DIGITAL ACCESS 10 -
SCHOLARSHIP sr HARVARD T e i Schotaty Communicatin

DASH.HARVARD.EDU

Discovery and Functional Interpretation of Genetic
Risk in Autoimmune Diseases

Citation
Hu, Xinli. 2015. Discovery and Functional Interpretation of Genetic Risk in Autoimmune Diseases.
Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467297

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility


http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467297
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Discovery%20and%20Functional%20Interpretation%20of%20Genetic%20Risk%20in%20Autoimmune%20Diseases&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=4ad86b26a3cc34c13cc4f7a452021cda&departmentMedical%20Sciences
https://dash.harvard.edu/pages/accessibility

Discovery and Functional Interpretation of Genetic Risk in Autoimmune Diseases

A dissertation presented

by

Xinli Hu

to

The Division of Medical Sciences

in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy
in the subject of

Biological and Biomedical Sciences

Harvard University
Cambridge, Massachusetts

May 2015



© 2015 Xinli Hu

All rights reserved



Dissertation Advisor: Dr. Soumya Raychaudhuri Xinli Hu

Discovery and Functional Interpretation of Genetic Risk in Autoimmune Diseases

Abstract

Autoimmune diseases are chronic and debilitating conditions arising from abnormal
immune responses directed against normal body tissues; they collectively affect the lives of 5-10%
of the world population. These diseases often show familial clustering, suggesting strong genetic
heritability. For many of autoimmune diseases, variation in the human leukocyte antigen (HLA)
genes is the primary modulator of genetic risk. Recently, genome-wide association studies (GWAS)
identified hundreds of genomic regions outside the HLA that harbor additional risk-conferring
variants. The ultimate goal is to identify the precise causal variants and understand the
mechanisms by which they lead to autoimmunity, which is challenged by complexities of the
genome and the immune system.

In this work, my colleagues and I developed and applied experimental and computational
tools to reveal critical clues from multiple genetic and biological data types. First, we devised a
statistical algorithm to identify the critical cell types involved in different autoimmune diseases.
Two strongly heritable and common diseases, rheumatoid arthritis (RA) and type 1 diabetes (T1D),
both involve the adaptive immune system, specifically the CD4+ T cells. We then conducted focused
studies in CD4+ T cells using high-throughput genomic and proteomic technologies, and showed
that immunological phenotypes and functions varied with genetic differences across individuals. To
facilitate this study, we developed an automated computational tool to efficiently and reliably
analyze the large-scale data. Finally, the HLA genes, which encode a family of highly variable
antigen-recognition proteins, are the longest-known and strongest modulators of genetic risk in

T1D. However, the extraordinary level of polymorphism and complex structure in the HLA region
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largely hindered precise localization and functional investigation of the causal mutations. We used
dense-genotyping and robust statistical analyses to pinpoint the amino acid residue changes at a
few key amino acid positions that explained the majority of disease risk within the HLA.

The work presented in this dissertation revealed the specific immune cell populations,
genetic variants, and cellular functions that affect RA, T1D, and other autoimmune diseases.
Furthermore, it offers a rational framework, as well as powerful open-source computational tools,

that can be applied in future functional genomic studies.
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ABSTRACT

Genome-wide association studies (GWAS) have discovered hundreds of common genetic
variants that predispose humans to autoimmune diseases, opening up unprecedented potential for
elucidating the pathways and processes of disease. To understand the role of these variants in
susceptibility, we need to derive mechanistic insight by integration of genetic results with other
biological data types and also with careful functional studies. In many cases, such studies have
highlighted coherent biological processes at a high level and elucidated specific mechanisms that
contribute to autoimmunity and inflammation. The understanding of the genetic component of
autoimmune etiology will become more complete as fine-mapping and sequencing data become
readily available. A comprehensive catalog of human immune phenotypes could provide a
functional basis for assessing genetic influence on immune function and variation in response to

therapeutic interventions, as well as for rationally designing new targeted therapeutics.



INTRODUCTION

Autoimmune diseases are a clinically diverse group of diseases caused by inappropriate or
hyperactive immune responses against tissues and substances normally considered “self.” Although
malfunction of the immune system is clearly indicated, the mechanism of autoimmune pathogenesis
is still far from elucidated. Family and twin studies have long suggested that genetics contributes
significantly to autoimmunity, and earlier linkage studies identified a handful of strong genetic
variants primarily in the major histocompatibility (MHC) region encoding human leukocyte
antigens (HLA). Since the completion of the HapMap Project and development of massively parallel
array-based genotyping technologies, genome-wide association studies (GWAS) in search for
common variants have been extensively carried out in complex diseases. In this review, we examine
approaches that have been taken and progress made to understanding of autoimmune genetics
through GWAS, with examples of mechanistic insight derived from follow-up studies. We also
suggest areas where association studies can be improved to yield further insights.

Since 2006, hundreds of single-nucleotide polymorphisms (SNPs) have been associated
with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS),
Crohn’s disease, ulcerative colitis (UC), type 1 diabetes (T1D), celiac disease, psoriasis and other
autoimmune diseases [1]. While a significant accomplishment given the limited historical successes
in complex trait genetics, these studies by themselves have limited value without subsequent steps
to link emergent genetics to function by pinpointing causal variants, deriving biological relevance,
and elucidating pathogenic mechanisms. Although occasionally these risk loci harbor functional
coding variants in genes known to be involved in immune processes that alter protein sequences,
most others implicate genes with unknown function or are simply non-coding. Furthermore all the
currently validated variants have moderate effect sizes and account for only a fraction of the

heritability [2]. Therefore, even with an explosion of genetics data, a reasonable question arose: are



GWAS results truly useful for either understanding etiology, or for clinical diagnosis and

management of autoimmune diseases?

HOW DO WE LEARN ABOUT AUTOIMMUNE DISEASES FROM GWAS?

One critical challenge in defining disease biology from associated alleles is the absence of an
understanding of the specific genes implicated and the molecular perturbations created by
associated alleles. However what GWAS potentially provides is the genetic architecture that
underlies autoimmunity, around which the relevant physiological and pathological pathways can be
constructed. Following SNP discovery, investigators have devised statistical methods and carried
out functional studies to elucidate relevant biology. The approaches taken by these studies can be
broadly grouped into two major categories, as described in Figure 1.1: 1) a traditional “bottom-up”
approach in which individual alleles, genes and proteins are examined to gain insight into
molecular mechanisms of disease and 2) a “top-down” approach, where lists of disease-associated

regions are examined together to outline relevant biological systems and pathways.

“Bottom-up” approach: focused follow-up studies directly shed light on molecular
mechanisms of pathogenesis.

In traditional Mendelian genetics, the identification of disease causing mutations in a single
gene would be immediately followed by targeted follow-up efforts to understand the function of the
gene and how its alteration precipitates disease. Similarly, conducting focused functional and
statistical follow-up studies in well-validated loci have quite directly suggested specific molecular
mechanisms through which allelic variants confer risk or protection in autoimmune diseases [3-13].
For example, Pidascheva et al. determined that the R381Q (rs11290926) variant in IL23R, which is

associated with reduced risk of
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Figure 1.1 Two broad approaches taken by GWAS follow-up studies. In a more traditional
‘bottom-up’ approach, a specific variant/gene is selected from the GWAS results to investigate its
functions and the effect of perturbation in the context of the disease. In a ‘top-down’ approach, the
entire list of variants identified by GWAS is analyzed together, often incorporating existing
biological data types, to highlight processes and pathways pertinent to disease, which helps to
prioritize and focus additional follow-ups such as targeted functional assays and/or discovery of

more risk variants.

inflammatory bowel disease, results in a loss of function which reduces T-cell activation in response
to IL-23, lending evidence that the IL-23 pathway is pathogenic [5]. Leucine-rich repeat kinase 2

(LRRK2) is another major risk gene for Crohn’s disease. Liu et al. [6] investigated the molecular



mechanisms by which LRRK2 negatively regulates NFAT1 which mediates T-cell activation as well
as cytokine production in antigen presenting cells, and showed that LRRK2-deficiency conferred
increased risk to colitis in mouse model. And in one of the clearest examples of novel insights
gained from GWAS, the role of autophagy in Crohn’s disease, previously unsuspected before the
first GWAS studies, has now become a major therapeutic target in disease owing to the elucidation
of the role of variation at ATG16L1 and IRGM [described in detail by Garder and Xavier in this issue].
In these follow-up studies that characterize specific candidate genes that emerged from GWAS, the
functional effect of variants on immune response has been clearly illustrated.

In other examples, using detailed statistical approaches Raychaudhuri et al. [8] delved into
one of the longest-known susceptibility loci associated with anti-CCP-positive rheumatoid arthritis,
namely the MHC region. They imputed alleles in the region including HLA-DRB1 using existing
GWAS genotypes, followed by conditional analysis, and successfully fine-mapped the causal
variants to sequences of five amino acids located the binding groove of three MHC molecules. This
analysis improved upon the “shared epitope” theory that had existed for more than 30 years [14],
and is a successful example of delineating the causal variants from GWAS data. Okada et al. focused
on the HLA-Cw*1202-B*5201-DRB1*1502 haplotype and were able to tease apart its opposite
effects on the two closely-related inflammatory bowel diseases in the Japanese population,
specifically increasing susceptibility to ulcerative colitis but reducing risk of Crohn’s disease [7].
This observation supports the hypothesis that Crohn’s disease is a Th1-like disease (preferentially
producing a repertoire of Th1 cytokines such as interferon-y) whereas UC is more Th2-like; and
susceptibility difference between the two are manifestations of Th1/Th2 imbalance in immune

response induced by differential helper T-cell responses to specific pathogens.

“Top-down” approaches: examining GWAS results in aggregate outlines coherent biological

processes



While the bottom-up approach is more tractable and traditional, the realization emerging
from GWAS that autoimmune diseases are the result of many, likely hundreds, of simultaneously
contributing genes and variants has borne an alternate approach to the problem by considering all
associations together. Many analytic methods have therefore been developed to interpret GWAS
results by examining groups of risk regions or implicated genes in aggregate, incorporating
information from other biological data types such as gene and protein expression [15-24].
Encouragingly, these analyses have often convincingly shown that disease-associated regions
implicate coherent biological processes and molecular pathways. For example, for many
autoimmune diseases, significant enrichment of physical interactions among genes in associated
risk loci has been demonstrated, implicating organized networks of biological pathways [23].
Similarly, the evaluation of cell-specific expression of autoimmune SNPs-implicated genes showed
enrichment in particular immune cells, providing an unbiased method for using raw GWAS results
to identify likely pathogenic cell types [19]. Such analyses must be undertaken with care - biases in
both the genetic discovery data (e.g., GWAS arrays preferentially discover associations that are both
gene and SNP rich, certain gene families are systematically much larger than others) and in the
biological data to be integrated (e.g., certain families of genes are more well-studied in protein
interaction experiments and more well-represented on expression arrays) require careful attention
in the evaluation of statistical significance.

If managed properly, these issues can be overcome, and when GWAS results are shown to
implicate regions that contain genes that are compellingly non-randomly drawn from specific
pathways or which are unusually closely related in the context of independent functional data, such
relationships clearly indicate a convincing biological insight into disease has emerged from the
collective GWAS results set. In one study, Lee et al. constructed a genome-scale human gene
network using genomic and proteomic data. Studying genes regions associated with Crohn’s disease,

they observed the interaction of genes in the TNF pathway, the Th17-differentiation network, as



well as genes involved in autophagy. Moreover, they were able to combine this approach to boost
the detection power of GWAS, and suggest more candidate genes based on their interaction
partners in highlighted pathways, such as GRBZ and SH(C1 [20].

A number of overlapping HLA and non-HLA risk alleles have emerged across autoimmune
diseases, implicating shared pathogenic pathways among phenotypically heterogeneous diseases. It
is intuitive that immune response pathways would be broadly involved in all autoimmune diseases;
as well as diverging pathways should eventually lead to variation in clinical presentations.
Systematically examining the shared alleles provides one means for comparing and contrasting
autoimmune diseases in terms genetic backgrounds and implications on shared pathogenic
mechanisms [25-31]. As one example, Ramos et al. investigated the genetic connections across 17
autoimmune diseases, and noted the strongest correlations between RA and T1D as well as
between Crohn’s disease and UC, suggesting common pathogenic mechanistic pathways. They also
noted that SLE possesses a distinct genetic background, supporting partial pleiotropy among
autoimmune diseases [28].

The “top-down” approach often does not directly yield validated risk genes and variants,
however it is powerful in highlighting coherent biological processes relevant to the diseases, and in
turn providing guidance to focus statistical and functional follow-ups on the most interesting

candidate genomic regions and the most relevant molecular and cellular models.

HOW CAN AUTOIMMUNE GWAS BE IMPROVED?
Identifying the remaining genetic architecture

It is estimated that all the validated SNPs in aggregate explain a fraction hovering around
10-40% of total heritability in most complex-trait diseases [32, 33], making missing heritability a
glaring issue with existing GWAS results. There are several oft-discussed possible sources for what

has been termed this “missing heritability”, including the potentially large-effect rare and structural



variants, gene-gene interactions (epistasis), gene-environment interactions, as well as many more
common variants that simply have not been discovered due to the lack of power as limited by
sample size [34, 35]. Stahl et al. modeled the polygenic architecture based on Bayesian inference in
several complex-trait diseases, and suggested that thousands of undiscovered common SNPs could
explain an additional 20% and 43% of disease risk in RA and celiac disease, respectively [36].
Similarly Park et al. predicted that for Crohn’s disease, more than 140 risk loci with effect sizes
comparable to the first 32 validated loci together would account for 20% of the heritability [37].
Next-generation deep sequencing in candidate regions has been successful in discovering a
handful of rare variants associated with several diseases [38-42]. Examples include a splice variant
in CARD9 (OR = 0.29) associated with reduced risk of Crohn’s disease [40], four protective rare
variants in [FIH1 in T1D [41], as well as several rare variants contributing to the risk of celiac
disease discovered by Trynka et al. using data from pilot 1000 Genome Project studies and other
resequencing data [42]. Much more than increasing heritability explained by identifying rare
variation missed by GWAS, such studies can provide clearer functional insights into the roles of
individual genes and in the case of strongly protective variants, articulate clear therapeutic

hypotheses that can be pursued.

Harnessing the value of genetics: profiling the human immunophenotypes is necessary to
link genetics to function in autoimmune diseases

The value of genetic knowledge we have gathered through GWAS is one piece of the puzzle
for elucidating normal physiology and disease mechanisms of autoimmunity. One major hindrance
to delineating the functional role of genetic variants as well as in autoimmune research in general
lies in the lack of a comparable functional catalog of the human immune system [43]. Much of the
current immunological knowledge has come from mouse models. While it has been a valuable

source, the mouse immune system only emulates the human system partially. Without clear

10



definitions and comprehensive descriptions of the normal immune system, it will be difficult for
sporadic and focused manipulative assays to capture patterns of functional variance with respect to
genetic or environmental changes in such a complex system. Also clinically, diagnosis of
autoimmune diseases is largely descriptive with few reliable biomarkers, and it is difficult to design,
assess, and improve efficacy of therapeutic agents. It is therefore crucial to establish the phenotypes
and functional profiles of the components of the human immune system. Then, the relationship
between function and genetics can be systematically assessed, and therapeutic interventions can be

designed and modified accordingly.

CONCLUSION

For years the primary bottleneck in understanding autoimmune disease was the inability of
genetics to provide genuine, replicable insights - this has been overcome, but simply places the
emphasis now on challenges greater than expected, the interpretation of hundreds of contributing
genetic risk factors into a coherent and actionable biological insights. Now a large volume of
statistical and functional follow-up studies to GWAS results is starting to emerge. But, despite the
amount of raw data and follow-up statistical and functional studies, many mechanisms of genetic
contribution to autoimmune diseases remain unclear.

[t is important to keep in mind that in the effort to ultimately understand disease
mechanisms, GWAS and other statistical approaches do not replace in vitro or in vivo functional
studies. Rather, GWASs have proven to serve as a powerful first step to guide and complement
functional studies, as they 1) outline relevant and coherent systems and processes involved in
disease pathogenesis; 2) suggest specific molecular pathways and appropriate cellular/organismal
models for focused functional studies; and 3) offer a promising path to discovering potential leads
of targeted therapy. It is particularly encouraging that progress is being made beyond GWAS via the

integration of many different types of biological data such as gene expression, immunophenotypes,
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epigenetics, protein interactions and clinical data. These efforts are helping to elucidate the
complex biology that association studies outline and make further progress towards realizing the

promise of human genetics.
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CHAPTER 2

Genes in Autoimmune Risk Loci Are Specifically Expressed in Critical Immune Cell Types
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ABSTRACT

While genome-wide association studies have implicated many individual loci for complex
diseases, identifying the exact causal alleles and the cell-types within which they act remains
greatly challenging. To ultimately understand disease mechanism, carefully conceived functional
studies in relevant pathogenic cell-types will be necessary to demonstrate the cellular impact of
disease-associated genetic variants. This challenge is highlighted in autoimmune diseases, such as
rheumatoid arthritis, where any of a broad range of immunological cell-types might potentially be
impacted by genetic variation to cause disease. To this end, we developed a statistical approach to
identify potentially pathogenic cell-types in autoimmune diseases using a gene expression data set
of 223 sorted murine immune cells from the Immunological Genome Consortium. We found
enrichment of Transitional B-cell genes in systemic lupus erythematosus (p=5.9x10-¢) and
Epithelial-associated Stimulated Dendritic Cells genes in Crohn’s disease (p=1.6x10-5). Finally, we
demonstrated enhancement of CD4+ Effector Memory T-cell genes within rheumatoid arthritis loci
(p<10-6). To further validate the role of CD4+ effector memory T-cells within rheumatoid arthritis,
we identified 436 loci not yet known to be associated with disease but with statistically suggestive
association in a recent GWAS meta-analysis (pewas<0.001). Even among these putative loci, we
noted a significant enrichment for CD4+ effector memory T-cell gene expression (p=1.25x10-4).
These cell-types are primary candidates for future functional studies to reveal the role of risk alleles
in autoimmunity. Our approach has application in other phenotypes, outside of autoimmunity,
where many loci have been discovered and high-quality cell-type specific gene expression is

available.
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INTRODUCTION

Autoimmune diseases are complex traits with many scores of common variants throughout
the genome that might subtly impact disease risk[1-4]. But, using these loci to elucidate
mechanisms from common variants has proven to be a challenging task, particularly since many of
them do not directly alter coding sequences, but potentially impact gene regulation modestly in a
cell-specific manner[5]. If the critical immune cell subsets were known for a given disease, then
investigators could derive relevant cellular model systems for focused functional studies to
understand pathogenic mechanisms. These studies might include broad genomics approaches, such
as cell-type specific expression quantitative trait loci (eQTL) screens to identify alleles that act to
alter gene expression[6-8], or epigenetic screens to identify key active regulatory elements[9, 10].
Additionally, investigators could pursue focused mechanistic studies to understand the role of
individual disease alleles within that tissue.

But for most autoimmune diseases the immune cell-types specifically impacted by common
risk variants are not defined. Past mechanistic studies in autoimmune model systems have often led
to confusing results that may not easily translate to human disease. For example, separate
influential studies in rheumatoid arthritis (RA [MIM 180300]) have implicated a wide range of
pathogenic cell-types including B and T lymphocyte subsets[11], neutrophils[12], mast cells[13],
macrophages[14], platelets[15], and synoviocytes[16, 17]. The importance of pursing mechanistic
studies in the appropriate cell-type is highlighted by the fact that common variants can have
conflicting functions in different closely related immune tissues. For example a deletion of the
promoter region of IRGM, associated with Crohn’s disease (MIM 266600), might either increase or
decrease allelic gene expression depending on the tissue[18]. Similarly an ILZRA autoimmune
variant impacts different intermediate phenotypes, even in closely related immune cells[19].

Here, we hypothesize that predisposing autoimmune risk alleles impact a small number of

pathogenic tissues or cell-types. If this is the case, then the subset of genes with critical functions in
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those pathogenic cell-types are likely to be within disease loci. However, in practice, a
comprehensive and unbiased catalog of cell-type specific gene function is simply not available. As
an alternative, compendia of gene expression data are available for many tissues. These compendia
can serve as objective proxies for tissue-specific gene function. Practically, gene expression profiles
have been used to identify cell-types of origin in malignancies[20, 21]. In addition, investigators
commonly use gene expression profiling of presumed pathogenic tissues to screen risk alleles and
to prioritize genes for followup within complex trait loci. An orthogonal approach is to broadly
consider a large collection of potential cell-types and to then identify the single tissue that
specifically expresses genes within loci that contain disease risk alleles. To our knowledge, no such
systematic approach has yet been devised.

We developed a statistical method that, given a collection of disease-associated SNPs and a
compendium of gene expression profiles from a broad set of tissue types, scores tissues for
enrichment of specifically expressed genes in LD with the SNPs (see Figure 2.1 and Methods for
details). For such a method to be effective, it is critical to use high quality cell-specific expression
data with minimal contamination and including replicates to reduce noise. To this end we use the
Immunological Genome Project (ImmGen) data set assaying 223 mouse immune tissues
individually double-sorted by FACS to ensure high purity and profiled in at least triplicate[22]. Also,
it is critical for the methodology to be robust to key confounders. Therefore, in our method we (1)
use non-parametric expression specificity scores to avoid confounding by the inherently skewed
nature of expression levels, (2) correct for number of genes per SNP to avoid multiple-hypothesis
testing biases, and (3) assess significance of disease associated SNP sets using matched SNP sets to
avoid confounding by correlations in gene size and cell-specific expression[23], correlations in
expression between proximate genes, and genomic biases in gene density and genetic variation

across the genome.
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Figure 2.1. A) Normalize gene expression data. We normalized the expression profile by dividing
the expression value of each gene in each tissue by the Euclidean norm of the gene’s expression
across all tissues in order to emphasize tissue specificity of each gene’s expression. Scores were
converted to non-parametric percentiles. B) For each tissue, identify the most specific gene in a locus.
For each SNP, we first defined genes implicated by the SNP based on LD. For a specific tissue, we
identified the most specifically expressed gene in the locus and then scored the SNP based on that
gene’s nonparametric specific expression score after adjusting for multiple genes within the locus.
C) Assess significance of tissue across loci with permutations. We first calculated a score for the tissue
by taking the average of the log adjusted-percentiles across loci from B. Then, we randomly selected
matched SNP sets and score them similarly. The proportion of random SNP sets with tissue scores

exceeding that of the actual set of SNPs being tested was reported as the p-value of the tissue.

METHODS

Summary of Statistical Method

First, after standard quality control and quantile-normalization of expression data[24], we
transform expression values into non-parametric “tissue-specific expression” scores for each gene
(Figure 2.1A). In order to do this, we first divide raw expression values by the Euclidean norm of
values for each gene across all tissue types. Then, for a given tissue, we order genes by normalized

expression values and assign each gene a percentile. These uniformly distributed percentiles
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constitute non-parametric tissue-specific expression scores. Genes with low percentile scores for a
tissue are highly specifically expressed in that tissue while genes with high percentile scores are
either not expressed in that tissue at all or ubiquitously expressed. Second, for a given tissue, we
assign each disease-associated SNP a “locus p-score” (Figure 2.1B). To do this, we first identify
genes that are in LD with a disease-associated SNP by using standard methods[25, 26]. Then, we
identify the single proximate gene most specifically expressed within that tissue. The SNP’s locus p-
score for that tissue is determined to be the tissue-specific percentile score of that gene after
correcting for multiple genes tested within that locus. These locus p-scores should be roughly
uniformly distributed under the null. Finally, we assign an overall significance score for each tissue
by taking the average of the log of locus p-scores across all disease-associated SNPs (see Figure
2.1C). While an analytical p-value can be calculated, to avoid realistic confounders that may
inadvertently inflate theoretical p-values, we calculate statistical significance scores by comparing

the actual log average of locus p-scores to that of random SNPs matched for total number of genes.

Gene Expression Datasets

For this project we used two separate data sets. The Genomics Institute of the Novartis
Research Foundation (GNF) tissue atlas is a set of human expression profiles of 79 human tissues
and cells types including immune cell types measured in duplicate (http://biogps.gnf.org/)[27].
The Immunological Genome Project (ImmGen) consists of gene expression profiles of 223
immunological tissue/blood-sorted cell types obtained from mice[22]. Each sample is sorted with

at least three biological replicates.

Preprocessing and Normalizing Gene Expression Datasets
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For each dataset, after applying standard quantile normalization[24], we averaged
expression values from replicates for each probe set. To obtain the single most robust expression
value for genes with multiple probe sets, we selected the single probe set within each gene
transcript that had the highest minimal expression value across all tissues. The GNF dataset then
consisted of measurements on 17,581 unique genes in 79 tissue types. The ImmGen dataset
contained 21,968 unique Mus musculus genes. We used HomoloGene (March 2010) to map the Mus
musculus genes to 14,623 unique human homologs.

