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Abstract

Temperature variability and change over land and ocean exhibit characteristic spatial and tem-

poral structures. Understanding the physical mechanisms underlying these structures provides

information about the movement and storage of heat in the climate system. In this thesis, I first

analyze, and present an energy balance model for, seasonal temperature variability in the ex-

tratropics, which supports the idea that the advection of heat between land and ocean by the

mean atmospheric circulation can explain the regional characteristics of seasonal variability over

both land and ocean. The model is subsequently combined with a large, representative ensem-

ble of Lagrangian atmospheric trajectories to provide a realistic model of the seasonal cycle in

the Northern Hemisphere mid-latitudes. Second, based on the Lagrangian trajectories, a new

spatially-resolved metric, termed Relative Land Influence, is developed. The metric quantifies

the role of land as compared to ocean in influencing the temperature variability at a given loca-

tion. In addition to explaining the majority of the spatial pattern of seasonal variability, Relative

Land Influence is a significant predictor of the observed temperature change over both land and

ocean independently since 1950, suggesting that similar physical processes influence tempera-

ture variability on seasonal and decadal timescales. Finally, I explore the tails of temperature dis-

tributions in the context of identifying the causes of anomalously hot days in the Eastern United

States during peak summer. A coupled ocean-atmosphere mode in the central mid-latitude Pa-

cific is identified, which evolves on a characteristic timescale and ultimately leads to the amplifi-

cation of a mid-latitude wave train that includes a blocking high over the Eastern United States.
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The early identification of the sea surface temperature precursors to this mode allows for skillful

prediction of heat events at lead times greater than 40 days. The identification of physical pro-

cesses underlying temperature variability on a range of timescales can inform predictions of how

temperature variability may change in the future.
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Climate is what we expect, weather is what we get.

Robert Heinlein

Perhaps one should say that climate is what you

expect, or better yet what you ought to expect, when

you are not in a position to make a skillful weather

forecast.

Edward Lorenz

1

Introduction

Surface temperature has traditionally been one of the most closely monitored aspects of climate,

and serves as a convenient metric for climate variability and change. The earliest quantitative

measurements of temperature were taken in the 17th century, after the thermometer was ‘in-

vented’ by Santorio Santorio by adding a scale to a thermoscope, which provided only qualita-

tive indications of relative temperature (Chang, 2004). The longest continuous temperature time

series at a single location, the Central England Temperature dataset, was initiated more than a

century later, in 1772 (Parker et al., 1992). Since then, weather stations measuring temperature

and other meteorological variables have been established around the world with varying den-

sity, quality, and longevity. The United States in particular maintains a dense network of long-

running stations, while less developed regions of the world contain fewer high-quality stations

(Fig. 1.1).

Taking the temperature of the ocean is arguably more difficult than that of the land, but the

first ship measurements of ocean temperature, including the subsurface, are thought to have

been on Captain James Cook’s second voyage during 1772–1775 (Abraham et al., 2013). Since
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Figure 1.1: The spatial distribution of weather stations measuring temperature in the Global Historical
Climatology Network Daily database. Color indicates the length of the station record. Image courtesy of
Global Warming Art.

then, measurements of ocean temperature have been taken by merchant, navy, and scientific ves-

sels, leading to a historic concentration of measurements along major shipping routes and in the

Northern Hemisphere (Fig. 1.2). While the distribution of measurements of the world ocean has

increased dramatically over the past century, only with the recent deployment of the Argo ar-

ray have regions such as the high Southern latitudes become relatively well-sampled (Roemmich

et al., 2009). In contrast to the subsurface ocean, sea surface temperatures (SSTs) have been con-

tinuously measured by satellites since the early 1980s (Reynolds et al., 2002).

The global – if uneven – spread of temperature measurements is a thus a relatively recent phe-

nomena, but has been critical for our understanding of the earth system. Absent a phase change,

such as water evaporating or ice melting, excess heating results in an increase in temperature,

and temperature can thus serve as an imperfect indicator of the movement of heat throughout

the climate system. Improved statistical and dynamical models for regional temperature vari-
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Figure 1.2: Counts of ocean observations at 250 meters depth for two different time periods. The observa-
tions are grouped into 1◦ grid boxes, and the color indicates count. Figure from the IPCC fourth assess-
ment report (Solomon et al., 2007).

ability and change encapsulate information about transport, divergence, and storage of heat, and

can provide insight into how temperature may be expected to change in response to the chang-

ing composition of the atmosphere. The regional responses, integrated globally, are related to

climate sensitivity, defined generally as the temperature response to a perturbative radiative

forcing.

The relationship between temperature, T, and heating, can be discussed, to first order, based

on an energy balance model for regional temperature,

CdTdt = R+ λT−∇ · F, (1.1)

where all variables can change in space and time, and all terms are anomalies from a specified

base state. The left hand side of the equation represents the local heat storage, written under the

assumption that the imbalance can be expressed as the time derivative of temperature scaled by
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the heat capacity, C. The right hand side delineates the sources of the local heating (or cooling):

incoming radiation, R, assumed to be independent of temperature; outgoing radiation, λT, as-

sumed to be linearly dependent on temperature; and horizontal divergence, ∇ · F, which takes

into account transport of heat from (or to) other regions. The scaling factor, λ, that links tem-

perature and outgoing longwave radiation is termed the feedback factor, and encapsulates the

equilibrium sensitivity of temperature to a radiative imbalance.

The model can be examined in order to make a few observations. First, the energy balance at

any given location can be controlled by four factors, even in this simplified model, providing

some indication of the challenges underlying an understanding of regional temperature vari-

ability. Second, the heat capacity of the system becomes irrelevant in equilibrium. Third, when

globally averaged, the divergence term must disappear, and λmust be negative to allow for a

stable system. The determination of λ, however, requires knowledge of the global heat storage

and radiative balance.

This thesis takes a data-driven approach to address each of these three topics in an attempt to

gain greater insight into the controls on regional surface temperature variability on daily, sea-

sonal, and inter-decadal timescales.

1.1 Regional temperature variability and the seasonal cycle

Temperature varies at all frequencies, with variability increasing with decreasing frequency

(Hasselmann, 1976). This behavior holds for global mean temperature on timescales of thou-

sands of years, as well as for regional temperature on the daily to decadal timescales for which

spatially-resolved data is available (Huybers and Curry, 2006). While the temporal variations of

global mean temperature have been large over earth history, temperature variations across the

globe are much larger, and these localized variations play a significant role in the global distribu-
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tion of crops (Lobell and Field, 2007), diseases (Bhatt et al., 2013), and human populations (Small

and Cohen, 2004). Despite their importance, the skill of general circulation models in predicting

regional temperature variability and change tends to be limited (e.g. Sakaguchi et al., 2012).

The power spectra of regional temperature are surprisingly coherent (Fig. 1.3). In particular,

the magnitude of variability on annual timescales (f = yr−1) at a given location is a good predic-

tor of variability on both sub-annual and multi-decadal timescales (Huybers and Curry, 2006),

providing a hint that the processes controlling the spatial structure of temperature variability

may be similar from days to decades. Should this hold true, one timescale could be used as an

analogue to study another.

Figure 1.3: Power spectra for extratropical near-surface air temperature from NCEP-NCAR reanalysis
(Kalnay et al., 1996), adapted from Huybers and Curry (2006). Grid boxes are grouped according to their
annual period variability, which is also indicated by the line color. Power spectra are calculated using
Thomson’s multitaper power spectral density estimator (Thomson, 1982).

The seasonal cycle in particular is a promising timescale for exploration, because the magni-

tude of the solar forcing and temperature response are large, and it is observed every year. The

signal-to-noise ratio for the seasonal cycle in temperature is perhaps the largest in the climate
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system, leading to clear spatial patterns in the amplitude and phase of the seasonal cycle, relative

to the solar forcing (Stine et al., 2009). In contrast, the observed temperature response pattern to

increasing radiative forcing from anthropogenic influence is confounded by decadal variability

(Stott, 2003), a decrease in the availability of data going back in time, and uncertainty about the

magnitude and spatial pattern of the radiative forcing (Shindell and Faluvegi, 2009).

The spatial variability in the seasonal cycle has been used to understand the temperature

response to orbital variations (Laepple and Lohmann, 2009) and to predict equilibrium tem-

perature changes in different regions (Knutti et al., 2006). The skill of these approaches will

be dependent on the extent to which the relevant physics holds on both timescales. Processes

with timescales shorter than seasonal would be expected to be relevant on seasonal and longer

timescales, as would processes that have timescales longer than both seasonal and the second,

longer timescale. In contrast, if a process is slow with respect to seasonal timescales but fast with

respect to the second, longer timescale, then the seasonal analogue may not be appropriate.

In Chapter 2, I present a description of the extratropical seasonal cycle, as measured by its am-

plitude and phase, including the identification of specific relationships between the amplitude

and phase that have not been previously noted. I subsequently develop a set of energy balance

models to explain these relationships. The models highlight and quantify the dominant influence

of advective heat transports on the seasonal cycle.

In Chapter 3, I return to the advective model developed for the seasonal cycle, and present a

metric, Relative Land Influence, that has predictive skill for not only the spatial structure of the

seasonal cycle but also the pattern of temperature change observed since 1950. The model used

to predict the pattern of temperature change also provides information about the magnitude of

the climate feedback factor, discussed in the next section.
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1.2 Estimating climate feedback factors and ocean heat content changes

A parameter of interest in the climate system is the climate sensitivity, typically defined as the

global mean temperature response to a doubling of carbon dioxide concentrations from pre-

industrial levels and proportional to λ−1 in Eq. (1.1). One of the challenges in estimating climate

sensitivity from the observational record is a lack of knowledge about the magnitude of the heat-

ing imbalance, the vast majority of which (>90%) is heating the ocean (Loeb et al., 2012). In the

case of a nonzero heating imbalance, the system has not yet equilibrated with the perturbative

radiative forcing, so the observed temperature change is smaller than the theoretical equilibrium

temperature change. Available observations have been leveraged to estimate climate sensitiv-

ity from the observational record, accounting for the uncertainty in radiative forcing and ocean

heat uptake, leading to published ranges (90% confidence interval) of climate sensitivity includ-

ing 1.4-7.7◦C (Forest et al., 2002), 1.6◦C with no upper bound (Gregory et al., 2002), and 0.9-5.0◦C

(Otto et al., 2013), respectively. By requirement, these observational estimates of climate sensi-

tivity assume a constant, instantaneous value of the feedback factor. If these assumptions do not

hold, a wide range of equilibrium climate sensitivities could emerge on long timescales (Prois-

tosescu and Huybers, submitted).

Observational estimates can be complemented by general circulation model simulations. Due

to the computational intensity of the models, it is not typically possible to run the simulations

until equilibrium. Rather, analogous to the approach taken using the observational record, the

climate feedback factor is assumed to be constant, and the modeled temperature response is ex-

trapolated to a zero net heating imbalance. Using this approach, Andrews et al. (2012) found

the range of equilibrium temperature responses across the recent Climate Model Intercompari-

son Project 5 (CMIP5) ensemble to be 2.1-4.7◦C. Inherent in both the observational- and model-

based estimates is the assumption that the currently observed feedback factor is representative
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of that for longer timescales; thus, slow feedbacks emerging from changes to the land surface,

cryosphere, or deep ocean are implicitly excluded.

In Chapter 3, I present a different method for estimating climate sensitivity based on the in-

strumental record, which takes into account both the magnitude of the observed warming and

the spatial pattern. Based on insight from the seasonal cycle, the spatial pattern of warming is

argued to primarily emerge from spatial variability in divergence (the final term in Eqn. (1.1)),

and is used to jointly constrain the ocean heat uptake anomaly and the feedback factor under

assumptions about the radiative forcing.

1.3 Describing and predicting extreme temperature

Superimposed on the slowly varying climate are synoptic-scale weather events. These events

themselves are not, of course, distinct from the climate: rather, the average of the weather events

defines the climate. It can be useful, however, to take advantage of the separation of timescales

between climate and weather, and focus on the dynamical origins of specific weather events

against the thermodynamic background state of mean climate.

Extreme weather events are of particular interest because of their substantial societal impacts;

the focus here is on unusually hot days, or heat waves. In a thermodynamic sense, heat waves

can be caused by advection of heat from warmer regions, by an increase in downward radia-

tion due to clear skies, and/or by a decrease in the effective heat capacity of the land related to

desiccation of the soil (Black et al., 2004; Miralles et al., 2014). These categories, however, are di-

agnostic rather than prognostic, and raise the question of what dynamical pathways lead to the

anomalous heating and high temperatures sustained over a period of multiple days.

Heat waves are typically associated with a ‘wavy’ jet stream or blocking highs. A wavy jet

stream can lead to advection of warm, remote air into a cooler region (Mazon et al., 2014), whereas
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a blocking high initiates a set of positive feedbacks wherein the subsidence of warm, dry air and

the clear skies associated with a blocking high lead to increased warming of the atmospheric col-

umn, thus reinforcing the high pressure system (Cerne et al., 2007). These types of events occur

as part of random atmospheric variability (Hassanzadeh et al., 2014), but may be more probable

during some climatic background states. Recent work has focused on the connection between

high-latitude warming and sea ice loss, and the increased frequency of circulation anomalies

associated with hot summer days (Tang et al., 2014; Coumou et al., 2014). A proven connection

between the two would suggest a future increase in hot days not only due to mean warming, but

also because of an increased frequency of circulation anomalies such as blocking highs. To so-

lidify a connection between changes in the high-latitudes and mid-latitude weather circulation,

however, it is necessary to identify a causal pathway and demonstrate prognostic skill, which

remains to be done.

A related topic, addressed in Chapter 4, is whether certain climate states that occur within

the envelope of unforced natural variability are more likely to precede heat waves in the United

States. A correlation between North Pacific sea surface temperatures and hot summers in the

United States was identified more than 30 years ago (Namias, 1982), but subsequent theoreti-

cal and modeling work has failed to identify a clear and consistent influence of mid-latitude sea

surface temperatures on mid-latitude circulation (Kushnir et al., 2002). In Chapter 3, I use land

and ocean temperature observations from the past three decades to identify an apparent coupled

ocean-atmosphere mode that increases the probability of heat waves in the Eastern United States.

Whether the frequency of the mode is changing is left for future work.
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1.4 Road map

The three chapters of this thesis are published or submitted papers that are linked by a common

theme of inferring the physical mechanisms underlying observed temperature variability. The

chapters will be introduced with a brief note to contextualize their place in the thesis, but are

otherwise reproduced with only slight modifications from their published forms. The thesis will

conclude with a discussion of relevant future research questions inspired by the work done thus

far.
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2

The spatial structure of the annual cycle in surface tempera-

ture: amplitude, phase, and Lagrangian history

The annual cycle dominates the spectrum of temperature variability on timescales shorter than

Milankovitch variability. In this chapter, I present a description of and physical model for the

temperature response to annual-period solar forcing. The chapter is reproduced from its pub-

lished form: McKinnon, K. A., A. R. Stine, and P. Huybers, 2013: The spatial structure of the an-

nual cycle in surface temperature: amplitude, phase, and Lagrangian history. Journal of Climate,

26 (20), 7852–7862.

2.1 Abstract

The climatological annual cycle in surface air temperature, defined by its amplitude and phase

lag with respect to solar insolation, is one of the most familiar aspects of our climate system.

Here, we identify three first-order features of the spatial structure of amplitude and phase lag

and explain them using simple physical models. Amplitude and phase lag (1) are broadly con-

11



sistent with a land and ocean end-member mixing model, but (2) exhibit overlap between land

and ocean, and, despite this overlap, (3) show a systematically greater lag over ocean than land

for a given amplitude. Based on previous work diagnosing relative ocean or land influence as

an important control on the extratropical annual cycle, we use a Lagrangian trajectory model to

quantify this influence as the weighted amount of time that an ensemble of air parcels has spent

over ocean or land. This quantity explains 84% of the space-time variance in the extratropical

annual cycle, as well as features (1) and (2). All three features can be explained using a simple

energy balance model with land and ocean surfaces and an advecting atmosphere. This model

explains 94% of the space-time variance of the annual cycle in an illustrative mid-latitude zonal

band when incorporating the results of the trajectory model. The basic features of annual vari-

ability in surface air temperature thus appear to be explained by the coupling of land and ocean

through mean atmospheric circulation.

2.2 Introduction

It has been long understood that the annual cycle in surface air temperature is largely controlled

by the annual cycle in solar radiation, local surface conditions, and atmospheric circulation. Gen-

erally, oceanic climates have a small amplitude and large phase lag with respect to solar forcing,

while continental climates have a large amplitude and small lag (Von Hann and Ward, 1903),

with additional structure associated with the direction and strength of prevailing winds (Ward,

1906). This qualitative understanding of the systematic patterns in amplitude and lag of the an-

nual cycle has also been supported by quantitative analysis, with a historical focus on obtaining

a single measure of “continentality” that would reflect the relative influences of land and ocean.

Brooks (1917) used the land fraction in a series of concentric circles around a location as a pre-

dictor for the amplitude of the annual cycle, capturing the effects of nearby land or ocean, and

12



Brooks (1918) went on to account for the direction of the prevailing winds. Similar methods aim-

ing to determine the amplitude of the annual cycle from a regression of geographic variables

were presented by Spitaler (1922), Brunt (1924), and Hela (1953). Other work focused instead

on the lag of temperature behind solar radiation as a measure of continentality (Prescott and

Collins, 1951; van den Dool and Können, 1981), but amplitude and lag were not unified into a

single framework for describing continentality.

More recently, Stine et al. (2009) focused on the relationship between amplitude and phase lag

of the annual cycle, and showed that observations of the annual cycle could be approximately

described as a linear mixture of two sinusoids, interpreted as theoretical ocean and land end-

members. This conceptual framework provided a link between amplitude and phase, and also

demonstrated that each provides a slightly different picture of the spatial structure of the annual

cycle (see Fig. 1a,b in Stine et al., 2009). They further demonstrated the important role of the pre-

vailing winds; however, their description of the annual cycle was fundamentally algebraic.

A number of simple models based on energy balance principles have also been applied to

reproducing the annual cycle in surface temperature. Thompson and Schneider (1979) used a

two-layer zonal model with diffusive heat transport and reproduced the zonally-averaged am-

plitude of the annual cycle, but the modeled temperature lagged the observations by one to two

months. North et al. (1983) expanded on the one-layer diffusive energy balance model of North

and Coakley (1979b) and North et al. (1981) to include realistic continental configurations, using

heat capacity to distinguish between ocean, land, and coastal areas. Subsequent work used com-

parable models with application to the annual cycle, with comparable results (Hyde et al., 1989;

Kim and North, 1992). These previous models parameterized atmospheric heat transport as a

diffusive process and, while they do capture much of the first-order structure in the annual cy-

cle, do not account for the role of of atmospheric advection (e.g. Brooks, 1918; van den Dool and

Können, 1981). The influence of advection on seasonality is readily discerned in the east-to-west
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structure across extratropical continents and oceans (Stine and Huybers, 2012).

Here, we analyze spatial variability in the climatological annual cycle in surface tempera-

ture and seek to explain, using simple physical models, three of its primary features: a first-

order structure consistent with the extratropical annual cycle as a mixture of ocean and land

end-member sinusoids (Stine et al., 2009), an overlap in amplitude and phase between ocean

and land annual cycles, and a non-unique relationship between amplitude and phase, where

the ocean systematically has a later phasing for the same amplitude. While the first feature can

be well-predicted by westward distance from the coast (Stine et al., 2009), explanation of both

the second and third features requires a more complete framework. It will be demonstrated that

these features emerge from distinct ocean and land heat capacities in conjunction with mean cir-

culation patterns.

