieves max-

3In practice, kidney exchange programs select weighted maximum matchings with the
weights set by medical professionals taking into account factors such as age, gender, health
status, geography and patient preferences [4]. Other notable approaches include dynamic
matching that take into account the randomness of arrival and expiration times in the
transplant waiting list [22, 6].
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imum cardinality matchings by allowing 2-cycles on pairs pooled from mul-
tiple hospitals where the pairs are specific donor-patient pair types known
as reciprocal, and uses the probabilistic uniform allocation rule [19, 20, 12, 8]
to align incentives and ensure that no hospital can gain benefit from mis-
reports. In order to enable maximum cardinality matchings in an exchange
with 3-cycles, xCM allows 3-cycles on pairs pooled from multiple hospitals
that consist of a reciprocal pair from a first hospital and a virtual-reciprocal
pair from a second hospital, this virtual-reciprocal pair consisting of two pairs
from the second hospital.

The patient-donor list is modeled as private information to a hospital.
Efficiency and incentive compatibility are established under technical prop-
erties on the maximum matchings associated with patient-donor lists. Given
this, it is an ex post Nash equilibrium for every hospital to truthfully report its
complete patient-donor list, whatever the exact lists of each hospital. This
ex post incentive compatibility does not imply that the xCM mechanism is
strategy-proof (with truthful reporting a dominant strategy), because truth-
ful reporting is only a best-response when the reports of other hospitals
satisfy these technical properties. Truthful reports will satisfy the properties
(by assumption), but the properties need not hold for arbitrary reports.

In simulation, we demonstrate that the aforementioned technical proper-
ties on hospital donor-patient lists hold with high probability for a standard
model of uniform tissue-type sensitivity (see Section 2) as long as each hospi-
tal’s list is moderately sized with at least 30 pairs. We validate the incentive
properties of xCM in simulation, and demonstrate that xCM also has robust
incentive properties for hospitals with smaller lists.

In addition, we compare xCM with the Bonus mechanism of Ashlagi and
Roth [3] in an extensive simulation. In settings with 4 to 12 hospitals, we
see a significant benefit to a hospital in Bonus to first compute a maximum
matching on its pairs and report only pairs that it cannot match locally.
Although this incentive for strategic under-reporting is less useful for sys-
tems with larger numbers of hospitals (consistent with the theoretical results
in [3]), it continues to be present for up to 30 hospitals. A theoretical anal-
ysis of the incentive properties of Bonus that explains the aforementioned
simulation results is provided in Section 6.

To compare xCM and Bonus, we evaluate the cardinality of matchings
in both mechanisms and across various environments. Adopting truthful
reporting in xCM and under-reporting in Bonus, we find that Bonus is less ef-
ficient than xCM. For xCM, the average number of pairs matched is in the range
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93-99% and 88-97% of the cardinality of the possible maximum matching,
for uniform and non-uniform tissue-type sensitivity, respectively. This per-
formance range considers settings that allow for 3-cycles, and settings that
insist on only 2-cycles. The comparable ranges of cardinality of matchings
in Bonus are 82-95% and 66-86%.

1.1. Outline

Section 2 defines the random graph model of kidney exchanges and the
relevant technical properties of maximum matchings on such random graphs,
also stating a theoretical result in regard to existence and structure of cer-
tain maximum matchings. This section also defines the probabilistic uniform
allocation rule, and reviews related work including the Bonus mechanism.
Section 3 gives the square-root law. Section 4 defines the xCM mechanism
for 2-cycles (only), and states the first main result in regard to the effi-
ciency and incentive compatibility properties of xCM. Section 5 defines the
xCM mechanism for 3-cycles, generalizing the technical properties and stating
the second main result in regard to efficiency and incentive compatibility.
Section 6 develops a theoretical analysis to isolate some concerns in regard
to the incentive properties of Bonus [3]. Section 7 presents the simulation re-
sults in regard to efficiency and robustness of incentive compatibility of xCM.
Most proofs are presented in the Appendix, and some additional analysis is
deferred to supplementary material.

2. Preliminaries

For a kidney transplant to be possible, the donor and patient must be
both blood-type and tissue-type compatible. Human blood-type is one of
O, A, B and AB, and indicates the presence of proteins A and B (e.g., O-
type has neither, AB-type has both). A patient-donor pair is blood-type
compatible if the patient’s blood includes every protein that is present in the
blood of the donor. For example, a donor with blood-type A is blood-type
compatible with a patient with type A or AB but not with a patient of type
O or B.

By convention, a patient-donor pair is denoted by X-Y, where X is the
blood-type of the patient and Y is the blood-type of the donor. A patient-
donor list of a hospital consists of multiple such pairs, and it is these pairs
that are matched on cycles. Following Ünver et al. [22], we associate pairs
with one of four pair-types: under-demanded (UD), over-demanded (OD),
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donor O A B AB

patient

O S UD UD UD

A OD S R UD

B OD R S UD

AB OD OD OD S

Table 1: Patient-donor pairs grouped by pair-type into under-demanded (UD), over-
demanded (OD), reciprocal (R) and self-demanded (S) pairs.

reciprocal (R) and self-demanded (S), based on the blood-types of the pair.
Intuitively, OD pairs such as A-O are relatively easy to match (hence “over-
demanded”) because the donor’s blood-type contains fewer proteins than the
patient’s blood-type.

In regard to tissue-type compatibility, this requires that a patient and
donor share as many human leukocyte antigens (HLAs) as possible to prevent
a positive cross-match and organ rejection. The probability of a positive
cross-match (and thus tissue-type incompatibility) depends on the tissue-type
sensitivity of the patient. The Panel Reactive Antibody (PRA) sensitivity of a
patient measures the percentage of the population with whom the patient will
be tissue-type incompatible. Higher PRA values result in a higher probability
of incompatibility. Following Zenios et al. [24], we consider two models for
PRA sensitivity. In the uniform PRA model, the sensitivity is assumed to
be the same for all patients. In the non-uniform PRA model, a patient can
be in one of three sensitivity groups, namely low, medium and high, each
associated with a different probability of a positive cross-match.

2.1. The Random Graph Model

Given a set of pairs and tissue-type and blood-type incompatibility rela-
tionships, this defines a compatibility graph. Focusing first on exchanges that
involve only 2-cycles, each patient-donor pair is associated with a vertex,
and an undirected edge between two vertices u, v indicates that the donor
in u is compatible with the patient in v and vice versa. A matching on an
undirected graph is a set of edges with no common vertices. The size (or
cardinality) of a matching is the number of vertices incident to edges in the
matching. A maximum matching is a matching of maximum cardinality. A
matching is perfect if it includes every vertex. A matching is almost-perfect
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if it includes all but one vertex.
A distribution on blood-types and tissue-type compatibility relationships

defines a distribution on compatibility graphs. Let G̃n denote a random,
undirected compatibility graph with n pairs. Let V denote the set of vertices.
For pair u ∈ V , we adopt up and ud to denote the patient and donor in the
pair, respectively. Let predicate ABO(x, y) take on value true when patient
x and donor y are blood-type compatible, and false otherwise. Let pu ∈ [0, 1]

denote the PRA sensitivity of the patient in pair u. A random graph G̃n is
constructed through a generative process. First, vertices are introduced by:

• independently sampling up, ud ∼ FABO, where FABO is the blood-type
distribution in the population,

• sampling pu ∼ FPRA of the patient, where FPRA is the PRA distribution
in the population, and

• introducing pair u = (up, ud) if (i) not ABO(up, ud), or (ii) with prob-
ability pu if ABO(up, ud).

Once n vertices have been introduced, then for every pair of vertices
u, v ∈ V , an edge is introduced if the pairs are mutually compatible, which
requires (i) ABO(vp, ud) and ABO(up, vd), and (ii) tissue-type compatibility,
which requires that a Bernoulli trial with probability (1 − pu)(1 − pv) is a
success, so that each patient is tissue-type compatible with the other patient’s
donor.

In the non-uniform PRA model, the pairs that enter tend to include
patients that are highly-sensitized and hard to match. This leads to a more
sparse compatibility graph. Following Zenios et al. [24], we take pu = 0.2
in the uniform PRA model. In the non-uniform model, we associate PRA
sensitivity of 0.05, 0.45 and 0.9 with low, medium and high PRA sensitivity,
and adopt probability 0.7, 0.2 and 0.1 for a patient to belong to the low,
medium or high PRA group respectively.

Let qx denote the probability that a random pair in G̃n is of pair-type
x, where x ∈ {OD,UD, S,R}. Assuming the uniform PRA model, and with
a blood-type distribution representative of the worldwide population and
tissue-type compatibility statistics [24], simple algebra yields the following
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proportions:4

qUD = 0.56, qOD = 0.11, qS = 0.15, qR = 0.18. (1)

Figure 1 illustrates the high-level structure of a compatibility graph, with
each circle corresponding to a pair-type and drawn in proportion to the
expected frequency of different types in the exchange.5 An edge between two
pair-types or a self-edge indicates that a 2-cycle is possible between the pair-
types incident to the edge based on blood-type compatibility. For example,
an OD pair may be mutually compatible with any other pair-type while UD
pairs cannot match with each other.6

For matchings that can include 3-cycles, a directed compatibility graph is
used to model the matching problem. An edge from pair u to pair v indicates
that the donor in pair u is blood-type compatible with the patient in pair

v. Let G̃3
n denote a random, directed compatibility graph with n pairs. The

vertices are generated in the same way as for the undirected graph G̃n. For
every pair of vertices u, v ∈ V , a directed edge from u to v requires (i)
ABO(vp, ud), and (ii) directed tissue-type compatibility, which requires the
success of a Bernoulli trial with probability (1 − pv) so that the patient in
pair v is tissue-type compatible with the donor in pair u.

2.2. Structural Properties

Given an undirected compatibility graph, we can define a subgraph for
each pair-type (OD, UD, S and R), consisting of the vertices of this pair-
type and edges between these vertices. The S-subgraph has four components,

4The worldwide blood-type distribution is roughly O (50%), A(30%), B(15%) and
AB(5%) [23]. Let fx denote the probability of pair-type x in the population. We would
expect fOD = fUD = 0.2725, fS = 0.365, and fR = 0.09. With pc = 0.2 to denote the
PRA sensitivity, we have qOD = fOD·pc

Z , qS = fS ·pc

Z , qUD = fUD

Z , and qR = fR
Z , where

fOD = fO(fA+fB)+fAB(fO+fA+fB), fUD = fOD, fS = f2
O+f2

A+f2
B+f2

AB , fR = 2fA ·fB,
and denominator Z = fOD · pc + fS · pc + fUD + fR provides normalization.

5We see that UD pair-types are much more abundant than other types, and that OD
pair-types are approximately 1/pc = 5 times less frequent than UD pair-types. This is

because, an OD pair-type “enters” G̃n only because of tissue-type incompatibility, which
happens with probability pc (under the uniform PRA model).

6Similarly, an S pair can only be mutually compatible with another S pair or with
an OD pair. The absence of an edge between UD and R shows that there can be no
edges between vertices that correspond to these two pair-types. These relationships can
be checked from the requirement that every protein in a donor’s blood is present in a
patient’s blood, and considering the mapping from blood-types into pair-types in Table 1.

8



Figure 1: A high-level depiction of the compatibility graph for different pair-types. An
edge indicates the possibility of mutual, blood-type compatibility between two pair-types
using only 2-cycles.

comprised by T-T pairs for each blood-type T ∈ {O, A, B, AB}. The R-
subgraph is bipartite, with one part consisting of A-B pairs and one of B-A
pairs. The long-side of the R-subgraph corresponds to the pair-type with
more pairs (breaking ties at random); the other part is the short-side. The
R-subgraph is balanced if each part has the same cardinality, and almost-
balanced if the two sides differ in cardinality by one. The UD-subgraph has
no internal edges.

Definition 1 (Perfect-matching (PM) properties). An undirected com-
patibility graph, G, is:

• S-perfect if, for each blood-type T, there is a perfect matching for any
graph G′ formed by retaining all T-T pairs of G when there is an
even number, and dropping any single T-T pair when there is an odd
number.

• R-perfect if there is a perfect matching for any graph G′ formed by
retaining all the R pairs on the short-side of the R-subgraph of G along
with any subset of R pairs on the long-side of cardinality equal to that
of the short-side.