We then transformed both datasets into non-parametric tissue-specific expression scores
for genes. First, we normalized expression level of each gene to reflect the specificity of expression
in each tissue type. To do so, for each gene in each tissue, we divided the raw expression value by
the Euclidean norm of values across all tissues:

X’ij = Xij/norm(X;)
where Xj; is the expression value of gene i at tissue j, and X’;; is the specificity score. Thus, each gene
and tissue received a score between 0 and 1 where a score of 1 means the gene is exclusively
expressed in this tissue. Ubiquitously expressed genes have low normalized scores across tissue
types.

Next, for a given tissue, we transformed these normalized scores, X’i;, into non-parametric
tissue-specificity percentile scores for each gene, Pij, where a low percentile represents high

specificity relative to other genes for a given tissue and a high percentile represents low specificity.

Mapping SNPs to genes

Disease-associated SNPs are linked to proximate genes in LD with them, using a previously
described approach[25, 26]. First, for each SNP, we defined genes implicated by the SNP by defining

a disease region. To do so, we identified the furthest neighboring SNPs in LD with the SNP in the 3’
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and 5’ directions (r2>0.5, CEU HapMap). We then extended outward in each direction to the nearest
recombination hotspot[28]. This region would include the disease-associated SNP and all SNPs in
LD. All genes that overlapped with this region were considered implicated by the SNP. If no genes
were found in the region, we extended an additional 250Kkb in each direction. If two SNPs contained

overlapping genes, they were merged as one single locus.

Testing tissue for enrichment

Given our list of SNPs connected to genes and our non-parametric expression tissue-
specificity percentiles, we scored the list of disease-associated SNPs for enrichment of genes

specifically expressed in each individual tissue type.

To score each tissue j, we first identified the most specifically expressed gene near each SNP
Sin tissue j. We will refer to that gene as gs;. We applied a Bonferroni correction to adjust the

tissue-specificity percentile for testing of the multiple genes near each SNP:

R, =1-0-P_)
where ny is the number of genes implicated by SNP S. The Ps; values are referred to in the main text
as the “locus p-score”. They should be roughly uniformly distributed. For each tissue, we scored for

enrichment by summing the Ps; values of all SNPs:

I, =- )Y IOg(Pw)

Seall SNPs

Under the null, if Ps; scores were randomly distributed, then T; should be distributed according to

the gamma distribution:

D~ F((X,ﬁ)
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where « is the shape parameter and is equal to the number of SNPs and f3 is the rate parameter and

is set to 1. In this case, the p-value for the tissue is calculated as:
p(D < TjaD - F(I’NSNPS))

However, analytical p-values are not robust to realistic biological factors.

Significance scores are based on random SNP sets.

To estimate the significance in a more robust and unbiased manner, we calculated p-values
empirically by comparing observed T; values to empirical values from random sets of SNPs. Given a
set of disease-associated SNPs, we create a matched SNP set with exactly the same number of SNPs
and approximately similar numbers of genes for each permutation. We drew random SNPs for
permutation from a pool of 45,265 independent Hapmap SNPs that were “clumped” to insure
minimal correlation[29]. To create a matched SNP set with approximately similar gene numbers,
for each disease-associated SNP that implicated <11 genes we selected a random SNP that
implicated exactly the same number of genes and for SNPs that implicated >10 genes, we selected a
random SNP that also implicated >10 genes. To ensure a comparable number of genes, the total
number of genes implicated by all random SNPs must be within 10% of that implicated by disease
SNPs. We then scored each of matched SNP sets for enrichment of genes in tissue j and calculated T;.
The proportion of randomly selected matched SNP sets whose T is less than the Tj for the disease-

associated SNPs set was reported as the p-value.

In practice, we varied the number of random SNP sets that we evaluated for a tissue from
250t0 1,024,000. We started by evaluating each tissue with 250 SNP sets. For those tissues where
at least 25 sets were observed to be more significant than the observed SNP set, we accepted the p-

value and did not evaluate for any more SNP sets. For those tissues for which fewer than 25 sets
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were more significant than the observed SNP set (ie p<0.1), we doubled the number of SNP sets.
The number of SNP sets was doubled until at least 25 events were more significant than the
observed SNP set or until we reached 1,024,000 permutations. This insured a variance of <20% of

the reported p-value for p-values >2.5x10-5.

Assessing the significance of individual SNPs

For each SNP and tissue, we calculated an “empirical locus p-value”, which assessed the
degree to which an individual gene within a locus is contributing to enriched specific gene
expression within a tissue. This value was calculated by comparing the locus p-score for the actual
disease-associated SNP, based on the most specifically expressed gene within a tissue, to that of the
matched SNP in randomly selected SNP sets during the permutation process, as described above.
The empirical locus p-value was reported as the fraction of randomly selected matched SNPs with

more extreme locus p-scores than the actual locus p-score.

Adjusting for Expression Profiles

In order to assess enrichment across tissues after accounting for the effect of tissues that
have already been identified as significant from the dataset, we have devised an adjusted analysis
framework. Briefly, we used the X’ matrix of tissue specificity scores, then removed the component

of each tissue expression profile that was correlated with the tissue that we are conditioning on.

Let the expression scores of the most significant tissue be vector v. We subtracted the
components of v from another tissue’s expression profile, u, in order to obtain a new profile u’

which is independent from v:
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The new profile scores were used to recalculate tissue-specific percentiles P, which can then be

reused with the same statistical framework as above.

Scoring nominally associated RA SNPs

In order to score RA SNPs not yet associated with RA, we used the p-value results from a
recently published meta-analysis of six GWAS consisting of 5,539 autoantibody positive RA cases
and 20,169 controls of European descent. We selected all SNPs that had an association p-value of
<0.001. After excluding SNPs within the MHC region (ranging from 25.8-3.4 MB on chromosome 6
in HG 18 coordinates), we grouped the resulting SNPs into independent loci. We grouped two SNPs
within the same locus if they had r2>0.1 in HapMap or shared a common gene. For each locus, we
selected the single SNP with the most significant association to RA. We excluded any of these SNPs
that were in LD with a known RA-associated risk loci (r2<0.1) or implicated a gene that was also
implicated by a known RA SNP. We tested these loci for enrichment of specifically expressed genes
in each of the individual cell types in RA. Significance for each tissue was determined by selecting
matched SNP sets as described above. Given the large number of SNPs, we allowed for the total
gene number to be outside the +/- 10% criteria described above.

In order to calculate an overall association to CD4+ effector memory T-cell association, we
averaged all four X’ specificity score profiles of each of the CD4+ effector memory T-cell subsets

together to calculate significance of association and empirical locus p-values.

RESULTS AND DISCUSSION
We wanted to ensure that out statistical method was robust to realistic biological factors

(e.g. neural tissues tend to express larger genes[23]), which can inadvertently inflate theoretical p-
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values in certain cell-types (see Figure 2.2). Thus, we scored 10,000 sets of 20 random SNPs, each
in LD with at least one gene, from a larger set of independent SNPs from the HapMap project.
Applying our approach to assess gene expression enrichment in both the 79 tissues from the
Genomics Institute of the Novartis Research Foundation data (GNF) and to the 223 cell-types from
the ImmGen demonstrate appropriate type I error rate (see Figure 2.3A and 2.3B). We also note
that error rates are consistent across all cell-types, with no evidence of inflation of significance
scores at any given tissue. Furthermore, our method demonstrates little evidence of statistical

inflation in 500 sets of 20 random SNPs in either of those two data sets (see Figure 2.3C,2.3D).

1 ] (] LTS ®eq o
""""""" ‘.":.‘ - -3 "'~;.'.-+-‘-*.: ;;,""' et P<0.5
g 0.1 - ..'."-..o:..--.*."‘...“',.."".:.:. P<0.1
= T e e e 7 P<0.05
'e) o .'.. % -'. o, oo LI ¢
O Q.01 4T et e P<0.01
0.001 1. ", ’

Tissue Types

Figure 2.2. Analytical p-values, calculated without permutations show inflation in neural
tissues. We evaluated 10,000 sets of 20 random independent SNPs across the genome for tissue
specific gene enrichment using the GNF human tissue expression data set. The subset of tissues
enriched in the middle demonstrating marked inflation are all central or peripheral nervous system
tissues. Here we present analytical p-values using the gamma distribution (see Supplementary

Methods).
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Figure 2.3 Permutation scheme produces appropriate type I error. A) To test the statistical
properties of our approach, we selected 10,000 random SNP sets of 20 independent SNPs across the
genome. We tested 79 tissues expression profiles from the GNF dataset for enrichment of
specifically expressed genes. For each tissue type, we plotted the proportion of sets that obtained
specific p-value thresholds. B) Similar results for the 223 tissue profiles in the ImmGen dataset. C)
We tested 500 random SNP sets and tested 79 tissues expression profiles from the GNF dataset for
enrichment. After aggregating p-values for all tissues, we plotted observed p-values as a function of

expected p-values in a Q-Q plot. D) Similar results for the InmGen dataset.
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Figure 2.3 Permutation scheme produces appropriate type I error (Continued).
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As a positive control, we examined common variants from two phenotypes. First, we
applied our method to 37 SNPs associated with serum LDL cholesterol from a recent large genome-
wide SNP association meta-analysis[30]. We hypothesized that these genes would be most
specifically enriched in the liver, since the liver is the primary organ where LDL is regulated[31]
and known mutations impact hepatocyte cellular function[32, 33]. In aggregate, these SNPs
implicated 165 genes in LD. When we tested each of the 79 tissue expression profiles from GNF for
specific expression of genes in LD with these SNPs, we did indeed observe that only the liver
showed highly specific expression of genes in LD with cholesterol metabolism SNPs (p=2.0x10-4, see
Figure 2.4A). Other tissues that obtained nominal significance at p<0.01, fetal liver (p=0.0014) and
the adipocyte (p=0.0077), were no long significant after adjusting for the liver expression profile.
This suggests that the other observed associations were the consequence of correlated expression
(see Methods). In certain cases, loci harbored genes that were specifically expressed within the
liver, and in these cases, these genes were often compelling candidate genes. Next, we applied our
method to the 32 obesity associated SNPs[34], that in aggregate implicate 91 genes. When we
tested 79 tissues from the GNF for specific expression of genes within obesity loci, we observed that
only the pituitary gland obtained nominal significance at p=0.0032 (see Figure 2.4B). While this
was not statistically significant after accounting for 79 independent tests, we were encouraged that
it emerged as the most significant tissue, since pituitary dysfunction, from trauma or rare familial
mutations, in a known cause of obesity[35, 36]. Furthermore, authors of recent genome-wide
genetic studies have speculated that obesity SNPs act on the hypothalamus-pituitary axis[34, 37].
Potentially, a more targeted expression data set of the brain with carefully dissected human tissues
might have resulted in a more powerful analysis.

While there is concern that multiple inter-correlated gene expression profiles might

compromise power, we found that even in extreme circumstances that the power loss is minimal.
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Figure 2.4. Cell-specific gene expression enrichment in metabolic diseases. A) 37 SNPs
associated with LDL metabolism were evaluated for gene enrichment in 79 human tissue types. The
Bonferroni-corrected p-value is shown by a dotted line. Only the liver showed statistically
significant specific expression of genes in LD with cholesterol metabolism SNPs (p= 1.95x10-4). We
have plotted a heat map along the bottom to depict the p-value correlation between tissue types
among random SNP sets. B) 32 SNPs associated with obesity were evaluated for gene enrichment in

79 human tissue types. The pituitary achieved the most significant p-value (p=3.25x10-3).
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Figure 2.4. Cell-specific gene expression enrichment in metabolic diseases (Continued).
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Our non-parametric approach relies on the ordering of a gene’s specific expression within a tissue,
rather than its magnitude of the specificity. The addition of inter-correlated tissue profiles impact
the magnitude of specific expression scores for a tissue, but has a minimal impact on the ordering of
the genes themselves. To assess the robustness of our method to multiple inter-correlated
expression profiles, we repeated our analysis of LDL SNPs after adding in 1, 10, 50, and 100, copies
of the identical liver expression profile. In each case the liver showed the exact same highly specific
expression of genes in LD with cholesterol metabolism SNPs (p=2.0x10-4). As a second test we
added 1, 10, 50, and 100 copies of liver expression profiles, where we permuted expression values
of 50% genes independently; so that each added profile was correlated with but also had
substantial differences from the original liver expression profile. In each case the liver showed
highly specific expression of genes in LD with cholesterol metabolism SNPs (p ranging from 9.8x10-
5to 2.9x10-4). In instances where the correlational structure of the data is more complex, and power
is impacted, dimensional reduction approaches to simplify the expression data is useful[38].
Convinced that this approach was statistically robust and could detect potentially pathogenic cell-
types, we applied it to autoimmune disease SNPs. We focused on three separate autoimmune
diseases. For systemic lupus erythematosus (SLE [MIM 152700]), we identified 30 SNPs,
implicating 27 independent loci with a total of 136 genes [39-43]. For Crohn’s disease, we identified
71 SNPs, implicating 69 independent loci with a total of 316 genes [3]. Finally, for RA, we identified
40 SNPs, in aggregate implicating 39 independent loci with a total of 132 genes [44, 45].

Testing each of these three autoimmune disease SNP sets against the 79 GNF tissues implicated
only immune tissues (in each case multiple tissues with p<2x10-5, Figure 2.5). But given the limited
number of immunological tissues and the high degree of correlation between them, we could not
pinpoint the causal immune cell-types. We speculated that the InmGen dataset could more clearly
demonstrate the key immune cell-types for each of the different diseases since it was collected to

represent a very broad view of transcriptional profiles in mouse immune cell-types across many
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Figure 2.5. SNPs associated to SLE, Crohn’s Disease, and RA evaluated for cell-specific gene
enrichment in 79 human tissue types. Subsets of hematopoietic cells showed statistically
significant enrichment in each of the three diseases, while none of the other tissues showed
significant enrichment. A) In SLE, B-cells, dendritic cells, NK cells, and lymph node tissue showed
significant enrichment p-values after adjusting for multiple hypothesis testing. B) NK cells, CD8+
and CD4+ T-cells, whole blood, as well as CD19+ cells achieved statistical significance in Crohn’s
Disease. C) In RA CD4+ T-cells, CD8+ T-cells, tonsil, lymph node, and NK cells showed significant

enrichment p-values after adjusting for multiple hypothesis testing.
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Figure 2.5. SNPs associated to SLE, Crohn’s Disease, and RA evaluated for cell-specific gene
enrichment in 79 human tissue types (Continued).
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lineages, developmental stages, and target organs. It includes hematopoietic stem, myeloid and
lymphoid cells, and both innate and adaptive immune cells.

When we tested SLE loci for enrichment of specifically expressed genes within the 223
expression profiles contained within ImmGen data set, the single most significant immune cell-type
was transitional B-cells (stage T3) collected from the spleen (p=5.9x10-6, see Table 2.1, Figure
2.6A). Strikingly, all of the other statistically significant associations were other B-cell subsets,
including other closely related splenic transitional B-cell subsets (p<2x10-4=0.05/223). All of the B-
cell associations are obviated (see Table 2.1), when we repeated our analysis after adjusting for
three splenic transitional B cell profiles (B.T1.Sp, B.T2.Sp, B.T3.Sp). This strongly suggests that
other observed B-cell associations are the result of expression correlation with transitional B cells,
and not representative of independent effects. The implication of transitional B-cells by associated
loci is consistent with much of the known pathobiology of SLE, which has implicated B-cells more
broadly. The pathogenic nature of antibodies produced by B-cells in lupus has been long
established and is supported by mouse models[46], and by the demonstration of the efficacious
nature of B-cell targeted therapies in SLE[47]. These results implicating transitional B-cells

specifically offer a finer resolution on this commonly accepted hypothesis.
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Figure 2.6 Cell-specific gene expression enrichment in autoimmune diseases. We evaluated
SNPs associated with systemic lupus erythematous, rheumatoid arthritis, and Crohn’s disease for
cell-specific gene enrichment in 223 murine immune cell types. The Bonferroni-corrected p-value is
shown by a dotted line. In each case, we listed cell types that are significant after multiple
hypothesis testing (p<2.2x10-4), and we bold the single most significant cell type. A) In lupus, B-
cells, especially transitional B-cells in the spleen (B.T2.Sp), showed significant enrichment of genes
within disease loci. B) In Crohn’s disease, epithelial-associated stimulated CD103- dendritic cells
(DC.103-11b+PolulC.Lu) achieved the highest statistical significance. C) In rheumatoid arthritis, the
four CD4+ effector memory T-cell subsets in both the spleen and lymph nodes (T.4Mem.LN,
T.4Mem.Sp, T.4Mem44h621.LN, and T.4Mem44h621.Sp) showed the most significant gene

enrichment (p<10-6).
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Figure 2.6 Cell-specific gene expression enrichment in autoimmune diseases (Continued).
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Some of the most significant loci may harbor compelling candidate genes. For example, the
rs13385731 locus (empirical locus p=0.0017 for stage T3 transitional B-cells) harbors the RAS
pathway gene, RASGRP3, which has been shown to potentially play a role in downstream signaling
from the B-cell receptor[48]. In other cases, we are able to identify specifically expressed genes that
are not yet well characterized but might warrant further examination. For example, the rs6445975
SNP locus (p=1.6x10-5) contains PXK, encoding a transcription factor, whose role in immunology is
not yet well characterized but is highly and specifically expressed in transitional B-cells.

When we tested Crohn’s loci for enrichment of specifically expressed genes within the 223
cell-types of the ImmGen data set, the single most significant cell-type was an epithelial associated
stimulated dendritic cell subset (lung CD11b+ dendritic cells stimulated by
polyinosinic:polycytydylic acid, p=1.6x10-5, see Table 2.1, Figure 2.6B). In Crohn’s disease, other
cell types, including a single CD4+ memory T-cell subset and natural killer cell subset demonstrate
statistical significance after multiple hypothesis testing. Moreover, these effects are independent of
the DC effect, as their signals are maintained after adjusting for dendritic cell contributions (see
Table 2.1). Dendritic cells in the intestinal mucosa play a key role in mediating the intestinal
inflammation associated with Crohn’s disease and have long been thought of as key mediators of
disease activity[49, 50]. For example, NODZ Crohn’s disease risk variants have been shown to
disrupt autophagy in dendritic cells[51]. The potential role of dendritic cells has been further
highlighted in a mouse model where defective TGF-beta activation can result in spontaneous
colitis[52].

When we tested RA loci for enrichment of specifically expressed genes within the 223 cell-
types of the InmGen data set, we observed that each of the four CD4+ effector memory cell subsets
emerge as the most highly significant subset (p<10-6 for all four CD4+ effector memory cell subsets;
see Table 2.1, Figure 2.6C). Strikingly, most of the other cell-types achieving statistically

significant
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association (but at a more modest level) are closely related CD4+ T-cell subsets. Adjusting for the
four CD4+ effector memory T-cell profiles obviates the significance of all of these cell types (see
Table 2.1) strongly suggesting that the associations found in these other T-cell subsets are due to
their high correlation in expression with CD4+ effector memory T-cells.

Certain SNPs containing highly specifically expressed genes in CD4+ effector memory cells
were particularly significant. In many cases these SNPs pointed to well-described candidate genes
known to play key roles broadly in CD4+ T-cell biology. As examples, we note multiple genes that
are specifically expressed in CD4+ effector memory cells: PTPN22 (rs2476601, empirical locus
p=0.056 for CD4+ memory T-cells), CD2 (rs11586238, p=0.040), PTPRC (rs10919563, p=0.043),
CD28 (rs1980422 p=0.0045), IL2ZRA (rs2104286, p=0.0010), and CTLA4 (rs3087243, p=0.0010).
The rs2104286 SNP has already been shown to correlate with surface expression of the protein
product of ILZRA in CD4+ memory T-cells[19] and likely has CD4+ effector memory T-cell function.
However, in at least one instance, we identified a candidate gene that has not been specifically
connected to T-cell function. For example, the ANKRD55 (rs6859219, p=0.017) has currently
unknown biological function with respect to the immune system, but is highly and specifically
expressed in CD4+ effector memory cells.

To assess whether results were influenced by loci that overlap multiple diseases, we
repeated our analyses for all three diseases excluding those loci that are implicated in more than
one disease. This decreased the number of loci per disease substantially; the number of loci was
reduced in SLE to 11 (from 27), in Crohn’s to 56 (from 69), and in RA to 23 (from 39). However, the
pattern of tissue specific enrichment was not altered.

In order to independently validate the role of CD4+ effector memory T-cells in RA we
examined a second set of loci that were nominally associated to RA but not yet considered validated
risk loci. Using a polygenic modeling approach, we have separately demonstrated that SNPs with

nominal significance at a threshold of pgwas<0.001 in the latest RA GWAS meta-analysis are
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significantly associated with RA risk in aggregate in independent validation samples (Stahl et al in
review). We estimated that 5-15% of the SNPs that define this polygenic signal represented true RA
risk alleles (see Stahl et al Supplementary Table 2 for estimates) while the majority (>85%) of them
represented statistical fluctuation. We hypothesized that if these SNPs were indeed enriched for
true RA risk loci and if our result that CD4+ effector memory T-cells are important for RA holds
true, then the nominally associated SNPs should also be modestly enriched for genes specifically
expressed in CD4+ effector memory T-cells.

To test this hypothesis we obtained the latest results of an RA GWAS meta-analysis and
identified all SNPs with pswas<0.001. To ensure independence, we combined SNPs in LD (r2>0.1)
into individual loci and for each locus, we picked the single most significant SNP for each locus. To
ensure that our results were independent of previously known RA loci, we removed all loci in LD
with (r2>0.1) or sharing implicated genes with a known RA risk locus. In aggregate, we obtained a
total of 436 loci implicating 1,037 genes.

The most significant cell-type was a subcutaneous lymph nodes CD4+ effector memory T-
cell subset (p=8.2x10-5, T.4Mem44h621.LN CD4+, see Figure 2.7A). This was the only cell-type that
obtained significance after correcting for multiple hypothesis testing. Indeed, each of the CD4+
effector memory cell subsets demonstrated at least nominally significant association at p<0.008.

To identify the contribution of the individual loci toward the effector memory T-cell enrichment, we
averaged the specificity profiles of all four primary CD4+ effector memory cell subsets together and
again tested the aggregate effector memory T-cell profile for association among these nominally
associated loci. We again observed an association (p=1.3x10-4). Looking at the individual loci and
genes, we note that there are 68 loci that show specificity for CD4+ effector memory T-cell
populations at a p<0.1 level while by chance alone, we would expect only 43.6 (see Figure 2.7B).
Based on these results, we might expect that as many as 25 true RA risk loci are embedded within

this set. Of the loci tested, we list those with the most significant specific expression in CD4+
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effector memory T-cells (Table 2.2). We predict that subsequent ongoing genetic association
studies for RA will eventually clarify which of these are true RA loci.

We assessed the degree of enrichment at different more liberal GWAS significance
thresholds. In order to do this, we grouped SNPs into 50 pcwas bins, each of size 0.001, ranging from
0 to 0.05. Then for each group we quantified the degree to which genes implicated by those SNPs
were enriched for CD4+ effector memory cell specific expression. We observed at least nominally
significant enrichment for bins up to pewas<0.005, with very little evidence of any enrichment at
pawas >0.02 (see Figure 2.7C).

In the present study, we looked at gene expression data alone to ascertain the key cell types
impacted by autoimmune loci. Previously, the potential value of using gene expression data, and
other external information sources, in integrative analysis to understand relationships between
disease-associated genes and to identify candidate genes for follow-up study has been
demonstrated. For example, we have separately integrated protein-protein interaction data with
expression data to identify specific pathways in disease[26]. As another example, Prioritizer uses a
large compendium of gene expression data, along with a multitude of other data sources, to identify
likely candidate genes within loci[53]. Chen used a large-scale gene expression compendium to look
for genes that vary most dramatically across Gene Expression Omnibus and to identify potential
candidate genes[54]. Our approach is contingent on the quality and availability of a high-quality
gene expression database. A comprehensive dataset containing all of the necessary human tissue
types would be most ideal. While the GNF dataset is reasonably comprehensive, important immune
cell-types are not always present. On the other hand, ImmGen offers the highest quality and most

comprehensive immunological dataset that we are aware of. It does lack certain important derived
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Figure 2.7 Cell-specific expression of genes in nominally associated RA loci. We evaluated 436
loci containing SNPs nominally associated to rheumatoid arthritis for cell-specific gene enrichment
in 223 murine immune cell types. The Bonferroni-corrected p-value is shown by a dotted line. A)
We listed cell types that are significant after multiple hypothesis testing (p<2.2x10-4). Only one of
the four CD4+ effector memory cells (T.4Mem44h621.LN) is significant. B) We aggregated the
specificity scores for the four different CD4+ effector memory T-cell types and calculated empirical
locus p-values for each of the 436 loci. These p-values assessed the degree of specificity that the
most highly specific CD4+ effector memory T-cell in each locus achieved. In red, we plotted the
histogram of these empirical locus p-values while in grey, we plotted the expected histogram of
empirical locus p-values. We plotted the ratio of those two values at each p-value interval. We noted
modest deflation at higher values (p>0.5) and inflation at lower p-values (p<0.1). C) We grouped
loci by their association statistics (pewas) into 50 bins ranging from pewas<0.001 (as in pane A and
B) to 0.049 pewas<0.05. Then, using aggregated specificity scores for CD4+ effector memory T-cell
types we evaluated these groups to see if they were enriched for specifically expressed genes. For
each bin we plot the observed to expected ration of loci with lower empirical locus p-values (p<0.1,

blue, left axis), and the statistical significance of enrichment (red, right axis).
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Figure 2.7 Cell-specific expression of genes in nominally associated RA loci (Continued).
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cell types of potential interest. For example, derived helper T- cell subgroups such as Th1, Th2, and
Th17 cells are not individually profiled. One additional limitation of ImnmGen is that it is based on
mouse, and not human, tissues. While the immune systems of the mouse and human are very
similar in lineage and structure, there are also important differences. But the breadth of data
collected for ImnmGen would be impractical to obtain in human.