2.3 Structure of the annual cycle

We use monthly climatological temperature data from the Hadley Centre Climate Research Unit

(HadCRU, Morice et al., 2012). The climatology is based on the period 1961–1990 and is reported

at 5◦ spatial resolution. Data are provided as monthly averages, which, given the Nyquist crite-

rion that observing a sinusoid requires sampling at just less than half its period, is more than ad-

equate to constrain the amplitude and phase of the annual cycle (Thompson, 1995). For example,

our tests using the long (> 30 years) extratropical records in the Global Historical Climatolog-

ical Network (Menne et al., 2012) indicate an average correlation coefficient between estimates

of phase lag and amplitude calculated using daily and monthly average temperatures of greater

than 0.99, and a root mean square difference across the domain of 0.07 days for phase lag and

0.05 ◦C for amplitude. Only gridboxes where the HadCRUT4 product (Morice et al., 2012) has at

least five of the thirty years of observational data for all months of the year are included in the
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analysis. Each extratropical hemisphere is considered, but the tropics (23◦N–23◦S) are excluded

because the annual cycle there contains substantial twice-per-year variability, and variations

in local incoming solar radiation are a less dominant control on surface temperature relative to

higher latitudes.

Over 99% of the space-time variance in the annual cycle in surface air temperature across the

extratropics can be explained by the annual Fourier component, allowing for efficient repre-

sentation of the monthly climatology as its amplitude and phase. In order to account for dif-

ferences in solar insolation, we define gain as the amplitude normalized by the latitudinally-

variable amplitude of the annual Fourier component in solar insolation (Berger and Loutre,

1991)*, G(x, y) = AT(x, y)/Asun(y), and lag as the difference in phase between the annual Fourier

component of temperature and insolation, λ(x, y) = φT(x, y)− φsun(y).

Gain and lag exhibit coherent spatial structure (Fig. 2.1). Gain is generally larger over North-

ern Hemisphere land masses, increases from west to east across continents, and increases more

rapidly across North America than Eurasia. The smallest gains are found in the Southern Ocean

and the North Atlantic, while the largest are in northeastern Eurasia. Lag exhibits a clearer land-

ocean dichotomy, with an average lag of 28 days over land and 58 days over ocean. This struc-

ture can be efficiently represented in polar coordinates (Fig. 2.2), where gain is indicated by the

distance from the origin, and lag by the angle measured counter-clockwise from the positive x-

axis. The x-component is the gain that is in phase with the sun, and the y-component is the gain

that is in quadrature with the sun. Polar coordinates offer the advantage that the mixing curve

between two sinusoids is a straight line, and we use this representation to define three character-

istics of the annual cycle:

(1) Linearity: The first-order structure in polar coordinates is linear with both the intercept and
*Code available at http://www.ncdc.noaa.gov/paleo/pubs/huybers2006b/huybers2006b.

html
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Figure 2.1: (a) Gain and (b) lag of the annual Fourier component of the climatological annual cycle.
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slope positive. This relationship is consistent with a mixing model framework wherein a conti-

nental component that has high gain and small lag is linearly combined with an oceanic compo-

nent that has low gain and large lag (Stine et al., 2009).

(2) Overlap: Ocean and land values overlap for both lag and gain. Land gridboxes are found

with smaller gains and larger lags than ocean gridboxes, and the converse. This overlap is not

a result of the coarseness of the grid that we employ because it exists even after excluding all

gridboxes that contain mixed ocean and land, as indicated by a one-degree land mask. For in-

stance, the gain of the annual cycle is 47% larger in the East China Sea (27.5◦N, 127.5◦E) than in

central France (47.5◦N, 2.5◦E), and the lag in southern Nunavut, Canada (62.5◦N, 97.5◦W) is ap-

proximately five days longer than that in the middle of the Greenland Sea (77.5◦N, 2.5◦W). More

generally, 29% of the extratropical gridboxes that we analyze have gains ranging between the

minimum land gain and maximum ocean gain, and 10% have lags ranging between the maxi-

mum land lag and the minimum ocean lag.

(3) Offset: For ocean and land with the same gain, ocean gridboxes have a systematically higher

lag. This indicates that the greater lag over ocean is not only due to a higher heat capacity. The

differing land and ocean behavior can most easily be seen when focusing on a single latitude

band (e.g. Fig. 2.2c). Rather than exhibiting a land-ocean symmetry, the amount of change in lag

related to a specified change in gain is dependent on whether gain is increasing or decreasing in

the direction of the prevailing Westerlies. Notably, this second-order structure indicates that it is

not possible to define a single scalar value for continentality that completely describes the annual

Fourier component of the climatological annual cycle.

We seek to explain these three features of extratropical seasonality using as simple a physical

model as possible.
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2.4 Influence of atmospheric circulation

We aim to quantify the predictive strength of the hypothesis that the large-scale spatial structure

of the annual cycle is a consequence of land-ocean coupling through atmospheric circulation. An

initial scale analysis supports the idea of a dominant role for atmospheric circulation: an approx-

imate mid-tropospheric wind speed of 10 m s−1 and a radiative relaxation time of about a month

(Goody and Yung, 1989) suggests that atmospheric temperature properties can be advected on

scales of tens-of-thousands of kilometers. This simplistic analysis excludes latent heat processes

and vertical adjustment, among other processes, but nonetheless indicates that oceanic influence

can be present in continental interiors, and vice-versa. Below we quantify this influence through

evaluating the Lagrangian history of air parcels over land and ocean and, subsequently, incorpo-

rating this information into an energy balance model in the spirit of North et al. (1981).

2.4.1 Lagrangian trajectory analysis

To evaluate whether the basic features of the annual cycle can be explained as the result of atmo-

spheric circulation coupling land and ocean, we employ the NOAA Air Resources Laboratory

HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler and Hess,

1997, 1998; Draxler, 1997). We estimate 9,901,440 air parcel back trajectories, where 955 trajecto-

ries were initialized at each point on a 2.5◦ global grid. All back trajectories begin at 1000 meters

above ground level, a rough approximation of the top of the boundary layer. Individual trajec-

tories are equally spaced throughout 2006–2010 to obtain a representative annual average dis-

tribution of the source regions for each location (Fig. 2.3). Parcels are followed for the 28 days

preceding their initialization, or until they go above 200 hPa, approximating the tropopause.

Fig. 2.3 shows three illustrative examples of the spatial distribution of the back trajectories,

with parcels initialized in southeast Russia (57.5◦N, 117.5◦E), coastal California (37.5◦N, 122.5◦W),
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Figure 2.3: Source regions for parcels at the yellow ‘x’. Each of the seven consecutively larger areas en-
closed by the contour lines contains the closest 99% of parcel locations for each of seven days before ini-
tialization of the back trajectories.
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and off the coast of Chile (37.5◦S, 82.5◦W). Each of the seven contours encloses the 99% of air

parcels that are closest to the source location in each of the seven days before initialization, indi-

cating the extent of the source region.

2.4.2 Relative Land Influence

Using the ensemble of HYSPLIT parcel trajectories, we define Relative Land Influence, RLI, as

the weighted average of land and ocean that a set of air parcels in the atmospheric column have

previously passed over,

RLI = 1
N

N∑

i=1

∑28 days
t=0 Z(t)e−t/τ
∑28 days

t=0 e−t/τ
. (2.1)

Z(t) takes on values of zero or one depending on whether the parcel is over ocean or land, re-

spectively, at time t, where a three hour resolution is used. τ is the globally averaged radiative

relaxation time of the atmosphere, set at 25 days based on consideration of the lower 800 hPa of

the atmosphere and using an emission temperature of 255 K (Goody and Yung, 1989). The spa-

tial structure of RLI is largely insensitive to reasonable choices of τ; e.g., the pattern using a 15

day relaxation time is correlated at R = 0.99 to the one presented here.

To classify surface type, we use the NOAA GCOS one-degree land mask† and the ISLSCP II

one-degree global sea ice concentration dataset‡. The land mask is constant in time but the sea

ice mask is at monthly resolution. A gridbox is considered to be sea ice if its average concentra-

tion is greater than 50% for the month, and sea ice-covered gridboxes are treated as land.

A map of RLI (Fig. 2.4) shows the expected increase in land influence from west to east across

continents and the complimentary decrease across ocean basins. The most continental region

is in eastern Eurasia. No land gridbox is free from oceanic influence, and the converse. Note
†Available at http://data.nodc.noaa.gov/GCOS/software/
‡Available at http://daac.ornl.gov/
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that values of RLI show a substantial overlap between land and ocean because ocean gridboxes

off the eastern edge of continents have constituent air parcels mostly derived from over land,

whereas land gridboxes on the western edge of continents are heavily influenced by oceanic con-

ditions. This behavior is qualitatively consistent with the second feature of the annual cycle data

identified in Sec. 2.3.

One means of converting RLI into units that can be directly compared with the gain and lag

structure of the annual cycle is to define two time series for representative land and ocean an-

nual cycles, for which we use the highest and lowest gain amongst the observed annual cycle

climatologies, respectively. The land end member has a gain of 131 ◦C (kW m−2)−1 and a lag

of 22 days, whereas the ocean end member has a gain of 5.01 ◦C (kW m−2)−1 and a lag of 96

days. It is then possible to convert RLI into a real time series of temperature at each gridbox,

TRLI(x, y,m) = RLI(x, y)Tland(m) + (1 − RLI(x, y))Tocean(m), where m indicates month, and

all temperatures are monthly averages. Albeit simplistic, this mixing model explains 84% of

the space-time variance in climatological temperature, with better performance over land than

ocean, where it explains 93% and 72% of the variance, respectively.

As can be seen when TRLI is projected into components that are in phase and in quadrature

with the solar annual cycle (Fig. 2.4b), the mixing model captures the first two features of the

data: linearity and overlap. Linearity is reproduced by construction, whereas overlap results

from the aforementioned properties of RLI. The non-unique relationship between gain and lag is,

however, not captured by this framework (see Fig. 2.4b), and this issue is returned to in the next

section using a more physical model of the annual cycle. Including when the parcel has been in

the upper or lower troposphere during its trajectory as an additional predictor adds little to no

explanatory power with respect to the annual cycle.

The misfit between our Lagrangian metric of the annual cycle, TRLI, and the observations,

THadCRU, can be measured by the root mean square error, RMSE(x,y) = ( 1
12
∑12

m=1(THadCRU,(x,y,m)−
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TRLI,(x,y,m))
2])1/2, normalized by the amplitude of the annual Fourier component of temperature

(Fig. 2.4c). The RMSE relative to the annual amplitude is largest in regions of sea ice cover, indi-

cating the importance of more fully accounting for this third surface type that is neither land nor

ocean in future work. The importance of sea ice has recently been demonstrated by Dwyer et al.

(2012), who showed that its loss can account for changes in the amplitude and phase of the an-

nual cycle of temperature in general circulation model simulations. Globally, the majority of the

misfit results from a mis-assignment of lag in the RLI model. Holding either lag or gain constant

at the observed value for all gridboxes and changing the other to that predicted by RLI indicates

that the error due to lag misfits is approximately twice that due to gain misfits.

2.5 Advection energy balance model

The Relative Land Influence metric accounts for the amount of time air parcels spend over land

and ocean, but does not consider the physical interactions between surface and atmosphere

along a trajectory. To explain the third feature of the annual cycle, offset, we turn to an energy

balance model.

2.5.1 Model and idealized application

We present a simple energy balance model with east-west resolution of an advecting atmosphere

atop a surface layer, permitting calculation of both atmospheric and surface temperature, Ta and

Ts. The surface radiative balance is driven by absorbed shortwave radiation, (1− α)(1− fabs)S(t),

where S(t) is the annual cycle of top-of-the-atmosphere incoming solar radiation at a fixed lat-

itude, α is surface albedo, and fabs is atmospheric absorption. S(t) is time-dependent whereas α

and fabs are constant. The surface is either land or ocean, distinguished by differing heat capaci-

ties, Cs. These surfaces are coupled to the atmosphere through a “leaky greenhouse” framework,
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where the atmosphere absorbs and emits longwave radiation with an emissivity, ε, as well as

through a linear diffusivity term, κ, that multiplies the local surface-atmosphere temperature

difference and represents non-radiative heat exchange. The atmosphere flows west-to-east with

velocity u, and has a heat capacity Ca, that together define a horizontal scale of influence. The

advection energy balance model is expressed as,

Cs
dTs
dt = (1− α)(1− fabs)S(t) + κ(Ta − Ts) + σ(εT4a − T4s ), (2.2)

Ca
∂Ta
∂t = −uCa

∂Ta
∂x + fabsS(t) + κ(Ts − Ta) + εσ(T4s − 2T4a). (2.3)

Note that the model retains no vertical structure in either the atmosphere or ocean and that the

temperatures in both can be viewed as representative of their respective mixed layers. The nu-

merical values for all model parameters are in Table 2.1.

We apply the model to a simplified geometry, with constant, closed zonal flow around a lati-

tude band consisting of one continent and one ocean basin of equal width. The modeled annual

cycle along the band is shown in Fig. 2.5 and exhibits all three features discussed in Sec. 2.3: lin-

earity, overlap, and offset. We are able to offer some perspective on the origins of the three fea-

tures based on our simple model as follows:

(1) Linearity: The annual cycle in atmospheric temperature results from the relative influence

of the land and ocean surfaces. The disparate heat capacities of land and ocean give differing

basic annual cycles, in terms of gain and lag, that are then mixed through the advecting atmo-

sphere.

(2) Overlap: The advective heat fluxes are of the same order of magnitude as the surface-atmosphere

heat fluxes (Fig. 2.6), allowing for the penetration of remote oceanic conditions into continents,
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Figure 2.5: (a) Gain and lag of the annual cycle in polar coordinates calculated from the advection energy
balance model (Eqs. (2.2) and (2.3)) using an idealized geometry. Black X’s indicate land, gray O’s indicate
ocean. Neighboring gridboxes of the same surface type are connected by a thin gray line, and arrows indi-
cate west-to-east movement across longitude. (b)-(e) Modeled annual cycles for the atmosphere atop land
(b, d) and ocean (c, e) at the locations marked by black stars in (a). ‘Atmosphere (in)’ is the annual cycle of
the atmosphere for the gridbox immediately to the west. The amplitude is the same in each row, but the
ocean points exhibit a greater lag than the land points by 52 (b, c) and 21 (d, e) days.
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and vice-versa.

(3) Offset: Absent atmospheric circulation in the model, land surfaces and the overlying atmo-

sphere would have an annual cycle in temperature that lagged solar radiation by about a month,

whereas ocean surfaces would lag the atmosphere by about three months and the overlying at-

mosphere by almost as much. Transport of heat by the atmosphere, represented using a constant

zonal velocity, has the counter-intuitive effect of making the lag over land smaller and that over

ocean greater. This broadening of land-ocean lags appears to be at the heart of the offset, because

it almost entirely disappears if the surface annual cycle is prescribed to be equal to that attained

in the no atmospheric circulation case.

The increased lag over ocean can be understood through considering the influence of atmosphere-

surface heat fluxes relative to solar fluxes. The annual cycle in atmospheric temperature ad-

vected off the eastern edge of the continent into the western edge of the ocean basin leads to

atmosphere-surface heat fluxes having a larger magnitude than direct radiative absorption.

These fluxes of heat from the atmosphere generally lag behind the solar forcing, leading to a

greater ocean lag than would be the case without atmospheric advection. As the continental in-

fluence decreases eastward, the solar heat fluxes become dominant and seasonality approaches

that obtained with no atmospheric circulation.

The situation differs slightly over land. The annual cycle of the atmosphere advected onto

the western edge of the continent primarily acts to damp the annual cycle over land, which de-

creases both its gain and lag. This is in analogy with a linear system driven by periodic forcing,

e.g., CdT
dt = A exp[ıωt] − λT, where the lag of T relative to the forcing also decreases with greater

damping, φ = 1
ω arctan[

ωC
λ ]. Thus, the oceanic influence acts to decrease the lag over land. These

two effects combine to produce the lag offset in the model (e.g. Fig. 2.5b-e).

Examination of the modeled heat fluxes (Fig. 2.6) gives more insight into the controls on the
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annual cycle. The advective and surface-atmosphere heat fluxes are large and in opposition.

The shortwave forcing from atmospheric absorption is small compared to the other heat fluxes,

only becoming comparable in the eastern interiors of continents and ocean basins, although it

becomes a more dominant heating source when considering zonal mean quantities (Donohoe

and Battisti, 2013). The tendency, which is proportional to but in quadrature phase with the an-

nual cycle in temperature, is the residual of these large heat fluxes, and is generally an order of

magnitude smaller than either the advective or surface-atmosphere heat fluxes. Furthermore, be-

cause the tendency is the sum of multiple heat fluxes in addition to solar forcing, the phase of air

temperature is able to have a more-than-90-degree phase lag from the solar forcing.

We find the structure of the modeled annual cycle to be largely insensitive to reasonable vari-

ations in model design. For instance, although the majority of planetary albedo is due to atmo-

spheric rather than surface reflection (Donohoe and Battisti, 2011), changing this partitioning

does not affect the result in the sense that the resulting amplitude and phase structure are cor-

related with the base case at R>0.99. Including a seasonally-variable emissivity and varying

albedo spatially or seasonally based on observations from the Earth Radiation Budget Experi-

ment (Barkstrom, 1984) also has negligible influence on our results. Varying the coupling con-

stant, κ, between 10 and 50 W m−2 K−1 has a slightly larger effect, particularly on the rate of

change of lag across ocean basins, but the general structure is retained, and the gain and lag

between the base case and these other choices for κ are correlated with R ≥ 0.97 and R ≥ 0.89,

respectively.

The zonal flow model can also be applied to the land-ocean configuration of a specific latitude

band, for which we choose 45-50◦N, and compared to the observed annual cycle there (Fig. 2.7c,

d). The model captures the first-order structures in gain and lag over ocean and land but does

not reproduce differences such as those between North American and Eurasia. The misfit be-

tween the model and the observations can likely be ascribed to two obvious and related over-

28



�800 �600 �400 �200 0 200 400 600 800
�300

�200

�100

0

100

200

300
(a)

300
600

� = 0

� = �/2

� = ��/2

Amplitude in phase with sun (W m�2)

In
 q

ua
dr

at
ur

e 
w

ith
 s

un
 (W

 m
�2

)

�10 0 10 20 30
�30

�25

�20

�15

�10

�5

0

5

10

15

20

30

� = 0

� = ��/2

(b)

In phase with sun

In
 q

ua
dr

at
ur

e 
w

ith
 s

un

Figure 2.6: The amplitude and phase of the heat fluxes to the atmosphere in the advection energy balance
model shown in polar coordinates. (a) Energy flux amplitude and phase broken down into components:
advective (−uCa

∂Ta
∂x , light blue); sensible, latent, and longwave (κ(Ts − Ta) + εσ(T4s − 2T4a), red); and solar

(fabsS(t), yellow star). Mathematical representations correspond to Eqn. (2.3). X’s indicate land, O’s indi-
cate ocean, neighboring gridboxes of the same surface type are connected by a thin gray line, and arrows
indicate west-to-east movement across longitude. (b) Net heating (orange, Wm−2) and the normalized
temperature response (dark red, ◦C (kW m−2)−1). The normalized temperature response is multiplied by
a value of 0.2 to plot on the same axes as net heating.
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simplifications in the zonal flow model: the prescription of constant velocity for the full latitude

band and the use of the fixed land-ocean configuration at that latitude band, as opposed to tak-

ing into account differences in surface type that would result if the circulation was not purely

zonal.