• OD/UD-perfect if there exists a matching on G in which every OD pair
is matched with some UD pair.
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A matching on G is S-perfect, R-perfect, or OD/UD-perfect when the
matching satisfies the associated perfect matching property.

Say that an edge is internal to a subgraph if it is incident to two vertices
in the same subgraph.

Definition 2 (Regular matching). A regular matching on an undirected
compatibility graph G is a matching that is OD/UD-perfect (matches every
OD pair with some UD pair) and maximizes, amongst all matchings,

(i) the number of matched edges internal to the S-subgraph, and
(ii) the number of matched edges internal to the R-subgraph.

A matching is almost-regular if it is maximum, and maximizes the number
of OD-UD pairs that match across all maximum matchings on G.

The simple structure of regular matchings is helpful for the analysis of
the incentive properties of xCM, and because of existence and optimality:

Theorem 1. A regular matching on an undirected compatibility graph G is
maximum amongst all matchings that use only 2-cycles, and exists in random
graph G̃n w.h.p. for sufficiently large n.

In regard to maximum cardinality, a similar result is stated as Proposition
1 in Roth et al. [17]. Existence of a regular matching follows as a special case
of the more general Theorem 5 in a context with 3-cycles, and proved as
Proposition 5.1 in Ashlagi and Roth [3].

We provide a simple proof sketch of maximality. Let NS, NR, NOD, NUD

denote the number of pairs matched in a regular matching (thus NOD =
NUD). Any non-regular matching would match k > 0 OD pairs with either S
or R pairs, and since UD pairs can be matched only to OD pairs, k fewer UD
pairs would be matched. At best, the total pairs matched in that non-regular
matching would be (NS + NR + k) + NOD + (NUD − k), which is no better
than the number of pairs matched in the regular matching.

For existence, let G̃m×m,p denote a random bipartite graph with m nodes
in each part, and edges between nodes in different parts with uniform prob-
ability p. Erdős and Rényi [9] proved the following:

Lemma 1. [9] A random bipartite graph G̃m×m,p, with any constant p > 0,
assumes a perfect matching w.h.p. for sufficiently large m.
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Consider some UD pair with blood-type X-Y (patient X, donor Y). The
symmetric OD pair is Y-X; e.g., consider UD pair O-A and OD pair A-O.
Because OD pairs only enter when the patient is tissue-type incompatible
with the donor while UD pairs always enter, OD pairs are less abundant
than UD pairs, w.h.p. for large n. Based on this, we can appeal to Lemma 1
on the balanced subgraph formed for X-Y and Y-X pairs.

The following lemma confirms the existence in the limit of S-perfect and
R-perfect matchings:

Lemma 2. A random compatibility graph G̃n on n vertices satisfies the S-
perfect and R-perfect properties w.h.p. for sufficiently large n.

The result follows by appeal to Lemma 1. For S-perfect, this follows by
noting that the T-T components of the S-subgraph, for T ∈ {O, A, B, AB},
can be reduced to an almost-balanced bipartite graph by placing pairs into
two, almost-balanced sets and dropping between-set edges. For R-perfect,
this follows by considering a random, balanced subgraph.

2.3. Probabilistic Uniform Rule

The xCM mechanism uses the probabilistic uniform rule [19] as a subrou-
tine. The probabilistic uniform rule generalizes the uniform rule for divisible
goods [20] to provide a strategy-proof (i.e., dominant-strategy incentive com-
patible), Pareto efficient method to allocate indivisible, identical items.

In defining this rule, let x > 0 denote the number of identical, indivisible
units of a resource to allocate. Consider agents j ∈ {1, . . . ,m}, each of which
demands some quantity zj ≥ 0 of items. Each agent strictly prefers more
items to less up to zj items.

Definition 3 (Probabilistic uniform rule). The probabilistic uniform rule
takes demand ~z = (z1, . . . , zm) and supply x of identical indivisible items and
returns an allocation ~y = (y1, . . . , ym) = share(z, x) as follows.

First, initialize J := {j : zj > 0}, remaining supply xrem := x and
allocation yj := 0 for all j ∈ {1, . . . ,m}. Then:

While (xrem > 0) and (J 6= ∅):

• If xrem ≥ |J |, increment yj by one for each j ∈ J , decrement xrem by
|J |, and drop any j from J for which yj ≥ zj.

• Else: select a random subset of size xrem of agents in J , and increment
yj by one for each selected agent. Set xrem := 0.

11



Lemma 3. Given supply x > 0 and demand z = (z1, . . . , zm), the
probabilistic uniform rule share(z, x) allocates expected quantity yh =
min(zh, guniform(z−h, x)) ≥ 0 to agent h, where guniform(z−h, x) ≥ 0 is a quan-
tity that depends on demands z−h = (z1, . . . , zh−1, zh+1, . . . , zm) of others and
supply x, and satisfies properties:

(1) guniform(z−h, x+ c) ≤ guniform(z−h, x) + c for all z−h, x and c ≥ 0; and

(2) guniform(z−h, x) ≥ x−
∑

j 6=h zj.

Proof. Let d(k) =
∑

j 6=h min(zj, k) + k. This is the total demand when it
is capped at k for all agents, and assuming agent h’s demand is at least k.
Let k∗ denote the largest k for which d(k) ≤ x. Let m′ denote the number
of agents j 6= h for which zj > k∗. Note that the number of unallocated
items once up to k∗ have been allocated is x − d(k∗) < m′ + 1. All agents
with demand ≤ k∗ are allocated in full. Agents with demand > k∗ also
receive one additional item with probability x−d(k∗)

m′+1
, since the subset allocated

one of the remaining items is selected uniformly at random. Therefore, the
expected quantity allocated to agent h is equal to min(zh, guniform(z−h, x)),

and guniform(z−h, x) = k∗+ x−d(k∗)
m′+1

. Property (1) holds because the allocation
to agents j 6= h cannot decrease when more units are introduced. Property
(2) holds because no agent j is allocated more than zj.

2.4. Related Work

Ashlagi and Roth [3] also study the design of multiple-hospital exchanges
under a random graph model. But while their analysis insists on a large
number of hospitals, each of which has a small patient-donor list, our analysis
insists that each hospital has a moderately-sized or large patient-donor list.
In this sense the two designs complement each other.7

The xCM and Bonus mechanisms also differ in their design focus. xCM

emphasizes the use of pooling to match R pairs, while Bonus emphasizes
the use of pooling to match OD and UD pairs. We identify an incentive
concern in regard to the use of a lottery in Bonus for matching OD and
UD pairs. Although Ashlagi and Roth [3] argue approximate Bayes-Nash

7The strong regularity assumption in Ashlagi and Roth [3] is shown in their simulations
to require each hospital to have no more than 30 pairs. The technical properties (perfect
matching) that we require for the analysis of xCM are shown in simulation to hold for 4
or more hospitals, each of size 30 or larger (2-cycles or 3-cycles), under the uniform PRA
model.
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incentive compatibility in the limit of a large number of hospitals each with a
finite size list, our analysis suggests that Bonus remains susceptible to holding
back OD pairs and sending UD pairs even with as many as 30 hospitals (see
Section 6).8 9 The xCM and Bonus mechanisms also differ fundamentally in
the way that R pairs are matched, with xCM using the probabilistic uniform
allocation rule.

Multi-hospital kidney exchanges have also been studied in a worst-case
framework by Ashlagi et al. [2], who consider a setting where matchings
are restricted to 2-cycles, and prove that no deterministic strategy-proof
mechanism can ensure an approximation ratio less than two (relative to the
cardinality of the maximum matching) on every possible input. In addition,
no randomized strategy-proof mechanism can provide an approximation ratio
better than 8/7; see also Roth et al. [16] and Ashlagi and Roth [3] for more
discussion. Ashlagi et al. [2] also develop the Mix-and-Match mechanism,
which is a randomized, strategy-proof 2-approximation mechanism.

3. A Square-Root Law for the Benefit from Pooling

In this section, we quantify the welfare benefit from pooling patient-donor
lists. Given random compatibility graph G̃n, let GR and GS denote the R-
and S-subgraphs, respectively. We first quantify the expected cardinality of
a maximum matching on these subgraphs.

Lemma 4. Assuming the S-perfect property, the expected cardinality of a
maximum matching MS using 2-cycles on subgraph GS of fixed size in com-
patibility graph G̃n, is given by

E[|MS|] = |GS| − 2, (2)

where |GS| is the fixed number of vertices in subgraph GS, and |MS| is the
size of matching MS.

8Our simulation results for Bonus disagree with the simulation results of Ashlagi and
Roth [3], in that we find benefits from deviation in environments where they find none. We
have been unable to explain this discrepancy because the code used by Ashlagi and Roth
is not available (personal communication). On the other hand, our simulation results are
still consistent with their broader theory, in that the benefit from deviation becomes less
severe as the numbers of hospitals increases.

9In comparison, xCM only pools OD and UD pairs for the purpose of enabling 3-cycles
that involve R-pairs, and in a last step on unmatched pairs.
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An informal argument is that the marginal distribution on the parity
of the number of pairs in any T-T component (for blood-type T) of the S-
subgraph places equal probability on odd and even parity. Based on this,
the expected number of unmatched pairs per component is 0.5(0) + 0.5(1) =
0.5, and with four components the expected number of unmatched pairs is
4(0.5) = 2. A full proof must condition on the parity of |GS| and handle
dependence between the parity of the components of GS; see Lemma 4 in the
supplementary material.

Lemma 5. Assuming the R-perfect property, the expected cardinality of a
maximum matching MR using 2-cycles on subgraph GR of fixed size in random
compatibility graph G̃n, is given by

E[|MR|] = |GR| −
√

2|GR|
π

, (3)

where |GR| is the fixed number of vertices in subgraph GR, and |MR| the size
of matching MR.

In effect, Lemma 5 quantifies the size of the expected imbalance between
the long-side and short-side of the R-subgraph. A formal proof appears in
the supplementary material.10

Theorem 2. Assuming the S-perfect, R-perfect and OD/UD-perfect proper-
ties, the expected cardinality of a maximum matching Mn using 2-cycles on
random compatibility graph G̃n is,

E[|Mn|] = γ · n− rn

√
2qR
π
n− 2, γ = 1− qUD + qOD ,

where qR, qUD and qOD denote the probability of reciprocal, under-demanded
and over-demanded pair-types in the exchange respectively, and rn ∈ (1 −
O(1/n), 1].

10For some intuition, consider the simpler task of calculating the square of the imbalance
between the count of heads and tails after k tosses of a fair coin. This imbalance models the
unmatched side (A-B or B-A) in a maximum matching within the bipartite R-subgraph.
Let Dk denote this random variable. Feynman [10][Chapter 6] argues that E[D2

k] ≈ k for
large k, since Dk = Dk−1 ± 1 and so D2

k = D2
k−1 ± 2Dk−1 + 1, and the expected value of

Dk−1 is converging to 0 as k grows. By Jensen’s inequality, E(D2
k) ≥ E(Dk)2 and thus

E(Dk) = O(
√
k).
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The full proof is given in the supplementary material. To gain additional
simplification, let’s assume rn = 1. Substituting values for qUD, qOD and
qR under the uniform PRA model (1), we obtain the following approximate
expression for the expected cardinality of the maximum matching:

E[|Mn|] ≈ 0.556n− 0.338
√
n− 2. (4)

This analysis is accurate enough to explain many simulation results in
previous work, and provides an initial validation of the PM properties.11

Furthermore, we can quantify the increase in the expected number of
transplants from pooling the patient-donor pairs from multiple hospitals.
For this, let µ(n) denote the expected cardinality of a maximum matching

on a random graph G̃n. Let W (m,n) denote the expected increase in number
of transplants from pooling together m hospitals each of size n compared to
matching each hospital individually. By symmetry, the expected gain to any
one hospital h is simply Wh(m,n) = 1

m
W (m,n).

Theorem 3 (Square-root law). Assuming the S-perfect, R-perfect and
OD/UD-perfect properties for the pooled compatibility graph of m hospitals,
each with patient-donor lists of size n, the expected benefit to an individual
hospital h from pooling, when using 2-cycles, satisfies

Wh(m,n) ≥ (1− 1√
m

)

√
2qR
π
n+ 2(1− 1

m
), (5)

where qR is the fraction of R pair-types in the exchange.