For each of the autoimmune diseases we are able to identify very specific subsets of
immune cells that may play a critical role in disease, that go well beyond broad immunological
categories. For example for RA we are able to not only establish that CD4+ T cells express genes
within RA loci, but we are able to go beyond that and specifically implicate the very specific effector
memory subset. All four of the CD4+ effector memory T-cell subsets achieve the greatest
significance in this data set, and adjusting for their effects obviates the other less significant
observations. In this case, we validate our results by looking at independent SNP sets with more
nominal disease association.

Intriguingly, we note for the autoimmune diseases that while a single cell-type is most
strongly associated, there is often evidence that more than one immune cell-type is involved. For
example, for RA, there is a nominally significant cell-type association for B-cell subsets led by
follicular B cells (B.Fo.Sp, p=0.00032), stage 2 transitional B cells (B.T2.Sp, p=0.00041), and nine
other B-cell subsets obtained p<0.01. The loci driving the B-cell subset association are distinct from
those driving the CD4+ effector memory cell association (see Figure 2.8). Thus, adjusting for CD4+
effector memory T-cell profiles does not completely remove the B-cell association signal. Similarly
for Crohn’s disease, after adjusting for the main effects of dendritic cells, there are remaining
nominal signals in NK and CD4+ T-cell subsets. While these associations are not significant after
multiple hypothesis testing, they may suggest possible separate roles of other cell-types in disease
that might become more apparent as additional SNP discoveries accumulate. Since risk alleles

across autoimmune diseases are known to overlap, diseases may be best understood by
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Figure 2.8. Patterns of cell-specific expression of RA loci

Here we plot the association between specific SNPs associated with RA (right) and selected tissues
(bottom). Redness in each box correlates with the significance as measured by the empirical locus
p-value; red boxes indicate that the SNP is in LD that is highly expressed in the tissue based on
ImmGen, after accounting for the number of genes within the locus. SNPs are hierarchically clusters
(left). Some of the SNPs toward the top are uninformative either because they lack a gene that is
specifically expressed, or have genes with specific expression in multiple displayed cells. SNPs
toward the bottom have the most informative expression patterns. A large number of the most
informative SNPs have signal for the CD4+ effector memory cell subsets, but a small number have

specific expression for transitional B-cells as well. These sets are mutually exclusive.
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Figure 2.8. Patterns of cell-specific expression of RA loci (Continued).
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considering individual immune cell types. While the distribution of immune cell types that are
critical to particular diseases may vary, overlapping loci between different diseases might be
explained by overlapping pathogenic cell types that may play a common role in the different
diseases.

This algorithm has been implemented as SNPsea by Kamil Slowikowski [55] and made

freely available here: http://www.broadinstitute.org/mpg/snpsea/.
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ABSTRACT

Defining and characterizing pathologies of the immune system require precise and accurate
quantification of abundances and functions of cellular subsets via cytometric studies. Currently,
data analysis relies on manual gating, which is a major source of variability in large-scale studies.
We devised an automated, user-guided method, “X-Cyt”, which specializes in rapidly and robustly
identifying targeted populations of interest in large datasets. We first applied X-Cyt to quantify CD4+
effector and central memory T cells in 236 samples, demonstrating high concordance to manual
analysis (r = 0.91 and 0.95, respectively), and superior performance to other available methods. We
then characterized the population dynamics of invariant natural killer T (iNKT) cells, a particularly
rare peripheral lymphocyte, in 110 individuals by assaying 19 markers. We demonstrated that
while iNKT cell numbers and marker expression are highly variable in the population, the iNKT
abundance correlates with gender and age, and the expression of phenotypic and functional

markers correlate closely with CD4 expression.
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INTRODUCTION

Flow cytometry is a technology widely used in clinical practice and in research, particularly
in the field of immunology. It is capable of interrogating a wide variety of markers on many
different cell types on a single-cell basis using fluorophore-conjugated antibodies. While molecular
as well as genomic studies have advanced understanding of immunological processes and
autoimmune diseases, the components of the human immune system and their functions have yet
to be comprehensively described. Without such a reference “catalog” of the immune system, it is
ultimately difficult to interpret the pathogenic significance of genetic, molecular, or phenotypic
variants observed in diseases.

Immunoprofiling is emerging as a means to establish the constituents, physiological roles,
and population dynamics of the immune system [1]. Specifically, it aims to define A) the cellular
components of the immune system, B) the developmental processes and lineage relationship
among the cell types, and C) the phenotypes and functions of each cell type at different
physiological states. To profile such a complex and dynamic system in large sample sizes, high-
throughput cytometric studies have become crucial.

Cytometric technologies are quickly advancing and outpacing analytical approaches.
Currently, flow cytometers can measure up to 17 markers [2]. Next-generation cytometers, such as
Cytometry by Time of Flight (CyTOF), will soon to be able to assay hundreds of markers [3].
However, data analysis largely relies on manual gating by expert analysts. It is a simple but slow
process dependent on one- or two-dimensional visualization and sequential gating using software
such as Flow]Jo™. As the number of samples and markers in a study increase, gating becomes
increasingly time consuming, inconsistent, and does not fully exploit the power of high-dimensional
information contained in these complex studies.

In recent years, a number of automated methods for cytometric data handling, particularly

for cell population identification, have emerged and demonstrated power to harness the rich
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information in large-scale data, minimize inconsistencies, and reduce analysis time [4]. Current
methods use parametric [5-7] or nonparametric [8-13] clustering to partition high-dimensional
data. Some methods specialize in capturing difficult (such as rare or convex) cell populations [6, 7,
13], and delineate developmental and functional relationships among cell types [14]. These
methods make no assumptions about the underlying structure of the data and primarily aim to
discover all discernible populations de novo in each sample. Consequently, they have been used
primarily for exploratory studies.

In contrast to exploratory studies, the goal of many immunoprofiling studies is to reliably
and consistently identify the target cell population across many individuals. For example, a profiling
study may aim to quantify regulatory T (Treg) cells in healthy controls and patients with
autoimmune diseases, using antibodies specifically selected for identifying Tregs. In this case, the
goal of the analysis is to accurately extract Tregs from all samples using a standardized definition.
Automating this type of analysis is challenging because accurate inter-sample alignment of cell
populations is required in addition to the partitioning of the cell populations within each sample.

We developed a user-guided analytical tool, “X-Cyt”, for automating targeted population
identification in immunoprofiling studies. X-Cyt uses multivariate mixture modeling for partitioning
cytometric data. Unlike unsupervised methods, X-Cyt allows the user to set up the optimal
partitioning scheme. By applying a uniform scheme to all samples in a cohort, X-Cyt consistently
identifies and aligns the targeted cell populations.

In this study, we aimed to identify and characterize invariant natural killer T (iNKT) cells.
iNKT cells are lymphocytes with a non-diverse T cell receptor repertoire that recognizes CD1d-
presented lipid antigens [15-17], and in humans normally make up less than 0.5% of circulating
peripheral blood mononuclear cells (PBMCs) [18]. They play important roles in host defense,
autoimmunity, allergy, and cancer [19]. Functional characterization of iNKT cells requires

comprehensive assessment of surface expression of homing receptors, lectins, cell adhesion
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molecules, as well as cytokine production. Immunoprofiling studies have yet to assay such a
comprehensive set of markers in primary iNKT cells in a sufficiently large cohort [18, 20-24]. Here,

we profiled iNKT cells in 110 subjects with 19 surface and intracellular markers.

RESULTS
Overview of the X-Cyt method.

X-Cyt identifies the populations of interest in a given sample by partitioning all events into
clusters following a user-designed partitioning scheme. When more than one marker is used to
define populations, X-Cyt partitions the data using multivariate mixture modeling via an
expectation-maximization (EM) algorithm, as described in Methods.

We make the assumption that in profiling studies, samples within a cohort share a general
cell population structure. That is, similar cell populations are present in all samples and their
relative spatial configuration is conserved. X-Cyt therefore aims to follow the same user-defined
partitioning scheme to analyze all samples, while allowing for biological and technical variations.
Population identification by X-Cyt is therefore accomplished in two major steps: 1) a user-guided
“trial” analysis to set up the partitioning scheme, and 2) a template-guided cohort analysis. Markers
that describe the phenotype and function of cells are analyzed separately downstream of
population identification.

Step 1. Set up the partitioning scheme. The goal of the initial “trial” phase of the analysis is to
set up a partitioning scheme by optimizing two parameters for mixture modeling: 1) a
parsimonious combination of differentiation markers for defining the population(s) of interest and
2) the number of clusters to adequately and intuitively partition the events. The user test-partitions
a few representative samples using different input parameters, evaluates the results, and then
chooses one optimal scheme. The ideal resulting configuration is one that most accurately captures

each target population as one coherent cluster of events (see Methods for detailed description of
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parameter selection). The user-approved configuration (parameters of the mixture model
components) is passed onto Step 2 as the template (see Figure 3.1A).

Step 2. Template-guided cohort analysis. X-Cyt initializes the mixture model parameters of
each new sample to that of the template. The EM algorithm then iteratively updates the parameters
describing the location, shape (covariance matrix), and the proportion of each cluster. The EM
algorithm indexes each emerging cluster according to the template, which automatically aligns
across all samples simultaneously to clustering (Figure 3.1B). Downstream to population
extraction, markers that describe the phenotype and function of cells are analyzed separately
(Figure 3.1C).

We have made X-Cyt, along with a sample dataset and user input files, available for

download at http://www.broadinstitute.org/mpg/xcyt/.

Demonstration of X-Cyt’s performance in two datasets

We first assessed the performance of X-Cyt in identifying common cell populations by
querying the proportions of memory cell subsets in CD4+ T cells. We isolated CD4+* T cells from
PBMCs via magnetic-activated cell sorting (MACS) depletion from a cohort of 236 healthy donors
(Table 3. 1), and labeled them with antibodies against CD45RA, CD45R0, and CD62L (see Methods
and SI Appendix for experimental methods).

To identify effector memory (Tgm) and central memory (Tcum) T cells, we partitioned each
sample in two steps: 1) bivariate normal mixture modeling using forward- (FSC) and side-scatter

(SSC) to obtain a purer CD4+ T cell population, and 2) 3-dimensional normal
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Table 3. 1. Demographics of enrolled subjects

Females Males Females Males
Total Enrollment 128 88 62 48
# with Repeat Visit 16 18 5 6
Mean Age (range) 28.8 (19-57) 34.9 (19-54) 27.6 (19-52) 34.6 (19-53)

mixture modeling using CD45RA, CD45R0, and CD62L. To determine the optimal partitioning
scheme, an expert analyst assessed different sets of partitioning parameters in ten random samples.
In Step 1, a two-component mixture model captured the CD4+ T cell population, which was
extracted from each sample. In Step 2, the analyst evaluated a range of four to nine clusters and
selected the 7-cluster model as it most accurately captured the Tgm and Tcum subsets (Figure 3.2A).
X-Cyt applied this partitioning scheme to all 236 samples and consistently identified the Tgm and
Tcum subsets (representative samples shown in Figure 3.2B). We compared X-Cyt results to
proportions defined by an independent expert cytometry analyst with manual gating in Flow]o™.
We observed that the proportions for both populations were highly concordant with the manual
analysis (r=0.91 and r = 0.95, p < 10-15, Pearson correlation test; Figure 3.2C). We wanted to
quantitatively compare the performance of X-Cyt to automated methods that were the top five
performers in the FlowCAP consortium challenge [4]: FLoCK, ADICyt, flowMeans, FLAME, and
SamSPECTRAL. We were unable to run FLoCK since it was not able to use standard FCS3.0 format
files. We ran each method with their default parameters to identify CD4+ Tgwm cells from
lymphocytes.

We analyzed all 236 samples using FLAME, and compared the CD4+ Tgum cell percentages to

those procured by an expert user via gating in Flow]Jo™. FLAME achieved more modest
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Figure 3.1. Schematic of X-Cyt’s analytical process (synthetic samples). A) In a few
representative samples, the user adjusts analytical parameters and evaluates the clustering
outcome. Adjustable parameters include the differentiation markers to be used, the number of
clusters in mixture modeling (g), distribution type, and standard deviation cutoffs for continuous
markers. The user selects one optimal set of parameters that most accurately identifies the cell
populations of interest (here the blue cluster using g=3). The clustering result of the representative
sample is chosen as the template (dashed circles in the g=3 panel). B) X-Cyt applies the template to
guide the partitioning of all samples in the study. The population of interest (shown in red dots and
blue dashed circle) is consistently identified across all samples. C) Downstream to population
extraction, random samples are pooled to establish the distribution of phenotypic/functional
markers. The percentage of cells positive for each marker is reported based on either mixture

modeling (top) or standard deviation cutoff (bottom).
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Figure 3.1. Schematic of X-Cyt’s analytical process (synthetic samples) (Continued).
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Figure 3.2. CD4+* memory T cell subset identification. A) An optimal model of seven clusters
using CD45RA, CD45RO0, and CD62L identified Tem (red, cluster1) and Teum (blue, cluster2) cells.
Other clusters include naive, and intermediate CD4+ T cells, as well as impurities. B) X-Cyt
consistently identified the Tem (red) and Tcm (blue) populations in all samples. Four random
samples are shown here. C) X-Cyt and manual gating in Flow]o returned highly concordant

proportions of Tgm and Tem in 236 samples.
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Figure 3.2. CD4* memory T cell subset identification (Continued).
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concordance (r = 0.50), compared to that achieved by X-Cyt (r = 0.91, see Figure 3.3). Because
flowMeans and SamSPECTRAL do not align clusters across samples, comparison of results to X-Cyt
was not possible without manual intervention. Therefore we manually inspected a random subset
(20 samples) of the clustering results, and in each sample selected the cluster most closely
representing the Tgum cells to obtain a concordance. Even after manual selection of clusters,
flowMeans and SamSPECTRAL achieved limited concordances of only 0.57 and 0.44, respectively.
ADICyt had a high sample failure rate. In three separate attempts with the same 20 samples, we
observed that on average 50% of samples failed to cluster with different random seeds. We note
however, that ADICyt achieved high performance on the limited samples that it did successfully
analyze (r = 0.98, average of three runs). Representative clustering results by each method are
shown in Figure 3.4.

Next we challenged X-Cyt to identify a rare population, mucosal associated invariant T
(MAIT) cells, from PBMCs for 35 subjects. We labeled cells with antibodies against CD3, CD45,
Va7.2,and CD161. Following convention, we defined MAIT cells as CD3+*CD45+Va7.2+CD161+. We
first partitioned PBMCs into four clusters using FSC and SSC to obtain lymphocytes. Subsequently,
we partitioned in CD3 and CD45 dimensions to obtain a double-positive T cell population. In five
random samples, the analyst evaluated three to seven clusters, and selected the six-cluster model as
the best to identify MAIT cells. We then applied the template to all 35 samples. Comparing
proportions obtained by X-Cyt with those procured by an independent manual analyst, we again

observed high concordance (r=0.98, p < 10-15; Figure 3.5).
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Figure 3.3. Comparison between FLAME and X-Cyt. FLAME and X-Cyt were compared by their
abilities to identify the effector memory T (EMT) cell subset in 236 samples. X-Cyt achieved a

significantly higher concordance with manually obtained cell proportions than FLAME.
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Figure 3.3. Comparison between FLAME and X-Cyt (Continued).
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Figure 3.4. Four automated methods were compared for their performance in quantifying
CD4+ effector memory T cells in 20 samples. Four random samples A - D are shown here. X-Cyt
and FLAME return aligned clusters across samples. For flowMeans, SamSPECTRAL and ADICyt,
which do not provide cluster alignment across all samples, the expert analyst manually selected the
cluster that most closely agrees with the TEM population in each sample. ADICyt performs a
different mathematical transformation of the raw data than other methods, therefore produces
different but equivalent plots. Due to high sample failure rate, the concordance of ADICyt is
calculated by averaging three runs, excluding the (seven to sixteen) failed samples in each. The
fourth sample (marked by *) failed in the first two rounds of clustering. The five methods’

concordances (Pearson’s r) with manual analysis are 0.93, 0.86, 0.57, 0.44, and 0.98, respectively.
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Figure 3.4. Four automated methods were compared for their performance in quantifying

CD4+ effector memory T cells in 20 samples (Continued).
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Figure 3.5. Identification of MAIT cells. We used X-Cyt to identify the mucosal associated
invariant T (MAIT) cell population from PBMCs of 35 samples, and extracted its proportion as a
percentage of all CD3+ cells. X-Cyt achieved a concordance of r = 0.98 (p< 10-15, Pearson

correlation) with manual gating in Flow]o®.
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Figure 3.5. Identification of MAIT cells (Continued).
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Characterizing rare iNKT cells

We applied X-Cyt to identify iNKT cell subsets from the peripheral blood sample in 110
individuals (Table 3. 1). We labeled PBMCs with a total of 19 surface and intracellular markers in
nine separate panels. Each panel included the antibodies for CD3¢, CD4, and a-galactosylceramide
(a-GalCer)-loaded CD1d tetramer, which are the standard markers used to identify iNKT cells [25],
as well as two to three phenotypic or functional markers.

We configured X-Cyt to identify iNKT cells in three steps: 1) a 3-component bivariate
normal mixture modeling using FSC and SSC to extract lymphocytes from PBMCs, 2) a 3-component
bivariate normal mixture modeling using CD3e and CD4 to identify CD4+
and CD4- T cells, and 3) a threshold cutoff of five standard deviations above the mean of all
lymphocytes in CD1d tetramer to identify the iNKT cells (Figure 3.6A).

We observed that iNKT cells were present in individuals at extremely low but highly
variable abundances, ranging from 0.0033% to 0.89% of all CD3¢&*cells (mean = 0.072%, median =
0.031%). The proportion of iNKT cells that are CD4+ also ranged dramatically from 1.4% to 87%
(mean = 39.5%). For comparison, an expert user manually gated and quantified iNKT cells and the
CD4+ subset in 36 of the 110 subjects using Flow]Jo™. Automated and manual results were almost
perfectly concordant for the percentages of both iNKT cells (r = 0.99; Figure 3.6B) and the CD4+
subset (r = 0.99).

Rapid and robust processing of cytometric data makes it feasible to discover population dynamics
of immune cell subsets from profiling studies. We examined our cohort of 110 samples for
interesting population dynamics of iNKT cellular subsets. First, we note that 11 of the 110 subjects
had two visits separated by at least two months. In these subjects, we observed stable iNKT
abundances and CD4+ proportions over time (r = 0.99 and 0.98, respectively). We observed a

negative correlation between the proportion of CD4+iNKT cells and the (logio) proportion of total
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iNKT cells (r = -0.48, p = 8.2x10-8, Pearson correlation; Figure 3.6C). Also, women had significantly
higher amounts of iNKT cells than men (mediansemale = 0.038%, medianmae = 0.022%, p = 8.7x103;
Wilcoxon test). Finally, we observed that iNKT cell abundance correlated negatively with age (p =
0.014, Pearson correlation). The correlations between iNKT cell abundance and age, gender and
CD4+ proportion are independent of each other; they remain significant in a multivariate regression
(Table 3. 2). However, the proportion of CD4+ iNKT cells was not correlated with gender (p = 0.12)
or age (p = 0.75). Some of these trends had been observed in previous datasets [24]. With a larger
sample size, we confirmed the correlations with statistical significance.

Downstream of successful identification and quantification of CD4+ and CD4- iNKT cell
subsets, we characterized the expression pattern of phenotypic markers in each. We quantified the
expression of each marker in each subset by measuring the proportion of events with positive
expression. We randomly sampled and pooled CD3e* cells from all subjects to display the natural
intensity distribution of each marker. Two examples of phenotypic markers are shown in Figure
3.6D and 6E. Eight of the 11 surface markers (a4, 37, CCR6, CCR5, CD8a, CD94, CD161, and NKG2D)

and two of five cytokines (TNFa and IFNy)

Table 3. 2. Multivariate regression for logo iNKT cell proportion

Estimate (95% CI) p-value
Intercept -0.55 (-0.86 - -0.24) 5.6 x 104
Age (per year) -0.010 (-0.019 - -0.0021) 1.4x102
Male Gender -0.18 (-0.34 - -0.016) 3.2x102
CD4 fraction -1.24 (-1.61 --0.86) 2.3x10°9
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Figure 3.6. iNKT cell identification. A) The partitioning scheme: FSC and SSC were clustered into
three components to identify the lymphocyte population (red). Lymphocytes were subsequently
clustered using CD3e and CD4 into three components, namely the CD3e-, CD3e+*CD4+, and CD3&e+*CD4-
populations. A cutoff of five standard deviations above the mean in aGalCer-loaded CD1d tetramer
isolated the tetramer+* iNKT cells (either CD4+ or CD4-). B) X-Cyt returned iNKT cell proportions
highly concordant with manual gating (Pearson’s r = 0.99). C) The CD4+ proportion of iNKT cells
correlates negatively with total iNKT abundance. Randomly sampled CD3e* cells from all 110
samples were pooled to establish the intensity distribution of each phenotypic marker. Fitted
distributions of D) NKG2D (bimodal) and E) CCR4 (trimodal) are shown. F) The first principal
component of expression levels of the nine surface markers, which captured 31.8% of total
variation, correlates strongly with the proportion of CD4+iNKT cells. G) The heatmap shows the
correlations (also indicated by Pearson’s r on top) of the nine surface markers’ expression with

CD4+ proportion in iNKT cells. Each row represents one sample.
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Figure 3.6. iNKT cell identification (Continued).
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followed bimodal distributions. For each of these ten markers, we fitted a two-component mixture
model. Using the mean and standard deviation of the pooled distribution, we calculated the
proportions of iNKT cells belonging to the positive component in each sample using maximum a
posteriori estimation. CCR4 followed a trimodal distribution, which we fitted with a three-
component mixture model; we considered the sum of the higher two components to be the positive
portion. Two surface markers (CD103 and IL23R) and three intracellular markers (IL4, IL13, and
IL17A) showed negligible staining in all CD3¢* cells. These five markers were excluded from
subsequent expression analyses.

After assessing the global pattern of phenotypic marker expression among the 110 subjects, we
then applied principal component analysis to look for general trends. We observed that the first
principal component captured 31.8% of the total variation correlated tightly with the proportion of
CD4+iNKT cells (r =-0.70, p < 10-17; see Figure 3.6F). We then examined the expression level of
individual markers in all iNKT cells and confirmed that each was correlated with the proportion of
CD4+ iNKT cells, indicating biased expression in either the CD4+ or the CD4- subset (Figure 3.6G,
Table 3. 3). Specifically, CCR4 was preferentially expressed by the CD4+ subset while all other
surface markers were CD4-- biased. Similarly, functional markers also showed iNKT subtype bias,
where CD4- iNKT cells released much higher levels of TNFa and [FNy upon PMA-ionomycin
stimulation. These results suggest that variation in iNKT cell abundance, phenotypic marker
expression, and functional response are all captured by CD4 expression, which is therefore a critical

biomarker for iNKT function.