2.5.2 Incorporation of HYSPLIT results

To explore the idea that model mismatch arises because of deviations from pure zonal flow, we

incorporate HYPSPLIT parcel trajectories. Consider a single trajectory that arrives at a single

gridbox of the zonal model, for which we are interested in estimating the annual cycle. We con-

struct a separate model to represent the 28 days preceding its arrival at the gridbox, using the

land-ocean sequence that the trajectory follows as the surface type boundary condition in the

model. Land and ocean boxes are determined from position using the GCOS one-degree land

mask, and model velocity, u, is specified as the average zonal velocity of the trajectory. All other

model parameters are in Table 2.1 and are identical to those used in the idealized simulation in

the previous section. To capture the full seasonal cycle, the model is integrated to steady season-

ality using solar forcing, S(t) (as in Eqns. (2.2) and (2.3)). The initial condition for the air parcel

comes from the closed-loop zonal flow model after also integrating it to a steady annual cycle

under the same model parameters.

To sample a larger fraction of the distribution of parcel source regions (e.g. Fig. 2.3), we inte-

grate the model using 642 different trajectory paths for each of the 72 five-degree gridboxes in

the latitude band between 45-50◦N. Trajectories are equally spaced across the time period 2006–

2010 and are a subset of those used to calculate Relative Land Influence. The energy balance

model outputs across each trajectory are then averaged to create a climatology for comparison

to observations.

The model climatology captures 94% of the space-time variance of the monthly temperature
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Figure 2.7: (a) Monthly temperature anomalies in the latitude band 45-50◦N from the advection model
driven by HYSPLIT trajectories versus observations. (b) The gain and lag of the modeled annual cycle in
polar coordinates showing land (X’s) and ocean (O’s) boxes. Neighboring gridboxes are connected via a
thin gray line. (c) The gain of the modeled annual cycle across longitude at 45-50◦N using a zonal wind
(gray) and with the inclusion of the HYSPLIT trajectory information (black), as compared to the observa-
tions (dashed). Land regions are indicated by shading. (d) Similar to (c) but for lag.
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Table 2.1: Parameter values for the advection model. Zonal wind velocity is the average across the HYS-
PLIT trajectories at 45-50◦N; see Sec. 2.52.5.2.

Name Var. name Value Units

Zonal wind velocity u 6.1 m s−1

Emissivity ε 0.8

Albedo α 0.3

Coupling coefficient κ 50 W m−2 K−1

Shortwave absorption fabs 0.18

Ocean heat capacity Co 75 m.w.e.

Land heat capacity Cl 1 m.w.e.

Atmosphere heat capacity Ca 1 m.w.e.

meter-water-equivalent m.w.e. 4.18×106 J m−2 K−1

Latitude 47.5◦N
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climatologies in the latitude band considered (Fig. 2.7a), including the more rapid changes in lag

across ocean than land, the rapid decrease in gain at the western edge of the Pacific Ocean, and

the more rapid increase in gain across North America than Eurasia. The energy balance model

that incorporates the HYSPLIT information captures basin-scale features substantially better

than is the case when a constant zonal flow is assumed (Fig. 2.7c,d).

The primary model-data misfit arises from the model producing too large a lag in the interiors

of ocean basins, and we speculate this is due to lack of model mixed layer dynamics (e.g. Laep-

ple and Lohmann, 2009). One might also have suspected that major features of the annual cycle

would be controlled by processes such as temporal and spatial variability in cloudiness (Weaver

and Ramanathan, 1997), intra-annual variability in atmospheric circulation patterns (Stine and

Huybers, 2012), moisture availability over land (Stine et al., 2009), or higher order Fourier com-

ponents of the annual cycle (Legates and Willmott, 1990). These additional processes presumably

also contribute, but the present results indicate that the primary explanation for spatial variabil-

ity in the the extratropical annual cycle structure is the land-ocean contrast, mediated by the cir-

culation of the atmosphere.

2.6 Conclusion

The extratropical annual cycle is characterized by (1) a first-order linear structure consistent with

an end-member mixing framework, (2) a land-ocean overlap in gain and lag, and (3) a system-

atically higher lag over ocean than land. Previous analysis identified feature (1) as due to rela-

tive land and ocean influences (Stine et al., 2009). We further find that accounting for the source

region of air parcels through a Lagrangian approach captures feature (2), and that combining

atmospheric advection with an energy balance model captures feature (3). Each component of

our simple model appears necessary for describing these three features, suggesting that it is, in
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a sense, a minimal representation. Atmospheric coupling between land and ocean gives rise to a

linear structure between gain and lag when plotted in polar coordinates, the directional nature of

atmospheric advection leads to overlap in gain and lag, and the time-dependence of atmospheric

interaction with land and ocean produces a non-unique relationship between gain and lag.

These results support previous findings and have several further implications. Changes in

continental configuration over geological timescales are expected to have far-reaching effects

on the annual cycle, as the air parcel source region for a given location will become more con-

tinental or oceanic. Loss of sea ice (e.g. Stroeve et al., 2012) is also expected to moderate nearby

annual cycles due to an increase in effective heat capacity (Dwyer et al., 2012). Further work on

the parameterization of sea ice in this framework may be helpful in understanding the connec-

tion between sea ice loss and changes in the annual cycle. Finally, the coupling of land and ocean

via mean circulation patterns is not specific to annual period variability, and this framework

may also provide insight into the magnitude and timing of changes at synoptic and interannual

timescales.

34



3

On using the seasonal cycle to interpret extratropical temper-

ature changes since 1950

The investigation of the seasonal cycle in the previous chapter provided a framework with which

to understand the observed spatial pattern of seasonal temperature variability in the extratrop-

ics. In this chapter, I test the hypothesis that the same mechanism – heat transport by the atmo-

sphere between the low heat capacity land and high heat capacity ocean – can explain a large

fraction of modeled and observed multi-decadal temperature changes. The chapter is repro-

duced from its published form: McKinnon, K. A. and P. Huybers, 2014: On using the seasonal

cycle to interpret extratropical temperature changes since 1950. Geophysical Research Letters, 41

(13), 4676–4684.

3.1 Abstract

Extratropical near-surface air temperature variability is explored on three different timescales:

the seasonal cycle, observed changes in temperature since 1950, and the equilibrium response
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to increasing CO2 in an atmospheric general circulation simulation with fixed sea surface tem-

peratures. Exploration is undertaken using an energy balance model (EBM) that parameterizes

advective land-ocean heat fluxes. The EBM is tuned only to the climatological seasonal cycle, yet

captures 47% of the variability in observed multi-decadal temperature changes in the extratrop-

ics and 78% of the variability in the equilibrated model simulation. The subseasonal timescale

of atmosphere-surface heat fluxes explains, at least in the context of this EBM, the ability to infer

patterns of multi-decadal change using information primarily drawn from the seasonal cycle.

3.2 Introduction

The importance of ocean heat uptake in influencing patterns of temperature variability is well

established. These patterns include the amplitude and phase of the seasonal cycle of surface tem-

perature (North and Coakley, 1979a; North et al., 1981; McKinnon et al., 2013), internally gener-

ated surface temperature variability (Kim and North, 1991), and transient surface temperature

changes in response to increased radiative forcing (Stouffer et al., 1989; Manabe et al., 1991; Kim

et al., 1992). The common influence of ocean heat uptake amongst seasonal, interannual, and

decadal timescales of temperature variation suggests that the observed response at one timescale

may inform about the others. Indeed, the amplitude of the seasonal cycle in surface temperature

has previously been used as a predictor for equilibrium climate sensitivity across an ensemble of

general circulation models (Knutti et al., 2006), and the magnitude of the seasonal cycle is a good

predictor of the magnitude of decadal variability in regional surface temperatures (Huybers and

Curry, 2006).

That there are common controls on surface temperature variability for the seasonal cycle and

longer timescales has previously been demonstrated using an energy balance model (EBM),

wherein atmospheric heat transport was parameterized as a diffusive process (Kim and North,
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1991; Kim et al., 1992). Here, we revisit this topic from the standpoint of a longer instrumental

record and an EBM that permits for analytical solutions. Furthermore, as opposed to the diffu-

sive and isotropic representation of horizontal heat fluxes used in the earlier EBM studies, heat

transport is parameterized based on mean atmospheric circulation, allowing for anisotropy due

to the climatological wind patterns.

The EBM is written in a minimalist manner so as to isolate the influence of advection of heat

between land and ocean on surface temperature patterns. Excess heat not realized as a temper-

ature increase is stored in the ocean. While this approach ignores many additional important

processes, such as changes in meridional heat transport, spatial structure of perturbative radia-

tive forcing, and spatial and temporal variability in mixed layer depth, it allows us to isolate the

effect of ocean heat storage on temperature variability. The model is presented and minimally

tuned to the seasonal cycle (Sec. 2), shown to give accurate predictions at longer timescales us-

ing equilibrium results from a general circulation model with fixed sea surface temperatures

(Sec. 3), and then compared to observed temperature variations over recent decades (Sec. 4). The

skill – or lack thereof – of the EBM is used a metric to assess the importance of advective heat

fluxes and ocean heat uptake in influencing surface temperature as compared to other climate

processes that are excluded from the model.

3.3 Amplitude of the seasonal cycle in surface temperature

3.3.1 EBM formulation

The near-surface air temperature anomaly (hereafter simply ‘temperature’), Ti,j, is modeled as a

mixture between land and ocean temperatures, weighted by a mixing parameter, mi,j:

Ti,j = mi,jTland + (1−mi,j)Tocean. (3.1)

37



‘Land’ and ‘ocean’ refer to the end-member cases where the heat flux divergence is zero, so the

end-members are in local radiative equilibrium. The indices i, j indicate spatial dependence.

These end-members are modeled using two linearized energy balance models,

Cland
dTland
dt = R+ λTland, (3.2)

Cocean
dTocean

dt = R+ (λ− κ)Tocean, (3.3)

where C is heat capacity, with Cland < Cocean; R is a perturbative radiative forcing; λ is a feedback

parameter; and κ is a linear diffusivity that controls the rate of heat uptake by the deep ocean.

Parameters lacking subscripts are constant in space. Ocean temperature, Tocean, represents the

mixed layer, and the deep ocean is assumed to have infinite heat capacity for the scenarios con-

sidered here.

Energy balance equations similar to Eqns. (3.2) and (3.3) are more typically applied with re-

spect to the global mean (e.g. Wigley and Schlesinger, 1985; Raper et al., 2002; Gregory and Forster,

2008); here, the end-members are reflective neither of the global mean nor of the average land

and ocean temperatures. Instead, each model equation captures the temperature response for

land or ocean if each was controlled only by its heat capacity, the feedback parameter, and—in

the case of the ocean—heat uptake by the interior.

Local temperatures, Ti,j, are then expressed as,

Cland
dTi,j
dt = R+ λTi,j −Hi,j, (3.4)

Hi,j = (1−mi,j)

[
(Cocean − Cland)

dTocean
dt + κTocean

]
. (3.5)

In this formulation, temperature is modeled as a fast, land-like response to forcing that is damped

by the horizontal, dominantly zonal heat flux divergence, Hi,j, due to atmospheric advection.
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Figure 3.1: A map of the Relative Land Influence field

The magnitude of damping is a function of Relative Land Influence, mi,j. Relative Land Influence

is a scalar measure of the relative magnitude of atmospheric heat fluxes from land as compared

to ocean at a given location, and is calculated from an ensemble of Lagrangian air parcel back

trajectories. The parcel trajectories are simulated using HYSPLIT (Draxler and Hess, 1997, 1998;

Draxler, 1997) and the meteorological fields from NCEP-DOE reanalysis (Kanamitsu et al., 2002).

Values from zero to one grade from purely marine to purely continental influence (Fig. 3.1). Fur-

ther details regarding Relative Land Influence can be found in McKinnon et al. (2013) and the

auxiliary material. The model is written such that the net diverged heat is implicitly stored in the

mixed layer (first term on the right-hand-side of Eqn. (3.5)) and deep ocean (second term on the

right-hand-side of Eqn. (3.5)).
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3.3.2 Application to the seasonal cycle

To model the extratropical seasonal cycle, we prescribe a sinusoidal forcing function, R, with an-

nual frequency, ω. The seasonal cycle is negligibly influenced by the deep ocean in the EBM, so

the value of κ in Eqn. (3.3) is set to zero for simplicity. Consistent with this assumption, the sea-

sonal timescale results are insensitive to the choice of κ. The amplitude and phase of R vary in

latitude, so we examine the annual component of temperature normalized by that of the forcing,

i.e., the gain (Stine et al., 2009). Annual components of temperature and forcing are calculated

as the magnitude of the once per year Fourier component (Thomson, 1995). Eqns. (3.4) and (3.5)

yield a gain, Gi,j, of,

Gi,j =

[
λ2 + ω2(Cland(1−mi,j) + Coceanmi,j)

2

(λ2 + C2landω2)(λ2 + C2oceanω2)

]1/2
. (3.6)

A related expression is obtained for the phase offset, or lag, between the forcing and the temper-

ature response. Heat capacities, Cland and Cocean, are respectively set to 2 and 76 meters of water

equivalent, consistent with previously used values (McKinnon et al., 2013). All parameter values

are given in Table 3.1.

To estimate gain from observations (Fig. 3.2a), we use the Hadley Centre monthly temperature

climatology at 5◦x5◦ resolution (Morice et al., 2012), scaled by the seasonal forcing. The forcing is

the sum of two annual period terms: (1) the top-of-the-atmosphere (TOA) solar forcing, scaled

by a co-albedo, and (2) the seasonal cycle in meridional heat flux convergence. We explicitly

include meridional heat flux convergence in the forcing because it is not otherwise parameter-

ized in the model, but acts to damp the seasonal cycle in heating (Donohoe and Battisti, 2013),

and, therefore, should also be accounted for when estimating gain. Note that the availability of

observationally-based estimates of seasonal heat flux convergence and our approach of using the

40



Table 3.1: Model parameters for the EBM in the three different scenarios. Parameters inferred from fitting
the model to the data, via minimizing the mean squared deviations across gridboxes, are shown with their
95% confidence intervals.

Name Symbol Value Units

Land heat capacity Cland 2 m.w.e.

Ocean heat capacity Cocean 76 m.w.e.

Angular frequency ω 2π (year)−1 year−1

Radiative forcing (2x CO2) R2x 3.48 W m−2

Radiative forcing rate (before 1982) β1 0.06 W m−2 (decade)−1

Radiative forcing rate (after 1982) β2 0.53 W m−2 (decade)−1

Meters-water-equivalent m.w.e. 4.18×106 J m−2 K−1

Scaling parameter for Relative Land Influence k 0.52 ± 0.01 (unitless)

Seasonal cycle feedback parameter λseasonal -2.48 ± 0.15 W m−2 K−1

Fixed SST equilibrium feedback parameter λAM2.1 -2.09 ± 0.09 W m−2 K−1

Multi-decadal change feedback parameter λHadCRUT4 -0.57 ± 0.04 W m−2 K−1

Linearized ocean diffusivity κ 7.69 ± 2.02 W m−2 K−1
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seasonal cycle to tune the EBM is distinct from later applications of the EBM, when it is used to

predict anomalies in temperature at longer timescales and anomalies in heat flux convergence

are not included. Both the TOA solar forcing and the co-albedo are from the CERES-EBAF cli-

matology product (Loeb et al., 2009). Meridional heat flux convergence is from the analysis of

Fasullo and Trenberth (2008). The amplitude and phase of the forcing varies as a function of lat-

itude but is constant in longitude, such that all zonal structure in the EBM is due to structure in

Relative Land Influence.

Analysis is restricted to the extratropics (10-60◦ in both hemispheres) due to weak once-per-

year solar influence relative to other processes in the deep tropics (Sobel et al., 2001) and the

combination of fewer data and strong local feedbacks (Hwang et al., 2011) in the high latitudes.

Locations where less than 50% of the variance in the monthly climatology is explained by an an-

nual period sinusoid are also excluded from all analyses. The remaining domain covers 64% of

the global area. Estimation of the annual period components of temperature and forcing using

daily rather than monthly values gives essentially the same amplitude (McKinnon et al., 2013).

Two free scalar parameters are jointly adjusted to fit the EBM to the seasonal cycle. The first,

k, scales the range of Relative Land Influence. Specifically, while the spatial pattern of Relative

Land Influence is fixed from the analysis of the Lagrangian back trajectory ensemble (see auxil-

iary material), it spans an arbitrary range between zero and one. The scalar parameter, k, trans-

lates the unscaled values of Relative Land Influence, m∗
i,j, from Eqn. (A1) to scaled ones, mi,j, as

mi,j = km∗
i,j. The scaled values allow for a proper allocation of local heat fluxes between outgo-

ing longwave radiation, λTi,j, and heat flux divergence, Hi,j (see Eqns. (3.4) and (3.5)). The sec-

ond free parameter is the feedback parameter, λ. The two parameters are jointly constrained (see

Fig. 3.4b) through minimizing the sum of squared deviations across gridboxes between the EBM

and observations. Operationally, we use the MATLAB non-linear fitting toolbox, which utilizes

the Levenberg-Marquardt algorithm for minimization. The value of k is fixed to the value found
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Figure 3.2: EBM fit to the seasonal cycle. (a) Gain of the observed seasonal cycle from the HadCRU cli-
matology. (b) Gain predicted by the EBM (c) Observed gain (vertical axis) compared to modeled gain
(horizontal axis) after binning. The squares show the mean of the bin, whereas the whiskers show one
standard deviation across the gridboxes within the bin. Number of bins is assigned as a function of num-
ber of gridboxes, n, according to the Rice Rule as ⌈2n1/3⌉, and there are approximately the same number of
gridboxes in each bin.
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here in all subsequent analyses.

The EBM fit to the seasonal cycle indicates a feedback parameter value of −2.48±0.15 Wm−2K−1,

where a more negative λ is associated with a smaller equilibrium temperature response to a

given forcing. Uncertainties are 95% confidence intervals based on model fit to the data and do

not include the effects of error in model choice or in the observational data. The gains predicted

from the EBM and observed in the Hadley Centre data have a correlation of 0.81 across space

(Fig. 3.2). This correlation indicates that the model is largely capable of reproducing the sea-

sonal climatology in the selected domain, but because we approach the seasonal cycle as a tool

for model tuning, we do not make any claims as to the significance of the correlation.

3.4 An equilibrium experiment

To explore whether the seasonal results are also informative for longer timescale responses, we

examine the annual mean temperature changes (Fig. 3.3a) from a set of GFDL AM2.1 general cir-

culation model simulations (The GFDL Global Atmospheric Model Development Team, 2004).

The simulations begin in equilibrium with preindustrial CO2 concentrations. Sea surface tem-

peratures (SSTs) are fixed to their original equilibrated values, then CO2 concentrations are dou-

bled, and the model is integrated until it attains a new equilibrium, which occurs almost entirely

within a model year. The fixed SST experiment allows us to examine temperature changes due

to increasing CO2 in the end-member case where all temperature change is confined to the land

and atmosphere, because the ocean adjustment timescale is effectively infinite. This maximizes

the signal of differential land and ocean warming in response to increased radiative forcing.

Temperature change is calculated as the difference in annual average temperature between the

control and the 2x CO2 simulations, where 60 years of model output from three different simula-

tions are used in the control average, and 40 years from two different simulations are used in the
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Figure 3.3: Results from fitting the EBM to the output from the GFDL AM2.1 model experiment, with
fixed SSTs. The figure includes (a) the map of the AM2.1 temperature change; (b) the EBM best-fit to the
field; and (c ) the relationship between the two fields, shown in a box and whisker plot.
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2x CO2 average. We re-grid the AM2.1 model output to the 5◦ resolution of the Hadley tempera-

ture data.

Representation of the equilibrium near-surface air temperature change, ΔTi,j, due to land-

ocean heat fluxes parameterized in the EBM, is particularly simple for a fixed SST model simu-

lation. In this case, all changes in temperature are related to warming over land; warming over

the ocean is due to advection of heat from the land, as represented by Relative Land Influence.