Proof. The expected number of matches for each hospital individually is at
most µ(n), since this is the expected number in a regular match, which is
maximum when it exists. By the PM assumptions, the expected number of
matches in the combined graph is µ(mn). Therefore, W (m,n) ≥ µ(mn) −
mµ(n), and the result follows from Theorem 2 and simple algebra.

When every compatibility graph satisfies the S-perfect, R-perfect and
OD/UD-perfect properties, the expression holds with equality. Also, as the

11For example, the cardinality of the matchings in Roth et al. [17] (see Propositions 1
and 2 and Table 2), are explained; e.g., for n = 100, expression (4) yields an expected
number of matched vertices of 55.6− 3.38− 2 = 50.22, and close to the reported value of
49.7. Similarly, the results in Table 1 of Abraham et al. [1] can be explained.
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number of hospitals m → ∞, the individual expected benefit from pooling

satisfies limm→∞Wh(m,n) ≥
√

2qR
π
n+2. This quantifies the benefits that are

available from solving the incentive challenges in multi-hospital exchanges,
and also pinpoints the R-subgraph as being of central importance for achiev-
ing efficiency gains. The design of xCM promotes pooling of reciprocal-type
pairs.

4. The xCM Mechanism with 2-cycles

Assume m hospitals each of size n pairs, let h ∈ {1, . . . ,m} denote a
hospital, and let Gh denote the compatibility graph for hospital h. This
graph corresponds to the list of patient-donor pairs of a hospital, and is
private information to a hospital (analogous to type in mechanism design.)
Define a marginal economy to be any set of hospitals that includes every
hospital except one.

Let sh denote the strategy of hospital h, and determine its reported list of
pairs. Equivalently, we can consider that a hospital reports a compatibility
graph and adopt G′h = sh(Gh) to denote the reported graph of hospital
h. We assume that a hospital can hide pairs but can neither introduce
false pairs or false information about the compatibility between pairs.12 Let
~G′ = (G′1, . . . , G

′
m) denote the vector of reports, and let G′⊕ =

⊕
hG
′
h denote

the compatibility graph obtained by combining the reports in the natural
way.13

A multi-hospital kidney exchange mechanism Γ takes reported graphs
~G′ and computes a matching, denoted by Γ(G′1, . . . , G

′
m). We adopt

Γh(G
′
1, . . . , G

′
m) to denote the pairs of hospital h that are matched.

Let s = (s1, . . . , sm) denote the strategy profile, and adopt s(~G) =
(s1(G1), . . . , sm(Gm)) to denote the vector of reported graphs.

By assumption, each hospital wants to maximize the number of its own

12This is consistent with previous work. Ashlagi and Roth [3] note that the information
contained in blood tests is becoming standardized, sometimes coming from a centralized
testing facility. In that respect, a hospital’s strategy amounts to reporting a subset of its
patient-donor pairs (vertices in the hospital graph), as the edges can be recovered given a
known set of vertices.

13Include all vertices and edges reported by hospitals, and introduce edges between
mutually-compatible pairs from distinct hospitals according to the random process defined
in Section 2.1.
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pairs that are matched. In addition to the pairs matched by the mechanism,
a hospital has a recourse action in which it can match pairs that are either
returned unmatched by the mechanism or were not reported. Define the
utility uh(s, ~G) to hospital h, given strategy profile s as the total number of
pairs of the hospital that are either matched by the mechanism or matched
during recourse. The utility is,

uh(s, ~G) = |Γh(s(~G))| + |M(Gh \ Γh(s(~G)))|, (6)

where M(G) is a maximum matching on graph G, and Gh \ G′ denotes the
graph after removing the vertices G′ from graph Gh.

Definition 4 (EPIC). A matching mechanism Γ is ex post incentive com-

patible (EPIC) for property P if, for any vector of graphs ~G = (G1, . . . , Gm)
that satisfy property P, it is a best-response for every hospital to report its
true patient-donor list when other hospitals are truthful.

For randomized mechanisms, EPIC for property P requires that each hos-
pital maximizes its expected number of matches with respect to the random
draws of the mechanism by reporting truthfully. For xCM, property P is
defined to require that S-perfect and R-perfect holds for the compatibility
graph that corresponds to the marginal economy without any hospital.14

Definition 5 (k-way efficient). A matching mechanism Γ is k-way effi-

cient if the matching Γ(~G) is maximum for any profile of graphs ~G =
(G1, . . . , Gm) amongst matchings that use cycles of length at most k.

4.1. The xCM mechanism

In the following, let αh, βh and τh denote the number of A-B, B-A and
T-T pair-types (for some blood-type T) in the patient-donor list of hospital
h. Let α⊕, β⊕ and τ⊕ denote the corresponding counts when summed over all
hospitals. Notation α′h, β

′
h and so forth indicates a count based on reported

lists.

14EPIC with property P does not imply that a mechanism is dominant-strategy incentive
compatible. This is because property P may not hold for arbitrary reports from other
hospitals, while to establish EPIC it suffices to show that truthful reporting is optimal for
a hospital given that reports of others satisfy property P.

17



Definition 6 (xCM mechanism). The xCM mechanism receives a vector of

graphs ~G′ = (G′1, . . . , G
′
m). Let G′⊕ denote the combined graph. Initialize

matching µxCM to the empty matching. Matching µxCM is output at the end of
Step 3.

Step 1. (Match S pairs) Repeat for each self-demanded pair-type T -T , where
T ∈ {O,A,B,AB}:
(i) For each hospital h, compute a maximum matching M ′

h,T on the
subgraph of G′h induced by T -T pairs.
(ii) Let G′T denote the subgraph of G′⊕ induced by T -T pairs. Select
matching µT uniformly at random from the set of matchings on G′T
that are maximum amongst those that satisfy,

{µ : NT (µ, h) ≥ |M ′
h,T |, ∀h}, (7)

where NT (µ, h) is the number of T-T pairs of hospital h in µ.
(iii) µxCM := µxCM ∪ µT .

Step 2. (Match R pairs)
(i) For each hospital h, let m∗h = min(α′h, β

′
h), and zh,AB = α′h − m∗h,

zh,BA = β′h − m∗h denote the excess A-B and B-A pairs, respectively.
Let xAB =

∑
j zj,AB and xBA =

∑
j zj,BA.

(ii) If (α′⊕ ≥ β′⊕) then: yAB : share(zAB, xBA), yBA := 0. Else yAB := 0,
yBA := share(zBA, xAB).
(iii) For each hospital h, compute a maximum matching on G′h,R, and
let mh denote the number of A-B pairs (and also B-A pairs) matched.
Let δh = m∗h −mh. Let G′R denote the subgraph of G′⊕ induced by R
pairs. Let Kq, for q = 0, 1, . . ., denote the set of matchings on G′R that
are maximum amongst those that satisfy,

{µ : NAB(µ, h) ≥ mh + max(0, yh,AB + δh − q), ∀h, and

NBA(µ, h) ≥ mh + max(0, yh,BA + δh − q), ∀h}, (8)

where NAB(µ, h) and NBA(µ, h) are the number of A-B and B-A pairs
of hospital h in matching µ. Let q∗ denote the smallest q for which Kq

is non-empty. Select matching µR uniformly at random from Kq.
(iv) µxCM := µxCM ∪ µR.

Step 3. (Match remaining same-hospital pairs) Repeat for each hospital h:
(i) Compute an almost-regular matching µ′h on the graph G′′h formed
by removing the pairs in µxCM ∩G′h from G′h.
(ii) µxCM := µxCM ∪ µ′h.
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Step 4. (Match remaining pairs) Compute a random, almost-regular matching
on the combined graph formed from any remaining unmatched pairs.
Add this matching µxCM.

15

In Step 1, the xCM mechanism computes a maximum matching on the
pooled S-subgraph, making sure that each hospital does as well as it would
if matching internally. In Step 2, the uniform probabilistic rule is used to
determine a matching on the pooled R-subgraph. In Step 3, this matching is
augmented with an almost-regular maximum matching for each hospital on
any unmatched, reported pairs (without any additional pooling). In Step 4,
this matching is augmented with an almost-regular maximum matching that
allows for pooling of unmatched pairs across hospitals.

The quantity m∗h represents the maximum number of A-B pairs h could
possibly expect to match on its own R-subgraph. If the pool is long A-B,
then xCM assigns a target number of A-B pairs (equal to mh + yh,AB + δh =
m∗h + yh,AB) to each hospital h. xCM relaxes this target if it is not attainable,
but always insists that each hospital gains at least the minimal number of
matches it would achieve internally.16

Theorem 4. The xCM mechanism is EPIC and 2-way efficient for properties
(i) S-perfect and R-perfect on compatibility graphs the size of every marginal
economy and larger, and (ii) OD/UD-perfect on every hospital’s compatibility
graph.

The proof of EPIC and efficiency for xCM under properties S-perfect, R-
perfect and OD/UD-perfect is given in the Appendix. An important step
in the proof of EPIC is to use the properties of the probabilistic uniform
allocation rule to establish that a hospital cannot do better in expectation
by misreporting its full list of reciprocal patient-donor pairs. Once EPIC
for these PM properties is established, then efficiency follows because the
overall matching is regular, since it is maximum on the combined S- and
R-subgraphs, and matches every OD pair with a UD pair.

15This step has no effect when the PM and regularity assumptions hold, but improves
welfare when xCM is used in an environment where these properties fail to hold.

16In Section 7 we explain how this procedure can be efficiently implemented.
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5. Generalizing xCM to Allow for 3-cycles

In this section, we generalize the xCM mechanism to allow for 3-cycles.
The generalized mechanism remains EPIC for generalized PM properties to
allow for 3-cycles, and is 3-way efficient. The increase in welfare from using
3-cycles rather than 2-cycles relies on 3-cycles involving OD, UD and R pairs
because these can address the imbalance between the two sides of the R-
subgraph.

Definition 7 (Virtual-reciprocal pair). Pairs (B-O,O-A) for which the
donor of the OD pair is tissue-type compatible with the patient of the UD
pair forms a virtual-B-A pair. Pairs (A-O,O-B) for which the donor of the
OD pair is tissue-type compatible with the patient of the UD pair forms a
virtual-A-B pair.

A virtual-reciprocal pair can form a cycle with a compatible reciprocal
pair: B-O → O-A → A-B and A-O → O-B → B-A.

Define the number of virtual-B-A pairs (denoted vβ) as the number of B-
O pairs matched in a maximum matching on a particular undirected bipartite
graph. The bipartite graph is formed from a graph G by B-O pairs in one
part and O-A pairs in the other, and an edge between a B-O and O-A pair
when the O donor and O patient are tissue-type compatible. The number
of virtual-A-B pairs (denoted vα) is defined in an analogous way through a
maximum matching on a graph with A-O and O-B pairs.

Other 3-cycles of interest for maximum cardinality matchings involve the
OD pair with blood-types AB-O, since this can form the following 3-cycles
with two UD pairs: AB-O → O-A → A-AB, and AB-O → O-B → B-AB.
Another 3-cycle of interest involve S pairs; for example, A-A→A-A→A-A.

Definition 8 (Generalized Perfect-Matching (PM) properties).
Consider a directed compatibility graph G. Let ns and nl denote the
number of R pairs on the short-side and long-side of the R-subgraph of G
respectively, and vs the number of virtual-R pairs on the short-side (i.e.,
virtual-A-B if A-B pairs are on the short-side). Compatibility graph G is:

• 3S-perfect if, for each blood-type T, there is a perfect matching (allow-
ing for 2-cycles and 3-cycles) on graph G′ formed by retaining all T-T
pairs of graph G.
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• 3R-perfect if (i) when ns + vs ≥ nl, there is a matching (allowing for
2-cycles and 3-cycles) that matches every R pair on graph G′ that is
formed by retaining all R pairs and virtual-R pairs of graph G, or

(ii) when ns + vs < nl, there is a matching (allowing for 2-cycles and
3-cycles) on graph G′ that matches every R pair, where G′ is formed
from G by retaining all virtual-R pairs, all R pairs on the short-side,
and any subset of cardinality ns + vs of R pairs on the long-side.