DISCUSSION

In this study, we profiled human iNKT cells, a rare immune cell type, in 110 samples of

peripheral blood. In this large cohort, we showed that the quantity of iNKT cells was low
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Table 3. 3. Differential expression of surface markers in CD4+ and CD4- iNKT cells

Marker A(CD4- - CD4+) p-value
NKG2D 66.50% 2.8x 1019
a4 integrin 58.40% 8.6 x 10-17
CCR5 58.00% 2.7x10-18
CCR6 38.40% 4.6 x10-15
CD161 36.80% 9.5x 1017
CD8 31.50% 2.0x10-19
CD94 30.10% 3.6x10-18
B7 integrin 21.60% 1.5x107
CCR4 -33.40% 49x10-18
ATNFa* 27.8 2.6x10°9
AIFNy* 23.30% 1.4x107

*A denotes the differential expression upon administration of PMA-ionomycin vs. DMSO (PMA-

ionomycin - DMSO).

but variable in the population, showing increased quantity in females and a decreased quantity
with age. Subsequently, we extracted patterns of expression of surface phenotypic markers and
intracellular cytokines, observing differences between CD4+ and CD4- iNKT subsets. By applying X-
Cyt to characterize iNKT cells, we demonstrated the potential for robust and efficient automated
population identification in a large-scale immunoprofiling study.

X-Cyt reliably discovers targeted populations with important advantages in terms of
consistency and speed, which result from user-guidance and template-guided partitioning. We
make the distinction between the goal of X-Cyt and that of existing automated cytometric analysis

tools that are, in general, designed for exploratory studies. In exploratory studies, for example those
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aiming to map developmental lineage of cells, populations are defined de novo in each sample.
However, targeted studies focus on a specific cell type, often in large sample sizes. In such studies,
we can assume samples in a cohort share a population structure defined by selected markers. X-Cyt
allows the user to choose markers for defining cell types, the sequence of partitioning, and the
resolution at which to partition, thus catering the analysis to the original intent of the experiment.
Both biological and technical variations often create notable shifts in fluorescence
intensities, which complicate batch data analysis. However, the shifts rarely alter the relative
spatial arrangement of populations. X-Cyt uses a template to capture this conserved structure, and
uses expectation-maximization (EM) algorithm to optimize the fit for each sample independently,
which gives the method substantial tolerance for intensity shifts. Via EM, the corresponding
populations across samples are allowed to vary from the template, in terms of the “site” (the
location parameter), “shape” (the covariance matrix), and “size” (the mixing proportion). In Figure
3.7, we illustrate samples in which a gate (i.e. in Flow]Jo®) requires manual adjustment in each
sample, but X-Cyt automatically detects the shifted location via parameter optimization.
The use of a template confers two additional advantages over de novo clustering. First, the template
serves as a guide for indexing emerging clusters (e.g. the Tgmand Tcm clusters are indexed as
Clusters 1 and 5, respectively, in every sample), which eliminates the need for a separate alignment
step that could potentially introduce additional error. If a population is present in the template but
missing from a given sample, no event in the sample will be assigned and its proportion in that
sample becomes “0”. Next, by initializing the parameters to a close approximation of the optimal

solution, the number of iterations needed to reach
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Figure 3.7. The location of lymphocyte population among all PBMCs is expected to shift from
sample to sample. In the top row, we show four samples displayed in forward and side-scatter in
Flow]o®. The bright cluster of events in the middle of each panel, indicated by *, is the lymphocyte
population. The red ovals are at the location of the gate determined by manually gating the first
sample, and subsequently applied to all four samples, without manual adjustment. The true
lymphocyte population often escapes the gate. Contrastingly, in the bottom row, the lymphocyte

population in each sample is easily identified via clustering by expectation-maximization algorithm.
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Figure 3.7. The location of lymphocyte population among all PBMCs is expected to shift from

sample to sample (Continued).
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convergence in the EM algorithm decreases by several orders of magnitude, substantially reducing
computation time. To demonstrate, we compared the runtimes of clustering using X-Cyt with and
without initialization by a template. Using approximately 200 megabytes of physical memory, X-Cyt
was able to partition the CD4+ T cell subset (~8,000 cells) into four clusters using three markers
(CD62L, CD45RA, and CD45R0) in about 5 seconds per sample, compared to about 0.4 seconds with
a template. In the MAIT cell study containing 500,000 cells per sample, X-Cyt partitioned a random
subset of 100,000 cells into four clusters in two dimensions in approximately 45 seconds without a
template. On the other hand, clustering a full sample of 500,000 cells required about 10 seconds
when guided by a template.

Emerging cytometric technologies, such as CyTOF, can simultaneously measure more than
30 markers in a cell [26, 27], and facilitate precise characterization of the human immune system.
For these studies, robust and versatile analytical methods will become indispensible. In addition to
algorithms well suited for exploratory studies, there is a strong need for tools to replace gating-
based manual analysis when conducting focused characterization of targeted cell types. X-Cyt
presents an efficient and robust method for analyzing such high-throughput immunoprofiling

datasets.

METHODS
Overview of flow cytometry datasets

CD4+ memory T cell subset study. PBMCs were isolated from the whole blood of 236 healthy
volunteers and depleted of non-CD4+ T cells using magnetic-activated cell sorting kits. Cells were

then stained with fluorophore-conjugated antibodies against CD45R0, CD45RA, and CD62L.
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Mucosal associated invariant T cell study. PBMCs were isolated from the whole blood of 40
healthy. Cells were then stained with fluorophore-conjugated antibodies against CD3, CD45, and
Va7.2,and CD161.

iNKT cell study. PBMCs were obtained from the blood of 110 healthy volunteers. From
PBMCs, iNKT cells were stained with fluorophore-conjugated antibodies against 14 cell surface

markers, and five intracellular cytokines following PMA-ionomycin administration.

Detailed experimental protocols can be found in the Experimental Methods. Flow cytometric data
were exported from Flow]o™ as text files after compensation and transformation in the “channel

number” format.

Implementation of X-Cyt.

X-Cyt utilizes the EMMIX-skew package developed by Wang et al. previously written and
published (1, 2) for mixture modeling. X-Cyt is currently implemented in R. There are two distinct
modules for cell population identification in X-Cyt:

1. MixtureModel models cytometry data with multivariate mixture distributions of user-

specified markers. For this, the user may choose to run a set of samples each de novo (i.e. for
a trial run), or specify a template to guide batch analysis.
2. StandardDeviationCutoff defines and applies univariate threshold cutoff for selected
marker(s).
To run each module, the user specifies input parameters as text files. Currently, R packages for X-
Cyt, as well as a sample iNKT and CD4+ Tgu cell datasets and user input files, are available for

download at http://www.broadinstitute.org/mpg/xcyt/. X-Cyt is currently under development as a

graphical user interface to facilitate easier use of the software.
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Multivariate normal distribution.
The multivariate normal distribution is described by Y ~ N(y, X), where p is the mean vector,

and X the covariance matrix. The probability density function of an observation is given by

G

F@:0) = ) mofy(vi by, Zy)

g=1
where 71,y denote non-negative mixing proportions of G components, and sum to 1. @ denotes

the collection of unknown parameters (g, ..., KgrZ1, ) Zg), and is estimated by the maximum

likelihood method via EM.

Estimation-Maximization (EM) algorithm.

For the application of the EM algorithm, the observed-data vector (y7, ..., »1)T is regarded
as incomplete. The component-label indicator variables zj, are introduced, where zj;, is defined to
be one or zero based on weather y; arose from the g*" component of the mixture model (g =
1,..,G;j =1,...n). Letting z; = (zj; ..., ZjG)T, the complete-data vector x. is given by x. =
(T ..., xD), where x; = (yT,zD7T, ..., x, = (yF,zI)T are taken to be independent and identically
distributed with z4, ..., z,, being independent realizations from a multinomial distribution consisting
of one draw on G categories with respective probabilities py, ..., p;. That is,

P1, -, PG ~ Multg(1,p), where p = (pq, ..., 0g)T.
For this specification, the complete-data log likelihood is
le = X7y 25—y — 3 [k log(2m) + log| Tn | + (v — )" Tg (y; — )]
The EM algorithm proceeds iteratively in two steps: estimation (E) and maximization (M).
The E step comprises of computing the following conditional expectations, using the current fit for

the vector of unknown parameters 0:

Ay =g, = PalaWikee)
E(Zlglyl) ~ Y T LgpgfgWjitgZg)
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While the M step updates the estimates of the parameters, using the equations,

_1lyn
Pg = &4j=11g

Py = X7y — ) Oy — 1) ejgTig/ X1 Tig,
Hg = Xj-1Y) €jgTjg/ Lj=1€jgTjg-
The E and M steps are alternated repeatedly until the likelihood changes by a predefined arbitrarily

small amount, and the process has reached convergence.

Phenotypic and functional marker expression.

For a phenotypic marker with a multimodal distribution, we assume that it is comprised of
multiple components, where each component, ¢, follows the normal distribution with a mean g,
and standard deviation g.. X-Cyt fits a one-dimensional n-component mixture model. For each
individual sample, X-Cyt then calculates the proportion of cells in each component by maximum a
posteriori estimation. Given the n components each described by N (u, %), and the vector of

observed data, D, the vector of mixing proportions, p4, ... p¢, is estimated by minimizing:

c
Z —log [pc®(D, ke, 0c)]
c=1
1 —(x—)?
where @ is the probability density function defined by ®(x) = e

INKT cell abundance and CD4+INKT percentage calculations.

Each of the 110 individuals has nine measurements, one from each surface marker panel
(including the lineage marker-only panel). Each vector of nine observed measurement for an
individual, i, was considered to be the linear combination of ;S + ;P, where S and P are
categorical factors subject, and panel, respectively. The weight averages, the vector of {4, ..., @110},

were then estimated through regression model.
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The concordance between manual analysis by an expert flow user and automated analysis
by X-Cyt were tested using correlation coefficients.
We calculated the significance of Pearson’s correlations of iNKT cell abundance with CD4

proportion and age were correlation coefficients with the cor.test() function in R. P-values for

Pearson test are calculated based the standard test statistic s, where s = r * \/H/m ,
where ris the correlation coefficient, and n is the number of pairs of data. The x be the cumulative
probability of s under a t distribution with n-2 degrees of freedom, and the p-value is 2*(1-x). This is
also implemented by the same R function. We calculated the difference of iNKT cell abundance in
men and women with the 2-sample Wilcoxon test, using wilcox.test() function in R.

Additionally, we constructed a multivariate regression model of INKT ~ Age + (factor) Gender +

CD4%.

Characterization of phenotypic and functional markers in INKT cells

Surface markers. We pooled random CD3e* T cells from all 110 subjects in order to establish
the overall distribution of each phenotypic marker. Eight markers (a4, $7, CCR4, CCR5, CD8, CD94,
CD161, and NKG2D) showed clear bimodal distributions of intensities; CCR6 showed a trimodal
distribution; two markers (CD103 and IL23R) followed unimodal distributions. For bimodal
markers, X-Cyt fitted one-dimensional 2-component mixture models to estimate the means of the
negative and positive subsets. Based on the estimated parameters, X-Cyt estimated the proportion
of cells positive each cell population (CD3e+* T cells, INKT cells, as well as CD4+ and CD4- subsets of
INKT cells) in each sample. For CD103 and IL23R, which were unimodal, we considered cells with

expression higher than three standard deviations above the mean as positive.

Intracellular cytokines. IFNy and TNFa were bimodally distributed; we fitted a two-cluster

mixture model to each based on post-PMA-ionomycin samples. [L4, IL13, and IL17a followed
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unimodal distributions with rare outliers; we imposed a threshold of three standard deviations

from the mean of the DMSO-stimulated samples to isolate positive expressers.

Principal component analysis (PCA) of iNKT cell surface markers.

CD103 and IL23R were omitted from PCA analysis, as they showed negligible staining in all
cells. We constructed a 9x110 matrix of proportions of INKT cells positive for the surface markers
in all samples. Each expression vector was normalized to have a mean of 0 and variance of 1. We
reported the Pearson correlation between the first principal component and the proportions of
CD4+ INKT cells.

Marker expression bias in CD4+ and CD4- INKT cells. The percentages of in CD4+ and CD4-
INKT cells that express each of the 16 phenotypic markers in each individual were compared using
a paired nonparametric Wilcoxon test. The “CD4-biased expression” reported in Table 3. 1 was

calculated as the difference of the medians. We omitted markers with negligible staining.

Data partitioning

X-Cyt partitions the data with user-designated differentiation markers. At each step of
partitioning, the user can opt to use multivariate mixture-modeling or univariate cutoffs to identify
outliers.

Multivariate mixture modeling. X-Cyt fits a given number of multivariate components to a
sample via expectation-maximization (EM) algorithm, as previously described in “Automated high-
dimensional flow cytometric data analysis” [5]. The user can specify three input parameters: 1) the
markers used for clustering, 2) the number of expected clusters, and 3) the distribution type
(multivariate normal, skew-normal, ¢, or skew-t; default is normal). Given m differentiation markers,
and g clusters, X-Cyt models a given sample as an m-variate mixture of g components using EM

algorithm initiated by k-means clustering. Upon convergence, each cluster is described by a location
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parameter, a covariance matrix that describes its multidimensional shape, as well as a mixing

proportion. Each event in the sample is assigned membership to one of the g clusters.

Trial analysis in representative samples
Using a small test set of random samples, the user sets up the partitioning scheme,

optimizes input parameters, and chooses a template.

Select test samples. The user randomly selects a small subset of samples from the cohort to
serve as test samples. Assuming that a target population is present in f% of all samples, the chances
of encountering this population at least once among N random test samples at a 95% confidence is
described by (1-f)N = 0.05. Therefore, there is a 95% chance that a 20% population will be observed
at least once in 14 samples; a 50% population will be observed at least once in 5 samples; and a 90%
population will be observed at least once in 2 samples. A table of recommended size of test-sets is
available in Table 3. 4.

Select differentiation markers. The user should select the subset of markers that most
efficiently distinguishes the cell type(s) of interest from the rest of the events. The user often
already has selected a set of differentiating markers while designing the marker panel for the
experiment. For example, one would use CD3, CD45 (RA/RO), and CD62L to identify naive T cells in
PBMCs. On the other hand, if certain markers in the panel are assayed for the purpose of
characterizing the phenotype and function rather than differentiating cell types, (e.g. certain
intracellular cytokines and chemokine receptors), they should be excluded in this step.

Select the number of clusters (g). In the trial analysis, the user should evaluate the
partitioning result of each sample from testing a range of g. For example, given k differentiation
markers, it is reasonable to test a range of k to 2% clusters. The user reviews the output clusters and

defines the optimal g as one that most accurately captures the population of interest as one cluster
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without including undesired events or spuriously splitting the population into more than one
cluster. Often, the target population remains stable as one coherent cluster over a small range of g.

In this case, the lowest g is recommended to minimize computation time.
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Table 3. 4. Recommended size for test-sets (95% CI)

Prevalence of population (%) Test samples needed* (>=N)

99 1
95 1
90 2
85 2
80 2
75 3
70 3
65 3
60 4
55 4
50 5
45 6
40 6
35 8
30 9
25 11
20 14
15 19
10 29
5 59
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Standard deviation thresholds. For rare cell types with extreme intensities in one marker M,
it is most efficient to first partition the sample to coarser-grained clusters, based on other
differentiation markers, and then distinguish the rare events in M using a cutoff by standard
deviation threshold. For example, to identify Tregs from PBMCs using a panel of CD3, CD4, CD25,
and Foxp3, one may first partition all events with CD3, CD4, and CD25 to extract CD3+*CD4+CD25+

activated T cells, and then apply a threshold cutoff in Foxp3 to extract the Tregs.

Guided cohort analysis by template

X-Cyt uses a user-approved template selected from the trial analysis to guide the
partitioning of all subsequent samples. The template serves as the initial parameters and as the
indexing guide. Instead of using a k-means initialization, X-Cyt initializes each sample’s mixture
model parameters to that of the template’s, upon which EM algorithm iterates and converges

quickly.

Phenotypic and functional marker characterization.

For each marker, we report the percentage of cells with positive expression. We construct a
pooled sample of random events from all samples in the dataset, thus establishing a “reference”
fluorescence intensity distribution for each marker.

For multimodal markers, we assume the intensity distribution comprises of n normal
components. We fit a one-dimensional mixture model on the pooled sample and then estimate the
proportion of cells in each cell population positive for the marker in each sample.

For a unimodal marker, we specify a standard deviation threshold. We report the

proportion of cells that express the marker above the threshold.

EXPERIMENTAL METHODS
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Subjects.

In the main iNKT cell profiling study, 110 individuals (62 females, 48 males) were
consented and enrolled into the study through the Phenogenetics Project at Brigham and Women’s
Hospital. Subjects’ ages ranged from 19 to 53 years of age with an average age of 31 years. Eleven
subjects returned for a second study visit at least 3 months after their initial visits.

For the automated method validation study for identifying CD4+ Tgu cells, a separate
enrollment of 216 individuals (128 females, 88 males) was conducted. These subjects’ ages ranged
from 19 to 57 years of age with an average age of 31.3 years. Thirty-four subjects returned for a
second study visit at least 3 months after their initial visits.

For the validation study for identifying MAIT cells, a separate enrollment of 30 individuals was
conducted.

All subjects for all studies were healthy individuals of Caucasian, non-Hispanic descent

(Table 3. 1).

Buffers and media.

Peripheral blood mononuclear cells (PBMCs) were washed with a cold, divalent cation-free
Hycole Dulbeccos (Thermo Scientific) phosphate buffered solution (PBS). PBMCs were cultured in
“Basic Human Media”, which is RPMI 1640 (Gibco) containing 10% Hyclone fetal bovine serum
(Thermo Scientific), 5% BenchMark fetal bovine serum (Gemini Bio-Products), and supplemented
with the following items and their final concentrations or volumes : 30 mM HEPES, 100 U/mL
penicillin, 100 pg/mL streptomycin, 1 mM L-glutamine, 0.5 mM sodium pyruvate, 0.055 mM (-
mercaptoethanol, 2.5 mL of an essential amino acid solution (Gibco; catalog #11130), and 2.5 mL of
a non-essential amino acid solution (Gibco; catalog #11140). PBMCs were stained in “FACS buffer”,
which is the aforementioned PBS solution with 0.5% BenchMark fetal bovine serum (Gemini Bio-

Products) and 2 mM EDTA (Gibco).
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Blood collection and PBMC isolation

For the iNKT cell study, subjects were instructed to fast overnight prior to the blood draw.
50 mL of blood was collected from each subject into plastic tubes spray-coated with sodium
heparin (BD). For the validation study, 30 mL of non-fasting blood was collected from each subject
into plastic tubes spray-coated with EDTA (BD). In both studies, the blood was carefully layered
over Ficoll-Paque PLUS (GE Healthcare) at a ratio of 4:3 and centrifuged at 2000 rpm for 30
minutes to isolate peripheral blood mononuclear cells (PBMCs). PBMCs were washed twice with
cold PBS and filtered through a 70 um nylon mesh. The time from blood collection to the Ficoll
procedure was always less than 6 hours. PBMCs for the INKT cell study were resuspended at a final
concentration of 3x106 cells/mL in Basic Human Media and kept on ice until labeling with

antibodies. PBMCs for the validation study proceeded directly to MACS depletion.

MACS depletion

In the validation study, filtered PBMCs were magnetically depleted of non-CD4+ cells, such
as CD8+* T cells, monocytes, neutrophils, eosinophils, B cells, dendritic cells, NK cells, granulocytes,
v/8 T cells, and red blood cells using a CD4+ T cell isolation MACS kit (Miltenyi). The enriched CD4+

T cells were then kept in FACS buffer on ice until labeling with antibodies

iNKT cell stimulation

Aliquots of each donor’s PBMCs were cultured in Basic Human Media in the presence of
40nM IL-2 overnight at 37°C. The following morning, cells were given monensin (Golgi-Stop; BD)
and either PMA (25 ng/mL) and ionomycin (1 pg/mL) dissolved in DMSO or DMSO only for 4 hours
at 37°C. Following incubation, cells were removed from the plates, washed with FACS buffer, and
then labeled with the cell surface lineage markers for 40 minutes on ice in the dark. After two

washes with FACS buffer, the cells were fixed with 4% paraformaldehyde for 20 minutes on ice in
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the dark. After two washes with FACS buffer, the cells were then permeabilized with a solution of
Perm/Wash (BD) buffer for 15 minutes on ice in the dark. Cells were washed twice with deionized,
distilled water. Cells were then labeled with intracellular cytokine staining antibodies for 40
minutes on ice in the dark. Cells were washed twice with Perm/Wash buffer and then resuspended

in FACS buffer immediately prior to analysis.

Fluorescence antibodies and iNKT tetramer

In the iNKT cell study, iNKT cells were identified by positive binding to allophycocyanin
(APC)-conjugated, a-galactosylceramide (a-GalCer)-loaded Cd1d tetramers (NIH Tetramer Facility)
as well as positive labeling by phycoerythrin-Cy7 (PE-Cy7)-conjugated anti-CD3¢ antibodies (BD).
The following cell surface marker antibodies were used: Pacific Blue (PacBlue)-conjugated anti-CD4
(BD), fluorescein isothiocyanate (FITC)-conjugated anti-a4 integrin (BD), anti-CD161 (Biolegend),
anti-CD8a (eBioscience) and anti-CCR5 (BD), PE-conjugated anti-37 integrin (eBioscience), anti-
NKG2D (eBioscience), anti-CD103 (BD), and anti-CD94 (eBioscience), and peridinin-chlorophyll-
protein-Cy5.5 (PerCP-Cy5.5)-conjugated anti-CCR6 (Biolegend), anti-IL23R (R&D), and anti-CCR4
(Biolegend). The following intracellular cytokine staining antibodies were used: FITC-conjugated
anti-IL13 (eBioscience), PE-conjugated anti-interferon-y (eBioscience), and anti-IL4 (eBioscience),
and PerCP-Cy5.5-conjugated anti-IL17A (eBioscience), and TNF-a (eBioscience). Due to the large
number of markers assayed, the markers were divided into several panels. The following antibodies
were used in the validation study: eFluor450-conjugated anti-CD45RA (eBioscience), APC-
conjugated anti-CD45RO (eBioscience), and PE-conjugated anti-CD62L (eBioscience). All staining

was done on ice for 40 minutes in FACS buffer.

Data acquisition and manual analysis
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For the iNKT cell study, samples were analyzed on a FACSCantoll cytometer (BD). Since
INKT cells were a rare cell population, at least 500,000 events were recorded for each sample.
Manual single-color and unstained compensation was performed before each set of experiments
using spare PBMCs. For the validation study, samples were analyzed on a FACSAriall SORP
cytometer (BD). 10,000 events were recorded for each sample. All manual analysis of flow
cytometry data from both studies were performed using Flow]o (version 8.8.7; Treestar). Positivity
for each marker analyzed was based on an empty, unstained control or DMSO-only samples in the

case of the INKT cell stimulation portion of the study.
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ABSTRACT

Genome-wide association studies (GWAS) and subsequent dense-genotyping of associated loci
identified over a hundred single-nucleotide polymorphism (SNP) variants associated with the risk of
rheumatoid arthritis (RA), type 1 diabetes (T1D), and celiac disease (CeD). Immunological and genetic
studies suggest a role for CD4-positive effector memory T (CD* Tgm) cells in the pathogenesis of these
diseases. To elucidate mechanisms of autoimmune disease alleles, we investigated molecular phenotypes in
CD4+ effector memory T cells potentially affected by these variants. In a cohort of genotyped healthy
individuals, we isolated high purity CD4+ Tgu cells from peripheral blood, then assayed relative abundance,
proliferation upon T cell receptor (TCR) stimulation, and the transcription of 215 genes within disease loci
before and after stimulation. We identified 46 genes regulated by cis-acting expression quantitative trait
loci (eQTL), the majority of which we detected in stimulated cells. Eleven of the 46 genes with eQTLs were
previously undetected in peripheral blood mononuclear cells. Of 96 risk alleles of RA, T1D, and/or CeD in
densely genotyped loci, eleven overlapped cis-eQTLs, of which five alleles completely explained the
respective signals. A non-coding variant, rs3898624, increased proliferative response (p = 4.75x10-8). In
addition, baseline expression of seventeen genes in resting cells reliably predicted proliferative response
after TCR stimulation. Strikingly, however, there was no evidence that risk alleles modulated CD4+ Tgm
abundance or proliferation. Our study underscores the power of examining molecular phenotypes in

relevant cells and conditions for understanding pathogenic mechanisms of disease variants.
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INTRODUCTION

Memory T cells are an important component of the adaptive immune system. They circulate
between lymphoid organs, blood, and peripheral tissues, and facilitate faster and more aggressive immune
response to antigens after re-exposure. CD4-positive effector memory T (CD4+ Tgm) cells are known to
migrate to peripheral sites of inflammation upon activation, and rapidly produce both Thl and Th2
cytokines [1]. Investigators have long suggested their involvement in autoimmune diseases including
rheumatoid arthritis (RA), type I diabetes (T1D), and celiac disease (CeD) [2-5]. However, whether changes
in cell population subsets and functions are causal or reactive to disease is uncertain. One strategy to
answer this question is to examine potential intermediate molecular phenotypes, and identify those
modulated by genetic variants. In order to understand the pathogenic roles of CD4* Tgu cells in
autoimmunity, we aimed to characterize the variation in their phenotypic and functional markers in a
healthy population, and to identify whether these markers intersect with the genetic basis for
autoimmunity.