Using Eqns. (3.4) and (3.5), this temperature change can be written as,

ΔTi,j = −R2x
λ mi,j. (3.7)

R2x is the radiative forcing due to CO2 doubling, set at 3.48 Wm−2 (Held et al., 2010). Although

R2x is expected to have latitudinal structure, we use a single global-mean value for the purpose

of isolating the contribution of advective land-ocean heat fluxes to the pattern of warming. Un-

like the seasonal cycle analysis, meridional heat flux convergence anomalies are not included

or parameterized. The values of Relative Land Influence, mi,j, are fixed from the seasonal cy-

cle analysis, and the only adjustable parameter in the model is λ. As can be seen in Eqn. (3.7),

temperature change (Fig. 3.3b) is expected to be linear in Relative Land Influence and have zero

warming for zero Relative Land Influence. The feedback parameter can be calculated directly

from the best-fit line through the origin between mi,j and ΔTi,j, giving λ = −2.09±0.09 Wm−2K−1.

The EBM predicts the majority of the equilibrium temperature structure in the AM2.1 model

simulation (r = 0.87, p-value < 0.01, Fig. 3.3). Model skill is not simply due to the land/ocean

contrast in warming as model predictions are independently significant over land (r = 0.66, p-

value < 0.01) and ocean (r = 0.71, p-value < 0.01). Significance of these correlations is estimated

using a Monte Carlo method whereby surrogate fields of Relative Land Influence are obtained

using the Iterative Amplitude Adapted Fourier Transform algorithm (Venema et al., 2006), which
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involves phase randomizing the original field using a two-dimensional Fourier transform. This

algorithm preserves the spatial autocorrelation structure (Theiler et al., 1992) as well as the dis-

tribution of the original field. We then compute the correlation between the EBM estimate of

ΔTi,j based on the surrogate field, and the ΔTi,j produced in the AM2.1 simulation. This process

is repeated 10,000 times to provide a null distribution against which the correlation obtained

from using the actual Relative Land Influence field is compared. We present one-sided p-values

because a positive relationship between the observed and modeled temperature change is ex-

pected.

The primary residual between the EBM and AM2.1 is that the EBM shows less warming as a

function of latitude, overestimating warming at lower latitude and underestimating it at higher

latitudes. The cross-over point occurs between 40-45◦ in both hemispheres. On average, the EBM

overestimates the warming by 0.06◦C (0.02◦C) at latitudes below this cross-over point, and un-

derestimates it by 0.07◦C (0.02◦C) above this point in the Northern (Southern) Hemisphere. Ad-

ditionally, the ratio of land to ocean warming is greater in the AM2.1 simulation (6.7) than in the

EBM (4.8), suggesting that the EBM may overestimate the magnitude of heat fluxes from land to

ocean. Finally, the warming over central South America is overestimated. Misfit in this region

is also apparent for the seasonal cycle case and the multi-decadal predictions considered in the

next section. The origin of this misfit may stem from misspecification of Relative Land Influence

because of biases in NCEP related to poor representation of the effects of the Andes (e.g. Rustic-

ucci and Kousky, 2002).

3.5 Interpretation of recent decadal trends

Having tuned the EBM to the seasonal cycle and demonstrated skill in reproducing simulated

equilibrium conditions, we now turn to comparing the EBM results to observed temperature
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changes since 1950, interpreted as a response to a trend in radiative forcing. Other influences on

temperature such as land use changes, spatial variability in forcing or feedbacks, and variations

in circulation are not accounted for.

Based on Eqns. (3.4) and (3.5), assigning zero temperature change at t0, and assuming that

radiative forcing increases at a constant rate β, the temperature change at t1 is,

ΔTi,j = mi,j

[
βCland
λ2

[
exp[ λt1Cland

]− 1
]]

+ (1−mi,j)

[
βCocean
(λ− κ)2

[
exp[ (λ− κ)t1

Cocean
]− 1

]]
− βt1

λ . (3.8)

The final term, −βt1
λ , is equivalent to the equilibrated case in Eqn. (3.7). The first and second

terms are the transient damping induced by land and ocean heat uptake, though the small heat

capacity of the land makes the first term negligible. The only free model parameters are λ and κ,

which are chosen based on minimizing the sum of squared deviations across gridboxes between

the EBM and the observations. The heat capacities and Relative Land Influence field are fixed

to the values used in the seasonal cycle analysis. Like the AM2.1 scenario, meridional heat flux

anomalies are not included.

We set t0 to be 1850, when the perturbative temperature change was likely to be small. For this

long period, a piecewise rather than single linear forcing function is employed, but the resulting

estimate of ΔTi,j is similar to that in Eqn. (3.8); specifically, the expected relationship between mi,j

and ΔTi,j remains linear. The piecewise linear forcing has a single breakpoint in 1982, where the

breakpoint and trends are determined from maximizing the fit to the ensemble median CMIP5

global average forcing as estimated by Forster et al. (2013) (Fig. 3.4a).

To compare the EBM to the observations, we calculate temperature change in the HadCRUT4

dataset (Morice et al., 2012) as the difference between the first and last 20-year intervals of the

period 1950-2012 (Fig. 3.5a). Gridboxes are only included in the analysis if they have data avail-

able for all months of at least 80% of the years in each interval.
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Figure 3.4: Radiative forcing and timescale-dependent sensitivity. (a) Median CMIP5 radiative forcing
(natural and anthropogenic) from Forster et al. (2013), and the piecewise linear fit used to force the EBM
for multi-decadal temperature change. (b) The root mean square deviation (rmsd, in ◦C(kWm−2)−1) be-
tween the EBM and the observed gain as a function of λ and the scaling factor, k, for Relative Land Influ-
ence (see Sec. 2.2). The seasonal cycle model is insensitive to values of κ, which is set to zero. (c) The rmsd
(◦C) for 1950-2012 temperature change as a function of λ and κ. In both (b) and (c), the black star indicates
the best-fit value for the EBM.
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Figure 3.5: As in Fig. 3.2, but for the observed change in temperature in the HadCRUT4 dataset between
1950 and 2012.
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The pattern of warming expected due to ocean heat uptake (Fig. 3.5b) is significantly corre-

lated with the observed warming (r = 0.68, p-value < 0.01). Correlations between the EBM pre-

dictions of temperature change and the observations range between 0.45-0.70 for any pair of in-

tervals ranging in length from 10 to 30 years, where the second interval must end in 2012, but

the first interval can begin as early as 1900 (Fig. 3.6). The correlation declines for earlier intervals

when fewer gridboxes meet the inclusion criteria, as well as for shorter intervals spanning the

recent past, presumably because the ratio of interannual variability in temperature to the tem-

perature response radiative forcing is larger. The correlation between the EBM estimate of ΔTi,j

and the observations remains significant when individually considering ocean (r = 0.28, p-value

< 0.03) or land (r = 0.52, p-value < 0.04), indicating skill beyond the first order land/ocean con-

trast. The correlation over the ocean is lower than over land, likely related to the fact that the

EBM lacks representation of ocean heat transport and changes in mixed layer depth.

Consistent with previous work using observations to determine climate parameters (e.g., For-

est et al., 2002), the linear diffusivity, κ, which parameterizes deep ocean heat uptake, is only

weakly constrained (see Table 2). Note that our definition of κ (Eqn. (3.3)) scales the change in

temperature of the ocean end-member to calculate ocean heat uptake, rather than the global

mean temperature change, as is done in Gregory and Forster (2008).

Although we do not expect the global ocean heat uptake anomalies calculated by the EBM to

be accurate because the model is constrained using only extratropical data and does not account

for ocean dynamics, amongst other important processes, we do compare our estimates to those

from the literature as a consistency check. We find that our estimates are smaller than those ob-

tained from combining the estimates of Lyman et al. (2010) and Purkey and Johnson (2010), as

well as smaller than those from Otto et al. (2013) for the most recent decade. They are, however,

consistent with estimates from Otto et al. (2013) for the 1970s, 1980s, and 1990s, as well as those

from Wunsch and Heimbach (2014) for 1992-2011, and from Loeb et al. (2012) for 2000-2008. Note
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Figure 3.6: The effect of time interval on model results. (a) Correlation between the EBM patterns of tem-
perature change and those observed as a function of the length and timing of the averaging intervals used
to calculate the change in temperature in the observations. (b) the number of datapoints included in the
model fit as a function of the length and timing of the averaging intervals used to calculate the change in
temperature in the observations.
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that Loeb et al. (2012) and Otto et al. (2013) consider the planetary, rather than ocean only, heat

uptake anomalies; however, the numbers are roughly comparable because the majority (approxi-

mately 90%) of the planetary energy imbalance is stored in the ocean.

The residuals between the HadCRUT4 data and the EBM are surprisingly similar to those

from the AM2.1 analysis, despite the fact that the latter was a fixed-SST model experiment. Specif-

ically, the EBM underestimates the meridional gradient in temperature change. Like the AM2.1

analysis, the cross-over between over- and underestimating warming occurs between 40-45◦,

with an average overestimation in the lower latitudes of 0.12◦C, and an average overestimation

in the higher latitudes of 0.11◦C in the Northern Hemisphere. Whether meridional patterns in

Southern Hemisphere residuals exist is unclear because the data is sparse.

3.6 Discussion and conclusions

The significance of the relationship between the patterns of warming predicted by the EBM and

those from an atmospheric GCM equilibrium simulation and observed over the past half-century

suggest that there may be value in interpreting the inferred values of the feedback parameter, λ.

The value of λ, however, is not strictly comparable to estimates of effective sensitivity in climate

models because the domain we consider is not global in scope; therefore, λ incorporates the in-

fluence of any heat fluxes into or out of the domain. Instead, this feedback parameter is a metric

of the temperature sensitivity to radiative forcing in the extratropics. The value of λ, -0.57 ± 0.04,

found from fitting our model to the instrumental record exceeds the upper value of the CMIP3

estimates (Soden and Held, 2006), which range from -1.64 to -0.88 Wm−2K−1. The difference

could either reflect heat flux convergence into the extratropics or a more sensitive extratropics

as compared to the globe. The AM2.1 feedback parameter, −2.09± 0.09 Wm−2K−1, is more nega-

tive than that found for the coupled version of the model, CM2.1, of −1.37 Wm−2K−1 (Soden and
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Held, 2006), possibly reflecting the fact that fixing ocean surface temperature in AM2.1 limits the

strength of positive feedbacks, like the water vapor feedback.

The analysis also suggests that the magnitude of the feedback parameter depends on the timescale

under consideration. The feedback parameter for the seasonal cycle is significantly more neg-

ative than that for the 1950-2012 temperature change. This difference in sensitivity is not sim-

ply due to the different magnitude of ocean heat uptake on seasonal versus longer timescales

because the EBM’s feedback parameter and ocean diffusivity are jointly constrained by the ob-

servations (Fig. 3.4b,c). Such timescale-dependent differences in feedback strength have been

found for the water vapor and lapse rate feedbacks in general circulation models (Colman and

Hanson, 2013), as well as the total feedback parameter over the oceans based on an analysis of

observations and reanalysis (Bony et al., 1995). A separate application of radiative kernels (Shell

et al., 2008) to NCAR CCSM4 also suggests that the net feedback for the seasonal cycle is more

negative than that for the response to ramped radiative forcing.

Although the intentionally simple nature of the EBM allows for ease of interpretability, there

are substantial limitations. A diversity of important climate processes were explicitly excluded

including possible changes in meridional heat transport, spatial variability in radiative forcing,

spatial or temporal structure in the ocean’s mixed layer, and land cover distributions and their

changes. We cannot conclusively attribute model residuals to any of these processes, or ensure

that the strength of the model fit is not in part due to coincidental cancelation of processes not

modeled. Other consideration include that we cannot apply this model in the deep tropics be-

cause tuning relies on the presence of a strong once-per-year season cycle, and that our our met-

ric of Relative Land Influence would be compromised by changes in atmospheric circulation.

It appears, however, that this minimalist model at least partially captures the advective land-

ocean heat fluxes that lead to similar patterns of variability at different timescales. This result

may seem surprising given the substantial spatial structures in forcing and feedbacks (Zelinka
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and Hartmann, 2012; Armour et al., 2013), but may result from horizontal heat transport diverg-

ing heat away from regions experiencing larger forcing and/or less negative feedbacks. Such an

effect has been shown using aquaplanet simulations in which temperature changes due to feed-

backs are strongly anti-correlated with those due to transport (Feldl and Roe, 2013). The merid-

ional structure of the residuals between the EBM predictions and the AM2.1 simulation, as well

as the HadCRUT4 observations, are consistent with simulations showing increased poleward

heat transport in response to increased radiative forcing, with the switch from divergence to con-

vergence occurring around 40-45◦N in model simulations (Held and Soden, 2006).

The interpretability of the equilibrium and multi-decadal patterns of temperature change pre-

dicted by the EBM suggests that the repeatedly-observed seasonal cycle contains valuable in-

formation for constraining and understanding longer-term temperature responses to radiative

forcing. In future work, it would be useful to further explore similarities between seasonal and

longer-term temperature variability in the context of more complete models.
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4

Long-lead prediction of US heat events using the Pacific Ex-

treme Pattern

The previous chapters have explored the role of heat exchanges between the land, oceans, and

atmosphere in influencing the spatial pattern of temperature variability and change on seasonal

and longer timescales. These mean structures present an average over many synoptic events,

which themselves transfer heat, moisture, and momentum through the climate system. This

chapter moves to the shorter timescales of individual weather events, with a focus on anoma-

lously hot days in the Eastern United States. Rather than demonstrating the importance of direct,

thermodynamic exchanges of heat between the land, oceans, and atmosphere, it is demonstrated

that specific sea surface temperature patterns in the Pacific Ocean can initialize a dynamic re-

sponse in the atmosphere that ultimately leads to a convergence of heat over the United States.

The identification of this process allows for long-lead predictability of these detrimental events.

This chapter is a modified form of a submitted manuscript, McKinnon, K.A., Rhines, A., Tingley,

M.P. and P. Huybers, Long-lead prediction of United States heat events using the Pacific Extreme

Pattern, wherein the supplementary information has been incorporated into the main text.

56



4.1 Abstract

Predictability of mid-latitude weather is generally limited to no more than 10 days, beyond which

growth of uncertainty precludes skill. Identifying atmospheric interactions with more slowly-

varying components of the climate system can extend this time horizon. Clustering and regres-

sion on historical land and sea surface temperature data reveals an ocean-atmosphere mode

whereby enhanced meridional temperature gradients in the mid-latitude Pacific ultimately pro-

mote the development of summer blocking patterns over the Eastern United States. Predictions

based on this mode are skillful at lead times greater than 40 days and involve three-fold changes

in the odds that an extreme heat event will occur. Advanced warning at these long lead times

has not previously been possible, and should aid in preparing for heat events.

4.2 Introduction

Weather models provide forecasts for mid-latitude weather events on timescales of a week, and

specific events may be predicted up to 15 days in advance based on precursor atmospheric cir-

culation regimes (Teng et al., 2013). Predictions at longer lead times rely on more slowly varying

components of the climate system, and a substantial body of work has identified connections

between tropical sea surface temperature (SST) variations and mid-latitude weather during the

winter season (Trenberth et al., 1998), leading to valuable seasonal predictions (Higgins et al.,

2004). In contrast, connections between summer mid-latitude weather and SSTs in the trop-

ics appear limited (Chen and Yen, 1993; Newman and Sardeshmukh, 1998). There is some evi-

dence that mid-latitude Pacific SST anomalies are connected with summertime high temperature

anomalies in the United States (Namias, 1982; Lyon and Dole, 1995), although, to our knowledge,

no skillful predictive relationship has previously been demonstrated between SST patterns and

summer heat events.
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4.3 Data and methods

Heat events can be characterized by their magnitude or spatial extent, and are often considered

in a binary sense. In this study, heat events are quantified using a continuous variable, the sever-

ity index, that accounts for both the magnitude and extent of the event. Magnitude is assessed at

each station as anomalies in daily maximum temperature (hereafter simply temperature) relative

to an 11-year running average of the station’s 95th percentile of summer temperatures. Extent

is then accounted for by computing the temperature anomaly exceeded by the hottest 5% of the

spatial domain on a given day, yielding the severity index. An index of zero means that 5% of

stations have a temperature anomaly in the top 5% of their distribution. The severity index is

defined for each summer day and is approximately normally distributed (Fig. 4.1a).

Temperature data is from the Global Historical Climatology Network-Daily (GHCND (Menne

et al., 2012)), which is provided at the station level. Weather stations provide a more direct mea-

surement of near-surface air temperature than atmospheric reanalyses (Hofstra et al., 2010),

which do not directly ingest station data (Simmons et al., 2004). To be included in the analysis,

stations are required to have at least 80% coverage during June, July, and August for at least 80%

of the years considered in the analysis. There are 1813 stations in the Eastern United States that

fulfill these requirements for the 1982-2013 period, and 1222 for the longer 1950-2013 period. The

running average is used to focus on interannual variability, and results are similar if 21- or 31-

year windows are used instead. To minimize the influence of the seasonal cycle, we focus on

predicting the severity index between June 24 – August 22, the 60 hottest days of summer based

on the average climatology across United States weather stations (FIg. 4.1b).

The region of study is defined by clustering United States weather stations together on the ba-

sis of synchronously having temperatures that exceed the 95th percentile threshold. Specifically,

we use hierarchical agglomerative clustering that minimizes the average intracluster Jaccard dis-
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Figure 4.1: The severity index. (a) The distribution of the severity index. (b) The severity index as a func-
tion of summer day (June 24 – August 22). The center of each box is the median, the box spans the 25th-
75th percentiles of the data, and the whiskers show the span of the remaining data.
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Figure 4.2: The five largest clusters of the GHCND station data in the United States (and Southeast
Canada), based on if stations experience hot days synchronously.
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tance (Jaccard, 1912) between stations, where the Jaccard distance is a function of a binary vari-

able that indicates whether the temperature at a station was above the 95th percentile threshold

or not. The algorithm incorporates no geographic information but produces spatially-distinct

groups of weather stations (Fig. 4.2). Using four large clusters divides the United States into in-

terpretable climate zones: the arid West, the semiarid and subtropical Southwest, the marine

Northwest, and the humid and subtropical Eastern United States. We focus on the latter cluster

because it contains major population centers and primary regions of agriculture, both of which

tend to be disproportionally affected by heat events (Smoyer et al., 2000; Battisti and Naylor,

2009).

4.4 Identifying the Pacific Extreme Pattern

In order to identify precursors to heat events, we calculate averages of daily SST anomalies weighted

by the severity index. SST data is at daily resolution from the NOAA OI SST2 dataset (Reynolds

et al., 2002), and is available from September 1981 to the present. SST anomalies are calculated as

deviations from the climatology, estimated as the average SST for that day of year during the full

period of analysis (1982-2013, or 1950-2013). The SST anomaly pattern synchronous with heat

events shows coherent spatial structures in the mid-latitude oceans (Fig. 4.3d), with a tripole pat-

tern in the mid-latitude Pacific composed of anomalies as large as ±0.4◦C. The tripole SST pat-

tern tends to evolve over the 50 days leading up to a heat event in the domain between 20-50◦N

and 145-230◦E (Fig. 4.4), and we term this evolving structure the Pacific Extreme Pattern, or PEP.

Similar structures are evident for individual events (Figs. 4.5, 4.6).