• 3OD/UD-perfect if (i) there is a matching on G in which every AB-O
pair matches with two UD pairs using 3-cycles, and

(ii) having removed any number of virtual-R pairs and all 3-cycles in-
volving AB-O pairs and two UD pairs from G, there exists a matching
using 2-cycles where every remaining OD pair matches with a UD pair.

A graph is strong 3R-perfect if the graph meets case (i) of 3R-perfect,
and matches every R pair. A matching is 3S-perfect if the matching attains
the structure of the associated graph property (similarly for 3R-perfect). A
matching is 3OD/UD-perfect if every AB-O pair matches on a 3-cycle with
two UD pairs, and every other OD pair not used in a virtual-R pair matches
in a 2-cycle with a UD pair.

Definition 9 (Extended-R subgraph). The extended-R subgraph of a
directed compatibility graph G includes:

1. all A-B, B-A, B-O, O-A, A-O and O-B pairs,

2. all edges that may be used when matching virtual-R pairs in 3-cycles
with R-pairs and matching R-pairs in 2-cycles with R-pairs.

For example, the extended R-subgraph includes compatibility edges from
B-O to O-A pairs when they exist, and from O-A to A-B pairs when they
exist.

Definition 10 (3-way Regular matching). A 3-way regular matching on
a directed compatibility graphG is a matching that uses 2-cycles and 3-cycles,
is 3OD/UD-perfect, and maximizes, amongst all matchings,

(i) the number of matched edges internal to the S-subgraph, and
(ii) the number of matched edges internal to the extended-R subgraph.
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A strong 3-way regular matching is a 3-way regular matching in which
every R pair is matched. A matching is 3-way almost-regular if it is maximum
and maximizes the number of OD-UD 2-cycles matched across all maximum
matchings.

Theorem 5. [3, 21] A strong 3-way regular matching on a directed compat-

ibility graph is 3-way efficient, and exists in G̃3
n w.h.p. for sufficiently large

n.

The existence and efficiency of strong 3-way regular matchings was proved
by Ashlagi and Roth [3] (Proposition 5.1).

The most important change in the design of xCM in allowing for 3-cycles
is that virtual-R pairs can be matched in Step 2. But this is restricted to
virtual-R pairs in which the OD and UD pairs belong to the same hospital.

Given this, we define the multi-hospital extended-R subgraph in the nat-
ural way on the combined graph from all hospitals, so that it only includes
edges B-O to O-A and A-O to O-B when these pairs belong to the same
hospital. Similarly, multi-hospital 3R-perfect (and multi-hospital strong 3R-
perfect) is defined in the natural way on the combined graph, with virtual-R
pairs (and the count of these pairs) restricted to insist on the OD and UD
pairs being from the same hospital.

Following our convention, let vαh, vβh, vα⊕, vβ⊕ denote the associated
counts of same-hospital virtual-A-B and virtual-B-A pairs for truthful re-
ports, with vα′h, vα

′
⊕ and so forth to denote the associated counts after

misreports.

Definition 11 (3-xCM mechanism). The 3-xCM mechanism receives graphs
~G′ = (G′1, . . . G

′
m) from each hospital. Let G′⊕ denote the combined graph.

Initialize µxCM to the empty matching. Matching µxCM is output at the end of
Step 3.

Step 0. (Match AB-O pairs).
(i) For each hospital h, compute a maximum matching µh,0 of G′h re-
stricted to the AB-O pairs and all UD pairs, and only using OD-UD-UD
3-cycles involving AB-O pairs.
(ii) Update µxCM := µxCM ∪ µh,0, and remove any matched OD and UD
pairs from G′⊕ and G′h.

Step 1. (Match S pairs) Same as Step 1 in xCM, except allowing for 2-cycles and
3-cycles.
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Step 2. (Match R pairs)
(i) For each hospital h, let m∗h,AB = min(α′h, β

′
h + vβ′h) and m∗h,BA =

min(β′h, α
′
h + vα′h). Let zh,AB = α′h − m∗h,AB and zh,BA = β′h − m∗h,BA

denote the number of excess A-B and B-A pairs, respectively. Let
zh,vAB = vα′j−max(0,m∗j,BA−m∗j,AB) and zh,vBA = vβ′j−max(0,m∗j,AB−
m∗j,BA) denote the number of excess virtual-AB and virtual-BA pairs,
respectively.
Let xAB =

∑
j(zj,AB + zj,vAB) and xBA =

∑
j(zj,BA + zj,vBA).

(ii) If (α′⊕ ≥ β′⊕), then: yAB := share(zAB, xBA), yBA := 0. Else:
yAB := 0, yBA := share(zBA, xAB).
(iii) For each hospital h, compute a maximum matching on the
extended-R subgraph inG′h, maximizing the number of R pairs matched
(breaking ties to minimize the number of 3-cycles). Let mh,AB and
mh,BA denote the number of A-B and B-A pairs matched. Let δh,AB =
m∗h,AB −mh,AB and δh,BA = m∗h,BA −mh,BA.
Let G′R denote the multi-hospital extended-R subgraph of G′⊕. Let Kq,
for q = 0, 1, . . ., denote the set of matchings on G′R that maximize the
number of R pairs matched (breaking ties to minimize the number of
3-cycles) amongst those that satisfy,

{µ : NAB(µ, h) ≥ mh,AB + max(0, yh,AB + δh,AB − q), ∀h, and

NBA(µ, h) ≥ mh,BA + max(0, yh,BA + δh,BA − q), ∀h}, (9)

where NAB(µ, h) and NBA(µ, h) are the number of A-B and B-A pairs
of hospital h in matching µ. Let q∗ denote the smallest q for which Kq

is non-empty. Select matching µR uniformly at random from Kq.
(iv) µxCM := µxCM ∪ µR.

Step 3. (Match remaining same-hospital pairs) Repeat for each hospital h:
(i) Compute a 3-way almost-regular matching µ′h on the graph G′′h
formed by removing the pairs in µxCM ∩G′h from G′h.
(ii) µxCM := µxCM ∪ µ′h.

Step 4. (Match remaining pairs) Compute a random, 3-way, almost-regular
matching on the combined graph formed from any remaining un-
matched pairs. Add this matching µxCM.

Step 0 matches as many AB-O pairs on 3-cycles with UD pairs as possible,
but without pooling pairs across hospitals. Step 1 matches S pairs, allowing
for pooling across hospitals and using both 2- and 3-cycles. Step 2 generalizes
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Step 2 of xCM to allow for same-hospital virtual-R pairs. Steps 3 and 4 follow
the same logic as the Steps 3 and 4 for xCM.

The quantity m∗h,AB represents the maximum number of A-B pairs that
hospital h can match on its own extended-R subgraph. If the pool is long
A-B, then 3-xCM assigns a target number of A-B pairs (equal to mh,AB +
yh,AB + δh,AB = m∗h,AB + yh,AB) to each hospital h. Mechanism 3-xCM relaxes
this target if it is not attainable, but always insists that each hospital gains
at least the minimal number of matches it can achieve locally.

Theorem 6. The 3-xCM mechanism is EPIC for properties (i) 3S-perfect and
multi-hospital 3R-perfect on compatibility graphs of every marginal economy
and larger, and (ii) 3OD/UD-perfect for individual hospitals. The 3-xCM
mechanism is 3-way efficient if the combined graph is multi-hospital strong-
3R perfect.

The theoretical analysis of 3-xCM follows the same outline as the analysis
for xCM, and is provided in the supplementary material. A part of the analysis
is to establish, for an arbitrary strategy of hospital h and the generalized PM
assumptions, that the mechanism matches every S pair, and with respect to
the reported R pairs, as many R pairs on the long-side of the pooled R-
subgraph as enabled by the total number of R-pairs and virtual-R pairs on
the short-side. Efficiency follows by showing that the matching computed in
3-xCM is strong 3-way regular.

6. Incentive Analysis of the Bonus Mechanism

In this section, we examine the incentive properties of Bonus. We first
provide a formal definition.

Definition 12 (Bonus mechanism [3]). The Bonus mechanism receives

graphs ~G = (G′1, . . . , G
′
m) from each hospital. Let G′⊕ denote the combined

graph. Assume an even-number of hospitals, and perform the following steps:

Step 1: (Match S pairs) Compute µS, the maximum matching of the S-
subgraph of G′⊕.

Step 2: (Match R pairs) For each hospital h compute µh,R, a maximum match-
ing of the R-subgraph of G′h. Compute µR, a maximum matching of
the R-subgraph of G′⊕, breaking ties to maximize the intersection with
∪hµh,R.
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Step 3: (Match OD-UD pairs) Initialize µUO := ∅ and split the hospitals at ran-
dom into two equal-sized groups L1 and L2. For each under-demanded
type X-Y, do the following:

(i) Select UD pairs from L1 to match with OD pairs from L2 as
follows:

(a) For each hospital h ∈ L1, let Vh,X-Y denote the under-
demanded X-Y pairs reported by h. Let Qh,X-Y ⊆ Vh,X-Y

denote a set of X-Y pairs that can be maximally matched in
G′h. Calculate q1 ,

∑
h∈L1
|Qh,X-Y|.

(b) For each hospital h ∈ L2, let Vh,Y-X denote the reported over-
demanded Y-X pairs. Calculate q2 :=

∑
h∈L2
|Vh,Y-X|.

(c) If q2 > q1: Run a lottery to pick additional X-Y pairs from
L1. Proceed in rounds:

– In each round, select a hospital h ∈ L1 with probabil-
ity proportional to |Vh,X-Y|. Pick a pair at random from
Vh,X-Y\Qh,X-Y, and move it from Vh,X-Y to Qh,X-Y. If there
is no new pair to pick, remove h from the lottery process.

– Repeat until q2 =
∑

h∈L1
|Qh,X-Y|, or there are no hospitals

left in L1.

(d) Let QX-Y , ∪h∈L1Qh,X-Y and VY-X , ∪h∈L2Vh,Y-X. Compute
a random maximum matching on the subgraph induced by
pairs QX-Y ∪ VY-X, and add this matching to µUO.

(ii) Select UD pairs from L2 to match with OD pairs from L1 similar
to Step 3(i).

Step 4: Return µS ∪ µR ∪ µUO.

In Step 1, S pairs are matched without considering pooling across hos-
pitals. In Step 2, a maximum matching is selected on the pooled R pairs,
breaking ties to maximize the overlap with the number of pairs that each
hospital would match in a maximum matching on its own R subgraph.

In Step 3, the hospitals are split into two groups, with the OD pairs in
one group matched with the UD pairs in the other. Consider the process of
lotterying hospitals in group L1 to match with OD pairs reported by hospitals
in group L2 for a particular X-Y (UD) and Y-X (OD) pair. Step 3(i)(a)
determines the UD pairs that each hospital would match just considering its
own X-Y and Y-X pairs. The tally q1 is the total count of pairs matched in
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this way, and represents the UD pairs that are preselected to match with some
of the q2 OD pairs that are available from L2 (calculated in Step 3(i)(b)). If
q2 > q1, and there are more OD pairs to allocate, then Step 3(i)(c) lotteries
access to the remaining OD pairs, giving preference according to the number
of UD pairs reported by each hospital. Once there are no UD pairs left
to select, or the number of UD pairs selected is equal to the number of
available OD pairs, Step 3(i)(d) finds a random maximum matching between
the selected UD pairs and the OD pairs.

The 2-cycle and 3-cycle versions of Bonus are similar. The main difference
is that the 3-cycle version can find 3-cycles in step 1 when matching on the S-
subgraph. 3-cycles can also be used when determining the internal matchings
in Steps 2 and 3, but these are only used to control the primary matching
process.17 18

6.1. Weakness of Bonus to Canonical Deviations

The lottery procedure in Bonus is designed to provide incentives for re-
porting UD and OD pairs. The idea is to give a hospital more chances to be
selected to match with OD pairs reported by others if it reports more UD
pairs. However, a numerical example taken from Ashlagi and Roth [3](see
their Example 1) illustrates a weakness in this argument. Reporting both
UD and OD pairs can reduce the effective number of OD pairs available to
compete for in the lottery stage (Step 3(i)(c)). The overall effect is that it
can be useful to hide some UD and OD pairs.