The majority of autoimmune disease risk variants are located in non-coding regions of the genome.
It is reasonable to hypothesize that a subset of them causes disease by altering gene regulatory
mechanisms as expression quantitative trait loci (eQTL) [6-9]. So far, studies of gene regulation have
largely been carried out in cell lines and primary resting blood cells including undifferentiated CD4+ T cells,
B cells, monocytes, and dendritic cells [8, 10-12]. However, to understand the pathogenic mechanisms of
risk variants, especially when studying the immune system where cells are highly diverse and functionally
specialized, it is crucial to focus on relevant cell types and stimulated cellular states.

We have previously shown that genes within RA risk loci were most specifically expressed in CD4+
Tem cells, compared to more than 200 other immune cell types of various lineages and developmental
stages (p = 1.00x10-8; Figure 4.1) [13]. Celiac disease and T1D loci were also enriched for genes specifically
expressed in CD4+ Tgum cells (p = 1.43x10-5and 1.29x10-4, respectively; Figure 4.1) [13]. Non-coding single

nucleotide polymorphisms (SNPs) associated with RA significantly overlap chromatin marks of
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Figure 4.1. Enrichment of cell-specific expression of genes within risk loci. As described in Hu et al.
AJHG 2011, A) genes within risk loci of RA were the most specifically expressed in CD4+ Tgum cells (p =
1.00x10-8) followed by signal in regulatory T cells (p = 5.00x10-8). B) Genes within CeD were also the most
strongly enriched in CD4 TEM cells (p = 1.43x10-5) followed by regulatory T cells (p = 3.78x10-5). C) In T1D,
CD8 memory T cells showed the strongest enrichment (p = 2.26x10-5), followed by regulatory T cells (p =

5.13x10-5) and CD4+ Tgm cells (p = 1.29x10-4).
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Figure 4.1. Enrichment of cell-specific expression of genes within risk loci (Continued).
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trimethylation of histone H3 at lysine 4 (H3K4me3) specifically in CD4+ regulatory and memory T cells (p =
1.3x10-4 and 7.0x10-4, respectively) [14].

We hypothesized that the risk alleles of these conditions might influence CD4+ Tgm quantitative
molecular phenotypes: 1) the expression of immune-related genes; 2) the relative abundance of CD4+ Tgm
cells in peripheral blood; and 3) proliferative response to T cell receptor (TCR) stimulation. To this end, we
undertook a large immunoprofiling study in a healthy population of 174 European-descent individuals, by
cross-analyzing genotype, transcription, abundance, and proliferative response in primary CD4+ Tgwm cells.
Because the post-stimulation activation of CD4+ Tgm cells is presumably crucial for their autoimmune
response, we assayed cells not only at rest, but also after T cell receptor (TCR) stimulation with anti-
CD3/CD28 beads. As such, this study is the first to our knowledge to map expression quantitative trait loci
and examine immunological cellular traits in primary CD4+ Tgm cells under multiple states.

Using the ImmunoChip platform, investigators recently densely genotyped 186 loci disease that
originally arose through genome-wide association studies (GWAS) in case-control samples for RA, CeD, and
inflammatory bowel disease [15-17], as well as T1D (unpublished data). Dense genotyping allowed
localization of association signals within these disease loci to a set of alleles that are very likely to be causal.
Within these loci, we have a greater ability to identify co-localization between alleles driving variation in
molecular phenotypes (such as eQTLs) and the disease risk alleles. However, in instances where multiple

variants are in perfect linkage, we cannot pinpoint the exact causal variant without functional evaluation.

RESULTS

The experimental protocol (Figure 4.2) is described in detail in Methods. Briefly, we obtained
peripheral blood mononuclear cells (PBMCs) from the whole blood of healthy individuals via Ficoll-
Paque® centrifugation, and then used magnetic- and fluorescence-activated cell sorting to isolate CD4+ Tgum
cells at a high degree of purity (>90%). We acquired genome-wide genotype data of about 640,000 SNPs on

[llumina Infinium Human OmniExpress Exome BeadChips [18]. For each individual we then measured
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Figure 4.2. Schematic of the experimental workflow. We collected four types of data from each
individual: 1) quality-controlled genome-wide SNP data containing 638,347 markers collected on Illumina
Infinium Human OmniExpress Exome BeadChips, 2) abundance of CD4 Tgum cells as a percentage of all CD4
T cells obtained by FACS and quantified by X-Cyt, 3) average cell division upon T cell receptor stimulation
by anti-CD3/CD28 commercial beads, measured using a CFSE (carboxyfluorescein succinimidyl ester) dye
dilution assay, and 4) expression of 215 genes measured by NanoString nCounter. We repeated each

proliferation assay in two-three technical replicates.
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Figure 4.2. Schematic of the experimental workflow (Continued).
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three quantitative phenotypes: 1) the expression of 215 genes before and after T cell receptor (TCR)
stimulation by anti-CD3/CD28 antibody beads; 2) the relative abundance of CD4+ Tegm cells (CD45RA-
/CD45R0+/CD62L-/ow) as a proportion of total CD4+ T cells; and 3) proliferation upon stimulation. Since we
had low numbers of primary cells for expression profiling, we used the highly sensitive NanoString
nCounter assay to avoid biases potentially induced by cDNA preparation. Out of the 215 genes assayed,
115 were within densely genotyped disease risk loci. We quantified CD4+ Tgm cell abundance with X-Cyt, an

automated statistical method that accurately identifies cell populations in cytometry data [19].

Mapping cis-eQTLs that regulate genes in risk loci

We first aimed to identify SNP variants that regulated expression of genes in cis. To best localize
eQTL signals, we imputed 1000 Genomes variants within 250kb from the transcription start site (TSS) of
each gene (excluding five HLA genes and five long non-coding RNAs). We tested SNPs in gene-coding and
non-coding regions in both resting and stimulated CD4+ Tgm cells. We included gender and the top five
principal components of the genotype data (calculated by EIGENSTRAT) as covariates in regression. To
adjust for multiple hypothesis testing, we conducted 10,000 permutations within each gene region to
calculate empirical p-values, and then reported associations at a false discovery rate of 5%.

In total, we observed 46 genes (22.4%) with cis-eQTL signals, including 17 in resting cells and 43 in
stimulated cells (Tables 4.1 and 4.2, Figure 4.3A). For 14 of the 46 genes (30.4%), we detected eQTL
signals in both resting (14/17, 82.4%) and stimulated (14/43, 32.6%) states. In four of these 14 genes
(FHL3, GRB10, IL18R1, and PIGC), the lead eQTL SNPs across resting and stimulated states were identical. In
another five genes (C1QTNF6, PRDM1, SKAP2, DDX6, and LYRM?7), the lead SNPs are in tight LD (r2 = 0.80~1;
based on 1000 Genomes Release 2, European samples). For the remaining five genes (BLK, TMPRSS3,
CD101, ORMDL3, and GSDMB), the lead SNPs from the two states were in partial LD (0.42 < r2 < 0.56). In
these five cases, we could not be confident that the eQTL SNPs across stimulation states were tagging the

same variant.
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Figure 4.3. State-specific effects of eQTL SNPs. A) For a subset of genes, the correlation effects (f3) of the
top associated SNP across resting and stimulated cells differed. The genes shown with a black-dotted
vertical lines had significantly different effect sizes across states. Black horizontal segments in B)-D)

denote median values. Blue panels show resting-state (normalized) expression values; red panels show
stimulated expression values. B) rs9427936 significantly increased the expression of ZMIZ1 only in
stimulated cells. C) rs12746918T was correlated with increased expression of PLCHZ in resting cells only. D)
rs4840565¢decreased BLK expression in stimulated cells nearly twice as much as in resting cells [Bres:(SE)

=-0.366(0.085), fsiim = -0.805(0.071)].
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Figure 4.3. State-specific effects of eQTL SNPs (Continued).
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Three genes (IL23R, PLCH2, and RGS1) had statistically significant eQTLs exclusively in the resting
state, while 29 genes had statistically significant eQTLs exclusively in stimulated cells, such as rs942793
associated with ZMIZ1 expression (Figure 4.3B). One possibility is that some SNPs failed to reach
significance threshold due to the small sample size or low expression levels in resting cells. However, we
observed many genes with truly state-specific eQTLs, where the estimated effect sizes () of the eQTL SNP
differed significantly across resting and stimulated states. To systematically compare the Sresc and Bsim for
each gene, we used a z-statistic to quantify the probability that they differ. We then reported the p-value
(two-tailed) assuming that z is distributed as standard normal, considering p < 0.05 to be significantly
different (“state-specific”; see Tables 4.1 and 4.2). For example, rs12746918T increased the expression of
PLCH?2 significantly only in resting cells; and fBrest Was approximately twice as large as Ssim (Figure 4.3C).
We note that 1 of the 3 eQTLs in resting cells was state-specific (p<0.05), and 13 out the 29 eQTLs seen in
stimulated cells were state-specific (p<0.05). Of the 14 eQTLs that were shared between resting and
stimulated cells, only 4 of them, BLK (Figure 4.3D), CD101, PIGC, and PRDM1, had different ’s across states.
The abundance of eQTLs detected exclusively in stimulated cells underscores the importance of studying
cells in different cellular states.

We wanted to assess whether the eQTLs might act by altering gene regulatory elements in CD4+ Tgm
cells. To this end we asked whether the eQTL SNPs co-localized with marks of active promoters or
enhancers. We utilized H3K4me3 marks from the NIH Roadmap Epigenomics Mapping Consortium [20]
measured by ChIP-seq in primary CD4+* memory T cells. For the SNP with the strongest association to each
gene, we queried the distance of the nearest H3K4me3 mark to this SNP or its LD partners (r2 > 0.8). We
compared this distance measure between two sets of SNPs: the 46 SNPs with significant eQTL associations
(FDR < 5%, resting or stimulated), and the SNPs most strongly correlated with the other 159 genes but did
not reach significance threshold. Indeed, the 46 significant eQTL SNPs were located at smaller distances to
H3K4me3 marks (p = 1.10x10-7, one-sided Mann-Whitney test). In addition, we queried the height of each

H3K4me3 mark’s peak, which reflected the number of reads at a given position compared to genomic
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controls as defined by the MACS software package. A tall peak gives us confidence that the mark is present
in a large proportion of cells. Comparing the marks nearest to the two sets of SNPs, we saw that the 46

eQTL SNPs were also located near taller peaks (p = 9.56x10-8).

Many eQTLs are CD4+ Tgm cell-specific

We compared the cis-eQTLs we discovered to those found in heterogeneous peripheral blood
mononuclear cells (PBMC) in a large genome-wide eQTL meta-study (n = 5,331) conducted by Westra et al.
[8]. At 5% FDR, eleven of the 46 eQTL genes we identified showed no detectable signal in PBMCs at 50%
FDR. We saw significant associations in 131 genes at 50% FDR, 53 of which had no signal in PBMCs at 50%
FDR (Tables 4.1 and 4.2). We hypothesized that these genes tended to be more specifically expressed in
CD4+ Tgu cells, thus making eQTLs readily detectable in the purified cell population. To assess this, we
examined cell-specific expression of the genes the ImmGen dataset, which assayed the genome-wide
expression in 247 murine mouse immunological cell types [13, 21]. We found that the genes with CD4+ Tgm
cell-specific eQTLs (at 50% FDR) were more specifically expressed in CD4+ Tgwm cells than genes with eQTLs

detected in both datasets (p = 0.044, one-sided Mann-Whitney test).

Autoimmune disease alleles affect the transcription of genes in cis

We then focused on 115 genes near 96 risk alleles of RA, T1D, and/or CeD in densely genotyped loci
(182 gene-SNP pairs, including two risk alleles shared by at least two diseases). We discovered that eleven
(11.4%) disease-associated SNPs (6 of 24 RA SNPs, 5 of 37 T1D SNPs, and 3 of 37 CeD SNPs) correlated
significantly with the expression of ten genes in either resting or stimulated state (Table 4.1). In addition,
there was substantial enrichment of nominally significant associations (p < 0.05) among disease SNPs. By
random chance, we expected about nine SNP-gene pairs to reach nominal association in each stimulation

state. However, we observed 26 pairs (14.2%) with nominal association in resting cells (p = 4.67x10-7, one-
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tailed binomial test). Even more strikingly, we observed 45 pairs (24.7%) with nominal association in
stimulated cells (p < 10-15, one-tailed binomial test).

To identify those instances where the disease-associated SNP could explain the entire eQTL signal
in the gene region, we applied conditional analysis to identify any residual signals after controlling for the
disease SNP. In five of the ten genes (BLK, C50rf30, GSDMB, IRF5, PLEK), conditioning on the disease SNP
obviated any remaining eQTL signal in the region (no SNP with permutation p-value < 0.05; Figure 4.4),
suggesting that there was a single variant (the disease-associated SNP or one in very high LD to it) that
drove variation in expression. Interestingly, as previously noted, the lead SNPs in resting and stimulated
states for BLK and GSDMB were in partial linkage to each other. The absence of residual eQTL signal upon
conditioning on the same risk allele might suggest that the lead SNPs were indeed tagging the same causal
SNP in each of these genes. In each of the other five genes (ORMDL3, SKAP2, TMPRSS3, TNFRSF14, and
ZMIZ1), evidence of independent eQTL effect remained after conditional analysis. In these instances the
disease-associated SNP and remaining lead signal are in partial linkage disequilibrium (r2 = 0.36-0.73). In
these cases, we could not conclude whether the disease SNPs drove the alteration in expression, or whether
the true causal SNPs were in partial linkage and caused spurious associations. It is probable that disease
risk alleles were indeed causal, yet we could not confidently fine-map the effect due to experimental noise
in expression assays or inadequate sampling.

We note that another 26 genes within disease loci associated contained cis-eQTL signals, but that
these cis-eQTL signals did not co-localize with RA, T1D, or CeD alleles. As these loci had been fine-mapped
using Immunochip, the lack of overlap strongly suggested that these cis-eQTLs and disease-causing variants
were distinct. For example, rs798000 is an RA risk allele located in a non-coding region upstream of CD2,
CD58, and PTGFRN. However, it was not associated with the expression of any of these genes (p > 0.5).
Another example was rs6911690, an RA allele located about 60kb 5’ of PRDM1, that was not associated
with the expression of the gene at rest or after stimulation (p > 0.5). The lead eQTL SNP associated to

PRDM1 was rs578653 (FDR < 10-3), which was not in LD with the disease allele (r2 < 0.05).
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Figure 4.4. Five disease risk alleles explained the eQTL associations with five genes. The left-sided
panels show unconditional SNP-expression association results. Green dashed lines mark the TSS of the
eQTL gene. The red dots indicate the risk alleles associated with the expression of respective genes shown
as red arrows. The right-sided panels show adjusted association results after conditioning for the
respective risk alleles. In each of the five loci, conditioning on the disease SNP obviated signals in the entire

region, such that no association more significant than p = 0.05 remains.
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igure 4.4. Five disease risk alleles explained the eQTL associations with five genes (Continued).
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The genetic basis of CD4+ Tgum cell proliferation

The relative peripheral abundance of CD4+ Tgu cells varied between individuals (mean = 9.57%; SD
= 4.85%), and was reproducible 35 individuals with two separate blood draws more than one month apart
(Pearson’s r=0.87, p = 1.77x10-11, see also Figure 4.5). Consistent with other studies, we observed that the
relative proportion of CD4+ Tgm cells increased with age by 0.11% per year (page = 1.92x10-3) [22]. We also
observed that on average men had 2.22% more CD4+ Ty cells than women (pgender = 3.80x10-2; see Figure
4.6). Upon anti-CD3/CD28 stimulation, there was a substantial inter-individual variation in proliferation
measured by both division index (DI, average number of divisions undergone by all cells; mean = 1.46, SD =
0.35), and proliferation index (PI, average number of divisions undergone only by dividing cells; mean =
2.16, SD = 0.21). Proliferation metrics were also reproducible in the 35 individuals (Pearson’s rp; = 0.57;
Pearson’s rp; = 0.62, Figures 4.5C and 4.5D). Interestingly, proliferation was negatively correlated to the
proportion of CD4+ Tgm cells (ppr = 1.28x10-3, pp; = 1.93x10-3), but was not associated to age or gender (p >
0.3). This negative correlation needs to be replicated in an independent dataset. Effector functions of Teum
cells with higher proliferative capacities need to be examined to understand whether they represent a
hyperactive subset whose abundance is controlled to maintain immune homeostasis. Possibly individuals
with a lower proportion of Tgu cells are relatively enriched for these subsets.

We tested genome-wide SNPs for association to relative abundance, division index, and
proliferation index, considering p < 5x10-8 as the threshold for significance. For abundance, we included
gender, age, and the top five principal components of genotypes as covariates. Given the correlation with
proliferation, we also included the measured CD4+ Tgu relative abundance as an additional covariate. We
observed associations to division index in several loci, including 13q34 led by rs389862 (p = 4.75x10-8;
Figure 4.7). This SNP is a non-coding variant located 30kb upstream of RASA3, and 70kb upstream from
CDC16. Both genes have known roles in regulating cell proliferation or differentiation [23, 24]. This SNP
was also strongly associated with proliferation index (p = 2.75x10-7). Additionally, there was a strongly

suggestive association to rs3775500 on chromosome 4, located in the intron of DAPP1, which encodes the
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Figure 4.5. Purity and reproducibility. A) Using a combination of magnetic and fluorescence-activated
cell sorting (MACS and FACS), CD4+ T cells were isolated to a high degree of purity. The isolated population
contained ~97% CD3+ cells, ~90% CD4+ cells, ~0.4% CD8+* cells, and ~0.03% CD19+ cells. B) The relative
abundance (as a percentage of all sorted lymphocytes), C) division index (average division of all cells), and
D) proliferation index (average division of all cells that went into division), were reproducible in 35

individuals with two blood draws at least one month apart. Pearson’s r = 0.87, 0.57, and 0.62, respectively.
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Figure 4.5. Purity and reproducibility (Continued).
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Figure 4.6. The relative abundance of CD4+ Tgm cells. CD4+* Tgv abundance as the percentage of CD4 T
cells A) increased with age, at 0.11% per year; and B) was correlated with gender, where men on average
as 2.2% more CD4 Tgy cells than women. The associations remained significant in a multivariate linear

regression.
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Figure 4.6. The relative abundance of CD4+ Tgwu cells (Continued).
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Figure 4.7. Genome-wide association to division index (the average number of division undergone
by all cells). A) rs3898624 on chromosome 13 was significantly associated to increased division index at p
= 4.75x10-8, and is located in a non-coding region 30kb upstream of RASA3, and 70kb upstream from
CDC16.B) rs37755006 on chromosome 4 shows a strongly suggestive association at p = 5.40x10-7, and is

located within the DAPP1 (Bam32) gene.
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Figure 4.7. Genome-wide association to division index (the average number of division undergone
by all cells) (Continued).
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Bam32 protein (p = 5.40x107; Figure 4.7B), which is an adaptor protein expressed solely in
antigen presenting B cells. Interestingly, mutations in this gene have been shown by several groups to
affect T cell activation [25, 26], suggesting the possibility that B cells may indirectly regulate T cell function
in autoimmunity. We did not observe any significant association with the relative abundance of CD4+ Tgm
cells.

When we extracted the association statistics of 118 densely genotyped risk alleles of CeD, RA,
and/or T1D, they showed no inflation in association p-values for relative abundance of CD4+ Tgm cells
(Figure 4.8A). This suggested that risk variants did not modify risk via modulation of CD4+ Tgm peripheral
abundance. We recognized that the power to detect significant associations might have been limited in our
study by the sample size. However, this negative finding was corroborated by results from a recently
published study with data from ~2800 individuals, in which the same set of risk alleles also showed no
significant association to CD4+ Tgm (see Figure 4.9) [27]. Similarly, the same set of risk alleles did not show
significant association to proliferative response (Figure 4.8B). Based on these data, it was unlikely that
SNP variants associated to RA, T1D, or CeD conferred risk through modulation of CD4+ Tgm cell abundance

or proliferation.

Gene expression in resting cells predicted post-TCR stimulation proliferation

After stimulation we observed that 122 genes showed significant changes in expression in response
to stimulation, including 78 whose expression at least doubled or decreased by 50%. The gene with the
greatest post-stimulation induction was GZMB (average fold change = 93.48), which encodes granzyme B, a
protein involved in the apoptosis of target cells during cell-mediated immune response in cytotoxic and
memory lymphocytes. The most significantly down-regulated gene was GRB10 (average fold change = 0.18),
which is near rs6944602 associated with T1D and encodes growth factor receptor-bound protein 10,

whose function in the immune system is unclear.
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Figure 4.8. Risk alleles of CeD, RA, and T1D, showed no significant association to CD4 Tgwm cell
abundance or proliferation. A) The 118 SNPs with association to diseases in densely genotyped regions
on Immunochip platform were not significantly associated to CD4 Tgwm cell abundance. The shaded region
shows 95% confidence interval. See also Figure S5. B) The same set of 118 risk alleles also showed no

inflation in association with proliferative response measured as division index.
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Figure 4.8. Risk alleles of CeD, RA, and T1D, showed no significant association to CD4 Tgwm cell

abundance or proliferation (Continued).
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Figure 4.9. SNPs associated to CeD, RA, and T1D, showed no significant association to CD4 Tgm cell
abundance. The 119 risk alleles within densely genotyped loci showed no significant association to CD4
Tem abundance as a percentage of CD4 T cells in the study by Orru et al. The shaded area shows the 95%

confidence interval.
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Figure 4.9. SNPs associated to CeD, RA, and T1D, showed no significant association to CD4 Tgm cell

abundance (Continued).
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We observed that relative gene expression at rest predicted proliferative response. In 182
individuals with both proliferation and gene expression data, 17 of the 215 genes were associated with
proliferation index (p < 0.01, two-tailed test by permuting proliferation data, Figure 4.10). Increased
expression of 15 of the 17 genes including CCR5, IL2RB, PRR5L, and TBX21, were correlated with reduced
proliferative response, while CCR9 and the IncRNA XLOC_003479 showed significant correlation with
increased proliferation. This number of correlated genes was far in excess of random chance based on a
null distribution consisting of 1000 permutations (p < 10-3, median 2, maximum 15). The weighted sum of
the 17 genes served as a “proliferation potential signature”, where we weighted the positively-
and negatively-correlated genes as +1 and -1, respectively. This signature strongly
predicted proliferation index (r = 0.55). We show the correlation between each of the 17 genes as well as
the aggregate signature to proliferation as a heatmap (Figure 4.10A). To assess if we were overfitting the
data, we applied a two way cross-validation, where we defined the proliferation signature based on genes
from half of the individuals and tested correlation to proliferation in the remaining half of the individuals.
In both instances we again observed significant prediction of proliferation (r=0.41,one tailed p<10-3 by
permutation; r=0.39, p<10-3).

To search for biological pathways underlying genes correlated to proliferation, we applied gene set
enrichment analysis (GSEA) to test for enrichment for 1,008 functional gene sets based on Gene Ontology
codes [28] (Figure 4.10B). Genes correlated to reduced proliferation were most significantly enriched for
G0:0012502 (induction of programmed cell death; one tailed p = 1.8x10-4); those correlated with increased
proliferation were most significantly enriched for GO:0002285 (lymphocyte activation involved in immune
response, one tailed p = 3.9x10-4).

Using data from 29 individuals each with two samples collected at least one month apart, we
replicated the observed correlation. In these samples we performed a cross-visit analysis, and observed
that the same 17-gene signature from the first visit significantly predicted proliferation indices on the

second visit (r = 0.65, p = 0.0006, 1-tailed permutation), and vice versa (r = 0.55, p = 0.0019).

141



Figure 4.10. Relationship between baseline expression and post-stimulatory response. A) Baseline
expression of 17 genes correlated with post-stimulation proliferation. Rows in the heatmap are ordered
from top to bottom by ascending proliferation index. Genes/columns are ordered from the most negatively
correlated (IL2Z3RB) to the most positively correlated (CCR9). The 17-gene signature was calculated as the
weighted sum of the 17 genes, where the negatively-correlated genes were given a weight of -1, and the
positively-correlated genes were given a weight of +1. B) Genes correlated with proliferative response
were enriched for apoptosis and lymphocyte activation pathways. Genes correlated to lower proliferative
response (proliferative index) were enriched for Gene Ontology code GO:0012502 (induction of
programmed cell death, p = 1.8x10-4). Conversely, genes correlated to higher proliferative response were

enriched for GO:0002285 (lymphocyte activation, p = 3.9x10-4).
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Figure 4.10. Relationship between baseline expression and post-stimulatory response (Continued).
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DISCUSSION

To fine-map and link risk loci to their pathogenic mechanisms, we investigated molecular and
immune phenotypes potentially leading to disease end-points. The immune system is particularly complex,
and different cells under various activation states have specialized functions that may not be adequately
captured by examining PBMCs. Therefore, we focused on one purified cell population that had been shown
to be important for the pathogenesis of several autoimmune diseases. We quantified population variation
in several traits, including peripheral abundance, proliferative response to TCR stimulation, and expression
of genes within autoimmune disease loci at rest and after stimulation. In Tables 4.1 and 4.2, we provide
significant cis-eQTLs and genome-wide association results.