The temporal evolution of PEP can be described in three stages. In the first stage, spanning

the 50 to 10 days before the heat event (Fig. 4.4), an anomalous meridional dipole in the mid-

latitude Pacific enhances the background climatological gradient in SST. During this period,
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Figure 4.3: Patterns associated with Eastern United States heat events. (a-b) SST anomalies averaged over
10-day periods for lead times of (a) 31-40 and (b) 21-30 days. (c-f) Anomalies in SST (colors), 300mb height
(contours), and wave activity flux (Takaya and Nakamura, 1997) (red arrows, 5m2s−2 scale bar in lower
left of all plots) for lead times of (c) 15, (d) 10, (e) 5, and (f) 0 days. The Pacific Extreme Pattern is defined
inside the green box. Weather stations in the Eastern cluster are in turquoise. Contours are in 10m incre-
ments, with negative contours dashed and the zero contour suppressed. The occurrence of the warm SST
anomaly in the North Atlantic does not have predictive skill for heat events.
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Figure 4.4: As in Fig. 4.3, but for 10-day averages at longer lead times of (a) 41-50 days, (b) 31-40 days, (c)
21-30 days, and (d) 11-20 days.
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SST anomaly (℃)

Figure 4.5: Case study in predicting an individual heat event. The SST anomalies (colors) and 300mbar
geopotential height anomalies (contours, 50m interval, negative contours dashed) leading up to June 29th,
2012. The severity index on June 29th was 4.19◦C, with 42% of the Eastern United States having temper-
atures above the decadal-scale 95th percentile threshold. The PEP index was positive for the 97 days pre-
ceding the event, and surpassed 1 for the 43 days before the event.
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SST anomaly (℃)

Figure 4.6: As in Fig. 4.5, but for predicting the suppression of a heat event. The severity index on July
28th, 1994 was -3.46◦C, with only 3 stations in the Eastern United States having temperatures above the
95th percentile threshold. The PEP index was negative for the 26 days before the event, and was less than
-1 for the 20 days before the event.
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anomalous atmosphere-ocean heat fluxes further intensify the SST gradient (Fig. 4.7), perhaps

resulting from the integrative response of SST to stochastic atmospheric forcing (Frankignoul

and Hasselmann, 1977). The enhanced meridional SST gradient from the first stage is expected
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Figure 4.7: SST, ocean-atmosphere flux, and 10m wind anomaly patterns associated with Eastern United
States heat events at long lead times. Each panel shows a 10-day average. Anomalies in SST (colors),
ocean-atmosphere fluxes (contours at 3Wm−2 intervals, positive is into-ocean), and 10m winds (green
arrows, 5ms−1 scale in the lower left corner of all plots) for lead times of (a) 41-50, (b) 31-40, (c) 21-30, and
(d) 11-20 days.

to increase low-level baroclinicity, and in the second stage ocean-atmosphere interactions ap-

pear to form and amplify a mid-latitude wave train (Fig. 4.3). The possibility of a similar finite-

amplitude growth of ocean-atmosphere anomalies was derived analytically in an earlier study

(Pedlosky, 1975). Approximately 10 days before the heat event, a cyclone-anticyclone pair es-

tablishes over the Pacific that transports heat into the center and removes heat from the edges

of the Northern cold anomaly (Fig. 4.8), giving rise to a zonal cold-warm-cold tripole. The com-
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Figure 4.8: As in Fig. 4.7, but showing the weighted averages for individual days at shorter lead times of
(a) 15, (b) 10, (c) 5, and (d) 0 days.
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posite atmospheric structure is equivalent barotropic (Fig. 4.9), as is typical in the mid-latitudes

(Hoskins and Karoly, 1981). Atmospheric pressure anomalies are in quadrature with SST anoma-
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Figure 4.9: Air temperature, geopotential height, and SST anomalies associated with heat events averaged
between 30-50◦N at a lead time of five days. (a) Vertical structure of air temperature (colors) and geopo-
tential height anomalies (contours). Contours are in 5m increments, with negative contours dashed and
the zero contour suppressed. (b) SST anomalies for longitudes containing ocean. Partial ocean coverage is
indicated by grey lines.

lies and extend northward of the Rocky Mountains, suggesting that orography may additionally

contribute to controlling the phase of the disturbance.

Whether these SST anomalies cause remote change depends on the mean state of the atmo-

sphere. Model simulations indicate that tropically-forced Rossby waves do not effectively prop-

agate into the mid-latitudes during the summer (Yun et al., 2011); rather, North America appears

particularly sensitive to anomalies in the mid-latitude Pacific with length-scales similar to PEP

(Newman and Sardeshmukh, 1998). At lead times of 10 days, synchronous with the growth of

the cold-warm-cold tripole, there is increased wave activity flux (Takaya and Nakamura, 1997)
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over the mid-latitude Pacific. Wave activity flux then propagates eastward, consistent with a

ducting of eddy energy into the wave guide, and, in the third stage, begins converging over the

Eastern United States. An anomalous high grows rapidly in the region (Fig. 4.3c,d), and station-

ary dry and clear conditions permit for increased radiative heating of the surface. Surface drying

may also lead to amplified temperature anomalies(Miralles et al., 2014). The atmospheric circula-

tion anomalies identified in the third and final stage are similar to those identified by (Teng et al.,

2013) in a long model simulation.

4.5 Quantifying predictive skill

In order to evaluate the predictive skill associated with PEP, we construct a linear statistical

model that uses the covariance of PEP with observed SSTs between 1982-2013 to predict the

severity index. Covariance is divided by its standard deviation across summer days for inter-

pretability. The normalized covariance is termed the PEP index, and a PEP index of 1 is equal to

0.034◦C. The linear relationship between the PEP index and the severity index is significant at all

lead times up to 47 days (p-value < 0.05), where significance is assessed using a block bootstrap

with a block size of one summer (Fig. 4.10c). All analyses are performed using leave-one-year-out

cross validation, such that data from a given year is excluded when calibrating the prediction

model for that year. Excluding only the predicted year from the analysis is sufficient because

mid-latitude summer SST anomalies rarely persist for more than six months (Deser et al., 2003).

Predictions are compared to baselines of persistence and climatology (Fig. 4.10a,b). Persis-

tence predicts the severity index on a given day as the same severity index as was observed at

the specified lead time. Climatology is defined as the average severity on a given day of year

across all years except that being predicted. Unsurprisingly, persistence predictions perform best

in the two days immediately preceding a heat event. More relevant for long-lead predictions is
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Figure 4.10: Model skill for predicting the severity index with the PEP index using a linear model. (a-
b) The mean square skill score (MSSS) for baseline models of (a) persistence and (b) climatology. (c) The
p-value for the linear model. The p-value is calculated using a block bootstrap, with a block size of one
summer. The dashed gray line is at a p-value of 0.05.
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that our cross-validated statistical model outperforms climatology at lead times of 46 days or less

as measured by the mean square skill score (Murphy and Epstein, 1989).
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Figure 4.11: Shifts in the severity index, conditional on the PEP index. (a) The distribution of the severity
index across days with a PEP index greater than 1 (solid lines) and less than -1 (dashed lines). Distribu-
tions are smoothed using a kernel density smoother with a bandwidth of 0.5. (b) The odds ratio for pre-
dicting a severity index in the top 15% of days for lead times of 10, 20, 30, 40, and 55 days, given a PEP
index less than -1 (left) and greater than 1 (right).

Because the ocean-atmosphere system does not deterministically evolve, it is useful to define

a prediction interval that averages over ±10% of the lead time, where interval length is rounded

downward (e.g. a 4-day half-window for lead times between 40-49 days). Results are similar if

no averaging is used, albeit with reduced skill at longer lead times. Differences in the distribu-

tions of the severity index when conditioning on PEP indices either greater than 1 or less than
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-1 are large (Fig. 4.11a). The medians of the two severity distributions differ by 1.88◦C, 1.43◦C,

1.45◦C, and 1.33◦C for lead times of 10, 20, 30, and 40 days, respectively. Predictions can also be

made in terms of threshold-crossing events. Consistent with (Barnston and Mason, 2011), we de-

fine an extreme event as one in the top 15% of severity, and find that the odds of extreme events

increase by 2 to 4 times when a PEP index greater than 1 is observed in the 10 to 40 days prior

(Fig. 4.11b).
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Figure 4.12: ROC scores at the station level. The spatial distribution of ROC scores for lead times of (a)
40, (b) 30, (c) 20, and (d) 10 days. (e) The distribution of ROC scores. The distributions are created using a
kernel density smoother with a bandwidth of 0.05. A ROC score of 0.5 indicates no model skill.

Predictions can also be resolved at the station level (Fig. 4.12) using Relative Operating Char-
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acteristic (ROC) curves Swets (1973). ROC curves illustrate the trade-off between false positives

and true positives in a prediction. The area under the curve can be integrated to calculate the

ROC score, and scores greater than 0.5 indicate model skill at discriminating between an extreme

event occurring, or not. Extreme events at stations in the interior of the domain are better pre-

dicted than those on the edges, likely due to a combination of coastal effects and the most likely

location of the blocking high. While skill at individual stations is lower than that for the region

as a whole, the model retains skill at 96% to 99% of stations for lead times of 10 to 40 days.

Finally, the model is used to predict extreme heat events between 1950 – 1981, a period inde-

pendent of all foregoing analyses, using an SST dataset that extends further back in time (Kennedy

et al., 2011). The distribution of the severity index again exhibits shifts on the order of 1◦C when

conditioning on PEP indices greater than 1 or less than -1, and observing a PEP index greater

than 1 leads to a 1.5 – 3 times increase in the odds ratio of an extreme event (Fig. 4.13).

Although we see a clear sequence of development of PEP in the mid-latitude Pacific, it is also

relevant to consider if more established modes of variability permit for predictability of Eastern

United States heat events. Averaged over lead times of 10 to 40 days before heat events, PEP ex-

plains 42% of the interannual variance in the summer-average severity index (p-value < 0.01,

Fig. 4.14; significance is assessed using leave-one-year-out cross validation). In contrast, we find

that the June-August summer average of the indices associated with the Pacific North America

pattern, the Arctic Oscillation, the Pacific Decadal Oscillation, the Northern Annular Mode, and

the El Niño-Southern Oscillation are not significantly correlated with summer average severity,

and explain no more than 5% of the interannual variability. The lack of skillful predictions based

on tropical indices is consistent with the aforementioned minimal tropical influence on the mid-

latitudes during summer (Yun et al., 2011).
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Figure 4.13: As in Fig. 4.11, but using the HadSST3 data.
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Figure 4.14: Interannual variability in the severity index (red, right axis), and the PEP index (blue, left
axis), averaging over lead times of 10-40 days. The center of each box is the median, the box spans the
25th-75th percentiles of the data, and the whiskers show the span of the remaining data.

4.6 Conclusion

The 21st century has already featured a number of ill-predicted (Dole et al., 2011) and costly

(Smith and Katz, 2013) heat events that have had negative impacts on crop production (Bat-

tisti and Naylor, 2009) and human health (Kovats and Hajat, 2008). Trends over the last sev-

eral decades towards increased frequency and magnitude of summer heat events in the United

States (DeGaetano and Allen, 2002) are expected to continue (Seneviratne et al., 2012), making

forecast skill increasingly important. We demonstrate that PEP permits for skillful prediction of

heat events at lead times greater than 40 days. These long-lead predictions can be combined with

early warning systems to reduce the impacts of extreme heat events (Ebi and Schmier, 2005). Dy-

namical prediction of sea surface temperature evolution may further extend the time horizon of

predictability.
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5

Conclusion and further work

Temperature exhibits coherent variability across space and time. Understanding the origin of

these patterns of variability, and how they will change due to anthropogenic influences on the

climate, has been the focus of this thesis. Initial investigations focused on the seasonal cycle,

due to its strong signal-to-noise ratio. The amplitude and phase of the seasonal cycle exhibited

both expected and surprising behavior, the latter of which included the fact that western seas

can have a more variable seasonal cycle than western edges of continents due to the strong influ-

ence of upstream seasonal cycles. This, and other subtle characteristics, appear to emerge from

advective heat transport by many individual air parcels, averaged over time. Because the La-

grangian timescale of the atmosphere is short compared to the seasonal cycle, and the difference

in heat capacity between the land and ocean is timescale invariant, one is encouraged to hypoth-

esize that a similar process may be important on other timescales. Consistent with this hypoth-

esis, a simple model tuned using the seasonal cycle is shown to provide skillful predictions for

the pattern of equilibrium temperature change in a model with a fixed ocean, as well as for the

observed pattern of transient temperature change.
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Implicit in the seasonal and decadal estimates of temperature variability and change is an av-

erage over thousands of individual weather events; the distribution of the weather events ‘de-

fine’ the climate on long enough timescales*. Heat waves are a subset of weather events that

sample from the high end of the distribution of temperature at a given location. The frequency

of days that exceed a pre-specified temperature threshold will increase in the simple case of

an increase in the mean of the temperature distribution, but this prediction is statistical rather

than deterministic. To predict individual events, it is necessary to delve into their dynamical ori-

gins. The final chapter of this thesis identifies conditions in the Pacific Ocean that tend to pre-

cede Eastern US heat waves, thus allowing for long-lead, skillful predictions. The empirically-

identified pathway from Pacific SSTs to the Eastern US suggests the importance of coupled ocean-

atmosphere interactions that lead to transient growth in an anomalous mid-latitude wave train.

The collection of methods and results presented here suggest future research directions.

The seasonal cycle in deep time

The study of present-day climate benefits from the existence of observations that cover much of

the earth and are highly temporally resolved, whether they are point observations at a weather

station or fully gridded satellite data products. In contrast, studies of paleoclimate tend to de-

pend on a relatively small set of point observations (ice and sediment cores, pollen data, glacial

moraines) that may preferentially sample one portion of the seasonal cycle more than another

(Schneider et al., 2010). To move from these proxy data to estimates of global or regional tem-

perature, assuming that the relationship between the proxy and temperature is known (itself a

major challenge), one must assume a spatio-temporal covariance structure (Tingley et al., 2012).

The analysis of the seasonal cycle presented here can serve as a guide for the interpretation of
*Ideally, it would be possible to define the climate from observing the weather over infinite time,

assuming that the climate system is stationary. Unfortunately, we do not have infinite observations. Ad-
ditionally, due to climate change, the climate system is not stationary. Thus, more ad hoc definitions of
climate are necessary, such as the commonly-used average over 30 years.
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some paleodata, under the assumption that the mean atmospheric circulation has not under-

gone dramatic shifts. While the atmospheric circulation data used in the seasonal cycle model

are based on today’s climate, results would be similar if one were to assume that the extratrop-

ical circulation is entirely zonal, with some modification by existing orography. As such, the

model could be applied to paleo continental configurations to infer the spatial structure of sea-

sonal variability. An an example, a puzzle from the Eocene is the existence of palms (Wing and

Greenwood, 1993; Greenwood and Wing, 1995) and crown group crocodilian fossils (Markwick,

1998) in modern-day Wyoming, a region typically associated with the cold winters of continental

interiors. These fossils, however, have been interpreted to mean that winter temperatures in the

Eocene could not have dropped below 5.5◦C. Climate models have generally struggled to simu-

late these warm winter temperatures without increasing greenhouse gases to very unlikely levels

(Huber and Caballero, 2011). Applying the seasonal model to the Eocene, including a modified

continental configuration, could provide constraints on the range of parameter space (optical

thickness of the atmosphere, zonal wind speed, atmosphere-surface coupling, climate sensitivity)

that is consistent with the fossil record.

Seasonality of circulation

The seasonal cycle model of Chapter 2 is based upon the annual average behavior of ensembles

of Lagrangian parcels. While this metric leads to a good model for the seasonal cycle, it ignores

the substantial seasonal structure in atmospheric circulation patterns. For instance, the seasonal

cycle in the strength of the jet would be expected to make mid-latitude land locations more mar-

itime during the winter and more continental during the summer. A more complete model could

account for the seasonality of the circulation, and be compared to the model presented here to

quantify the importance of the seasonality of circulation in influencing the seasonal cycle. Relat-

edly, there is evidence that seasonal shifts in atmospheric circulation patterns have altered the
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amplitude and phase of the seasonal cycle since 1950 (Stine and Huybers, 2012). A changing sea-

sonal cycle has major implications for the biosphere (Walther et al., 2002), crop production (Tao

et al., 2006), and water resource management (Regonda et al., 2005). The relationship between

changing circulation and the seasonal cycle can be examined by parsing trajectory data by year,

and determining the extent to which the model reproduces the interannual variability and trends

that have been observed for the seasonal cycle.

Improving estimates of ocean heat content anomalies

There is likely a positive energy imbalance at the top of the atmosphere (Loeb et al., 2012), the

majority of which is accommodated by an increase in oceanic heat content. Quantifying the tem-

poral change in the heat content of the ocean is critical for understanding the likely climatic re-

sponse to increasing radiative forcing: larger values of oceanic heating imply a more sensitive

climate in equilibrium, holding everything else equal. The planetary energy imbalance, how-

ever, is difficult to quantify. Satellites measure top of the atmosphere radiation with great preci-

sion (Loeb et al., 2007), but with a bias that is larger than the signal of interest (Loeb et al., 2009).

Meanwhile, even with the impressive Argo array, we are lacking measurements of the deep and

high-latitude oceans, as well as the marginal seas (Roemmich et al., 2009). The current best esti-

mates of the planetary energy imbalance use ocean heat content data to ‘pin’ the satellite data to

the correct mean; unfortunately, this approach does not leave any remaining independent data

with which to test the estimates of the imbalance. An alternative approach is to first focus on the

seasonal cycle, which is resolved by the highly-precise satellite data and should align in ampli-

tude and phase with planetary storage data. Storage data can be gleaned from Argo, as well as

independent estimates of atmospheric and cryospheric storage. Misfits on seasonal timescales

can be clearly identified, and may have implications for the decadal trend.
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Quantifying and predicting changes in extremes

Many first-order questions about extreme weather events remain unanswered. A fundamental

one is simply whether the frequency of extreme events has changed over a specified time period.

Preliminary work using quantile regression (Koenker and Bassett Jr, 1978), a non-parametric

method which generalizes estimates of trends in the median to other percentiles, suggests that

seasonal temperature extremes in the United States are changing in spatially-coherent manner.

For example, while the 95th percentile of daily summer maximum temperature is increasing

across most of the country, there is a band of cooling that spans the major cropping regions of

the country (Rhines et al., submitted). These types of basic data analyses can be extended to tem-

perature and precipitation in other regions to provide a first-order understanding of how the full

distributions of temperature and precipitation are shifting. A second step is to assess why these

changes are occurring. A clear extension from the heat wave prediction work of Chapter 4 is to

determine whether the frequency of the Pacific Extreme Pattern is changing, or is projected to

change in the future in climate models.

Mid-latitude ocean-atmosphere interactions

Great gains have been made in understanding the role of tropical SSTs in influencing mid-latitude

circulation (e.g., Trenberth et al., 1998). In contrast, it remains unclear whether, or to what ex-

tent, mid-latitude SST anomalies have a dynamical influence on the mid-latitude atmosphere

(Kushnir et al., 2002). The empirical analysis presented in Chapter 4 is consistent with coupled

ocean-atmosphere interactions that lead to the transient growth of both atmospheric and oceanic

anomalies; however, data analysis alone cannot conclusively demonstrate this dynamical hy-

pothesis. If the system is truly coupled, fixed SST model experiments would not be expected to

reproduce the empirical results. Rather, further work using a hierarchy of physical models that

allow for some level of bidirectional coupling could be used to determine if the interactions do
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require coupling, and to explore whether similar coupled interactions happen in other regions or

during other seasons.