In Example 1, we consider a canonical deviation, in which a hospital
finds a maximum matching on its own pairs and reports the remainder. We
assume for simplicity that there are at least as many UD pairs as OD pairs
in the lottery, and that the matching in Step 3(i)(d) is perfect, so that every
selected UD pair is matched.19

17The part of the matching generated by Bonus in Step 2 is limited to 2-cycles because
it is restricted to the R-subgraph. The part of the matching generated in Step 3(i)(d) is
limited to 2-cycles because it is restricted to a subgraph including one particular X-Y UD
pair-type and the symmetric Y-X OD pair-type.

18xCM makes more use of 3-cycles, especially in regard to matching R pairs (see Section
6.2). This leads to better efficiency, as demonstrated in Section 7.

19These assumptions correspond to asymptotic properties established by Ashlagi and
Roth [3], see Claim 10.15. They can be justified for a large number of hospitals each with
small lists.
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Example 1. Fix the two groups, L1 and L2, and consider a particular UD
and OD pair-type (e.g., O-A and A-O). For group L1, assume hospital h ∈ L1

has 1 OD pair and 2 UD pairs, and can match its OD pair with one of its UD
pairs. Assume that 4 UD pairs are reported in total by the other hospitals
in L1, and that no other hospital in L1 can match a reported UD pair with
one of its own reported OD pairs. The number of OD pairs reported by other
hospitals in L1 is immaterial. For group L2, assume there are two OD pairs
reported in total (so that q2 = 2 in Step 3(i)(b)), and that there are plenty of
reported UD pairs.

If hospital h is truthful, then its OD pair will be placed into a lottery and
matched with a UD pair reported by group L2. In regard to its UD pairs,
one of its UD pairs (but none of the UD pairs of other hospitals in L1) will
be preselected, and so q1 = 1. The lottery in Step 3(i)(c) involves 6 UD
pairs (2 of them from h) competing to be the second UD pair selected from
L1 to match with the OD pairs provided by L2. Another way to say this is
that there is a lottery for the 1 remaining OD pair in the supply from L2

that is not already assigned. Hospital h will be selected in the lottery with
probability 2

6
. Therefore its expected number of pairs matched is 1+1+ 2

6
= 35

15
,

representing the OD pair that it matches, its preselected UD pair, and the
chance of matching a second UD pair.

If hospital h follows a canonical deviation, then it matches a UD pair
against an OD pair and sends just a single UD pair. Now none of the UD
pairs in L1 are preselected by the Bonus lottery. The lottery in Step 3(i)(c)
involves 5 UD pairs (1 of them from h) competing to be part of the 2 UD
pairs selected from L1 to match with the OD pairs provided by L2. Another
way to say this is that there is a lottery for the 2 OD pairs in the supply from
L2, now 2 rather than 1 because no pairs are already assigned. Hospital h
will be selected in the lottery with probability 1

5
+ 4

5
· 1
4

= 6
15

, representing the
probability that its UD pair is selected in the first or second round. Therefore
its expected number of pairs matched is 2 + 6

15
= 36

15
> 35

15
, considering also

the matching that it completes based on the pairs it does not report. Thus,
Bonus does not align incentives with truthful reporting in this example.

More generally, consider an UD pair-type with patient-donor blood-type
X-Y and its symmetric OD pair-type with patient-donor blood-type Y-X.
Consider some hospital h in L1, with xh pairs of type X-Y, yh pairs of type
Y-X, and that can maximally match mh pairs of type X-Y, internally. Let
q2 =

∑
i∈L2

yi denote the supply of Y-X pairs from L2 and q1 =
∑

i∈L1
mi
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denote the initial demand for these pairs based on internal matches in L1.
Also, define x−h so that x−h =

∑
i∈L1,i 6=h xi.

In order to simplify the analysis, we assume that all hospitals in L1 remain
interested in competing for OD pairs through all rounds of the lottery.20

Because of this, the expected utility (= # matches) of hospital h, if it is
truthful, is given by

U t
Bonus = mh + yh + min

{
xh −mh, (q2 − q1)+

xh
xh + x−h

}
, (10)

where x+ = max{0, x}. Equation (10) holds because h will match all mh UD
pairs, and all yh OD pairs will be matched by the aforementioned perfect-
matching assumption of the lottery. Furthermore, no more than xh − mh

pairs beyond mh can be selected in the lottery, and with the effect of its xh
lottery tickets, hospital h expects to receive a proportion of xh

xh+x−h
of the

(q2 − q1)+ OD pairs that will be randomly allocated in the lottery.
Now, let us consider that hospital h follows a canonical deviation and

hides k X-Y pairs, where these pairs can be matched to k of its own Y-X
pairs. Then its report will be xh − k UD pairs and yh − k OD pairs, and
the excess will be q2− (q1− k). By recording the benefit of 2k and adjusting
terms in the previous expression, the expected utility of the deviating agent,
is:

Ud
Bonus = 2k + (mh − k) + (yh − k) + min

{
xh −mh, (q2 − q1 + k)+

xh − k
xh − k + x−h

}
= mh + yh + min

{
xh −mh, (q2 − q1 + k)+

xh − k
xh − k + x−h

}
. (11)

By deviating, hospital h gets a smaller fraction from the lottery since
xh−k

xh−k+x−h
< xh

xh+x−h
, for k > 0. However, the lottery is selecting an additional

k UD pairs from the pool (equivalently it is allocating k additional OD pairs).
By matching its own pairs before sending, the hospital guarantees the use
of its own OD pairs and still gets to compete for the full pool of OD pairs

20In the case of dropouts, (10) changes slightly by considering instead a fraction xh/(xh+
x−h + z−h), where z−h is an adjustment made to allow for the possibility that other
hospitals will drop out of the lottery when their remaining demand to match OD pairs is
satiated (see Step 3(i)(c)).
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provided by others to the lottery.21

Through simple algebra, a sufficient condition for the deviation to be
useful is xh − k > q2 − q1. This reveals the concern. If the report after
deviation (xh − k) is still larger than the excess to allocate in the lottery
(q2 − q1), then the deviating hospital will be better off. Under the OD/UD-
perfect assumption, hospital h will hide every OD pair and a corresponding
number of UD pairs, and the quantity xh − k is ∝ n; i.e., the individual
hospital’s graph size. However, (q2− q1) is a quantity that is proportional to
the excess of the long-side in a bipartite graph pooled from m hospitals; by
Lemma 5 it follows that |q2 − q1| ∝ m

√
n in expectation.

Thus, opportunities to manipulate the Bonus mechanism exist for a broad
range of settings where the size of an individual hospital n is not fixed, and
the number of hospitals m increases at a rate m = O(

√
n) (and thus not

too quickly). This analysis also suggests that as the number of hospitals m
grows while the size of each hospital remains fixed, this deviation becomes
less useful. This in agreement with the theory of Ashlagi and Roth [3], as
well as our simulation results (see Section 7.4).22

6.2. Bonus vs. xCM on the R-subgraph

The two mechanisms also differ in regard to how they match R pairs.
Bonus finds, amongst the maximum matchings on the pooled R-subgraph,
one that maximizes the intersection with maximum matchings on the R-
subgraphs restricted to each hospital. In this sense, Bonus treats individual
rationality as a soft constraint. In contrast, xCM uses the probabilistic uniform
rule to determine how many R pairs a hospital can match above those it would
match by itself, and ensures that each hospital matches at least as many
as it would by itself. The supplementary material illustrates the difference
between the two designs on a simple example. In particular, we show that
Bonus does not provide ex post incentive-compatibility in regard to truthful
reporting of R-pairs. The Bonus and xCM mechanisms also differ in that xCM
but not Bonus allows R-pairs to match on 3-cycles.

21This increase in the number of excess pairs to allocate in the lottery from q2 − q1 to
q2 − q1 + k appears to have been over-looked in the analysis in Ashlagi and Roth [3].

22A more formal analysis would be required to fully quantify the trade-offs between
withholding and truthful reporting in Bonus, including the case of very large markets with
hospitals with fixed list sizes.
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7. Experimental Results

In this section, we report results from simulations on mechanisms xCM and
Bonus, and compare them with a baseline mechanism, rCM, which returns a
random maximum matching on the combined graph.23 We test the various
PM properties, validate the square-root law, and explore the welfare and
incentive properties, considering both uniform and non-uniform PRA.24 All
results are presented for the blood-type frequencies and tissue-type compat-
ibility models introduced in Section 2, and averaged over 1000 trials except
where otherwise stated.

7.1. Perfect-matching Properties and Square-root Law

First, we investigate the validity of the S-perfect, R-perfect and OD/UD-

perfect properties. For 2-cycles, we consider graphs G̃n with sizes n from

30 to 130, and for 3-cycles we consider graphs G̃3
n with sizes n from 30

to 90. The tests compute the difference in number of pairs matched on
the relevant subgraph and the idealized number that would match under
the various perfect properties; see the Appendix for details. All counts are
normalized by the cardinality of the maximum matching on the graph, and
averaged over 500 trials.

23We use R (http://www.r-project.org/) for the code implementation. Max-
imum matchings are obtained through integer programming (IP) with Gurobi
(http://www.gurobi.com/) and a free academic license. We follow a cycle formulation for
the IP that performs weighted matching (each matched vertex has weight 1 by default).
Random matchings are obtained by perturbing slightly (±0.1) the weights of every cycle.
Matchings that promote specific pair-types (crucial for both xCM and Bonus) are obtained
by increasing the respective weights. An almost regular matching is achieved by increasing
slightly (e.g. +0.2) the weights of OD-UD 2-cycles. The source code is available for down-
load from http://www.eecs.harvard.edu/econcs/code/rgke.zip and the code base is
also available through Github at https://github.com/ptoulis/kidney-exchange. De-
tailed instructions on how to reproduce all results of this section can be found in the
package.

24For brevity, we will sometimes use the symbols O, R, S, U to denote OD, R, S, and
UD pairs respectively, where O refers to OD and not the O blood-type. In this way, a
cycle will be denoted by the types of the pairs in the cycle; e.g., OUU denotes a 3-cycle
among one UD pair and two UD pairs. Furthermore, for 3-cycles, we will use standard
regular expression notation. For instance, OO? denotes any 3-cycle that contains two OD
pairs, and O[RS] denotes any 3-cycle that contains one OD pair and any combination of
two pairs from types R or S i.e., ORR, ORS or OSS.
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PRA size (n) R-perfect OD/UD-perfect S-perfect

U

30 4.89 (1.08) 1.11 (0.36) 7.30 (1.43)

50 2.17 (0.51) 0.79 (0.20) 3.43 (0.67)

70 1.05 (0.30) 0.46 (0.14) 1.92 (0.42)

90 0.37 (0.16) 0.22 (0.09) 1.75 (0.32)

130 0.00 (0.00) 0.13 (0.06) 1.22 (0.22)

nonU

30 12.25 (2.47) 10.39 (1.17) 26.20 (2.07)

50 6.65 (0.73) 7.22 (0.88) 25.62 (1.92)

70 5.03 (0.65) 4.30 (0.45) 19.36 (1.16)

90 3.76 (0.53) 3.34 (0.37) 16.77 (1.03)

130 2.19 (0.30) 1.77 (0.24) 12.63 (0.68)

Table 2: The amount of violation of R-,OD/UD- and S-perfect properties for graphs of

various sizes, normalized by the size of a maximum matching on G̃n. 2-cycles only, and
for uniform (U) and non-uniform PRA (nonU) models. Standard errors in parentheses.
For example, for n = 30 the value 1.11 under OD/UD-perfect indicates that x OD pairs
remained unmatched, where x represents 1.11% of the size of a maximum matching on
G̃30. The OD/UD-perfect assumption requires that all OD pairs are matched.

The results for 2-cycles are shown in Table 2, where idealized performance
would be a 0% violation. For uniform PRA, the OD/UD-perfect property is
satisfied with 1% violation for graphs of size 30 or larger. The R-perfect and
S-perfect properties are satisfied with 1% violation for graphs of size at least
70 and 130 pairs, respectively. For Theorem 6, OD/UD-perfect should hold
for individual hospitals, while R-perfect and S-perfect for combined lists of
all but one hospital. Allowing for a 2% violation, the assumptions required
for Theorem 6 are justified under uniform PRA for 4 hospitals each with lists
of size 25 or larger.