To our knowledge this study was a first cross-examination of genetic-, transcriptional-, and cellular-
level quantitative traits in CD4+ Tgwm cells. It demonstrated the importance of focusing functional studies in a
purified cell population under relevant developmental and stimulation states. By examining the
proliferative response upon TCR stimulation, we identified a subset of genes whose baseline expression
predicted proliferative potential. Intriguingly, these genes were involved in programmed cell death and
lymphocyte activation. Whether variation in proliferative abilities correlated with cytokine production and
other signaling functions, thus affecting susceptibility to autoimmunity, remains a question to be addressed
by future studies.

Of the 205 genes in disease loci that we examined, 46 had cis-eQTLs. Notably, eleven of these were
specific to stimulated CD4+ Tgwu cells, and not previously found in PBMCs. We noted that approximately 10%
of genes within risk loci of diseases had cis-eQTLs. However in many instances the lead eQTL SNPs were
unrelated to the disease-associated SNPs. One example of a disease allele that functioned as cis-eQTL was
rs39984, which was associated to lower risk of RA, and regulated the expression of C50rf30 encoding an
UNC119-binding protein. This SNP variant is located in the first intron of C50rf30, and indeed explained the
entire cis-eQTL signal in this gene (see Figure 4.3B). This eQTL effect was previously undetected in PBMCs,

and the protein’s functional role in the immune system is largely unknown. However, a recent study
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showed that rs26232 (the lead GWAS SNP prior to fine-mapping, r2 = 0.988 to rs39984) was correlated
with lower severity of radiologic damage in RA, independent of previously established biomarkers [29].
Another gene in the locus, GIN1, is located 140kb from rs39984; however its expression showed no
correlation with the SNP (p > 0.5).

Another CD4+ Tgum cell-specific eQTL gene was DDX6, which encodes DEAD-box RNA helicase 6.
However, in this case, the lead eQTL SNP (rs4938544) associated to increased expression of DDX6 in
stimulated cells was not in LD with the known CeD risk allele (rs10892258, r2 < 0.1) or the RA risk allele
(rs4938573, r2 < 0.1). Neither risk allele showed significant association to DDX6 expression (p = 0.19 and
0.26, respectively). Both risk alleles are also located near CXCR5, BCL9L, and TREH; none of these genes had
reported cis-eQTLs in PBMCs [8]. However, we did not assay these three genes in this study, therefore
could not confirm the role of disease alleles in regulating their expression in CD4+ Tgum cells.

Although we did not assay all genes or test for trans-acting eQTLs, based on the level of co-
localization between eQTL SNPs and risk alleles observed in the study, we found it unlikely that all non-
coding risk variants caused disease by altering gene expression within resting or stimulated CD4+ Tgum cells.
In addition, while changes in proportions of lymphocyte subsets had been observed in patients of
autoimmune disorders [30-35], we did not find evidence to support disease alleles’ roles in directly
modulating CD4+ Tgm cell abundance or proliferative response. Ultimately, other cell states and cell types
will need to be investigated.

We recognize several limitations to the current study. In order to conduct a focused study on a
small amount of purified primary cells we used the NanoString nCounter assay system. This avoided
potential biases and artifacts arising from cDNA synthesis required for microarray or RNA-seq studies, but
restricted our analysis to a subset of candidate genes within risk loci of CeD, RA, and T1D, rather than a
genome-wide expression analysis. Consequently we could not identify trans-eQTLs, splice variants, or

epistatic effects on expression regulation. Additionally, anti-CD3/CD28 stimulation for memory T cells is
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not antigenic, especially while in isolation from a “natural” multi-cellular environment, thus it was only
partially physiological.

This and other cell-specific studies on population variation in molecular phenotypes are only a
beginning of examining potential intermediate phenotypes. Post-activation cytokine production by CD4+
Tewm cells are likely crucial in driving autoimmunity. Therefore, it is critical that future studies of molecular
phenotypes include proteomic assays to quantify functional markers of immune response. Finally,
functional experiments will need to be conducted in the future to determine whether these molecular

phenotypes are indeed intermediary to disease.

MATERIALS AND METHODS
Ethics statement
All research was approved by our Institutional Review Board, and informed consent was obtained

from each volunteer.

Study sample

We enrolled 225 healthy volunteers (134 females, 91 males) of non-Hispanic Caucasian descent
that proved informed consent through the Phenogenetics Project at Brigham and Women’s Hospital.
Subjects’ ages ranged from 19 to 57 years with average female and male ages of 28.8 years and 34.9 years,
respectively. Thirty-five subjects (18 females, 17 males) returned for a second study visit one to nine

months after their initial visits.

Genotyping

We genotyped each subject using the [llumina Infinium Human OmniExpress Exome BeadChip. In total, we

genotyped 951,117 SNPs, of which 704,808 SNPs are common variants (minor allele frequency [MAF] >
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0.01) and 246,229 are part of the exome. After quality control, 638,347 common SNPs remained. Of all

subjects, 174 subjects had abundance, proliferation, gene expression, and quality controlled genotype data.

SNP Imputation

For each gene, we selected a 500kb region (250kb each in the 3’ and 5’ directions) around the transcription
start site and imputed 1000 Genomes SNPs into the genome-wide SNP data using BEAGLE Version 3.3.2.
We used the European samples from 1,000 Genomes as the reference panel. We excluded markers that had
MAF < 0.05 in the reference panel as well as all insertion/deletions. After imputation, we excluded markers

with a BEAGLE R2 < 0.4 or MAF < 0.01 in the imputed samples.

Buffers and media

Peripheral blood mononuclear cells (PBMCs) were washed with a cold, divalent cation-free Hycole
Dulbeccos (Thermo Scientific) phosphate buffered solution (PBS). Antibody staining of CD4 T cells was
performed in “fluorescence activated cell sorting (FACS) buffer”, which is PBS containing 0.5% BenchMark
fetal bovine serum (Gemini Bio-Products) and 2mM EDTA (Gibco). CD4 Tgum cells were cultured in “basic
human media”, which is RPMI 1640 media (Gibco) containing 10% Hyclone fetal bovine serum (Thermo
Scientific), 5% BenchMark fetal bovine serum (Gemini Bio-Products), and supplemented with the following
items and their final concentrations or volumes: 30 mM HEPES, 100 U/mL penicillin, 100 pg/mL
streptomycin, 1 mM L-glutamine, 0.5 mM sodium pyruvate, 0.055 mM (-mercaptoethanol, 2.5 mL of an

essential amino acid solution (Gibco), and 2.5 mL of a non-essential amino acid solution (Gibco).

Blood collection and PBMC isolation
For each subject, 30 mL of non-fasting blood was collected into plastic tubes spray-coated with
EDTA (BD). The blood was carefully layered over Ficoll-Paque PLUS (GE Healthcare) and centrifuged at

2,000 rpm for 30 minutes to isolate PBMCs. PBMCs were washed twice with cold PBS, resuspended in FACS
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buffer, and filtered through a 70 pm nylon mesh. The time from blood collection to the Ficoll procedure was

always less than 7 hours.

MACS enrichment for CD4 T cells
Magnetic activated cell sorting (MACS) was used to enrich PBMCs for CD4 T cells by depleting CD8+
T cells, monocytes, neutrophils, eosinophils, B cells, dendritic cells, NK cells, granulocytes, y/8 T cells, and

red blood cells using a CD4 T cell isolation MACS kit (Miltenyi). FACS buffer was used as the eluent.

FACS isolation of Tgm cells

FACS was used to isolate Tgy Cells from enriched CD4 T cells, which were labeled with
phycoerythrin (PE)-conjugated anti-CD62L (eBioscience), eFluor450-conjugated anti-CD45RA
(eBioscience), and allophycocyanin (APC)-conjugated anti-CD45R0 antibodies (eBioscience) on ice for 40
minutes in FACS buffer. Labeled cells were then washed twice with and resuspended in FACS buffer. Cells
were kept at 4°C overnight. The following morning, labeled cells were sorted on a BD FACSAria SORP flow
cytometer for Tgum cells, which were defined as being CD45RA-CD45R0hishCD62L-/1ow, Tgy cells were sorted
into two tubes of basic human media, one for 100,000 cells and one for 120,000 cells. The first tube was
used for the Nanostring gene expression assay while the second tube was used for the proliferation assay.

FCS files of the sorting data were saved for automated quantification of Tgm cell abundance.

Tem cell stimulation

Sorted Tgm cells were plated into round-bottom, 96-well plates at 20,000 cells/well. Wells for the
stimulated condition received 2,000 Dynabeads coated in anti-CD3 and anti-CD28 antibodies (Invitrogen)
in basic human media for a bead:cell ratio of 1:10. Wells for the resting condition received an equal volume
of basic human media only. The cells for the proliferation assay and the gene expression assay were plated

on separate plates. The proliferation assay plate contained two resting replicates and three stimulated
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replicates. The gene expression plate contained two resting replicates and two stimulated replicates. In
both plates, the outer wells were avoided to minimize variability between the wells. All cells were

incubated at 37°C for 72 hours.

Proliferation assay

Prior to plating the Tgu cells for the proliferation assay, cells were washed with and resuspended in
room temperature PBS. They were then labeled with 0.5 uM carboxyfluorescein diacetate succinimidyl
ester (CFSE; eBioscience) in room temperature PBS for two minutes. Cells were quenched with cold
BenchMark fetal bovine serum (Gemini Bio-Products) and basic human media. Cells were then
resuspended in basic human media and plated. Following the incubation period, cells were removed from
wells and analyzed on a BD FACSCantoll flow cytometer. The two resting replicates for each sample were
pooled to define the undivided cell population. FCS files of the proliferation assay were saved for

downstream, automated analysis.

Selecting target and reference genes for custom codeset

A list of the known single nucleotide polymorphisms (SNPs) associated (P < 5x10-8) with
rheumatoid arthritis, celiac disease, and type 1 diabetes, via genome-wide association and/or Immunochip
studies, as of May 2011, was compiled. For each associated SNP, its implicated genomic region of interest
was first defined by the furthest SNPs in linkage disequilibrium in the 3’ and 5’ directions (R2 > 0.5), then
extended outward to the nearest recombination hotspot. All genes with any overlap with this region of
interest were collected. A total of 931 unique genes were implicated by all associated SNPs. To prioritize
these genes, they were annotated based on the following criteria: 1) distance to the SNP of interest; 2) Gene
Ontology annotation; 3) known eQTL status; 4) a minimal expression specificity in CD4 T cells (based on

mouse ImmGen data) or immune cells (based on human GNF dataset). In addition, 19 genes and ten long
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non-coding RNAs (IncRNAs) were added to the codeset based on immunological interest, but were not
implicated by the above-mentioned association SNPs,

15 reference genes were included for the purpose of controlling for cell numbers, total RNA
quantity. Due to the large metabolic demand and cytoskeleton remodeling that occurs with stimulation-
induced proliferation, housekeeping genes commonly used in other molecular biology assays, such as
GAPDH and actin, were not used. Instead, genes that showed stable expression levels in resting and
stimulated CD4 T cells were identified in two publically available microarray datasets in Gene Expression
Omnibus, GSE32607 and GSE28726, which studied primary and cloned human T cells after stimulation.
Genes that showed minimal fold change in both datasets and spanned the low, medium, to high expression
ranges were selected.

In total, 314 target genes and 15 reference genes were included in the custom codeset.

Nanostring nCounter sample preparation and processing

Cells used in the gene expression assay were not labeled with CFSE prior to plating. Following the
incubation period, plates were centrifuged at 2,000 rpm for 5 minutes and the media in the wells was
aspirated. Cells were lysed with 5 pL of an RLT lysis buffer (Qiagen) solution containing 1% [3-
mercaptoethanol. Cell lysates were stored at -80°C for 2-14 months until analysis. The standard nCounter
cell lysate gene expression assay protocol was used to process the samples. All replicates were processed

separately.

CD4+ Tgm cell isolation and stimulation

We isolated peripheral blood mononuclear cells (PBMC) from whole blood using a Ficoll density
gradient (GE Healthcare). We then isolated CD4+ effector memory T cells from PBMCs first by magnetic-
activated cell sorting to enrich for CD4+ T cells, followed by fluorescent-activated cell sorting using labeled

antibodies against CD45RA, CD45R0, and CD62L.
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We stimulated CD4+ Tgwm cells by incubation with commercial anti-CD3/CD28 beads for 72 hours.
For proliferation studies, we labeled cells with carboxyfluorescein diacetate succinimidyl ester (CFSE;

eBioscience), and measured proliferation by dye dilution.

Gene expression

We designed the NanoString codeset based on GWAS SNPs associated with CeD, RA, and T1D as of
April 2012. As the numbers of associated loci with autoimmune diseases continuously expand, we refer the
reader to ImmunoBase (https://www.immunobase.org) for up-to-date disease regions. For each locus, we
defined a region of interest implicated by the GWAS lead SNP [36]. We identified the furthest SNPs in LD in
the 3’ and 5’ directions (r2 > 0.5). We then extended outward in each direction to the nearest recombination
hotspot. If no genes were found in this region, we extended an additional 250kb in each direction. All genes
overlapping this region were considered implicated by the locus. The final NanoString codeset (prior to
expression data quality control) included 312 genes, including 270 genes near SNPs associated with 157
RA, CeD, and T1D through GWAS, 26 genes of immunological interest, and 15 reference genes with minimal
change in expression after TCR stimulation.

After quality control, 215 genes remained. Of all 225 subjects in the study, 187 subjects passed gene

expression quality control for both resting and stimulated cells..

Genotype principal component analysis

To control for any potential population stratification, we adjusted all association tests using the top
five principal components of our genome-wide SNP data. Principal components were generated via
EIGENSTRAT using unsupervised analysis (no reference populations were used). The top five PCs
explained 6.88% (2.08%, 1.27%, 1.20%, 1.17%, and 1.16%, respectively) of the total variance. After
controlling for these five PCs, the lambda GC for CD4 Tgm proportion association was 1.008; that of division

index was 1.001.

151



Cis-eQTL analysis

For each gene-SNP pair, we applied linear regression using the first five principal components of
the genotype data and gender as covariates. As such, normalized expression = 3o + 31*allelic dosage + 32+PC1
+ B3+PCz + B4+PCs + B5:PCs + BePCs + B7*(factor)gender. To adjust for multiple hypothesis testing while
taking into consideration the correlation among SNPs within each locus, we calculated a permutation-
based p-value for each SNP. We performed 10,000 permutations of the residual expression values. We
reported each SNP’s p-value the proportion of permutation P value smaller than the analytical p-value. For
conditional analysis, the vector of allelic dosages of the disease-associated SNP was included as an

additional covariate.

Statistical analysis

All linkage disequilibrium calculations (r2) were based on 1000 Genomes Release 3 European
samples. All association tests were performed using Plink v1.07. We considered p < 5x10-8to be genome-
wide significant; p < 5x10-5 was considered as suggestive. CD4+* Tgu abundance and proliferation
correlations with age and gender were calculated by multivariate linear model implemented in R-3.0. We
calculated two-sample comparisons (CD4+ Tewm cell-specific expression between genes, and H3K4me3 h/d

scores between SNPs) with the Mann-Whitney test. Details of statistical analyses are described in Text S1.

Nanostring data analysis
Data quality control

Raw nCounter data consisted of 343 transcriptional measurements (314 target genes, 15 reference
genes, 8 negative controls, and 6 positive controls). Data was available for 265 samples (including
replicates) initially with both resting and stimulated data (n=530). First, we identified control genes with

adequate signal intensity for normalization, we required that the signal intensity of the gene exceeded
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double the median of negative control probe intensities in <10 samples; this resulted in 9 pre-defined
control genes passing quality control. Then, we removed samples with low intensity by requiring for each
sample that:
(1) The mean of the natural log of the 9 control genes >2 (525/530 passing).
(2) The median signal intensity of the of the 314 genes exceeded the median signal intensity of
negative controls (512/530 passing).
(3) The mean of the natural log of the 314 measured genes >0.5 (523 /530 passing).
(4) The standard deviation divided by the mean of the natural log of the 314 measured genes was
>0.5 (509/530).
The resulting data set had 491 remaining samples. Finally, we applied stringent quality control to remove
low intensity genes. In order to do this we required that:
(1) The intensity of the gene exceeded double the median of negative probe intensities in >80% of
stimulated samples (246/314).
(2) The standard deviation divided by the mean of the natural log of the each gene across samples
was >0.3 (292/314).
(3) The standard deviation of the natural log of the each gene across samples was >1 (245/314).
The resulting data set consisted of measurements on 215 genes.
To assess if stimulated and non-stimulated samples separate naturally in expression space, as we
would expect with high quality sample measurements, we calculated principal components analysis, after

normalizing each gene to a mean of 0 and standard deviation of 1.

Data normalization
For each gene, we normalized resting and stimulated conditions together, assuming that the
observed signal was the composite of a true baseline expression value, and a stimulation effect (if the

sample is indeed collected from stimulated cells). Fitting the observed intensity data (R;) in a log additive
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model for each gene j individually, allows us to determine the residuals for each individual sample i, ry.
Thus for each gene i, we fit the following model.

log(Ri,j) = )?]- + I(stim; = 1) -§j + 71
where stim; represents a binary variable which is non-zero only for stimulated samples, X;, is the mean log
expression of gene j across samples at baseline, .S:] is the mean log fold change with stimulation, and r; is the
residual expression of gene j for sample i. With this formalism, the log baseline expression, log fold change
with stimulation, and statistical significance for each of these parameters being >0 can be estimated with a
simple linear regression model. The r; residuals can be used to conduct association studies across
individuals.

In addition to individual differences, we are cognizant residuals effects might be capturing
variability in mRNA content, batch effects, reagent quality, and global shifts in expression for individual
samples. In order to control for these effects, and maximize the extent to which residuals represented
individual expression differences, we included additional confounder variables that might capture these

effects:

log(Ri,j) = )?]- + I(stim; = 1) -§j + ri,jlog(Ri‘]-) + Zﬂcci
where c;is a series of one or more confounder variables that influences gene expression in a log linear
fashion. Here the confounders that we tested as covariates in this framework included the mean of the log
positive control intensities, the mean of the log control gene intensities, the chip effect (12 samples are run
together), the effect of the position of the chip (both row and column), and the principal components for

stimulated data. To assess the impact of each confounder variable we assessed the sum square of the

residual, with the aim to use confounders to reduce the total residual across all samples and genes:

> ()’

i
Briefly, we observed that the mean of the log control gene intensities (cg;) for each sample

explained 52% of the sum-squared residuals - more than any other individual variable. Addition of log
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positive control intensities, the chip effect (12 samples are run together), or the effect of the position of the
chip (both row and column) did not reduce residuals substantially beyond the reduction of cg; (<7%); we
concluded that most of these effects are either minimal or captured by cg;. However, we did not that the
addition of principal components did reduce residuals further. Briefly normalizing expression data for each
sample to have a mean of 0 and standard deviation of 1, we calculated principal components across resting
and stimulated samples separately. We observed that adding the top two components for each stimulated
(ps) and non-stimulated (p") samples explained an additional 25% of the total sum-square residual, adding
additional components only improved sum squared residual explained only incrementally (<2.3% per pair
of components added).

In final form we implemented the following normalization scheme:

log(Ri_j) =X;+1(stim;y =1)-S; + 1y + -

iy pp + I[(stim; = 0)
1 k

n n
Ty Pk
1

y-cgi + I(stim; = 1) -

2
k=

2
where g is the linear effect for cg; and p is the linear effect for each of the principal component variables,
pi. In aggregate the use of two pairs of principal components and the log average intensity of control genes

explained 77% of the sum square of residuals after linear fit.

Assessing biological and technical reproducibility

After obtaining residual expression values for 215 genes for each individual under resting and
stimulated conditions, correlations of residuals between technical and biological replicate pairs were
assessed. First, a Pearson’s r for each pair of normalized replicates was calculated. Then, technical
replicates of samples collected from resting cells, technical replicates of samples collected from stimulated
cells, biological replicates of samples collected from resting cells, and biological replicates of samples

collected from stimulated cells were separately averaged.
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To assess significance for each of these conditions, an equal number of pairs from the total pool of
assayed samples, matching for stimulation status, were randomly identified. Pairs were restricted so that
the data was not obtained from the same individual. For each of the four conditions, 1,000,000 sets of pairs
were sampled. Significance was assessed by quantifying the number of instances the averaged correlation

of randomly drawn pairs exceeded the observed averaged correlation.

Genotyping and imputation

Each subject was genotyped using the [llumina Infinium Human OmniExpress Exome BeadChips,
which includes genome-wide genotype data as well as genotypes for rare variants from 12,000 exomes as
well as common coding variants from the whole genome. In total, 951,117 SNPs were genotyped, of which
704,808 SNPs are common variants (minor allele frequency [MAF] > 0.01) and 246,229 are part of the
exomes. The genotype success rate was greater than or equal to 97%. Rigorous quality control was applied
that included 1) gender misidentification, 2) subject relatedness, 3) Hardy-Weinberg Equilibrium testing,
4) use concordance to infer SNP quality, 5) genotype call rate, 6) heterozygosity outlier, and 7) subject
mismatches. 1,987 SNPs with a call rate < 95%, 459 SNPs with Hardy-Weinberg equilibrium P < 10-6, and
63,781 SNPs with MAF < 0.01 were excluded.

For each gene, the 500kb region (250kb to the 3’ and 5’ direction) around the transcription start
site (hg19) was selected and 1000 Genomes SNPs were imputed into the genome-wide SNP data using
BEAGLE Version 3.3.2. The European samples from 1,000 Genomes were used as the reference panel.
Markers that had MAF < 0.05 in the reference panel as well as all indels were excluded. After imputation,

markers with a BEAGLE R2 < 0.4 or MAF < 0.01 in the imputed samples were excluded.

Cis-eQTL analysis

174 subjects had both genotyping and Nanostring expression data and were included in the eQTL

analysis. Analyses were performed using R. For each gene, at rest and after simulation, each SNP within
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250Kkb to the 3’ or 5’ direction of the transcription start site was assessed for cis-eQTLs using the residuals
of the gene expression matrix. The imputed dosage, rather than the called minor allele number, was used to
perform the linear regression. For each gene-SNP pair, a linear regression was perform, where normalized
expression = 3o + B1*allelic dosage + B2+PC1+ B3+PC2 + B4PC3+ Bs:PCs+ B6:PCs + B7*(factor)gender. To adjust
for multiple hypothesis testing and taking into consideration the correlation among SNPs within the loci, a
permutation-based P value for each SNP was reported. We performed 10,000 permutations per gene. In
each round, the residual expression values of the samples were permuted, and the lowest P value achieved
by any of the SNPs was recorded. The proportion of permutation P value smaller than the analytical P value
was reported.

We reported the lead SNP per gene with the most significant P-value. Based on locus-wide
permutation p-values of all the top SNPs, we used a cut-off of false discovery rate < 0.05, and considered

those passing this threshold to be significant.

Conditional analysis

For each gene near a SNP within a densely genotyped locus associated to CeD, RA, or T1D,
conditional analysis was performed. The dosage of the associated SNP (“dzSNP”) was used as a covariate,
thus normalized expression = 3o + B1*allelic dosage + 2:PC1 + 33+PC2 + B4+PC3 + B5+PCs + B6+PCs +
B7*(factor)gender + Bs*dosaged.sne. If more than one disease-associated SNP reside in the same gene, each
SNP is conditioned on separately. We repeated the linear regression and permutations to obtain any

remaining eQTL signals (FDR < 0.05) independent of the associated SNP.

Comparison between eQTL effect sizes between resting and stimulated states

To systematically compare the Srest and Bsim for each gene, we used a z-statistic to quantify the probability

Bstim‘ﬂrest

2
A ’ SEstim2 - SEre'st2

that they differ. The statistic was defined as z = , where § and SE are the mean and
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standard error of the effect size estimate from regression analysis. We than reported the p-value (two-

tailed) assuming that z is distributed as standard normal.

Enrichment of chromatin-mark overlap

For each SNP with the strongest association to each of the 158 genes in stimulated cells, we
calculated an “h/d” score based on the distance to and the size of nearest H3K4me3 peak to the SNP in
primary CD4 memory T cells. We first identify all SNP variants in LD (R2 > 0.8) to the lead SNP, then locate
the nearest H3K4me3 peak to any of the variants. “H” is the height of the peak, and “d” is the physical

distance in units of base pairs to the peak. We calculated the ratio of h/d for each lead SNP.