The interplay between extreme temperature and precipitation

The focus of this thesis has been on temperature, but there are clear, important extensions to be

made by addressing precipitation variability. The hydrological cycle is an integral part of the

energy cycle, and the redistribution of heat in a changing climate has implications for both tem-

perature and precipitation changes. Furthermore, the occurrence and impact of extreme tem-

peratures is modulated by precipitation: low soil moisture can lead to an amplification of hot

temperatures (Miralles et al., 2014), since a greater fraction of heat is allocated to warming (sen-

sible heat) rather than evaporation (latent heat). While drought, a major natural disaster, does

not have a single definition, it generally occurs during conditions that are both anomalously

warm and anomalously dry (Heim Jr, 2002). Important open questions include quantifying the

(spatially-variable) timescale over which precipitation influences temperature variability, deter-

mining the covariance structure between temperature and precipitation for both the mean and

the extremes, and analyzing the significance of any trends in these quantities.

Collectively, these topics will expand our understanding of both ‘natural’ and forced climate

variability, with a focus on observables – temperature and precipitation – that have a major in-

fluence on human society and the biosphere. Natural climate variability is large, and its study

can provide fundamental information about important climate processes, many of which will

be relevant for understanding and predicting climate changes. On subseasonal timescales, im-

proved predictions of extreme events like heat waves and droughts could reduce their negative

impact via early preparation. On longer timescales, placing better constraints on ocean heat con-

tent changes will provide important dataset against which to test our climate models, and will

80



help reduce the uncertainty in estimates of climate sensitivity. Interactions between climate sci-

entists and farmers, business owners, and policy makers are necessary to ensure that improved

knowledge of our climate spreads beyond the ivory tower.
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A

Relative Land Influence calculation

Relative Land Influence, m, is calculated from an ensemble of N Lagrangian atmospheric back

trajectories from HYSPLIT (Draxler and Hess, 1997, 1998; Draxler, 1997) based on the meteoro-

logical fields from the NCEP-DOE reanalysis (Kanamitsu et al., 2002) as,

m = km∗ = k 1N

N∑

i=1

∑28 days
t=0 Z(t)e−t/τ
∑28 days

t=0 e−t/τ
. (A.1)

Z(t) is defined to be equal to one over land and zero over ocean. The value of k is found from

tuning the model to the seasonal cycle, as discussed in the main text. Parcels are initialized at

1000 meters above ground level, approximating the top of the boundary layer. For a given par-

cel trajectory, the influence of the previous land or ocean the parcel traveled over is weighted

as a function of the time, t, between when it passed over that surface type and the present, and

extending back to 28 days before the present. The ensemble of parcels are simulated from 2006-

2010, and sample evenly across time of day and day of year; the values of Relative Land Influ-

ence used here are averaged across all trajectories, so retain no seasonality. See McKinnon et al.
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(2013) for more detail.

The weighting and interpretation of the relaxation timescale, τ, can be understood through a

simplified model. Consider a parcel of air moving atop a surface that can either be land or ocean.

The atmosphere exchanges heat with the surface via a linear diffusivity, κz. For simplicity, sur-

face temperature, Ts, is held fixed.

The energy balance of the parcel of air can be written as,

CdTdt = κz(Ts − T), (A.2)

where C is the parcel’s heat capacity, and T is its temperature anomaly. In order to apply this

model to the Lagrangian back trajectories, for which parcel location is recorded every three hours,

the system is discretized in time as,

Ti+1 = Ti +
κzdt
C (Ts,i+1 − Ti) = Ti +

κz
κx

(Ts,i+1 − Ti), (A.3)

where κx = C
dt and reflects the strength of advective transport.

Assuming that the parcel begins in equilibrium with a surface condition, Ts,0, its temperature

at time step n is,

Tn = (1− κz
κx

)nTs,0 +
κz
κx

n∑

i=1
[(1− κz

κx
)n−iTs,i]. (A.4)

A given surface condition, Ts,i, is weighted in the final sum by (1 − κz
κx )

n−i, where the index n − i

is the number of time steps since the parcel was over surface box i, and can be expressed as −t
dt ,

where dt is less than zero, consistent with the definition of t in Eqn. (A.1). The contribution of

the initial condition, Ts,0, is small and neglected. Because this system is discretized, a stable so-

lution requires that 0 < κz
κx < 1. Note, however, that both κz and κx are a function of the spatial

discretization scale, so the constraint is mathematical rather than physical.
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The relative influence of a given land or ocean surface on the final parcel temperature is weighted

by w = (1 − κz
κx )

−t
dt , which can also be written as an exponential weighting, w = exp[−t

τ ], consis-

tent with the exponential weighting using in Eqn. (A.1). The relaxation time, τ, is dt/log(1 − κz
κx ).

This representation indicates that τ is a measure of the relative strengths of horizontal and verti-

cal coupling. In particular, the five day relaxation time used in this analysis reflects the relative

influence of advective and surface heat fluxes, as opposed to the longer timescales that would

be expected from radiative relaxation of the atmosphere (e.g. Goody and Yung, 1989; Donohoe,

2011).
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B

Amplified warming in the tails of summertime maximum tem-

peratures

Surface temperature is changing in response to anthropogenic forcing and natural variability.

The magnitude of this change is often discussed in terms of the annual and global mean, but

changes on smaller spatial and temporal scales can be more important for humans and the bio-

sphere. In this paper, we explore the changes in peak summer daily temperature observed since

1979 over the United States. Since daily temperature is typically not normally distributed, we

use quantile regression to calculate the trends in the daily data for different percentiles. The spa-

tial patterns of change are spatially coherent, and generally show curtailment in the variability of

temperature due a large warming of the lowest daily maximum summer temperatures. Further-

more, changes in the 5thand 95thpercentiles are significantly correlated to changes in the median

across stations, with an amplification of both the 5thand 95thpercentiles relative to the median

change, suggesting that changes in the tails of the temperature distributions may be able to be

predicted from changes in the median. The subsequent text was primarily authored by Martin

Tingley, with contributions from myself, as well as Andrew Rhines and Peter Huybers. My spe-

85



cific contributions entailed calculation and analysis of the quantile regression slopes, as well as

the development of the Bayesian line fitting algorithm.

B.1 Abstract

The contribution of average warming to increases in high temperature extremes and decreases in

low temperature extremes is well established, but the role of changes in other aspects of the tem-

perature distribution is unclear. Using quantile regression, we explore trends in the median and

tails of summertime daily maximum temperature observations from North American weather

stations, and find spatially coherent linear relationships between them. Trends in the tails are

significantly amplified and offset relative to changes in the median, demonstrating contraction

in the lower half of the temperature distribution and variable changes in the width of the upper

half. Particularly high correlation between trends in the upper tail and center (r2 = 0.90) indi-

cates the potential for improved projections of future high temperature extremes.

B.2 Introduction

The distribution of extreme climate events is sensitive to both changes in mean and variability

(Katz and Brown, 1992; IPCC, 2007). Whereas trends in mean temperature are unequivocally

contributing to the current increase in warm temperature extremes and decrease in cold tem-

perature extremes (Meehl and Tebaldi, 2004; Meehl et al., 2009; Rahmstorf and Coumou, 2011;

Hansen et al., 2012; IPCC, 2007), changes in other aspects of the temperature distribution are less

well understood (Robeson, 2002; Schär et al., 2004; Rahmstorf and Coumou, 2011; Simolo et al.,

2011; Rhines and Huybers, 2013; Huntingford et al., 2013; Alexander and Perkins, 2013).

Most recent studies have analyzed gridded or binned temperature estimates (Simolo et al.,

2011, 2012; Donat and Alexander, 2012; Hansen et al., 2012; Rhines and Huybers, 2013; Tingley

86



and Huybers, 2013; Caesar et al., 2006; Brown et al., 2008; Mannshardt et al., 2013). Station den-

sity has not remained constant, however, and has even decreased over recent decades in certain

regions, with the expected result being increased noise variance in the associated gridded tem-

perature estimates (Kennedy et al., 2011; Rhines and Huybers, 2013; Huntingford et al., 2013).

Gridding also tends to decrease the variability of the temperature signal relative to station-level

estimates because of averaging across sub-gridscale features (Haylock et al., 2008; Zhang et al.,

2011). The common practice of using a subset of the analyzed years for purposes of defining

anomalies (Simolo et al., 2011, 2012; Donat and Alexander, 2012; Hansen et al., 2012; Brown et al.,

2008; Caesar et al., 2006) can introduce further biases in estimates of trends in extremes (Rhines

and Huybers, 2013; Tingley, 2012).

B.3 Temperature data and quantile regression

Here we assess linear trends in the distribution of daily summertime maximum temperatures

(Tx) from more than 3800 stations in the Global Historical Climatology Network (GHCN-D,

Menne et al., 2012) from the heavily sampled North American region. We analyze stations that

are nearly complete over the 1979–2012 interval, which represents a compromise between inter-

val length relative to data availability and the appropriateness of a linear model. This interval

also permits for direct comparison of results with the National Center for Environmental Predic-

tion’s Reanalysis II product (NCEP II, Kanamitsu et al., 2002). Analyses are restricted to summer-

time conditions, defined here as the warmest 60-day period in the climatology averaged across

all stations. The choice of 60 days represents a compromise between an interval short enough to

reflect peak summer conditions and long enough to capture peak summer throughout the do-

main. Consistent results are obtained when using 50 or 70 day summer intervals (see Sec. B.8.7).

All observations with negative quality control flags are removed, leaving a total of 7.5 million
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temperature observations. While the GHCN-D data is not homogenized, the estimated uncer-

tainties obtained from a spatially smoothed version of our results indicate that inhomogeneities

do not influence our conclusions (see Sec. B.8.5).

To differentiate between trends in the center of the temperature distribution and those in the

upper and lower tails, we apply quantile regression (Koenker and Bassett Jr, 1978) to separately

estimate the 5th, 50th(median), and 95th percentiles of the distribution as linear functions of the

year, treating the Tx observations as exchangeable within each year. The present analysis en-

tails two orders-of-magnitude more stations than previous quantile regression analyses of sta-

tion data from Korea (Lee et al., 2013) and Central Europe (Barbosa et al., 2011), and unlike ap-

proaches employed elsewhere (Brown et al., 2008; Simolo et al., 2012; Mannshardt et al., 2013),

does not require assumptions regarding the parametric form of the underlying probability dis-

tribution. Our focus is on the median, as opposed to the mean, because it is more amenable to

disentangling changes in the center and tails of the distribution — for example, an increase con-

fined to the top 10% of the distribution affects the mean but not the median.

Quantile regression results can be strongly biased when applied to rounded data, and the

GHCN-D observations are rounded to units varying between 0.1-1◦C (Fig. B.1). We circumvent

this source of bias through a recommended procedure (Koenker and Bassett Jr, 1978; Machado

and Silva, 2005) of adding uniform random noise realizations to approximately restore the data

distribution to its original, continuous form. To determine the requisite range of the uniform

distribution, a Hidden Markov Model is used to detect the degree of rounding in the GHCN-D

observations (see Sec. B.8.4).

Significance of both the trends and the differences between them is assessed at each station

using block bootstraps on years. As a second determinant of significance, we smooth the station

results using a thin plate spline, and then assess significance of the trends and their differences

using the standard errors of the estimated surfaces (see Sec. B.8.5). Discussion below focuses on
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spatially cohesive structures that significantly differ from a null of no trend at the 95% signifi-

cance level according to both approaches to uncertainty quantification.

B.4 Spatial patterns of temperature change

By way of a representative example of results (Fig. B.1), we consider the trends in the 5th, 50th,

and 95th percentiles at a weather station in Bluff, on the Colorado plateau of Southern Utah.

Trends in all three percentiles are positive, with the 5th the largest and the 50th the smallest, con-

sistent with a distribution with decreasing variance and increasing skew. The relationships be-

tween percentiles for Bluff are generally representative of stations that feature strong warming

in the median. A more anomalous example, from Ukiah, 200 km north of San Francisco, features

warming in the 5th percentile, cooling in the 50th percentile, and stronger cooling in the 95th per-

centile (Fig. B.1).
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Figure B.1: Time series and quantile regression fits for the 5th, 50th, and 95th percentiles (red), along with
ordinary least squares fits to the mean (blue), for stations located in Bluff, UT (left) and Ukiah, CA (right).
The top panels show the original GHCN-D data, with the size of the dots giving the number of super-
posed observations (numbered gray dots along the x-axis give the scale) and the vertical spacing between
them the precision. The bottom panels display the data after adding random jitter to the observations,
with the width of the uniform distributions determined separately for each observation.
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Trends are generally positive for the 5th percentile, with increases in excess of 1◦C decade−1

in the mountainous West and along the Eastern Seaboard (Figs. B.2, B.10). Florida, Texas, and

a swath roughly centered on the Mississippi River are exceptions, showing decreases in the 5th

percentile. The patterns of 50th and 95th percentile trends likewise feature generally positive

values but with a swath of negative trends west of the Great Lakes and in the southern Atlantic

states. Cooling in Tx in regions to the west of the Great Lakes has been reported elsewhere and

attributed to changes in land use and land cover (Kalnay and Cai, 2003; Lobell et al., 2008; Diff-

enbaugh, 2009) as well as to regional feedbacks between circulation and soil moisture (Pan et al.,

2004). Stations located near the margin of the West coast (e.g., the Ukiah station in Fig. B.1) also

show negative trends for some or all of the three percentiles. Smoothing the trend maps accentu-

ates and confirms the significance of large-scale patterns, though is not amenable to confirming

the significance of smaller-scale patterns, such as the cooling seen along the margin of the West

coast (Fig. B.10).

As with the trends themselves, there are large-scale spatial patterns in the differences between

them, evident in both station-specific and smoothed maps (Figs. B.2, B.10). The largest magni-

tude differences occur between slopes in the 95th and the 5th percentiles, with differences in the

trends indicating an increase in the spread of summer temperature in excess of 1◦C decade−1 for

stations in Texas, Oklahoma, and Kansas, and trends toward decreased spread of comparable

magnitude in the West and along portions of the Eastern Seaboard. Such changes in spread map

onto changes in variance, but the fact that the difference trends for the 95th-50th percentiles are

small relative to those for the 5th-50th percentiles point to changes in skewness or other higher-

order moments.

All three percentiles of the temperature distribution feature coherent regions of significant

cooling interspersed within the generally warming trends (Figs. B.2, B.10, Table B.1). As the stan-

dard deviations of the trends across space are larger than the corresponding error standard devi-
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Figure B.2: Maps of station-level quantile regression trends and their differences, in ◦C decade−1, for daily
summertime Tx from GHCN-D. (a), (c), (e). Trends in the 95th, 50th, and 5th percentiles. (b), (d), (f). The
difference in trends between the 95th and 50th percentiles, the 95th and 5th percentiles, and the 5th and 50th
percentiles. In all panels, large plus-signs indicate values that are significantly different from zero at the
95% level according to an annual block bootstrap, while small dots indicate stations that pass data-quality
screenings but where the slope is not significantly different from zero.

ations in the estimation of these trends (Table B.1), the variability of the estimated trends about

the spatial mean is not consistent with estimation uncertainty alone. Analyses based on binning

or aggregating data in space (Caesar et al., 2006; Brown et al., 2008; Simolo et al., 2011, 2012; Do-

nat and Alexander, 2012; Hansen et al., 2012; Rhines and Huybers, 2013) are, therefore, likely to

average over disparate phenomena and obtain diluted results.
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Table B.1: Means and standard deviations of the station-wise GHCN-D quantile regression slopes (in
◦C/decade−1) and the differences between the slopes, along with a pooled estimate of the residual boot-
strap standard deviation, calculated as the square root of the mean of the bootstrap variances. Also shown
are means and standard deviations for the spatially smoothed maps of the GCHN and NCEP II analysis,
along with the mean of the standard errors in the estimated smooth surface. The final two rows show cor-
relations and root mean square errors (RMSE) between the smoothed GHCN-D and NCEP II fields. All
calculations for the smoothed fields are area weighted, while station-wise results are not area weighted.

95th 50th 5th 95th − 50th 95th − 5th 5th − 50th

GHCN-D Mean 0.11 0.14 0.28 −0.03 −0.17 0.14

(stations) Std. 0.41 0.35 0.53 0.24 0.50 0.40

σBSr 0.34 0.25 0.36 0.26 0.41 0.29

GHCN-D Mean 0.14 0.17 0.28 −0.03 −0.14 0.10

(smoothed) Std. 0.22 0.17 0.39 0.14 0.37 0.33

SE 0.10 0.08 0.13 0.08 0.13 0.10

NCEP Mean 0.03 0.18 0.37 −0.14 −0.34 0.20

(smoothed) Std. 0.46 0.44 0.74 0.30 0.59 0.51

SE 0.08 0.08 0.17 0.08 0.16 0.14

Correlation 0.51 0.33 0.53 0.42 0.48 0.55

RMSE 0.39 0.39 0.55 0.25 0.48 0.37

B.5 Relationships between quantiles

Promising, in terms of ascribing a simple interpretation to the overall changes in the distribu-

tion of summertime maximum temperatures, are strong linear relationships between the spa-

tial maps of the three trends (Fig. B.3). For instance, the estimated squared-cross-correlation

between trends in the 95th and 50th percentiles is 0.90. To estimate linear relationships between
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percentiles, we use a Bayesian line fitting procedure that accounts for correlated errors in the es-

timated slopes (see Sec. B.8.6). This approach avoids regression dilution (Frost and Thompson,

2000) and yields more accurate estimates of the linear relationships between trends in the me-

dian and those in the 5th or 95th percentile.
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Figure B.3: Regression of trends in (a) the 95th percentile and (b) the 5th percentile onto trends in the 50th
percentile. Gray circles depict the estimated trends in the percentiles for each station (compare with
Fig. B.2), while the blue dots are a draw of the shrinkage estimates of the corresponding latent slopes,
based on a partitioning of variance between observational errors and the variability of the true –as op-
posed to estimated– trends (see supplementary methods). Bayesian regression fits to the latent slope pro-
cesses, along with 95% uncertainties are shown in blue, and as a reference, the one-to-one line is shown in
purple. Numerical values of the intercepts and slopes are given in Table B.2.

Regressing trends in the 95th percentile onto those in the 50th percentile yields a slope of 1.06±

0.04 ◦C/◦C and an intercept of −0.024±0.010 ◦C decade −1 (95% intervals; see Fig. B.3, Table B.2).

Opposite from previous findings (Caesar et al., 2006), the strength of the linear relationship (r2 =

.90) points towards the practicality of inferring changes in warm extremes by scaling changes

in the center of the distribution (Santer et al., 1990). The larger than unity slope demonstrates

an amplification of trends in warm extremes with respect to trends in the median, suggesting

a mechanism whereby increases in maximum daily temperature lead to a disproportionately

larger influence on the hottest summer days.
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Table B.2: Posterior medians of the slopes (in ◦C/◦C) and intercepts (in ◦C decade −1) for regressions of
trends in the 95th and 5th percentiles onto trends in the 50th percentile (Fig. B.3), using the GHCN-D and
NCEP II data sets. Also shown are estimates of the r2 value for each regression. 95% central posterior in-
tervals are included as a measure of uncertainty for all parameters. For the GHCN-D analysis, results are
presented using all stations (all), only those stations with constant precision throughout the time interval
(precision), and for the 1000 stations with constant precision that feature the most complete data availabil-
ity (data). Results are qualitatively similar using 500 or 1500 stations.