Larger list sizes are required if tissue-type compatibility is non-uniform;
e.g., individual hospitals would need to have as many as 130 pairs for the
OD/UD-perfect property to be satisfied with 1% violation, and the S-perfect
property requires combined lists of significantly more than 130 pairs.

The results allowing for 3-cycles are shown in Table 3. The AB-O statistic
is the fraction of AB-O pairs that fail to match in a maximum matching
restricted to 3-cycles involving two UD pairs. As in Table 2, all results are
normalized by the cardinality of a maximum matching, this time allowing for
3-cycles. For uniform PRA, the 3OD/UD-perfect property is satisfied with
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PRA size (n) 3R-perfect 3OD/UD-perfect AB-O 3S-perfect

U

30 7.00 (0.86) 2.06 (0.35) 0.00 (0.00) 8.54 (0.77)

50 4.93 (0.76) 1.02 (0.17) 0.00 (0.00) 4.20 (0.38)

70 3.30 (0.60) 0.55 (0.11) 0.00 (0.00) 2.69 (0.30)

90 2.06 (0.40) 0.45 (0.09) 0.00 (0.00) 2.05 (0.18)

nonU

30 17.68 (1.96) 9.41 (1.28) 0.51 (0.18) 32.26 (2.54)

50 6.99 (0.91) 4.76 (0.47) 0.24 (0.11) 18.53 (1.03)

70 5.16 (0.62) 3.71 (0.34) 0.11 (0.05) 13.72 (0.80)

90 3.63 (0.45) 2.87 (0.24) 0.07 (0.04) 12.20 (0.58)

Table 3: The amount of violation of 3R-, 3OD/UD- and 3S-perfect properties for graphs
of various sizes, allowing for 3-cycles, and for both uniform (U) and non-uniform PRA
(nonU) models. The AB-O statistic is the fraction of AB-O pairs that fail to match in
3-cycles with two UD pairs. Violations are normalized by the size of a maximum matching
on G̃n allowing for 3-cycles. Standard errors in parentheses.

1% violation for graphs of size 50 or larger, and at 2% violation for graphs
of size 30 or larger. Considering that Theorem 6 requires the 3R-perfect and
3S-perfect properties to hold for combined lists of all but one hospital, the
required PM properties are satisfied at 2% violation with 4 hospitals, each
with lists of size 30 or larger. The AB-O pairs can be easily matched, even
for small graphs. With non-uniform PRA, the situation is similar to with
2-cycles, and larger lists are required; more than 90 pairs for an individual
hospital to achieve 3OD/UD-perfect at 2% violation, and combined lists of
significantly more than 90 pairs to satisfy the 3S-perfect property.

We now validate Theorem 2, which provides an analytical expression for
µ(n), the expected cardinality of a maximum matching in G̃n, and leads to
the square-root law. The analytical expression for the number of matches in
a maximum matching of G̃n is µ(n) ≈ 0.556n − 0.338

√
n − 2, for a graph

of size n (see Section 3). This is for 2-cycles only and with uniform PRA.
Table 4 compares the average number of matches in simulation against this
expression. The results are averaged over 10,000 trials. To test the fit, we
run a linear regression of the number matches, and obtain µ(n) = 0.567n−
0.572

√
n − 0.9.25 The prediction is generally very close, but usually over-

25The coefficients on n and
√
n are statistically significant with p-values less than 10−5,

with standard errors 0.007 and 0.137 for the coefficients of n and
√
n respectively.
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observation prediction

size (n) average #matches µ(n)

25 10.153 10.210

50 22.746 23.410

75 36.784 36.773

100 50.351 50.220

125 62.724 63.721

150 76.691 77.260

175 90.018 90.829

200 104.380 104.420

Table 4: Validation of the square-root law: Average size of maximum matching on G̃n for
various sizes n compared to the theoretical expression developed in Section 3.

estimating slightly due to violations in the PM assumptions.

7.2. Multi-Hospital Kidney Exchange with Uniform PRA

In this section, we compare the incentive and welfare properties of rCM,
xCM and Bonus, considering only uniform PRA.

7.2.1. Strategic properties

The individual strategies we consider are truthful behavior (t) and a
canonical deviation (c), which is the strategy when a hospital first finds an
almost-regular (maximum) matching and then reports only unmatched pairs
to the mechanism. A strategy profile for 6 hospitals is denoted by profile
tttttt, tttttc, and so forth. We adopt the canonical deviation because
this is the deviation for which a vulnerability of Bonus is identified (see
Section 6).

In Table 5, we report the average utility (= number of matches, including
those matched in recourse) for the hospital with the indicated strategy, along
with the standard errors. We also report the total number of OD, R, S and
UD pairs matched across all trials by a hospital with the indicated strategy.

We can make the following observations:

• rCM is not ex post incentive compatible. In particular, the canonical
deviation provides an average utility of 6.68 vs 5.90 when the other
hospitals are truthful. This deviation remains beneficial compared
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to truthful reporting when others also deviate. A deviating hospital
matches more UD and R pairs by free-riding on the reports of others.

• The canonical deviation is not useful in xCM at least on average (com-
pare 5.81 with 5.85), which is consistent with the theoretical analysis
of the mechanism.

• The Bonus mechanism is not ex post incentive compatible for this num-
ber of hospitals. In particular, the canonical deviation provides an av-
erage utility of 6.19 vs 5.67 when the other hospitals are truthful. This
deviation remains beneficial compared to truthful reporting when oth-
ers also deviate. A deviating hospital matches more UD pairs by free-
riding, which is consistent with the theoretical analysis of the strategic
vulnerability of the mechanism.

Table 6 provides an analogous incentive analysis of the mechanisms, now
allowing for 3-cycles. The qualitative results are largely unchanged. The
main difference is that we now see a small benefit in xCM for deviating to the
canonical strategy. This can be explained by noting that the PM properties
required for Theorem 6 are not well supported until the combined lists of all
but one hospital have more than 90 pairs, and the lists of single hospitals
have more than 30 pairs.

Table 7 summarizes the incentive properties of the various mechanisms,
varying the number of hospitals and size of hospital lists and considering
both 2-cycle and 3-cycle settings. We fix the other hospitals to report com-
plete lists, and record the average ratio (and standard error) of the number
of matches achieved by a hospital from adopting the canonical strategy com-
pared to the number of matches when reporting its complete list. We make
the following observations:

• Neither rCM nor Bonus are ex post incentive compatible for any of these
(m,n) combinations, irrespective of 2- or 3-cycles. The rCM and Bonus

have qualitatively similar incentive properties in these environments.

• Even though these environments do not meet the PM properties re-
quired for the theoretical incentive properties of xCM and 3-xCM (the
hospital lists are too small, and the combined lists of all but one hospi-
tal are too small), the incentive properties are qualitatively better than
the other mechanisms. The canonical deviation does not appear to be
useful in xCM with 2-cycles, but may be marginally useful in 3-xCM.
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mechanism profile strategy avg. utility #OD #R #S #UD

rCM

tttttt t 5.90 (0.03) 1629 2088 1778 1584

tttttc c 6.68 (0.06) 1604 2267 1802 2347

tccccc t 4.54 (0.05) 1492 1656 1476 371

cccccc c 5.57 (0.03) 1462 1878 1580 1201

xCM

tttttt t 5.85 (0.03) 1618 2125 1811 1458

tttttc c 5.81 (0.06) 1600 2137 1765 1468

tccccc t 5.59 (0.07) 1485 1840 1582 1246

cccccc c 5.57 (0.03) 1457 1879 1583 1201

Bonus

tttttt t 5.67 (0.03) 1537 2081 1778 1410

tttttc c 6.19 (0.06) 1571 1994 1784 2075

tccccc t 4.75 (0.06) 1405 1889 1511 424

cccccc c 5.50 (0.03) 1428 1870 1574 1179

Table 5: Incentive analysis under the uniform PRA model, allowing for 2-cycles only, with
m = 6 hospitals each having n = 12 patient-donor pairs. The entry in the strategy column
reflects the strategy type for which average utility (std error), and cumulative number of
OD, R, S and UD pairs matched is reported, considering all 1000 trials.

7.2.2. Welfare properties

Table 8 presents an overall comparison of the number of OU 2-cycles and
RR 2-cycles in xCM and Bonus given truthful reports. This is for m = 6, n =
12, and considering both uniform and non-uniform PRA. The xCM mechanism
matches more OU cycles than Bonuseven though the OD and UD pairs are
not pooled except in Step 4 of xCM. The mechanisms match the same number
of R pairs.

Table 9 illustrates the efficiency of each mechanism with 2-cycles, and
providing hospitals with the canonical strategy when this is beneficial. For
xCM we present the results for truthful reports (all-t). For Bonus and rCM

we present the results for canonical reports (all-c). In addition to welfare (=
total number of matches, averaged over all trials), we report the total number
of different types of cycles matched across all trials, as well as the fraction of
cycles that are matched within the mechanism rather than in recourse. For
a baseline, we provide the statistics for maximum matchings obtained with
and without pooling on truthful graphs.
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mechanism profile strategy avg.utility #OD #R #S #UD

rCM

tttttt t 6.61 (0.04) 795 1262 1073 838

tttttc c 7.37 (0.09) 814 1301 1093 1211

tccccc t 4.93 (0.08) 830 970 980 177

cccccc c 5.90 (0.04) 807 1069 981 684

xCM

tttttt t 6.29 (0.04) 785 1238 1015 736

tttttc c 6.41 (0.09) 810 1244 1066 724

tccccc t 5.80 (0.10) 825 1092 868 693

cccccc c 5.81 (0.04) 806 1068 932 678

Bonus

tttttt t 5.85 (0.04) 762 1059 984 700

tttttc c 6.61 (0.09) 810 1096 1064 996

tccccc t 4.75 (0.08) 795 1054 804 194

cccccc c 5.77 (0.04) 801 1058 925 675

Table 6: Incentive analysis under the uniform PRA model allowing for 3-cycles, with m = 6
hospitals each having n = 12 donor-patient pairs. The entry in the strategy column reflects
the strategy type for which average utility (std error), and cumulative number of OD, R,
S and UD pairs matched is reported, considering all 1000 trials.

(m,n) =(#hospitals, # pairs per hospital.)

mechanism (4, 18) (6, 12) (12, 6)

rCM 1.148 (0.007) 1.133 (0.008) 1.141 (0.014)

3-rCM 1.124 (0.008) 1.113 (0.011) 1.090 (0.013)

xCM 0.995 (0.008) 0.994 (0.009) 1.021 (0.015)

3-xCM 1.022 (0.010) 1.018 (0.013) 0.997 (0.015)

Bonus 1.116 (0.008) 1.091 (0.009) 1.091 (0.015)

3-Bonus 1.158 (0.011) 1.131 (0.014) 1.058 (0.016)

Table 7: Incentive summary (Uniform PRA): Average ratio (std error) of the total number
of pairs matched by a hospital that uses the canonical deviation compared to the total
number matched when truthful, and when other hospitals are truthful. Ratios larger than
one indicate that the canonical deviation is useful.
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The analysis reveals an overall welfare ranking of

xCM-all-t > rCM-all-c > Bonus-all-c.

Relative to the welfare obtained without pooling, the most important
gains in xCM come from the matching of additional RR and SS cycles.26

mechanism PRA #OU #RR #total pairs

xCM-all-t
uniform 8753 6218 21043

non-uniform 7226 5260 16081

Bonus-all-t
uniform 8461 6218 20420

non-uniform 5486 5260 13925

Table 8: Comparison of the number of OU and RR 2-cycles in xCM and Bonus when all
hospitals are truthful and m = 6, n = 12. Bonus performs fewer OU cycles because of its
lottery procedure.