Quantification of Tem cell relative abundance

Enriched CD4 T cells labeled with antibodies against CD45RA, CD45R0, and CD62L were gated
automatically in intensity space via clustering by mixture modeling. Each sample was clustered using
forward- (FSC) and side-scatter (SSC) to extract a purer lymphocyte population. Subsequently, a three-
dimensional mixture model was fitted to each sample with 7 clusters. The CD45RA-CD45R0highCD62L-/low
cluster was annotated as the Tgm population. In a subset of samples, a small CD45RA/CD45R0/CD62L
triple-negative population was identified, which was assumed to be non-lymphocytic debris and subtracted
from the extracted lymphocyte population. Tgm abundance was calculated as the percentage of all extracted

lymphocytes based on FSC/SSC (excluding any debris).

Quantification of Tgm cell proliferation

The CFSE intensity peak present in the pooled resting wells for each subject was modeled as a
single Gaussian distribution. Its mean and variance were then used to initialize the location of the first
component (undivided cells) and the variance of all components in the stimulated wells. The CFSE dilution

peaks from stimulated wells were fitted using a one-dimensional mixture model of multiple Gaussian
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components of equal peak-to-peak distance and equal variance via a gradient descent optimization
algorithm. A maximum of six components (five divisions) was fitted to each stimulated well. All peaks were
initialized as equal in weight. The location and variance of the first (undivided) was initialized to that of the
single peak of unstimulated sample. The initial distance between peaks was initialized to 250. Each
iteration updated three parameters of each component (mean, variance, and mixing proportion). The
algorithm converged when the residual improved by an amount less than a precision threshold (0.1% of
the previous iteration) or until a maximum of 1,000 iterations was reached.

Let the number of cells in each of the N components (mixing proportions x total cell count) of a
stimulated sample be represented by the vector {Go, G1, G2...Gn-1}, where Go is the number of cells that
underwent zero divisions during the incubation period. Let A be the total number of cells at the start of the
incubation period. Let B be the total number of divisions that all cells underwent during the incubation

period. Let C be the total number of cells that underwent at least one division.

N-—

A=§:Qﬁi

i=0

N-1
B=§:QHUG
i=0

C=A4-G,

=

Division index = B/A. Proliferation index = B/C. Since each sample was assayed in three replicates,
the average proliferation and division indices of all three replicates were reported. An example of fitted

division peaks is shown in Figure 4.11.

Genome-wide association testing to CD4 Tegm abundance and proliferative response
Each genotyped SNP was tested for association with each quantitative trait using linear regression.
For relative CD4 Tgm abundance, gender (as factor), age (per year), and the top five genotypic data principal

components were included as covariates. For proliferation index and division index, relative CD4 Tgwm cell
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Figure 4.11. Modeling of the CFSE intensity peaks. The CFSE intensity peak present in the pooled resting
wells for each subject (data underlying the green fitted curve) was modeled as a single Gaussian
distribution. Its mean and variance were then used to initialize the location of the first component
(undivided cells) and the variance of all components in each of the stimulated wells (data underlying the
red fitted curve). The CFSE dilution peaks from stimulated wells were fitted using a one-dimensional
mixture model of multiple Gaussian components of equal peak-to-peak distance and equal variance via a
gradient descent optimization algorithm. A maximum of six components (five divisions) was fitted to each

stimulated well; the weight of each component was allowed to be 0.
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Figure 4.11. Modeling of the CFSE intensity peaks (Continued).
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abundance and the top five genotypic data principal components were included as covariates. We

considered 5x10-8 as the genome-wide significance threshold.

Resting gene expression association to proliferative response

We used a permutation-based framework to test whether individual gene transcript levels in
resting CD4 Tem cells predict proliferative response. We calculated the correlation coefficient between
individual residual differences for each gene, and for T cell proliferative response. In order to assess
significance, we simply permuted data on T cell proliferation 10¢ times and calculated proliferative
response. The significance p-value is simply the proportion of instances where the absolute value of the
observed correlation coefficient was exceeded by the absolute value of a coefficient resulting from

permutation.

Gene set enrichment analysis

In order to assess whether individual genes were enriched or depleted, we compiled and curated
data on gene ontology (GO) code (reference). Briefly, for each gene we assigned it a GO code if the gene or
one of its homologous genes was explicitly assigned the code, or if its descendants in the GO tree [36]. In
total this resulted in a total of 20,687 genes. We conducted enrichment analysis in those genes that had at
least 1 annotation. To select codes for subsequent analysis, we examined only those codes were present in
>5, but absent in >5 genes in our data set. To assess enrichment we implemented GSEA as described in

Subramanian et al. [28], with p=0.

Data access
We make all phenotypic data (expression, peripheral abundance, and proliferation) along with
eQTL results publicly available online (http://immunogenomics.hms.harvard.edu/CD4eqtl.html). Genome-

wide genotype data will become available through dbGAP and through the ImmVar project. These data are
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potentially useful to investigators wishing to assess the potential of genetic variants in altering these

molecular phenotypes.

Acknowledgments

We thank Drs. Yukinori Okada, Buhm Han, and Deepak Rao for helpful discussions.

163



REFERENCES

1.

10.

11.

12.

Masopust, D., et al., Preferential localization of effector memory cells in nonlymphoid tissue.
Science, 2001. 291(5512): p. 2413-7.

Fritsch, R.D., et al., Abnormal differentiation of memory T cells in systemic lupus
erythematosus. Arthritis Rheum, 2006. 54(7): p. 2184-97.

Zhou, X,, et al,, Instability of the transcription factor Foxp3 leads to the generation of
pathogenic memory T cells in vivo. Nat Immunol, 2009. 10(9): p. 1000-7.

Oling, V., et al,, Autoantigen-specific memory CD4+ T cells are prevalent early in progression
to Type 1 diabetes. Cell Immunol, 2012. 273(2): p. 133-9.

Sattler, A,, et al., Cytokine-induced human IFN-gamma-secreting effector-memory Th cells in
chronic autoimmune inflammation. Blood, 2009. 113(9): p. 1948-56.

Nica, A.C,, et al., Candidate causal regulatory effects by integration of expression QTLs with
complex trait genetic associations. PLoS Genet, 2010. 6(4): p. e1000895.

Nicolae, D.L., et al., Trait-associated SNPs are more likely to be eQTLs: annotation to enhance
discovery from GWAS. PLoS Genet, 2010. 6(4): p. e1000888.

Westra, H.]., et al.,, Systematic identification of trans eQTLs as putative drivers of known
disease associations. Nat Genet, 2013. 45(10): p. 1238-43.

Trynka, G. and S. Raychaudhuri, Using chromatin marks to interpret and localize genetic
associations to complex human traits and diseases. Curr Opin Genet Dev, 2013. 23(6): p.
635-41.

Fairfax, B.P., et al., Genetics of gene expression in primary immune cells identifies cell type-
specific master regulators and roles of HLA alleles. Nat Genet, 2012. 44(5): p. 502-10.

Lee, M.N,, et al., Common Genetic Variants Modulate Pathogen-Sensing Responses in Human
Dendritic Cells. Science, 2014.

Stranger, B.E,, et al., Patterns of cis regulatory variation in diverse human populations. PLoS
Genet, 2012. 8(4): p. e1002639.

164



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Hu, X,, et al,, Integrating autoimmune risk loci with gene-expression data identifies specific
pathogenic immune cell subsets. Am ] Hum Genet, 2011. 89(4): p. 496-506.

Trynka, G., et al., Chromatin marks identify critical cell types for fine mapping complex trait
variants. Nat Genet, 2013. 45(2): p. 124-30.

Trynka, G., et al., Dense genotyping identifies and localizes multiple common and rare variant
association signals in celiac disease. Nat Genet, 2011. 43(12): p. 1193-201.

Eyre, S., et al., High-density genetic mapping identifies new susceptibility loci for rheumatoid
arthritis. Nat Genet, 2012. 44(12): p. 1336-40.

Jostins, L., et al., Host-microbe interactions have shaped the genetic architecture of
inflammatory bowel disease. Nature, 2012. 491(7422): p. 119-24.

Raj, T., et al,, Polarization of the Effects of Autoimmune and Neurodegenerative Risk Alleles in
Leukocytes. Science, 2014. 344(6183): p. 519-523.

Hu, X,, et al., Application of user-guided automated cytometric data analysis to large-scale
immunoprofiling of invariant natural killer T cells. Proc Natl Acad Sci U S A, 2013.110(47):
p.- 19030-5.

Bernstein, B.E,, et al., The NIH Roadmap Epigenomics Mapping Consortium. Nat Biotechnol,
2010.28(10): p. 1045-8.

Hyatt, G., et al., Gene expression microarrays: glimpses of the inmunological genome. Nat
Immunol, 2006. 7(7): p. 686-91.

Saule, P., et al., Accumulation of memory T cells from childhood to old age: central and
effector memory cells in CD4(+) versus effector memory and terminally differentiated memory
cells in CD8(+) compartment. Mech Ageing Dev, 2006. 127(3): p. 274-81.

Nafisi, H., et al., GAP1(IP4BP)/RASA3 mediates Galphai-induced inhibition of mitogen-
activated protein kinase. | Biol Chem, 2008. 283(51): p. 35908-17.

Tugendreich, S., et al., CDC27Hs colocalizes with CDC16H:s to the centrosome and mitotic
spindle and is essential for the metaphase to anaphase transition. Cell, 1995. 81(2): p. 261-8.

165



25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Sommers, C.L., et al.,, Bam32: a novel mediator of Erk activation in T cells. Int Immunol, 2008.
20(7): p. 811-8.

Al-Alwan, M,, et al., Bam32/DAPP1 promotes B cell adhesion and formation of polarized
conjugates with T cells. | Immunol, 2010. 184(12): p. 6961-9.

Orru, V., et al,, Genetic variants regulating immune cell levels in health and disease. Cell,
2013.155(1): p. 242-56.

Subramanian, A, et al., Gene set enrichment analysis: a knowledge-based approach for
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p.
15545-50.

Teare, M.D,, et al., Allele-dose association of the C50rf30 rs26232 variant with joint damage in
rheumatoid arthritis. Arthritis Rheum, 2013. 65(10): p. 2555-61.

Faure, G., et al,, T cell subsets in the blood of rheumatoid arthritis patients in clinical
remission. Arthritis Rheum, 1982. 25(12): p. 1507-9.

Henderson, L.A,, et al,, A161: Novel 3-Dimensional Explant Method Facilitates the Study of
Lymphocyte Populations in the Synovium and Reveals a Large Population of Resident Memory
T cells in Rheumatoid Arthritis. Arthritis Rheumatol, 2014. 66 Suppl 11: p. S209.

Hussein, M.R,, et al., Alterations of the CD4(+), CD8 (+) T cell subsets, interleukins-1beta, IL-
10, IL-17, tumor necrosis factor-alpha and soluble intercellular adhesion molecule-1 in

rheumatoid arthritis and osteoarthritis: preliminary observations. Pathol Oncol Res, 2008.
14(3): p. 321-8.

Kotzin, B.L., et al., Changes in T-cell subsets in patients with rheumatoid arthritis treated with
total lymphoid irradiation. Clin Immunol Immunopathol, 1983. 27(2): p. 250-60.

Matsuki, F., et al., CD45RA-Foxp3(high) activated/effector regulatory T cells in the CCR7 +
CD45RA-CD27 + CD28+central memory subset are decreased in peripheral blood from
patients with rheumatoid arthritis. Biochem Biophys Res Commun, 2013. 438(4): p. 778-83.

Syrjanen, S.M. and K.J. Syrjanen, Enumeration of T cell subsets with monoclonal antibodies in
minor salivary glands of patients with rheumatoid arthritis. Scand | Dent Res, 1984. 92(4): p.
275-81.

166



36. Raychaudhuri, S,, et al,, Identifying relationships among genomic disease regions: predicting
genes at pathogenic SNP associations and rare deletions. PLoS Genet, 2009. 5(6): p.
e1000534.

167



CHAPTER 5

Fine-mapping the HLA genetic associations in type 1 diabetes
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ABSTRACT

Variation in the human leukocyte antigen (HLA) genes within the major histocompatibility
complex (MHC), particularly the class [l HLA-DRB1 and HLA-DQB1 loci, accounts for one-half of the
familial clustering in type 1 diabetes (T1D). Amino acid changes in the HLA-DR and -DQ molecules
mediate most of the genetic component of this familial aggregation, but extensive linkage
disequilibrium complicates precise localization of independent effects. Using 18,832 T1D case-
control samples, we found that polymorphisms at three amino acid positions encoded by HLA-DQB1
and HLA-DRB1 parsimoniously explain the T1D genetic risk. The previously known position 57 in
DQPB1 (p=10-1355) alone explained 15.2% of the total phenotypic variance, or 55% of the variance
captured by the HLA-DRB1-DQA1-DQB1 locus. Significantly, variation at positions 13 (p=10-721) and
71 (p=10-5) of DRB1 further increased the explained proportion to 26.9% (90% of that explained
by HLA-DRB1-DQA1-DQRB1). Additionally, we observed statistically significant interactions in 11 of
21 pairs of common HLA-DRB1-DQA1-DQB1 haplotypes (p=1.6x10-64) that included and extended
beyond the known interaction between HLA-DR3 and -DR4. These results have important
mechanistic significance: the two DR1 amino acid positions strongly implicate pocket 4 in the
antigen-binding groove, thus pointing clearly to a protein structural feature, in addition to the DQ

P9 pocket, critical in mediating T1D risk.
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INTRODUCTION

Type 1 diabetes (T1D) is a highly heritable autoimmune disease that results from T cell-
mediated destruction of the insulin-producing pancreatic 8 cells. The worldwide incidence of T1D
ranges from 0.1 per 100,000 persons in China to >36 per 100,000 in parts of Europe, and has been
steadily increasing[1]. Many autoimmune diseases, including T1D, rheumatoid arthritis (RA), celiac
disease, and multiple sclerosis, have the majority of their genetic risk attributed to variants in the
human leukocyte antigen (HLA) genes within the major histocompatibility complex (MHC) region
located on chromosome 6p21.3[2-4]. HLA genes encode surface proteins that display antigenic
peptides to effector immune cells in order to regulate self-tolerance and downstream immune
responses. Autoimmune risk conferred by HLA is likely the result of variation in amino acid
residues at specific positions within the antigen-binding grooves, which may then alter the
repertoire of presented peptides[5-8]. In T1D, the largest allelic associations are in HLA-DRB1-
DQA1-DQBI1, a three-gene “superlocus” that encodes HLA-DR and -DQ proteins[9, 10], and
additional associations have been identified in the HLA-A, -B, -C, and -DP genes[11-14].

Todd et al. initially identified strong T1D risk conferred by non-aspartate residues at
position 57 of HLA-DQ1[15]. However, this amino acid position alone does not fully explain the
HLA risk in T1D. Subsequently, many amino acid positions in DQf1 and DRf1 have been
hypothesized to modify T1D risk[16]; but extensive linkage disequilibrium (LD) spanning the 4 Mb
MHC region makes it challenging to pinpoint the specific risk variants. Furthermore, certain
heterozygous genotypes confer the greatest disease risk for T1D[13, 17-19], consistent with
synergistic interactions between classical HLA alleles. Despite evidence of non-additive effects
within the MHC on autoimmune disease risk, interactions have not been comprehensively
examined in T1D. Mechanistic investigation of how autoantigens interact with HLA proteins could

become feasible if specific amino acid positions and their interactions were understood. In this
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study, we utilized recently established accurate genotype imputation methods to examine a large
case-control sample, and rigorously identified independent amino acid positions as well as

interactions within the HLA that account for T1D risk (see Figure 5.1 for a schematic of analyses).

T1DGC Data (ImmunoChip)

—_— HLA Imputation
UK case/control Eur pseudocase/control (SNP2HLA, T1DGC reference)
(6,433/9,075) (1,662/1,662) / \
Fine-map in HLA-DRB1-DQA1-DQB1 Independent associations

Outside DR/DQ

| Association test, all binary markers in HLA l

l l | HLA-B |

Amino acid position discovery !/ Interactions l
Forward-search : ' | Exhaustive test, all common haplotypes | ‘ : '
Additive and non-additive models i ! o | HLA-DPB1 | '
3 P | 1
’ Exhaustive search | | Pairwise 4-digit Pairwise amino acid w ' l
: 3 11| classical alleles position interactions | i ! :
| P (DR3/DR4) o HLA-A | i

P ’ Permutation analysis

___________________________________________________

Figure 5.1. Schematic of analyses procedure followed in the study.

RESULTS
HLA Imputation and association testing

We fine-mapped the MHC region in a collection of 8,095 T1D cases and 10,737 controls
genotyped with the ImmunoChip array, provided by the Type 1 Diabetes Genetics Consortium
(T1DGC)[20-22]. The dataset included (1) case-control samples collected in the United Kingdom
(UK), and (2) a pseudocase-control set derived from European families (Eur). Using a set of 5,225
individuals with HLA alleles genotyped by PCR as a reference[22], we accurately imputed 8,617
binary markers (with minor allele frequency > 0.05%) between ~29 Mb and ~33 Mb (the 4 Mb
classical MHC region) on chromosome 6p21.3 with SNP2HLA software[21]. The resulting data
included 7,242 SNPs, 260 2- and 4-digit classical alleles, and amino acid polymorphisms at 399

positions in eight HLA genes (HLA-A, -B, -C, -DRB1, -DQA1, -DQB1, -DPA1, and -DPB1. We have
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previously independently benchmarked the strategy employed in this study for imputation
accuracy of the HLA classical alleles and amino acid polymorphisms, using a set of 918 samples that
were HLA typed. Starting with SNPs from the ImmunoChip genotyping platform and using the
T1DGC reference panel, SNP2HLA obtained an accuracy of 98.4%, 96.7% and 99.3% for all 2-digit

alleles, 4-digit alleles, and amino acid polymorphisms, respectively[21].

To test T1D association of a given variant, we used a logistic regression model, assuming the log-
odds of disease to be proportional to the allelic dosage of the variant. We also included covariates to
adjust for sex and region of origin. As expected, the strongest associations with T1D were within the
HLA-DRB1-DQA1-DQB1 locus. We confirmed that the leading risk variant was the presence of
alanine at DQ1 position 57 (DQB1#57, p=10-109, OR=5.17; Figure 5.2A). In contrast, the single
most significantly associated classical allele was DQB1*03:02 (p=10-849), which has an alanine at
DQB1#57, but was much more weakly associated than the amino acid residue itself. Table 5.1 lists

common classical alleles tagged by each residue at key amino acid positions.

Three amino acid positions independently drive T1D-HLA association

Given the strength and complexity of the association within HLA-DRB1-DQB1-DQA1, we
aimed to first identify independent effects in this locus before examining the rest of the MHC. We
assessed the significance of multi-allelic amino acid positions using conditional analysis by
forward-search. The most strongly associated position with T1D was DQB1#57 (p=10-1355, Figure
5.3), At this position, alanine conferred the strongest risk (OR=5.17; Figure 5.4), while the most
common residue in controls, aspartic acid, was the most protective (OR=0.16). Conditioning on
DQB1#57, the second independent association was at DRE1#13 (p=10-721). At this position,
histidine (OR=3.64) and serine (OR=1.28) confer the strongest risk, while arginine (OR=0.08) and

tyrosine (OR=0.28) were protective (Figure 5.4). The DRB1#71 position was the third
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Figure 5.2. Independently associated HLA loci to T1D. Each binary marker was tested for T1D
association, using the imputed allelic dosage (between 0 and 2). In each panel, the horizontal
dashed line marks p=5x10-8. Color gradient of the diamond indicates LD (r2) to the most strongly
associated variant; the darkest shade is r2=1. A) The strongest associations were located in HLA-
DRB1-DQA1-DQB1. The single strongest risk variant was alanine at DQB1#57 (OR=5.17; p=10-1090),
B) Adjusting for all DRB1, DQA1, and DQB1 4-digit classical alleles, the strongest independent
signals were in HLA-B. The strongest association was to B*39:06 (OR=6.64, p=10-75). C) Adjusting
for HLA-DRB1-DQA1-DQB1 and HLA-B, the next associated variant was DPB1*04:02 (OR=0.48, p=10-
55). D) The final independent association was in HLA-A, led by glutamine at A#62 (OR=0.70, p=10-

25). E) We found no residual independent association in the HLA-C or HLA-DPA1.
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Figure 5.2. Independently associated HLA loci to T1D (Continued).
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Figure 5.3. Amino acid positions DQB1#57, DR31#13, and DRB1#71 independently drive
T1D risk associated to the HLA-DRB1-DQA1-DQB1 locus. To identify each independently
associated position, we used conditional haplotypic analysis by forward search, using the phased
best-guess genotypes. In each panel, the dots mark amino acid positions along the gene (x-axis) and
their logip association p-values on the y-axis. The horizontal dashed line marks the logi p-value of
most strongly associated classical allele. The most strongly associated signals are circled. The
colored arrows indicate positions that have been conditioned on. The most strongly associated
position was DQB1#57 (p=10-1355). Conditioning on it, DRB1#13 was the next independently
associated position (p=10-721), followed by DRB1#71 (p=10-95). Each position was much more
strongly associated than the best classical allele (DQB1*03:02, DQA1*02:01, and DRB1*04:01,

respectively).
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Figure 5.3. Amino acid positions DQB1#57, DR31#13, and DRB1#71 independently drive

T1D risk associated to the HLA-DRB1-DQA1-DQB1 locus (Continued).
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Figure 5.4. Amino acid residue effect sizes. Case (colored) and control (unfilled) frequencies, as

well as unadjusted univariate odds ratio, of each residue, at DQB1#57, DRB1#13 and DRB1#71.

independently associated signal (p=10-95); lysine conferred strong risk (OR=4.70), and alanine was
strongly protective (OR=0.04). We note that these positions, the risk-conferring amino acid

residues indeed tag the DR3 and DR4 haplotypes, which confer the strongest risk among haplotypes.
Histidine at position 13 tags DRB1*04:01 and 04:04, while serine tags DRB1*03:01. Lysine at
position 71 tags both DRB1*03:01 and DRB1*04:01. Table 1 lists the classical alleles tagged by
residues at each key amino acid position, and multivariate odds ratios of haplotypes defined by
these positions.

Given the reported deviation from log-scale additivity of T1D risk effects in the HLA[19, 23],
we wanted to confirm that their contribution did not alter the risk-driving amino acid positions. By
repeating the forward-search analysis while including non-additive terms in the regression model,
we confirmed that DQB1#57, DRB1#13, and DRB1#71 were again the top three independent
signals under the non-additive model as well as the additive model.

Conditioning on these three positions, more than 80 other positions and classical alleles
remained highly significant (p < 10-8), suggesting the presence of other independent associations.
We tested all possible combinations of two, three, and four amino acid positions in HLA-DRB1-
DQA1-D@QB1, and confirmed that DQB1#57, DRB1#13, and DRB1#71 were the best of all 457,450

combinations of three amino acids (p=10-2161). DQB1#-18 (located within the signal peptide)
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emerged as the fourth most significant association (p=10-40) through forward-search; however, in
the exhaustive test, many other combinations of four amino acid positions exceeded the goodness-
of-fit of DQB1#57, DRB1#13, DRB1#71, and DQB1#-18. Therefore, we do not report subsequent
positions that emerged through conditional analysis, as we could not confidently claim additional
positions as independent drivers of T1D risk.

We wanted to confirm that this combination of three amino acids was not simply tagging
effects of specific haplotypes. To this end, we performed a permutation analysis in which we
randomly reassigned amino acid sequences corresponding to each HLA-DRB1, -DQB1, and -DQA1
classical allele, and retested for the best amino acid positions (see Methods). This approach
preserved haplotypic associations; if certain amino acids were tagging associated haplotypes,
equally significant amino acid associations would be found in the permuted data. After 10,000
permutations, no combination of permuted amino acids resulted in a model that equaled or
exceeded the goodness-of-fit of DQB1#57 /DRB1#13/DRB1#71 in our data, as measured by either
deviance or p-value (see Figure 5.5).

Finally, to ensure that the observed effects were not the results of heterogeneity between
the UK and the European subsets, we separately repeated the association analysis in the two
subsets. The two sets yielded highly correlated effects sizes for all binary markers (Pearson
r=0.952), as well as for all haplotypes formed by residues at DQB1#57, DRB1#13, and DRB1#71

(Pearson r=0.989).