95th on 50th 5th on 50th

GHCN-D (all) Intercept (95% interval) -0.024 (-0.034, -0.013) 0.127 (0.113, 0.143)

Slope (95% interval) 1.06 (1.02, 1.10) 1.04 (0.97, 1.10)

r2 (95% interval) 0.90 (0.87, 0.93) 0.47 (0.42, 0.50)

GHCN-D (precision) Intercept (95% interval) -0.028 (-0.037, -0.018) 0.125 (0.110, 0.141)

Slope (95% interval) 1.06 (1.01, 1.10) 1.04 (0.97, 1.10)

r2 (95% interval) 0.91 (0.88, 0.93) 0.46 (0.41, 0.50)

GHCN-D (data) Intercept (95% interval) -0.045 (-0.067, -0.024) 0.160 (0.127, 0.193)

Slope (95% interval) 1.10 (1.01, 1.20) 0.98 (0.83, 1.13)

r2 (95% interval) 0.94 (0.85, 0.97) 0.37 (0.28, 0.46)

NCEP II Intercept (95% interval) 0.054 (0.036, 0.073) -0.011 (-0.038, 0.017)

Slope (95% interval) 0.74 (0.54, 0.90) 1.98 (1.79, 2.17)

r2 (95% interval) 0.56 (0.32, 0.71) 0.90 (0.83, 0.94)

One possibility is that higher temperatures are associated with lower soil moisture and a dis-

proportionate loss of evapotranspirative cooling on the hottest summer days (Seneviratne et al.,

2010). Also relevant is that the intercept term in the regression significantly differs from zero,

indicating the presence of an overall cooling influence in the 95th percentile irrespective of the

slope in the median. Such an offset is indicative of a temporally intermittent mechanism; one
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possibility is that circulation patterns associated with summer heat waves have altered (Loikith

and Broccoli, 2012, 2014).

The competing effects of amplification and offset lead to separate regimes, featuring, respec-

tively, increasing and decreasing trends in the 95th percentile relative to the median. Only those

stations having median warming trends exceeding 0.42 ◦C decade−1, or 19% of all stations, are

expected to feature excess warming in the 95th percentile relative to the 50th percentile (Table B.1).

These competing effects are also apparent in the maps of the trends and their differences (Figs. B.2,

B.10), which show amplification of the 95th percentile trend in regions where the trend in the 50th

percentile is large in magnitude, and a general shift towards lower values everywhere else. Note

that this amplified and offset relationship between trends in the percentiles would be obscured

through regional averaging.

Regressing trends in the 5th percentile onto those in the 50th percentile yields a best estimate

slope that is slightly greater than unity (1.04± 0.06 ◦C/◦C) and a significant, positive intercept of

0.127± 0.015 ◦C decade −1 (Fig. B.3, Table B.2). The marginally greater than unity slope in combi-

nation with a strong positive intercept leads to a general expectation of contraction of the lower

tail, though there are regional departures. The Gulf Coast region, for instance, features larger

slopes in the 50th percentile than the 5th percentile (Figs. B.2, B.10), possibly because it features

peak summer conditions earlier than other locations. These regional departures are consistent

with there being only moderate correlation between 50th and 5th percentile trends (r2 = 0.47).

The strength of the intercept points to a temporally intermittent mechanism associated with rel-

atively cold summer days. A possible mechanism is amplified polar warming (Screen and Sim-

monds, 2010; Bekryaev et al., 2010) leading to preconditioning of air masses associated with cold

anomalies in the mid-latitudes toward warmer temperatures.

Results of the two regressions together indicate that the lower half of the distribution contracts

for all trends in the median, and the upper half either contracts or, for 19% of stations, expands
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at a slower rate than the contraction in the lower half. Such changes in the distribution are con-

sistent with median warming leading to an overall decrease in variance and an increase in skew.

Analysis has focused on the median, as opposed to the mean, because it permits for isolat-

ing changes in the center of the distribution from those in the tails. For completeness, however,

we note that the slope is similar when regressing trends in the 95th percentile onto trends in the

mean, while the intercept is smaller (−0.051±0.008 ◦C decade −1; Table B.3, Fig. B.4). The smaller

intercept is associated with strong trends in the lower tail uniformly increasing the trends in the

mean; such influences from the lower tail point to the utility of using the median as a measure of

center. For similar reasons, regressing trends in the 5th percentile onto trends in the mean yields

a smaller intercept (0.073±0.016 ◦C decade −1). There is also increased correlation between mean

and 5th percentile trends (r2 = 0.77; Table B.3), resulting in a steeper estimated slope (1.22 ± 0.06
◦C/◦C). Indeed, the regressions on the mean feature higher r2 values in both cases, consistent

with trends confined to a single tail affecting mean but not median trends.
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Figure B.4: As in Fig. B.3, but using the OLS trends in the mean to predict trends in the (a) 95th and (b) 5th
percentiles. Numerical values of the intercepts and slopes are given in Table B.3.
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Table B.3: Posterior medians of the slopes (in ◦C/◦C) and intercepts (in ◦C decade−1) for regressions of the
trends in each of the three percentiles onto trends in the mean (Fig. B.4), using all stations in the GHCN-
D data set, along with estimates of the r2 value for each regression. 95% central posterior intervals are
included as a measure of uncertainty for all parameters.

95th on mean 50th on mean 5th on mean

GHCN-D Intercept −0.051 −0.019 0.073

(all) 95% interval (−0.059,−0.043) (−0.023,−0.015) (0.056, 0.087)

Slope 1.07 0.97 1.22

95% interval (1.03, 1.10) (0.96, 0.99) (1.16, 1.28)

r2 0.966 0.990 0.774

95% interval (0.953, 0.977) (0.987, 0.992) (0.747, 0.801)

B.6 Comparison to trends in NCEP II reanalysis

The spatially smoothed results from the GHCN-D analysis have only a weak correspondence

with results obtained from applying the same quantile regression analysis to the NCEP II re-

analysis (Kanamitsu et al., 2002). Spatial cross-correlations between the smoothed GHCN-D

and smoothed NCEP II estimates of the six trend or difference fields range from only 0.33 to

0.55 (Table B.1). The root mean squared differences between the smoothed station data and re-

analysis are at least three times larger than the estimated standard errors in the smoothed station

fields (Fig. B.5, Table B.1), leading us to conclude that the reanalysis contains substantial biases.

The apparent biases in the NCEP II reanalysis may be introduced through changes in observa-

tional coverage (Bengtsson et al., 2004) or unaccounted for changes in land use (Kalnay and Cai,

2003). Similarly, spurious spatial structure may be introduced though approximations for sur-

face boundary conditions, such as those involving topography (Rusticucci and Kousky, 2002).
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Figure B.5: As in Fig. B.5, but for an analysis of the daily maximum of the four times daily 2m air temper-
ature from the NCEP II reanalysis. Results are smoothed in the same manner as the GHCN-D results to
facilitate comparisons. White dots demarcate locations with values outside the bounds of the color scale.

These results also suggest that analyses of extremes using other reanalysis products may contain

similar biases relative to station data (Huntingford et al., 2013). See Sec. B.8.8 for further discus-

sion.
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B.7 Conclusion

Through applying quantile regression to station-level temperature data, we identify significant

trends in the 5th, 50th, and 95th percentiles of summertime Tx. Furthermore, and in contrast to

previous work (Caesar et al., 2006; Brown et al., 2008; Huntingford et al., 2013), including our

own (Rhines and Huybers, 2013; Tingley and Huybers, 2013), we identify large scale patterns

of significant differences between trends in the tails and center of the summertime Tx distribu-

tion. A particularly strong linear relationship exists between trends in the median and upper tail

of the distribution, indicating a general amplification of trends in the hottest summer tempera-

tures relative to the median, tempered by an overall offset toward cooling. With the caveat that

trust-worthy predictions also require an understanding of the offset in trends, the general ampli-

fication points to the practicality of using model projections that capture changes in the center of

the temperature distribution to predict changes in warm extremes.

B.8 Supplementary methods and discussion

B.8.1 Data

We use daily Tx observations from the Global Historical Climatology Network (GHCN-D) (Menne

et al., 2012) database in the densely sampled North American region, from 130◦W to 60◦W and

25◦N to 55◦N. Previous studies (Barbosa et al., 2011; Caesar et al., 2006; Brown et al., 2008) have

sought to remove the seasonal cycle prior to examining trends in extremes, but because the vari-

ance and higher-order moments of temperature anomalies about the seasonal cycle themselves

depend on the season (Huybers and Curry, 2006), and the phase and amplitude of the seasonal

cycle are time- and space-dependent (Thomson, 1995; Stine and Huybers, 2012; McKinnon et al.,

2013), establishing an appropriate algorithm for removing seasonality is non-trivial, particu-

99



larly if one seeks to differentiate between changes in the center as compared to the tails of the

temperature distribution. Here we take the simpler approach of only considering summer con-

ditions, taken as the 60 day interval from calendar day 175 to 234, inclusive (June 24 to August

22 for a non-leap year), which is the warmest 60-day interval in the climatology defined by the

area-weighted average across all stations and across all years between 1979-2012. Section B.8.7

discusses results under 50 and 70 day summer intervals.

Any observation featuring a negative quality control flag in the GHCN-D metadata is dis-

carded from the analysis, and stations are further screened for data availability using the criteria

that included records must contain at least 20% of summer observations per decade and near-

complete (80%) summers in at least two years per decade. A total of 3894 stations in the region

meet these data quality and availability criteria, constituting approximately 7.5 million individ-

ual observations.

B.8.2 Quantile regression

Formally, quantile regression (Koenker and Bassett Jr, 1978; Koenker and Hallock, 2001; Cade

and Noon, 2003) proceeds as a minimization problem under a tilted absolute value loss function,

with the angle determining the quantile, τ (Fig. B.6). For values of τ > 1/2, the tilt in the absolute

value loss function results in positive residuals contributing more to the loss function than nega-

tive residuals, and vice versa for values of τ < 1/2. In contrast, ordinary least squares regression

is based on minimizing a symmetric, quadratic loss function. The quantile regression minimiza-

tion problem is generally solved via a linear programming algorithm (Koenker and Bassett Jr,

1978), and we make use of the Matlab and R implementations of the quantile regression algo-

rithms provided by Roger Koenker (www.econ.uiuc.edu/~roger/research/rq/rq.html).

Quantile regression shares a first-order equivalence with least squares regression on empirical

quantiles calculated from data subsets defined by the predictor variable (Bassett Jr et al., 2002).
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Figure B.6: Loss functions for ordinary least squares (OLS) regression (blue), and for quantile regression
(QR) for the .25, .50, and .95 quantiles (red). Axes are intentionally blank as it is the shape of the loss func-
tions that is important.

Indeed, past studies have taken the latter approach (Caesar et al., 2006), but pooled data across

years to increase the number of observations available for calculating empirical quantiles. As

our interest is in trends in the tails at the annual time scale, we view quantile regression as a pre-

ferred approach.

B.8.3 Estimating conditional quantiles from rounded observations

Presentations of quantile regression generally assume that the conditional distribution function

is continuous (Koenker and Bassett Jr, 1978). The GHCN-D observations are rounded, with the

level of precision varying both between records and over time within a given record (Fig. B.1).

Although the level of rounding is not independently recorded, exploratory analysis suggests that

the most precise observations within the subset of the database that we analyze are rounded to

the nearest 0.1 ◦C and the least precise to 1◦C. Stations from the United States are rounded to 1◦F

and then converted to ◦C.

Estimates of medians from discrete or rounded observations have different properties than

estimates of means, and these properties are inherited by estimates of quantile regression pa-
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rameters. As illustration, consider the distribution of the sample mean (μ̂) and median (M̂) of

2N + 1 independent, random draws from U(0.5, 2.5), where U denotes the uniform distribution

and the sample size is forced to be odd for convenience. M̂ is then the N + 1 order statistic and,

therefore, follows a shifted-and-scaled beta distribution. The probability density function for the

sample median, like that for the sample mean, is continuous with support on the entire (0.5, 2.5)

interval. If the observations are rounded to the nearest integer, the resulting sample median,

M̂r, can take on only the values one or two, each with probability 0.5—regardless of the sample

size. Rounding adds coarseness to estimates of the median that, in the large sample limit, is not

present for estimates of the mean.

As with estimates of the median, rounding results in slopes estimated from quantile regres-

sion preferentially falling on particular values, at the expense of near-by regions of the real line

(Figs. B.7, B.8ab). These biases can be corrected by imposing a degree of smoothness on the rounded

or discrete observations by “jittering” them; that is, by adding independent random noise (Koenker

and Bassett Jr, 1978; Machado and Silva, 2005). The jitter should, ideally, exactly match the distri-

bution of values associated with the process of rounding, as the aim is to probabilistically undo

the rounding through realizing a continuous distribution that preserves ordering of the data up

to the precision of the rounding. In the median estimation problem discussed above, for exam-

ple, adding a draw from a U(−0.5, 0.5) to each rounded sample restores the original distribu-

tional properties of the sample median.

Adding zero-centered uniform jittering, with width given by the rounding interval, gener-

ally suffices to counter the distributional effects of rounding, assuming that the observations

have been rounded according to convention and that the rounding interval is small relative to

the variability of the temperature data distribution. For the daily GHCN-D Tx observations, the

half-width of the jittering noise is at most 0.5◦C, while the standard deviation of daily Tx at any

location is generally an order of magnitude larger, justifying the use of a uniform jittering distri-
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(a) Original data. Slope in 95th percentile = 0.018
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(b) Rounded data. Slope in 95th percentile = 0
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Figure B.7: The impact of rounding on quantile regression, for normal errors on a weak linear trend. (a)
Original data, formed as IID N (0, 102) samples added to a trend of 0.01 ‘temperature’ units per ‘time’ unit.
To match the GHCN-D data used in the analysis, there are 60 ‘temperature’ observations at each of 34
time intervals. The estimated slope in the 95th percentile for this sample is 0.018. (b) The data from panel
(a), rounded to the nearest integer, with the size of the dots giving the number of superposed observa-
tions. The estimated slope in the 95th percentile for the rounded data is 0 to machine precision.

bution. In addition, a uniform jittering distribution avoids the necessity of modeling the distri-

bution of the underlying, continuous data-generating process (Reich and Smith, 2013).

The efficacy of our jittering approach can be examined with respect to example data sets with

characteristics specified to mimic the actual GHCN-D stations. An example realization is pro-

duced as mean-zero Gaussian noise with standard deviation of 10 superimposed on a linear

trend of 0.01 per unit time. The length of the interval is 34, and there are 60 observations for each

time unit, approximating the degrees of freedom for each GHCN-D station. Quantile regression

slopes are then estimated for the original data; after rounding all observations to the nearest inte-
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Figure B.8: The effects of rounding and subsequent jittering on estimates of quantile regression slopes.
(a) Histogram of estimated slopes in the 95th percentile for 2000 data samples produced as in Fig. B.7a.
The true slope value of 0.01 used to create the data is marked in red in all panels. (b) As in (a), but each
data point is rounded to the nearest integer prior to estimating the slope. (c) As in (b), but U(−1/2, 1/2)
random jitter is added to each rounded observation prior to estimating the slope.

ger; and after then adding independent U(−0.5, 0.5) draws to each rounded observation. Under

repeated sampling, a two-sample Kolmgorov-Smirnov test comparing the distribution of slopes

from the original and rounded data clearly rejects the null hypothesis that the samples follow

the same distribution, with a p-value less than 0.001. The jittering, however, produces a distribu-

tion of slopes that is indistinguishable from that of the original observations (Fig. B.8), with the

Kolmgorov-Smirnov test p-value of 0.69 giving no indication that the distributions are different.

Standard analytical treatments of the uncertainties associated with quantile regression also as-

sume continuity of the conditional density function. Continuity facilities asymptotic approaches

to estimating functional forms for standard errors and normal approximations to the quantile re-

gression estimator (Koenker and Bassett Jr, 1978; Simpson et al., 1987; Knight, 1998). The rounded

nature of the GHCN-D data and the expectation that daily temperature observations display au-
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tocorrelation renders standard approaches difficult to implement, and we instead quantify un-

certainty using a block bootstrap procedure, discussed below.

B.8.4 Determining the precision of the GHCN-D data

It is necessary to infer the precision, or degree of rounding, in the GHCN-D data set directly

from the observations. Initial examination of the time series of first differences reveals that ob-

servations are rounded to the nearest 0.1◦C, 0.5◦C, 1◦C, or to the nearest 1◦F or 2◦F prior to the

GHCN-D aggregation to the nearest 0.1◦C (Durre et al., 2010). There are some rare exceptions to

these differences that are likely attributable to errors either in the reading, recording, or trans-

ferring of data. Other potential issues with station data, including the preferential occurrence of

certain values of the last digit of the observations (Nese, 1994), are not addressed here.

We model the level of precision for each observation using a Hidden Markov Model (Wikle

and Berliner, 2006), defining the state vector in units of ◦C as S = (0.1, 0.5, 1.0, 5/9, 10/9) . A

prior transition matrix is generated by assuming that each state will persist from day to day with

probability α, and will transition with equal probability to any of the other states. Depending

on which state is active, it is possible to observe different subsets of temperature levels, and for

each observation we encode this information as a consistency vector. The emissions matrix then

maps the states in S to their likelihood of emitting an observation with each possible consistency

vector under 0.1◦C rounding. The Baum-Welch algorithm (Rabiner, 1989), based on expectation-

maximization, is first used to estimate the true transition probabilities from the data and the

transition prior, and the Viterbi algorithm (Forney Jr, 1973) is then used to recursively solve the

hidden Markov model for the optimal state path of the data, given the estimated transition prob-

abilities and the emission matrix.

As the linear trends for the GHCN-D stations tend to be small relative to the variability, the

discretization of the observations results in the expected spurious structures in histograms of
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the quantile regression slopes across stations (Fig. B.9). In particular, there is substantial zero-

inflation at the expense of small, non-zero values. The addition of uniform random noise to the

observations, with parameters determined according to the inferred level of rounding, amelio-

rates the zero inflation and restores the distribution of slopes to approximate normality (Fig. B.9).
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Figure B.9: Slopes, in ◦C decade−1, for quantile regression fits to the daily summer Tx data from GHCN-
D. (a)–(c) Slopes in the 5th, 50th, and 95th percentiles of the original data. (d)–(f) Slopes in the 5th, 50th, and
95th percentiles after adding random uniform jitter to the original data. Note the change in vertical scaling
between the top and bottom row.

B.8.5 Uncertainty quantification: bootstrapping and spatial mapping

The distributions of station-level slopes consistent with the data are assessed using annual block

bootstraps (Barbosa et al., 2011; Lee et al., 2013), and we additionally disentangle the uncertainty

due to the jittering outlined above. To assess the uncertainty due to the precision of the observa-

tions, we calculate the variances of the slope estimates under 1000 independent realizations of

106



the jittering procedure. We assess uncertainty due to the availability and variability of the obser-

vations by forming bootstrap samples for each station by resampling, with replacement, entire

years of observations, and then calculating slopes and differences for the three percentiles, with

the jittering realization held constant. In effect, the bootstrap randomizes the years, with replace-

ment, while preserving any temporal correlation structure within each year, and the bootstrap

variance is an order of magnitude larger than that from the jittering. The overall uncertainty is

formed from the sum of the two variances, and is strongly dominated by the bootstrap uncer-

tainty. Slopes and differences that lie outside of the corresponding 95% central uncertainty inter-

vals are considered significant, in the sense that the value is larger in magnitude than would be

expected under a random resampling of the years (Fig. B.2). Significance in this context is not a

statement of anthropogenic attribution, but rather that there is low-frequency structure inconsis-

tent with annual samples that are independent of one another.

A second block bootstrap is performed on the residuals about the initial fits, and the estimated

error standard deviations and correlations associated with the estimated slopes used in the re-

gression analysis between trends in different percentiles (Fig. B.3 and see subsequent). Whereas

the first bootstrapping procedure aims to assess the significance of the linear trends with respect

to a null assumption of independence between years, the second quantifies the uncertainty in the

model parameter estimates, and generally produces smaller uncertainties.