Tables 10 and 11 illustrate the welfare also allowing 3-cycles, again adopt-
ing all-t for 3-xCM and all-c for 3-rCM and 3-Bonus. Table 10 provides a total
count of the different types of 3-cycles in the matchings. Table 11 provides a
summary count of the total number of OD, R, S, and UD pair-types matched,
and the main types of 2-cycles matched. The results are qualitatively un-
changed from the setting with 2-cycles, with the same welfare ranking be-
tween mechanisms. There is also a significant benefit from pooling.27

Table 12 summarizes the welfare in each mechanism across the three
different environments, and compares with the welfare without pooling. The
welfare is computed as the average fraction of pairs matched relative to those
in a maximum matching when all lists are pooled. The efficiency of xCM-all-t
is between 98% and 99% for 2-cycles and 93% and 95% for 3-cycles. The
efficiency of Bonus under canonical deviations is generally worse than rCM

under canonical deviations.

26The main inefficiency in xCM arises because fewer OU pairs and thus fewer UD pairs
are matched. Bonus also matches RR and SS pairs, but because hospitals use canonical
deviations the other types of matches occur in recourse.

27The main inefficiency in 3-xCM-all-t relative to the maximum matching occurs because
fewer UD and S pairs match in xCM, due to fewer OD-UD cycles and RRS cycles, re-
spectively. It seems likely that the efficiency of 3-xCM could be further improved when
3S-perfect does not hold by facilitating RRS cycles.
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mechanism welfare OO OR OS OU RR SS

no pooling 24.06 (0.15) 97 885 922 8662 3579 2695

max matching 35.40 (0.18) 5 168 95 9504 6180 5287

rCM-all-c
33.40 (0.18) 79 673 730 7211 5300 4376

2.5 9.7 5.5 5.6 46.8 49.8

xCM-all-t
35.07 (0.17) 185 315 274 8753 6218 5298

100 100 100 100 100 100

Bonus-all-c
33.01 (0.17) 83 627 706 7074 5297 4369

2.4 0 0 3.8 47.2 50

Table 9: Average welfare (std err) for each mechanism as well as total counts of different
types of 2-cycles matched across all trials. Uniform PRA model, with m = 6 hospitals
each having n = 12 patient-donor pairs. Below each cycle count is the fraction of cycles
that are matched by the mechanism rather than in recourse.

mechanism welfare OO? O[RS] ORU OSU OUU RRS SSS

no pooling 29.73 (0.24) 153 572 1205 1479 81 573 369

max matching 39.51 (0.23) 1 50 1694 93 428 1686 1073

3-rCM-all-c
35.40 (0.20) 164 480 1203 1623 83 1055 505

0 3.54 2.74 0.92 0 46.16 27.52

3-xCM-all-t
37.56 (0.22) 299 20 2408 200 170 0 1263

100 100 100 100 100 - 100

3-Bonus-all-c
34.62 (0.20) 175 478 1167 1586 82 568 515

1.14 0 0 0 0 0 28.93

Table 10: Average welfare (std error) for each mechanism as well as total counts of different
types of 3-cycles that match across all trials. Uniform PRA model, with m = 6 hospitals
each having n = 12 patient-donor pairs. Below each cycle count is the fraction of cycles
that are matched by the mechanism rather than in recourse.

7.3. Multi-Hospital Kidney Exchange with Non-uniform PRA

Table 13 summarizes the incentives to deviate to the canonical strategy
in each mechanism, presenting this as a fraction of the utility from truthful
reports, and considering non-uniform PRA. For xCM with 2-cycles there is no
incentive to deviate. For xCM with 3-cycles there may be a very small benefit,
but the results are often within the standard error. On the other hand, rCM
and Bonus remain vulnerable to canonical deviations. Table 14 presents a
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mechanism #O #R #S #U #OU #RR #SS

no pooling 6216 6075 6288 5205 2252 1512 1176

max matching 6337 10046 8538 6684 4041 2444 1752

3-rCM-all-c
6458 8547 7836 5478 2368 23145 1454

1.8 30.2 19.5 1.7 1.9 3.3 20.5

3-xCM-all-t
6258 9847 8073 5874 2646 3701 1999

100 100 100 100 100 100 100

3-Bonus-all-c
6409 8464 7398 5422 2368 2798 1468

0.9 29.6 14.5 1.0 2.1 44.8 21.4

Table 11: Total count of matched pair-types and matched 2-cycle types for each mechanism
across all trials. Uniform PRA model, with m = 6 hospitals each having n = 12 donor-
patient pairs.

summary of the welfare properties, relative to the maximum matching on
the pooled lists. We adopt all-t for xCM and all-c for rCM and Bonus.
With 2-cycles, the welfare ranking remains xCM-all-t > rCM-all-c > Bonus-
all-c. For 3-cycles, the welfare of 3-rCM-all-c and 3-xCM-all-t are very similar,
confirming that larger hospitals and more hospitals are important for 3-xCM
in non-uniform PRA environments.

7.4. Additional Experiments with Many, Small-Sized Hospitals

In this set of experiments we compare xCM and Bonus in environments
for which the theory suggests that Bonus should be more suited. For this
purpose, we increase the number of hospitals and reduce their individual
sizes, considering 2-cycles and the uniform PRA model. All standard errors
were computed on 1000 bootstrap samples.

We start with m = 24 hospitals, with n = 10 pairs each, and set hospi-
tals H2 through H24 to truthful reporting. Then, under Bonus, hospital H1

matches +0.2 (se=0.03) more pairs/experiment in canonical deviation than
in truthful reporting. In contrast, under the xCM mechanism, H1 achieves
-0.06 (se=0.02) fewer matches if it canonically deviates. There is also a sta-
tistically significant difference in the equilibrium efficiency of the two mech-
anisms: Bonus achieves 121.5 (se=0.28) total matches on average under
canonical deviation by all hospitals, whereas xCM achieves 130.6 (se=0.28)
total matches on average under truthful reporting by all hospitals.
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(m,n) =(#hospitals, # pairs per hospital.)

mechanism (4, 18) (6, 12) (12, 6)

no pooling 0.771 (0.006) 0.682 (0.005) 0.505 (0.005)

3-no pooling 0.845 (0.008) 0.759 (0.007) 0.535 (0.005)

rCM-all-c 0.957 (0.007) 0.943 (0.007) 0.943 (0.007)

3-rCM-all-c 0.908 (0.008) 0.893 (0.008) 0.875 (0.006)

xCM-all-t 0.994 (0.001) 0.991 (0.001) 0.982 (0.001)

3-xCM-all-t 0.959 (0.001) 0.951 (0.002) 0.935 (0.002)

Bonus-all-c 0.952 (0.007) 0.933 (0.007) 0.912 (0.007)

3-Bonus-all-c 0.899 (0.008) 0.872 (0.008) 0.823 (0.006)

Table 12: Welfare summary (Uniform PRA): Average ratio (std error) of the total number
of pairs matched relative to the size of a maximum matching.

(m,n) =(#hospitals, # pairs per hospital.)

mechanism (4, 18) (6, 12) (12, 6)

rCM 1.121 (0.008) 1.099 (0.011) 1.059 (0.016)

3-rCM 1.064 (0.008) 1.079 (0.011) 1.074 (0.012)

xCM 1.008 (0.009) 0.992 (0.011) 0.990 (0.016)

3-xCM 1.009 (0.011) 1.016 (0.013) 1.030 (0.015)

Bonus 1.123 (0.010) 1.089 (0.013) 1.061 (0.020)

3-Bonus 1.167 (0.014) 1.152 (0.017) 1.099 (0.020)

Table 13: Incentive summary (Non-uniform PRA): Average ratio (std error) of the total
number of pairs matched by a hospital that uses the canonical deviation compared to the
total number matched when truthful, and when other hospitals are truthful.

Similarly, for m = 30 and n = 8 pairs each, a deviating hospital achieves
+0.1 (se=0.03) more matched pairs when deviating under Bonus but incurs
a loss of -0.05 pairs (se=0.02) under xCM. Furthermore, Bonus achieves 119.8
(se=0.3) total matches on average under the canonical deviation by all hos-
pitals, whereas xCM achieves 130.03 (se=0.3) total matches on average under
truthful reporting by all hospitals. While the incentive issues in Bonus are
mitigated as the number of hospital increases, Bonus still remains vulnerable
to deviations for up to 30 hospitals.

40



(m,n) =(#hospitals, # pairs per hospital.)

mechanism (4, 18) (6, 12) (12, 6)

rCM-all-c 0.947 (0.005) 0.946 (0.005) 0.948 (0.005)

3-rCM-all-c 0.890 (0.005) 0.887 (0.005) 0.890 (0.005)

xCM-all-t 0.977 (0.001) 0.976 (0.001) 0.976 (0.001)

3-xCM-all-t 0.891 (0.001) 0.887 (0.001) 0.892 (0.001)

Bonus-all-c 0.864 (0.005) 0.831 (0.005) 0.785 (0.005)

3-Bonus-all-c 0.791 (0.004) 0.741 (0.004) 0.666 (0.004)

Table 14: Welfare summary (Non-uniform PRA): Average ratio (std error) of the total
number of pairs matched relative to the size of a maximum matching.
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Appendix A. Additional Proofs

Theorem 4. The xCM mechanism is EPIC and 2-way efficient for properties
(i) S-perfect and R-perfect on compatibility graphs the size of every marginal
economy and larger, and (ii) OD/UD-perfect on every hospital’s compatibility
graph.
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Lemma 6. Fix any hospital h. Assuming the S-perfect and R-perfect prop-
erty for compatibility graphs the size of the marginal economy without h and
larger, and the OD/UD-perfect property for the reports of hospitals other than
h, then for any strategy s′h of h, the xCM mechanism satisfies the following
properties:

1. In Step 1 with regard to S pairs, and for any type T ∈ {O,A,B,AB}:
(i) the matching µxCM is maximum on the subgraph of combined graph
G′⊕ restricted to T-T pairs,
(ii) hospital h matches all except for at most one reported T-T pair,

and if the parity of τ ′⊕ is even then it matches all reported T-T pairs,
and
(iii) hospital h matches all reported T-T pairs with non-zero probability

when at least one hospital j 6= h reports an odd number of T-T pairs.

2. In Step 2 with regard to R pairs, and assuming α′⊕ ≥ β′⊕, then,
(i) all reported B-A pairs are matched, and the matching µxCM is max-

imum on the subgraph of combined graph G′⊕ restricted to R pairs,
(ii) if (α′h ≤ β′h) or (α′⊕ = β′⊕) then all reported A-B pairs of hospital
h are matched, else the expected number of reported A-B pairs matched
is,

β′h + min(α′h − β′h, guniform(z−h,AB, xBA)),

where z−h,AB and xBA are as defined in the xCM mechanism.

2’. Symmetrically for the case that β′⊕ > α′⊕.

3. In Steps 3 and 4, any additional pairs that are matched involve an OD
pair of hospital h.

Proof. Consider hospital h. Let G′−h denote the combined graph from hos-
pitals other than h.

Consider any T ∈ {O,A,B,AB}.
1 (ii): If τ ′⊕ is even, then a maximum matching on the subgraph is perfect

by the S-perfect property, and satisfies constraints (7). In particular, hospital
h matches all its reported T-T pairs. If τ ′⊕ is odd, consider two cases. If τ ′h
is odd, then the following almost-perfect matching exists by the S-perfect
property and satisfies all constraints (7): match every T-T pair of every
hospital except h and all but one T-T pair of hospital h. If τ ′h is even,
then some other hospital j 6= h must have an odd parity T-T graph and
the following almost-perfect matching exists by the S-perfect property and
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satisfies all constraints (7): match every T-T pair of all hospitals other than
h and j, every pair but one of j, and all pairs of h. Because there exists
an almost-perfect matching that satisfies the constraints, then the matching
µT computed in Step 1 must leave h with at most one unmatched T-T pair.
This also establishes 1 (i) since in both cases there is a maximum matching
that satisfies constraints (7).

1 (iii): Let j 6= h denote a hospital with an odd parity T-T graph, and
consider the interesting case, where the parity τ ′⊕ is odd (otherwise, there is
a perfect matching.) Whatever the parity of τ ′h, the almost-perfect matching
that matches every T-T pair of every hospital except j exists (by the S-
perfect property), and satisfies all constraints. Because of this, and since
the maximum matching must leave one T-T unmatched and Step 1 selects
matching µT at random, the probability that all T-T pairs of h are matched
is non-zero.

2: For the R-subgraph, and the case α′⊕ ≥ β′⊕. A maximum matching
includes all B-A pairs by the R-perfect property.

2 (i): We construct a maximum matching that satisfies constraints (8)
with q = 0, and is essentially equivalent to the matching computed by xCM

(under the R-perfect property). For this, order the hospitals such (α′j ≤ β′j)
for hospitals j ∈ {1, . . . , r}, and not for j ∈ {r + 1, . . . ,m}. Consider the
graph G† induced by including the following number of A-B and B-A pairs
for each hospital (and corresponding edges),

(α′1, β
′
1), . . . , (α

′
r, β

′
r), (β

′
r+1 + yr+1,AB, β

′
r+1), . . . , (β

′
m + ym,AB, β

′
m),

where quotas yj,AB are as defined by xCM. In particular,
∑

j>r yj,AB =∑
j≤r(β

′
j −α′j), so that

∑
j≤r α

′
j +

∑
j>r(β

′
j + yj,AB) =

∑
j β
′
j, and G† is a

balanced bipartite graph. By the R-perfect property, there exists a perfect
matching on G†. Moreover, this matching is maximum on the R-subgraph be-
cause it includes all B-A pairs. Because all B-A pairs are matched, the match-
ing satisfies the B-A constraints (8) with q = 0. The A-B constraints are
satisfied for j ≤ r, because mj+max(0, yj,AB+δj) = mj+δj+yj,AB = α′j+0.
The A-B constraints are satisfied for j > r because mj +max(0, yj,AB +δj) =
mj + δj +yj,AB = β′j +yj,AB. Because the A-B constraints hold with equality,
the maximum matching determined by xCM must match the same number of
A-B and B-A pairs for each hospital.

2 (ii): If α′⊕ = β′⊕ then r = m and α′j = β′j for all hospitals j. If
α′h ≤ β′h then the matching includes all reported A-B pairs of hospital h by
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construction. Otherwise, if α′⊕ > β′⊕ and α′h > β′h then the expected number
of reported A-B pairs matched is β′h = mh + δh plus the expected size of
quota yh,AB, which is min(α′h − β′h, guniform(z−h,AB, xBA)).

3: In regard to Step 3: by (1) and (2) there are no R-R or S-S edges
in the remaining compatibility graph, and thus the only possible matches
involve OD pairs. In regard to Step 4: there are no OD pairs remaining
from other hospitals because of the OD/UD-assumption, and no remaining
(cross-hospital) S-S matchings or R-R matchings because of Step 1 and Step
2 of xCM and the R-perfect and S-perfect assumptions.

The expectation in the statement of the following lemma is taken with
respect to randomization internal to xCM.

Lemma 7 (Best response in xCM). Fixing the reports of other hospitals, if a
strategy sh of hospital h with graph Gh,

(i) matches every OD pair in Gh with a UD pair in Gh, and maximizes
across all strategies the expected number of UD pairs in Gh matched with OD
pairs of other hospitals,

(ii) maximizes across all strategies the expected number of S pairs in Gh

matched, not counting S pairs that match with OD pairs of Gh, and
(iii) maximizes across all strategies the expected number of R pairs in Gh

matched, not counting R pairs that match with OD pairs of Gh, then
strategy sh is a best-response.

Proof. Let NR and NS denote the number of R and S pairs matched by sh.
The only possible improvement is some strategy s′h that changes the matching
so that k > 0 of its OD pairs match with some of the R or S pairs in Gh.
This must decrease the number of its UD pairs that match by at least k (by
(i)). Suppose it increased the number of its R or S pairs that match by more
than k. Then more than NR +NS pairs match without using an OD pair of
h, a contradiction with (ii) and (iii). This completes the proof.

Proof of Theorem 4. Consider hospital h, and fix the (truthful) reports G−h
of the other hospitals. To establish the EPIC property, we show that a
truthful strategy for h meets the requirements of Lemma 7.

(i) Immediate, by OD/UD-perfect and Step 3, and property (3) of
Lemma 6, which precludes any OD pairs of other hospitals matching with a
UD pair of h.
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(ii) Immediate, because there are no matches that do not involve an OD
pair of h in Steps 3 or 4 of xCM by property (3) of Lemma 6.

Left to argue is that truthful reporting maximizes the number of S pairs
that match in Step 1. Consider some type T-T for some T∈ {O,A,B,AB}.
First, if τ⊕ is even then with the truthful strategy, h matches all T-T pairs
by Lemma 6 property (1) (ii), and truthful reporting is optimal. Consider
τ⊕ is odd, and two cases. (Case 1) τh is even. In this case, there is at least
one j 6= h with an odd parity number of T-T pairs and h will match all
T-T pairs with non-zero probability when reporting truthfully by Lemma 6
property (1) (iii). It is worse to send an odd number and hold back an odd
number, because all those sent by h would match by Lemma 6 property (1)
(ii) and at least one would be unmatched in the recourse action. Holding
back an even number of T-T is worse because this reduces the number of
maximum matchings computed in Step 1 of xCM that include all T-T pairs
of h, reducing the probability that µT includes all reported T-T pairs (since
a maximum matching is selected at random.) (Case 2) τh is odd. If at least
one j 6= h has an odd parity number of T-T pairs then the analysis proceeds
as in case 1, but considering sending an even number and holding back an
odd number, and then holding back an even number. Otherwise, if all the
other hospitals have an even number of T-T pairs then it is possible that h
has one reported pair unmatched by xCM with probability one. But now if h
sends an even number it matches all it sends by Lemma 6 property (1) (ii)
but necessarily fails to match at least one of the odd number it holds back.
Sending an odd number and holding back an even number leaves unchanged
that one reported pair is unmatched by xCM with probability one.

(R pairs) In regard to R pairs, there are no matches that do not in-
volve an OD pair in h in Steps 3 or 4 of xCM by property (3) of Lemma 6.
Left to argue is that truthful reporting maximizes the number of R pairs
matched in Step 2. Assume without loss of generality that α⊕ ≥ β⊕,
and further assume that αh > βh and α⊕ > β⊕, because hospital h will
otherwise match all pairs by Lemma 6 (2 (ii)) when reporting truthfully.
Given this, then by Lemma 6, (2) (ii), when reporting truthfully the hos-
pital matches in expectation 2βh + min(αh − βh, g−h(xBA)) R pairs, where
shorthand g−h(xBA) = guniform(z−h,AB, xBA), and xBA is the total number of
excess supply of B-A pairs reported by other hospitals. The interesting case is
when αh−βh > g−h(xBA) (otherwise it again matches all its R pairs), so that
truthful reporting matches an expected number of 2βh + g−h(xBA) = #truth
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pairs.
Consider some non-truthful report of R pairs. Let m′h denote the num-

ber of R pairs of each type matched before additional assignment from the
uniform rule; i.e., the quantity m∗h in xCM. Let q′h,AB = m′h + cAB and
q′h,BA = m′h + cBA denote the expected, total number of reported A-B and
B-A pairs of h matched in Step 2, where cAB, cBA ≥ 0 denote additional
matches through the use of the uniform rule. We proceed by case analysis:

(Case 1) α′⊕ ≥ β′⊕, so that A-B pairs remain on the long-side. In this
case, the best possible outcome for h is that it matches an expected number,
2(βh − q′h,BA) + q′h,AB + q′h,BA = 2βh + q′h,AB − q′h,BA = 2βh + cAB − cBA
R pairs in total, where this represents matching every unmatched B-A pair
with an A-B pair in Step 3 and recourse. The adjusted supply of excess
B-A pairs in the uniform rule is xBA + cBA, i.e., the same number from other
hospitals and any additional pairs of h that are in excess supply and matched.
Based on this, we have cAB = g−h(xBA + cBA) ≤ g−h(xBA) + cBA, where the
inequality is by Lemma 3, property (1). Therefore the best possible outcome
is βh + cAB − cBA ≤ 2βh + g−h(xBA) = #truth.

(Case 2) α′⊕ < β′⊕, so that B-A pairs are now on the long-side, and all
reported A-B pairs match, by the R-perfect property. Because the number
of A-B pairs and B-A pairs matched must be equal, we have:

α′h +
∑
j 6=h

αj ≤ q′h,BA +
∑
j 6=h

βj (A.1)

where the right-hand side is the number of B-A pairs of h matched and the
total number of B-A pairs in the supply from others. This simplifies to,

α′h − q′h,BA ≤
∑
j 6=h

βj −
∑
j 6=h

αj ≤
∑
j 6=h

βj −
∑
j∈L

qj,AB −
∑

j /∈{L∪h}

αj, (A.2)

where qj,AB ≤ αj is the expected number of A-B pairs matched to j at truth,
and L = {j 6= h, αj > βj} are the hospitals long A-B. But now we can also
write the balance of A-B pairs and B-A pairs matched at truth,

βh + g−h(xBA) +
∑
j∈L

qj,AB +
∑

j /∈{L∪h}

αj =
∑
j

βj, (A.3)

where all B-A pairs are matched and the left-hand side is the expected
number of A-B pairs matched. This simplifies to, g−h(xBA) =

∑
j 6=h βj −
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∑
j∈L qj,AB−

∑
j /∈{L∪h} αj, and so from (A.2) we have α′h−q′h,BA ≤ g−h(xBA).

Now, the best possible outcome for h in this case is that it matches, in ex-
pectation, 2(βh− q′h,BA) +α′h + q′h,BA = 2βh +α′h− q′h,BA ≤ 2βh + g−h(xBA) =
#truth. The first term assumes that all B-A pairs that are unmatched can be
matched with A-B pairs in Step 3 or a recourse action, and adds the number
of A-B and B-A pairs matched.

(OD-UD pairs) Finally, note that the truthful strategy matches all OD
pairs with UD pairs in Step 3 because of the OD/UD-perfect property of
each individual hospital’s compatibility graph.

For 2-way efficiency, by Lemma 6 the matching is maximum on the sub-
graphs of the combined graph restricted to T-T pairs (for all blood-types
T) and restricted to R pairs. This follows from the S-perfect and R-perfect
properties. In addition, every OD pair is matched to a UD pair. The 2-way
efficiency property follows by Theorem 1, since the matching is regular on
the combined graph.

Appendix B. Detail for Tests of PM Properties

In matchings with only 2-cycles, we compute the violations of the PM
properties in simulation as follows:

• For the R-perfect property, we obtain GR the R-subgraph of G̃n and
then remove a subset of the long-side at random such that the result-
ing R-subgraph is balanced. We perform a random matching on the
balanced subgraph and then record the number of unmatched R pairs
as a fraction of the number of pairs in a maximum matching in G̃n.

• For the OD/UD-perfect property, we compute a maximum matching on
the subgraph of OD and UD pairs and record the number of unmatched
OD pairs as a fraction of the number of pairs in a maximum matching
in G̃n.

• For the S-perfect property, we obtain GS, the S-subgraph of G̃n, and
for every component T-T, we remove one pair at random if there is an
odd number of pairs and perform a maximum matching. We record
the total number of unmatched S pairs (determined in this way) as a

fraction of the number of pairs in a maximum matching in G̃n.

In the presence of 3-cycles, we compute the violations of the assumed PM
properties in our simulations as follows:
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• For the R-perfect property, we obtain the extended R-subgraph of G̃3
n

and remove R pairs (if needed) in order to make a balanced graph of R
and virtual R pairs. For example if #A-B > #B-A + #virtual B-A, we
will remove (#A-B - #B-A - #virtual B-A) pairs from the A-B pairs,
uniformly at random. Similar to 2-cycles, we compute a maximum
matching allowing for 3-cycles that maximize the number of matched
R pairs, and record the number of unmatched R pairs as a fraction of

the number of pairs in a maximum matching on G̃3
n.

• For the OD/UD-perfect property, we first obtain all UD and AB-O
pairs that can be maximally matched in OUU matches. We remove

these pairs from G̃3
n, and then keep only the remaining OD/UD pairs

and perform a 2-cycle maximum matching. We record the number
unmatched OD pairs in the final step and number of unmatched AB-O
pairs in the first step, as a fraction of the number of pairs in a maximum

matching on G̃3
n.

• For the S-perfect property, we obtain GS, the S-subgraph of G̃3
n, and for

every component T-T, we perform a maximum matching with 3-cycles.
We record the total number of unmatched S pairs (computed in this
way) as a fraction of the number of pairs in a maximum matching on

G̃3
n.
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