As an alternate assessment of spatial patterns and uncertainty, we smooth the station-level

results and spatially map them onto the approximately 2◦ latitude by 2◦ longitude grid asso-

ciated with the NCEP II Reanalysis product (Kanamitsu et al., 2002). The spatial smoothing is

performed using fastTPS within the R (Ihaka and Gentleman, 1996) package fields (Furrer

et al., 2013). fastTPS is a spatial mapping scheme based on the compactly supported, isotropic

and stationary Wenland covariance function, and we set the spatial range to θ = 750 miles (great

circle distance), so that the estimated, smoothed value at each location is affected by all values
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within 750 miles. Results are visually similar for larger (1000) and smaller (500) values of θ, and

we choose a value of 750 miles to accentuate the large-scale features evident in the station-level

results (Fig. B.2), at the expense of smaller-scale features, such as those seen on the West Coast.

fastTPS uses a cross validation procedure to determine the partitioning of variance between the

smooth interpolating surface and the spread of the observations around the smooth surface. The

uncertainty in the estimate of the smoothed field at each location is determined by the data avail-

ability in the surrounding area, as well as by the overall partitioning of variance. The standard

errors associated with the estimated smoothed surface provides an independent means of quan-

tifying uncertainty, and we consider as significant those grid boxes with values that are more

than 1.96 standard errors from zero, to be consistent with the 95% uncertainty range used for the

station data (Fig. B.10).

These two disparate approaches to uncertainty quantification both display robustness to the

presence of inhomogeneities (Menne et al., 2012) in the original station level data series. Correct-

ing step-function inhomogeneities, such as those arising from changes in instrument location,

type, or observation protocol, will generally decrease the variance of the original series (Figs. 4, 5

of Menne and Williams Jr, 2009). The presence of inhomogeneities will therefore, modulo patho-

logical instances where the inhomogeneities lead to a better linear fit, increase variance about

any climatic trends, and as such increase the bootstrap standard deviations used to character-

ize uncertainty in the station-level results. The contributions of such stations are then down

weighted visually (Fig. B.2) and in the assessment of the relationships between trends in the

three quantiles (see subsequent).

Inhomogeneities will also, in general, make the trends at near-by stations more distinct from

one another – indeed, the assumed similarly of near-by records is the main diagnostic for iden-

tifying and correcting inhomogeneities (Menne and Williams Jr, 2009). Provided the presence

and magnitude of spurious slopes arising from inhomogeneities are uncorrelated with the large-
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Figure B.10: Spatially smoothed maps, interpolated onto the NCEP II grid, of quantile regression trends
and their differences, in ◦C decade−1, for daily summertime Tx from GHCN-D. (a), (c), (e). Trends in the
95th, 50th, and 5th percentiles. (b), (d), (f). The difference in trends between the 95th and 50th percentiles,
the 95th and 5th percentiles, and the 50th and 5th percentiles. In all panels, gray hashing indicates locations
where the smoothed field is within 1.96 standard errors of zero, so that an absence of hashing indicates
locations that are significantly different from zero at the 95% level.

scale spatial variability that is accentuated by the spatial smoothing (Fig. B.10), inhomogeneities

will tilt the variance partitioning inherent to the smoothing more towards variability about the

smooth surface, and will likewise increase the standard errors in the estimated smooth surface.

For all three percentiles, the standard deviation of the smooth surface is at least twice as large as

the average standard error in the estimation of the smooth surface (Table B.1), indicating that the
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variability in the smooth field is substantially larger than the uncertainty in its estimation.

B.8.6 Fitting straight lines to scatter plots of noisy observations

In assessing the relationships between linear trends in the 50th and 95th percentiles, and the 5th and

95th percentiles, we adopt a Bayesian regression formalism that takes into account the error co-

variances in the estimated slopes and models the values of the independent variable as draws

from a probability distribution (as opposed to being set in advance as part of the experimental

design). The explicit modeling of observational uncertainty in the independent variable avoids

regression dilution – underestimation of the slope arising from noise in the independent variable

– while modeling of the observational uncertainty in the dependent variable reduces uncertainty

in the estimation of the regression parameters. We defer general discussions of regression dilu-

tion (Frost and Thompson, 2000; Tingley and Huybers, 2010), and the difficulties of straight-line

fitting in the presence of errors in both variables (Brown, 1993; Christiansen, 2013), in favor of

presenting the specific model used to fit the regressions.

Let xo(si) denote the estimated slope at location si for the percentile treated as the independent

variable, and xt(si) the corresponding ‘true’, or latent, value of the slope at this location – that

is, we acknowledge the estimated slope is an imperfect estimate, due to the limited sample size.

Likewise, let yo(si) and yt(si) denote the observed and true values of the slope at location si for

the percentile treated as the response. We seek to fit a model of the form,

yt(si) = α+ β · xt(si) + εy

εy ∼ N (0, τ2), (B.1)

where the primary complication is that only the xo(si) and yo(si) are available, while the regres-

sion is in terms of yt and xt.
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The aim of the analysis is thus to find the conditional distribution, π(α, β, τ2|yo, xo), of the re-

gression parameters, α, β, τ2, given the observations, yo, xo, where π denotes a probability distri-

bution. We do so via a Bayesian approach, specifying an improper, uninformative prior for the

three regression parameters, π(α, β, τ2) ∝ 1/τ2, corresponding to flat priors on α and β, and the

Jeffery’s prior on τ2 (Gelman et al., 2003). Bayes’ rule then gives,

π(α, β, τ2|yo, xo) ∝ f(yo, xo|α, β, τ2) · π(α, β, τ2) (B.2)

where f denotes the likelihood. Exploiting the identify π(A) =
∫
B π(A|B)π(B) by conditioning on

and integrating over π(xt, yt) gives,

π(α, β, τ2|yo, xo) ∝
∫

xt,yt
f(yo, xo|yt, xt,α, β, τ2)π(yt, xt|α, β, τ2)π(α, β, τ2) (B.3)

where we use f exclusively to indicate that the distribution is in terms of the observations. Sim-

plification can be achieved by noting that the prior on (α, β, τ2) is independent of xt and yt, so

can be removed from the integral. Further simplification follows by modeling the observations,

xo and yo, as conditionally independent of the regression parameters, given xt and yt. We do,

however, explicitly model the correlation between the errors in the observations:

⎛

⎜⎝
xo(si)

yo(si)

⎞

⎟⎠

∣∣∣∣∣∣∣

⎛

⎜⎝
xt(si)

yt(si)

⎞

⎟⎠ ∼ N

⎡

⎢⎣

⎛

⎜⎝
xt(si)

yt(si)

⎞

⎟⎠ ,

⎛

⎜⎝
σ2x(si) ρ(si)σx(si)σx(si)

ρ(si)σy(si)σx(si) σ2y(si)

⎞

⎟⎠

⎤

⎥⎦ . (B.4)

As a result, and suppressing explicit dependence of all parameters on si, we have,

xo|yo, xt, yt ∼ N (xt + ρσxσy
(yo − yt) , σ2x

(
1− ρ2

)
)

yo|xo, xt, yt ∼ N (yt + ρ
σy
σx

(xo − xt) , σ2y
(
1− ρ2

)
) (B.5)
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Each of these forms will be useful in deriving the full conditional distributions of xt(si) and yt(si).

All that remains is to specify a form for π(yt, xt|α, β, τ2), and here we exploit the identity π(A,B) =

π(A|B)π(B); the regression relationship in Eqn. (B.1); and the fact that the values of the depen-

dent variable are best modeled as draws form a common normal distribution with unknown

mean and variance:

π(yt, xt|α, β, τ2) = π(yt|xt,α, β, τ2)π(xt|α, β, τ2) = π(yt|xt,α, β, τ2)π(xt)

yt(si)|xt(si),α, β, τ2 ∼ N (α+ β · xt(si), τ2)

xt(si)|μx, δ
2
x ∼ N (μx, δ

2
x)

π(μx, δ
2
x) ∝ 1/δ2x (B.6)

As with the regression parameters, we use a flat, improper prior for μx and the Jeffery’s prior for

δ2x, so that π(μx, δ
2
x) ∝ 1/δ2x (Gelman et al., 2003). Eqn. (B.3) then simplifies to,

π(α, β, τ2|yo, xo) ∝ π(α, β, τ2)
∫

π(yt|xt,α, β, τ2)π(xt|μx, δ
2
x)π(μx, δ

2
x)f(xo, yo|yt, xt)

where the integration is over xt, yt, and the parameters μx and δ2x. The last term can equivalently

be written as f(xo|yoxt, yt)f(yo|yt) or f(yo|xoxt, yt)f(xo|xt); in the former case, only the first term is

dependent on xt, and in the latter case, only the first term is dependent on yt.

We adopt an empirical Bayes (Gelman et al., 2003) approach, setting σ2x,y(si) to the station spe-

cific residual bootstrap variances, and ρ(si) to the station specific correlations between bootstrap

samples (Table B.4). Note that these error correlations are non-negligible, with median values

across stations of 0.656 between the 95th and 50th percentiles, and 0.634 between the 5th and 50th

percentiles.

The regression framework partitions the observed variance in the independent variable be-
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Table B.4: Estimates of the error standard deviations (in ◦C/decade−1) and error correlations (unitless)
for trends in the 95th, 50th, and 5th percentiles for the full GHCN-D data set. Values are derived from the
residual block bootstrap on years, and subsequently used in the regressions between trends. Separate
values are estimated for each station, and both the median and a central 95% interval are shown.

95th 50th 5th

Standard Deviations Median 0.304 0.245 0.329

95% interval (0.157, 0.555) (0.131, 0.377) (0.165, 0.586)

95th and 50th 5th and 50th

Correlations Median 0.656 0.636

95% interval (0.397, 0.776) (0.363, 0.776)

tween correlated observational or measurement errors [σ2x(si),ρ(si)] (assumed known), and the

estimated variance across the stations in the true values of the independent variable [δ2x]. For the

dependent variable, the variance in the observations is partitioned between the specified cor-

related measurement error variance [σ2y(si),ρ(si)], the variability due to the dependence on xt

[β2δ2x], and equation error in the regression model [τ2]. Posterior draws of xt and yt are effectively

shrunk towards the mean value and the regression line, respectively, according to the variance

partitioning.

Note that there are five unknown scalar parameters – (α, β,μx, τ2, δ
2
x) – and that the modeling

assumptions are equivalent to assuming that (xt, yt)T is bivariate normal with unknown mean

(two parameters) and covariance matrix (three parameters). In effect, we fit the parameters of

the joint distribution via the identity P(A,B) = P(A|B)P(B), which, under normality, results in

a linear expression for the conditional mean. An estimate of the squared correlation for the re-

gression follows from equating the five parameters of a bivariate normal to the five parameters

113



estimated here (Table B.2):

r2 = β2σ2x
τ2 + β2σ2x

.

The sampling of (α, β, τ2) and integration over (xt, yt,μx, δ
2
x) then proceeds numerically, via

Markov Chain–Monte Carlo sampling. Using a Gibbs sampler (Gelman et al., 2003), we draw

from the full conditional distribution of each unknown in turn, given the most recent draws of

all other parameters. The result is an estimate of the joint distribution of (α, β, τ2,μx, δ
2
x, xt, yt), so

that the samples of the parameters of interest – (α, β, τ2) – integrate over the distributions of the

nuisance parameters.

Given the priors discussed above, the full conditional posteriors have the following forms,

where the notation z|· indicate the conditional distribution of z given all other variables.

The full conditional posteriors for α, β, and μx are normal:

α|· ∼ N (1T · (yt − βxt)/N, τ2/N)

β|· ∼ N (xTt (yt − α)/(xTt xt), τ2/(xTt xt))

μx|· ∼ N (1T · xt/N, δ2x/N), (B.7)

where N gives the total number of stations, 1 is a vector of ones, and a superscript T denotes a

transpose.

The full conditional posterior for τ2 and δ2x are Inverse-Gamma:

τ2|· ∼ IG(N/2, (yt − βxt − α)T(yt − βxt − α)/2)

δ2x|· ∼ IG(N/2, (xt − μx)
T(xt − μx)/2), (B.8)

where we use the notation of Gelman et al. (2003).

The full conditional posteriors for the xt(si) and yt(si), where the equations hold separately at
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each location si and (xt, yt, xo, yo, σ2x, σ2y,ρ) are all implicitly dependent on si, are normal:

xt(si)|· ∼ N (VxΨx,Ψx)

Vx =
β(yt − α)

τ2 +
xo − ρσx

σy (yo − yt)
σ2x(1− ρ2) +

μx
δ2x

Ψx =

(
β2
τ2 +

1
σ2x(1− ρ2) +

1
δ2x

)−1
(B.9)

yt(si)|· ∼ N (VyΨy,Ψy)

Vy =
βxt + α

τ2 +
yo − ρσy

σx (xo − xt)
σ2y(1− ρ2)

Ψy =

(
1
τ2 +

1
σ2y(1− ρ2)

)−1

. (B.10)

B.8.7 Robustness of results to the length of the summer interval

The phase of peak seasonality varies from roughly calendar day 190 in the Southwest to day 210

along the Pacific coast, with a mean value of 204.5 used to define thermal summer for the region

as a whole as days 175 to 234. Given the spatial variability in the phase of peak summer, we view

a 60 day interval as a reasonable compromise between an interval short enough to reflect peak

summer conditions, and long enough to capture peak summer throughout the domain.

Using a 50 or 70 day definition of peak summer leads to spatial maps of trends that are quali-

tatively and quantitatively similar to those resulting from a 60 day summer interval, with corre-

lations in all cases greater than 0.94. Correlations under changing summer intervals are smallest

for trends in the 5th percentile, and largest –in excess of 0.98– for trends in the 95th percentile. As

expected, there is a greater sensitivity to seasonality for trends in the lower tail.
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The regression relationships between the trends in the three percentiles likewise display some

sensitivity to the length of the interval used to define summer (Table B.5). The amplification

of the trends in the 95th percentile as compared with trends in the 50th percentile is more pro-

nounced under a shorter definition of summer, and less so using a 70-day interval, likely due

to seasonality affecting estimates of trends in the 50th percentile under a longer definition of

summer. The offset between trends in the 5th percentile as compared with the 50th percentile is

evident under all three summer intervals, and is largest for the 50 day interval. In all cases, the

slope between trends in the 5th percentile and the 50th percentile slope is not different from unity.

Table B.5: As in Table B.2, but showing results for the GHCN-D data set using 50 and 70 day summer in-
tervals.

95th on 50th 5th on 50th

GHCN-D Intercept −0.013 0.17

(50 days) 95% interval (−0.024,−0.004) (0.161, 0.189)

Slope 1.11 0.98

95% interval (1.07, 1.16) (0.91, 1.04)

r2 0.90 0.47

95% interval (0.88, 0.93) (0.42, 0.52)

GHCN-D Intercept −0.042 0.110

(70 days) 95% interval (−0.051,−0.033) (0.097, 0.123)

Slope 1.02 1.03

95% interval (0.98, 1.06) (0.97, 1.08)

r2 0.87 0.56

95% interval (0.84, 0.90) (0.52, 0.60)
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B.8.8 Comparisons with results from the NCEP II reanalysis

As the GHCN-D data cover the same time interval as the National Center for Environmental

Prediction’s Reanalysis II product (Kanamitsu et al., 2002), and results are additionally smoothed

and interpolated onto the NCEP II grid, it is fruitful to explore the agreement between the station-

level results and those for the maxima of the four times daily 2m air temperature from NCEP II.

To facilitate comparison, we first apply to the NCEP II results the same thin plate spline smooth-

ing as was applied to the station level results, as the spatial smoothing length scale of 750 miles

is much greater than the 2◦ NCEP II grid boxes.

There is generally weak agreement between the smoothed trend maps from the NCEP II and

GHCN-D analyses (Figs. B.10, B.5). Both the correlation and root mean squared error (RMSE) be-

tween corresponding smoothed trend fields are largest for the 5th percentile (r = 0.53, RMSE=

0.55) and smallest for the 50th percentile (r = 0.33, RMSE=0.39), indicating that the pattern of

agreement is worst for the 50th, while the errors are smallest due to the generally smaller magni-

tudes (Table B.1).

The NCEP II 95th percentile trends feature more significant warming in the West as compared

with GHCN-D; a different pattern of cooling in the centre of the domain; and similar warming in

eastern Canada, where GHCN-D is data sparse (Figs. B.10, B.5). The 50th percentile trends from

NCEP II feature clusters of strong warming throughout the western portion of the domain; with

the exception of the southernmost warming cluster, where there are no stations, these features

are amplifications of those seen in the GHCN-D results. Cooling regions in the the center of the

domain for both the 50th and 95th percentiles are generally polewards of the corresponding fea-

tures seen in GHCN-D. For trends in the 5th percentile, NCEP II captures the strong warming in

the West, and some of the warming along the Eastern Seaboard that is evident in the smoothed

GHCN-D results, including in regions where GHCN-D is data-sparse. The similarities and in-
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congruities between NCEP II and GHCN-D are likewise reflected in maps of the differences in

trends between quantiles for each analysis. NCEP captures aspects of the increasing variability

seen in GHCN-D for the Texas region, the moderate reduction in variability in the eastern part of

the domain, and a stronger reduction in variability in the West.

The most striking difference between the two analyses are the much larger values, of both

signs, seen in the NCEP II analysis. The largest magnitude trends for the smoothed NCEP anal-

ysis are about 2.5◦C decade−1, substantially larger than the maximum of about 1.4◦C decade−1

for the smoothed GHCN-D results. We note that the spatially smoothed trends from the GHCN-

D analysis are not immediately comparable to those found for the NCEP II gridded product, as

the latter measures trends in the quantiles of spatially smoothed temperatures, and in the former

we produce spatially smoothed maps from station-level trend estimates. In general, calculating

extremal indices on gridded climate data should reduce the severity of the extremes, due to the

averaging or smoothing inherent to the gridding (Haylock et al., 2008; Zhang et al., 2011).

It is therefore somewhat surprising that the smoothed trends estimated from the NCEP II

analysis feature larger values and larger variability than the smoothed trends from the GHCN-

D data (Table B.1 and Figs. B.10, B.5). A number of the NCEP grid boxes, even after smoothing

to the same level as the GHCN-D results, feature slopes, particularly for the 5th percentile, that

are nearly twice as large in magnitude as those for the smoothed GHCN-D results. The slopes

are most amplified for grid boxes that feature strongly varying topography, where there is of-

ten a clear multi-modality in the NCEP temperature values, persistent throughout much of the

year and lasting from about 1979–1999 (Fig. B.11), perhaps indicating that the boundary layer

model struggles to accommodate sharp elevation gradients prior to about 1999 (Rusticucci and

Kousky, 2002). As the multi modality is time dependent, slopes, particularly in the 5th percentile,

are much larger than any observed in the GHCN-D data set.

Regressions between the trends in percentiles from the NCEP II analysis do not reproduce the
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Figure B.11: Maximum of four times daily 2m air temperature from the NCEP II reanalysis, for a grid box
centered between Fresno and Yosemite, in the central valley of California. (a) Tx plotted as a function of
day of the year, for 1979–2012. (b) Tx for days 175–234, plotted as a function of year.

features seen in the GHCN-D analysis (Table B.2). The regression of trends in the 5th percentile

onto trends in the 50th percentile from NCEP II features strong amplification in the slope and

an intercept that is not significantly different from zero, whereas the GHCN-D results feature a

large intercept and a slope not different from unity. For the NCEP II analysis, trends in the 95th

percentile are damped with respect to those in the 50th percentile, and the intercept is positive;

in contrast, GHCN-D results feature amplification in the slope and a negative intercept. These

discrepancies suggest that NCEP II is not capturing aspects of the robust distributional changes

seen in the station data. In interpreting the NCEP-II results we stress that NCEP II and GHCN-D

results are not immediately comparable, as the former is an inherently smoothed product. In ad-

dition, the time dependent multi modality evident in a number of the mountainous NCEP-II grid

boxes naturally inflates trends in the 5th percentile as compared with the 50th or 95th percentile,

further complicating the comparison with the GHCN-D results.
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