Key amino acids are located in the peptide-binding grooves
DQB1#57, DRB1#13, and DRB1#71 are each located in the peptide-binding grooves of the
respective HLA molecule (Figure 5.6). DRB1#13 and #71 line the P4 pocket of HLA-DR, which has

been previously implicated in seropositive RA[2], seronegative RA[24], and follicular
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Figure 5.5. Haplotype-amino acid sequence permutation analysis ensures DQ1-57,
DRB1#13 and DRB1#71 are the independent risk drivers. We performed 10,000 rounds of
permutated association analysis; during each permutation, the amino acid sequence corresponding
to each DRB1, DQA1, and DQBI classical allele was reassigned, before association analysis. A)
Histogram of 10,000 deviance values (improvement upon the null model) while testing for the best
combination of one, two, and three amino acid positions. Out of 10,000 trials, single position
exceeded the deviance achieved by DQB1#57 3% of the time. No combination of two and three
amino acid positions out-performed the fit of DQB1-57+DRB1#13, and DQB1-
57+DRB1#13+DRB1#71, respectively. The best model achieved by the combination of any three
amino acid positions obtained a Adeviance of 8244.29 (p=10-1774, df=41); in comparison, the model
without permutation including DQB1#57, DRB1#13, and DRB1#71 obtained a Adeviance of
10148.53 (p=10-2161, df=31). Red arrows indicate the deviance achieved by the best combination in
actual data. B) Histogram of 10,000 p-values while testing for the best combination of one, two, and
three amino acid positions. Similarly, 3% of the permuted amino acid positions achieved better p-
values than DQB1#57 in actual data. No combination of two and three amino acid positions out-
performed the combinations of DQB1-57+DRB1#13, and DQB1-57+DRB1#13+DRB1#71,

respectively. Red arrows indicate the p-value achieved by the best combination in actual data.
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Figure 5.5. Haplotype-amino acid sequence permutation analysis ensures DQB1-57,

DRB1#13 and DRB1#71 are the independent risk drivers (Continued).
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Figure 5.6. DQB1#57, DRB1#13 and DRB1#71 are each located in the respective molecule’s

peptide-binding groove. DRB1#13 and #71 line the P4 pocket of the DR molecule.

lymphoma([25]. While DRB1#13 and DRB1#71 are both involved in T1D and RA, the effects of
individual residues at each position are discordant between the diseases (p<10-232; see Figure 5.7

and Methods).

The three amino acid positions explain over 90% of T1D phenotypic variance in HLA-DRB1-
DQA1-DQB1

We quantified the proportion of phenotypic variance captured by the three amino acid
positions using the liability threshold model[26] (see Methods). Assuming a T1D prevalence of
0.4%[27], the additive effects of all 67 haplotypes in HLA-DRB1-DQA1-DQB1 explained 29.6% of the
total phenotypic variance. DQB1#57 alone explained 15.2% of the total variance, while the addition
DRB1#13, and DRB1#71 increased the proportion explained by 11.7%. Therefore, these three

amino acid positions together capture 26.9% of the total variance, which is over 90% of the T1D-
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HLA association in this locus (Figure 5.8).
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Figure 5.7. DRB1#13 and #71 residues show discordant effect sizes in RA and T1D. DRE1#13
and #71, which line the P4 pocket of the DR peptide-binding groove, are indicated in both
rheumatoid arthritis (RA) and T1D. However, the individual amino acid residues at each position
confer differential risk or protection toward each disease (p<10-230). Each cross shows an individual
residue’s (adjusted) univariate OR (with 95% confidence interval) in RA and T1D. Darker areas
indicate the same direction of effect (risk or protection) across the two diseases, while the lighter
gray areas indicate opposite effects. The slanted dashed line indicates the identity line on which a
residue’s effect sizes in both diseases would be equal. At DRB1#13, serine, tyrosine, and arginine
confer relative protection toward each disease; however, they are located far away from the

identity line. Glycine is protective toward RA while it confers strong risk toward T1D.

Independent HLA associations in HLA-B, -DPB1, and -A

We then sought to identify HLA associations to T1D independent of those in HLA-DRB1-
DQA1-DQB1. We conservatively conditioned on all HLA-DRB1, DQA1, and DQB1 4-digit classical
alleles to obviate all effects at that locus. We observed the next strongest association across the

MHC in HLA-B, where the classical allele HLA-B*39:06 was the most significant signal (p=10-75
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Figure 5.8. DQB1#57, DRB1#13 and DRB1#71 explain over 90% of the phenotypic variance
explained by the HLA-DRB1-DQA1-DQB1 locus. Assuming the liability threshold model and a
global T1D prevalence of 0.4%, all haplotypes in HLA-DRB1-DQA1-DQB1 together explain 29.6% of
total phenotypic variance. DQB1#57 alone explains 15.2% of the variance; the addition of DRB1#13
and #71 increases the explained proportion to 26.9%. Therefore, these three amino acid positions
together capture over 90% of the signal within HLA-DRB1-DQA1-DQRBI1. In contrast, variation in
HLA-A, -B, and -DPB1 together explain approximately 4% of total variance. Genome-wide
independently associated SNPs outside the HLA together explain about 9% of variance; rs678 (in

the INS gene) and rs2476601 (in PTPN22) each explain 3.3% and 0.78%, respectively.
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Figure 5.8. DQB1#57, DRB1#13 and DRB1#71 explain over 90% of the phenotypic variance
explained by the HLA-DRB1-DQA1-DQB1 locus (Continued).

DRB1-DQA1-DQB1 (29.6%)

30 —
— DRPB1#71 (0.7%)
25 —
B 5 > DRB1#13 (11.0%)
© 5
T
rt
X
O 45 | \
3
3 - DQB1#57 (15.2%) non-HLA (9.23%)
S 10 -
05 DPB1 (1.49%) PTPN22
A (1.47%) (0.78%)
> B (1.02%) |
|
- K | —— — INS (3.3%)

188



Figure 5.2B)[11]. After adjusting for B*39:06, other classical alleles and amino acid positions in
HLA-B remained significantly associated, including B*18:01 and B*50:01. Upon additionally
adjusting for all HLA-B alleles, HLA-DPB1*04:02 was the next strongest independent signal
(OR=0.47, p < 10-55, Figure 5.2C), which is nearly perfectly tagged by methionine at amino acid
position 178. Conditioning on DPB1*04:02, additional associations were present in HLA-DPB1,
including position 65 and DPB1*01:01. After conditioning on DPB1 alleles as well, we observed
independent effects in HLA-A led by position #62 (p=10-%5, Figure 5.2D); additional signals
included A*03 and A*24:02. We observed no independent association with T1D in HLA-C or DPA1
(Figure 5.2E). The independent effects of all haplotypes in HLA-B, -DPB1, and -A together explained
~4% of the total phenotypic variance. The total T1D risk variance explained by additive effects in

the eight HLA genes was ~34%, consistent with the estimates by Speed et al.[28].

HLA haplotypic interactions, beyond the DR3/DR4 heterozygote effect, are common in T1D

The previously observed excess risk of T1D in HLA-DR3/DR4 (DRB1*03/DRB1*04)
heterozygotes may represent a synergistic interaction between two distinct alleles[23]. Here, we
conducted an unbiased search for interactions among all haplotypes within the HLA-DRB1-DQA1-
DQB1 locus. As interactions cannot be observed reliably with infrequent or rare genotypes, we
focused this analysis on the seven HLA-DRB1-DQA1-DQB1 haplotypes with frequencies > 5%; all of
these haplotypes had very high imputation accuracies (INFO score > 0.98, see Methods).

We tested for interactive effects between all possible pairs of haplotypes using a global
multivariate regression model that included 21 interactive terms as well as seven additive terms.
The inclusion of interactions in the model produced a statistically significant improvement in fit
over the additive model (p=1.6x10-64). Of 21 potential interactions, 11 were significant after
correcting for 21 tests (p<0.05/21=2.4x10-3; Figure 5.9, Table 5.2). Consistent with previous

reports[9, 19], we observed a significant interaction between the HLA-DR3 haplotype (DRB1*03:01-
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Figure 5.9. Interactions between common HLA-DRB1-DQA1-DQB1 haplotypes lead to
observed non-additive effects. We exhaustively tested the seven common haplotypes for pairwise
interactions. Of the 21 possible pairs, eleven of them showed significant interactive effects. Along
the perimeter, each segment represents one haplotype; red or blue color indicates risk or
protective additive effect for each haplotype, respectively. Each arch connecting two haplotypes
represents a significant interaction. Red indicates additional risk due to the interaction beyond the
additive effects; while blue indicates reduced risk (protection) due to the interaction beyond the
additive effects. Thickness of the arches represents the effect size of the interaction (thicker red

means larger risk while thicker blue means more protective.)
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Figure 5.9. Interactions between common HLA-DRB1-DQA1-DQB1 haplotypes lead to
observed non-additive effects (Continued).
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Table 5.2. Pairwise haplotypic interactions in HLA-DRB1-DQA1-DQB1. The table shows, for
each given pair of haplotypes, the fold change in odds ratio (from additive effect-only) due to
interaction. The “amino acids” column/row denote the residues at DQB1#57, DRB1#13, and
DRB1#71 corresponding to each haplotype. For each pair, the p-value of the interaction term is
shown in parenthesis. Cells in bold indicate interactions that are significant after Bonferroni
correction (p < 0.05/21=0.0024). Cells with underlines indicate the known DR3/DR4
heterozygote effect. The odds ratio of a given diploid genotype is calculated as additivenapiotypet X

additivenapiotype2 X interactions ».
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DQA1*05:01-DQB1*02:01) and a DR4 haplotype (DRB1*04:01-DQA1*03:01-DQB1*03:02) (p=1.2 x 10-
5). This interaction resulted in an odds ratio of 30.42, compared to an expected odds ratio of 15.51
due to only additive contributions. Likewise, there was an independent interaction between HLA-
DR3 and another DR4 haplotype, DRB1*04:04-DQA1*03:01-DQB1*03:02 (p=1.9x10-4).

We observed many other significant haplotypic interactions beyond the well-studied
DR3/DR4 effect (Table 5.2). Most interactions increased T1D risk. For example, the combination of
DRB1*04:01-DQA1*03:01*DQB1*03:02 and DRB1*07:01-DQA1*02:01-DQB1*02:02 dramatically
increased risk by 5.09-fold (beyond the risk predicted by the additive model). Other pairs
significantly reduced risk. Notably, while DRB1*04:01-DQA1*03:01-DQB1*03:02 and DRB1*04:04-
DQA1*03:01-DQB1*03:02 each conferred risk, the heterozygote combination elicited a 3-fold
reduction from the expected risk. Since we restricted our analysis to haplotypes with at least 5%

allele frequency, other interactive effects are likely present but unobserved[19].

Interaction effects are mediated by DQB1#57 and DR31#13

The HLA-DQ a/f trans heterodimer formed by proteins encoded by DQA1*05:01 and
DQB1*03:02 may confer a particularly high risk for individuals with the DR3/DR4 genotype due to
its unique antigen binding properties[29]. In order to identify the possible drivers of this haplotypic
interaction, we tested pairwise interactions among the HLA-DRB1, -DQA1, and -DQB1 4-digit alleles.
We observed a significant interaction between DQA1*05:01 and DQB1*03:02 (p=1.71x10-25).
However, due to a high degree of LD across the locus, several pairs of classical alleles (including
DQB1*02:01/DQB1*03:02 and DRB1*03:01/DQB1*03:02, Table 5.3) achieved similarly significant p-
values. Therefore, while our model was consistent with a risk-conferring interaction between
DQA1*05:01 and DQB1*03:02, we could not eliminate the possibility that interactions between other

alleles within the two haplotypes are driving this specific interaction.
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Table 5.3. DR3/DR4 pairwise allelic interactions

Allele 1 Allele 2 P value for interaction
DQB1*02:01 DQB1*03:02 5.57E-26
DRB1*03:01 DQB1*03:02 5.57E-26
DQA1*05:01 DQB1*03:02 1.71E-25
DQB1*02:01 DRB1*04:04 1.49E-22
DRB1*03:01 DRB1*04:04 1.49E-22
DQA1*05:01 DRB1*04:04 1.56E-21
DQB1*02:01 DQA1*03:01 5.74E-06
DRB1*03:01 DQA1*03:01 5.74E-06
DQA1*05:01 DQA1*03:01 1.69E-05
DQA1*05:01 DRB1*04:01 0.1455
DQB1*02:01 DRB1*04:01 0.19037
DRB1*03:01 DRB1*04:01 0.19037

We next assessed whether these haplotypic interactions could be explained by amino acid
positions. We exhaustively tested for all pairwise interactions among amino acid residues in HLA-
DRB1-DQA1-DQB1, again limiting the analysis to residues with at least 5% frequency. Of the 3,773
pairs of amino acid positions tested, we observed that interactions between DQB1#57 and
DRB1#13 yielded the largest improvement over the additive model, as measured by delta-deviance
(Table 5.4). We note that two other pairs of amino acid positions achieved similarly significant p-
values. These analyses suggest that the same amino acid positions that explain the greatest
proportion of the additive risk may also be the positions that mediate interactive effects within this

locus.
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Table 5.4. Top 50 (by deviance) pairwise amino acid interactions

Interaction ADeviance df p value

DRB1_11-DQB1_57 233.844 15 2.60E-41

DQA1_47 - DQB1.57 222.150 12 8.50E-41

DQB1_185-DQB1_55 203.337 6 3.70E-41

DQA1_76 - DQB1_185 201.572 6 8.78E-41

DRB1_13-DQB1_71 197.588 15 6.57E-34

DRB1_11-DQB1_71 196.884 15 9.12E-34

DRB1_13 - DQB1_55 196.514 15 1.08E-33

DRB1_11-DQA1_47 195.761 20 7.74E-31

DQB1_185 - DQB1_74 195.612 6 1.63E-39

DRB1_11-DQB1_185 194.510 10 2.25E-36

DQA1_47-DQB1_26 193.539 12 7.01E-35
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Table 5.4. Top 50 (by deviance) pairwise amino acid interactions (Continued).

Interaction ADeviance df p value

DRB1_13-DQB1_26 193.135 15 5.25E-33

DRB1_37-DQB1_185 192.721 8 2.18E-37

DQB1_185-DQB1_30 191.826 6 1.04E-38

DQA1_47 -DQB1_71 191.305 12 2.02E-34

DRB1 96 - DQB1_74 190.159 12 3.48E-34

DRB1_96 - DQB1_55 190.032 12 3.70E-34

DRB1_37-DQB1_71 189.266 12 5.32E-34

DRB1.9-DQB1_57 188.546 6 5.19E-38

DQA1_47 - DQB1_167 187.903 8 2.25E-36

DQA1.52-DQB1.57 187.101 9 1.66E-35

DRB1_13-DQA1.76 186.834 15 9.91E-32
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Table 5.4. Top 50 (by deviance) pairwise amino acid interactions (Continued).

Interaction ADeviance df p value
DRB1_11-DQA1_56 186.078 15 1.41E-31
DRB1_11-DQA1.76 186.078 15 1.41E-31
DQA1 47 - DQB1_55 185.506 12 3.16E-33
DRB1_96 - DQB1_30 185.454 12 3.24E-33
DRB1_37 - DQB1_55 185.248 12 3.57E-33
DRB1_37-DQB1_30 184.513 12 5.05E-33
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DISCUSSION

Our fine-mapping of the MHC locus in T1D demonstrates that amino acid polymorphisms at
DQB1#57, DRB1#13, and DRB1#71 independently modulates T1D risk, and capture over 90% of
the phenotypic variance explained by the HLA-DRB1-DQA1-DQB1 locus (and 80% of the variance
explained by all of the HLA). Previous studies have suggested that other amino acid positions
within the HLA class Il molecules confer T1D risk; for example, DRB1#86, DRB1#74, and DRB1#57
in the P1, P4, and P9 pockets, respectively[16]. While our analysis highlights these three amino acid
positions as the main contributors of T1D risk, there is also evidence of other allelic effects within
the HLA-DRB1-DQA1-DQB1 locus; however their relative effect sizes were very modest compared to
the three leading positions identified. We note that our results are derived from cases and controls
from a relatively homogeneous population (the United Kingdom), and our ability to interrogate
rarer alleles in this population may be limited. For instance, HLA-DRB1*04:03, a common allele in
the Sardinian population and highlighted by Cucca et al. as a protective allele[16], is rare in this
dataset (allele frequency ~0.3%). As such, the observed effect of amino acid positions which best
define this allele (DRB1#74 and #86) may have been less pronounced than what might be observed
in a more diverse dataset. Additional variants might be conclusively identified in the future with
increased sample size. Finally, although coding variants contribute to the majority of the
phenotypic variance in T1D, there is the possibility that there are other mechanisms, such as

protein expression and structural stability, that modulate susceptibility[30, 31].

We find nine interactions between pairs of HLA haplotypes that contribute to T1D risk, in addition
to the previously described HLA-DR3/DR4 interactions, suggesting that non-additive effects are
common within this locus. Notably, we showed that amino acid positions in DRB1 and DQB1 were
the strongest contributors to both additive and interactive risk effects. Interestingly, the two

strongest interacting amino acid positions were in separate HLA molecules (DQ and DR,
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respectively). HLA-DQA1, which is in strong LD to HLA-DRB1 and HLA-DQB1, appears to play a
minimal role in modulating T1D risk. This suggests that the interactive effects are possibly due to
the alteration in antigen-presentation repertoire created by the combination of different HLA
molecules, rather than the consequence of specific DQo /8 heterodimers with particular structural
features that confer extreme binding affinities.

The HLA amino acid variants identified in our study may mediate recognition of one or
more autoantigens and cause autoimmunity through different mechanisms. In particular, our
findings implicate the HLA-DR P4 pocket in T1D in addition to the known role of the HLA-DQ P9
pocket; this is the first instance to our knowledge where the DR P4 pocket plays an important but
secondary role to a different locus (DQB1#57). The DR P4 pocket has been shown to play primary
roles in other autoimmune diseases. For example, in RA, the risk-conferring amino acid residues in
P4 likely facilitate the binding of citrullinated peptides[7]. In T1D, the anti-islet autoantibody
reactivity in patients’ sera is largely accounted for by four autoantigens: preproinsulin, glutamate
decarboxylase (GAD), islet antigen 2 (IA-2), and ZnT8; although the identification of specific
peptides that affect autoreactivity is still work in progress[8, 32-37]. Cucca et al. implicated signal
peptide sequences of preproinsulin as potentially important in T1D, by modeling the associations of
HLA class Il alleles and their polymorphic amino acid positions with structural features of the
peptide-binding pockets 1[16]. The ability to focus on crucial variants that drive risk may enable
functional investigations. Synthesis of HLA molecules containing single-residue alterations at risk-
modulating positions may reveal their effects on the physical-chemical properties of the antigen-
binding pockets. Furthermore, the use of peptide display or small molecule libraries may directly
identify and characterize peptides that differentially bind to HLA molecules that differ at risk-
modulating positions, thereby revealing the essential pathogenic peptides and the mechanisms

through which they evoke autoimmunity.

200



METHODS
Sample collection

The dataset was provided by the Type 1 Diabetes Genetics Consortium[20], and consisted of
(1) a UK case-control dataset (UK) and (2) a European family based dataset (Eur). The UK case-
control dataset consisted of a total of 16,086 samples (6,670 cases and 9,416 controls) from 3
collections: (1) cases from the UK-GRID, (2) shared controls from the British 1958 Birth Cohort and
(2) shared controls from Blood Services controls (data release February 4, 2012, hg18). The UK
samples were collected from 13 regions. The European Family based dataset consisted of 10,791
samples (5,571 affected children and 5,220 controls) from 2,699 European-ancestry families (data
release January 30, 2013, hg18). All samples were genotyped on the ImmunoChip array. After
quality control, 6,223 and 6,608 markers, respectively, were genotyped in the MHC region between
29 and 45Mb on Chromosome 6 in the two datasets. From the family data we constructed 1,662

pairs of pseudocase and pseudocontrol samples.

Construction of pseudo-case/control samples

We constructed pseudo-controls from a set of 1,661 European families with at least 1
affected child and both healthy parents present. From each family, we selected one affected child
(randomly selecting one if multiple affected children were present) to be the case (transmitted
alleles).

We first determined the parent of origin for each of the child’s two chromosomes, using
heterozygous “checkpoints”. Checkpoints consist of markers for which the child and only one
parent are heterozygous. For example, if the mother’s genotype at marker X is “AA”, the father’s is
“AB”, and the child’s is “BA”, we determine that the first allele at each marker came from the father.
At each marker, the pseudo-case genotype is that of the affected child. Pseudo-control genotype

consists of the two untransmitted allele from the parents, ordered by the parent of origin
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determined above. For example, if at a given marker, the father is “AA”, the mother is “AB”, the
affected child is “AA”, and the allele order in the child is determined to be mother/father, then the
pseudo-control genotype must be “BA”.

After applying HLA imputation, we also used the checkpoint results to identify phasing
error. We observed that in about 5% of the samples, there was jumping (such that the class I
segment of a chromosome in the child is from one parent, while the class Il segment is from the
other); no significant phasing error occurred within genes, within the class I region or within the

class Il region.

HLA Imputation

We used SNP2HLA (default input parameters) to impute SNPs, amino acid residues, indels,
and 2- and 4-digit classical alleles in eight HLA genes in the MHC between 29602876 and
33268403bp on Chromosome 6. We used the reference panel provided by T1DGC, which included
5,225 European samples classical typed for HLA-A, B, C, DRB1, DQA1, DQB1, DPB1, and DPA1 4-digit
alleles[21, 22]. The imputed genotype dataset included 8,961 binary markers. For each marker and
each individual, two types of output were produced: a phased best-guess genotype (e.g.
“AA/AT/TT”); and a dosage, which accounts for imputation uncertainty and can be continuous
between 0 (0 copies of the alternative allele) and 2 (2 copies of the alternative allele).

We imputed the UK case-control dataset and European family dataset independently; within
each set, cases and controls were imputed together to avoid disparity in imputation quality. 4,604
and 5,125 SNPs in the MHC region were used for imputation in the UK and Eur datasets,
respectively. After combining the UK and Eur datasets, we excluded a total of 344 binary markers
due to allele missingness or rareness (allele frequency < 0.05%); we then removed individuals who
carried the missing or rare alleles. The post-quality control final dataset consisted of 18,832

samples, including 8,095 cases (including 1,662 pseudo-cases) and 10,737 controls (including
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1,662 pseudo-controls).

Statistical framework

We test a given variant’s association to disease status using the logistic regression model:

n-1

m-1
log(odds,) = By + 3, B %, + D BosVus + Bz,
j=l k=l (Equation 1)

where variant x; may be the imputed dosage or the best-guess genotype for a SNP, classical allele,
amino acid, or haplotype. By is the logistic regression intercept and £ ;; is the additive effects of
allele j of variant x;. The number of alleles at each variant is m; for a binary variant (presence or
absence of x;), m equals 2. The covariate y;x denotes each region of sample collection (n=14). We
included sex as covariate z. fzand Sz are the effect sizes of the region and gender covariates,
respectively.

To account for population stratification, we included the region codes as covariates.
Samples from the Eur dataset were considered as the 14t region. To assess the statistical
significance of a tested variant, we assessed the improvement of fit of a model over the null model
(only region and gender covariates) when the test variant is added to the model. We calculate as the
deviance defined by
Adeviancegie-nui = -21n(likelihooda:/likelihood,ui), which follows a y2 distribution with m-1 degrees
of freedom, from which we calculate the p-value. We considered p = 5x10-8 as the significance

threshold.

Analysis of amino acid positions
To test amino acid effects within HLA-DRB1-DQA1-DQB1, we applied conditional haplotypic
analysis. We tested each single amino acid position by first identifying the m amino acid residues

occurring at that position, and then partitioning all samples into m groups with identical residues at
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that position. We estimated the effect of each of the m groups using logistic regression model
(including covariates as above), and assessed the significance of model improvement by Adeviance
compared to the null model, with m-1 degrees of freedom. This is equivalent to testing a single
multi-allelic locus for association with m alleles. To test the effect of a second amino acid position,
while conditioning on the first, we further update the model to include all unique haplotypes
created by residues at both positions. We then test whether the updated model improves upon the

previous model based on Adeviance, taking in consideration for the increased degrees of freedom.

Conditional analysis on entire locus
In order to condition out the effect of a whole gene or locus, we included all 4-digit classical

alleles in the gene or locus as covariates in the regression model.

Exhaustive test

To ensure that the independently associated amino acids were not emerging only as the
result of forward-search which might possibly converge on local minima, we exhaustively tested of
all possible combinations of one, two, three, and four amino acid positions in HLA-DRB1, DQA1, and
DQBI1. For each number of amino acid combination, we select the best model based on Adeviance

from the null (gender and region covariates only).

Haplotype-amino acid permutation analysis

Given the polymorphic nature of the HLA genes and the strong effect sizes in the DRB1-
DQA1-DQB1 locus, we wanted to assess whether the observed associations at DQB1#57, DQB1#13
and DQB1#71 could emerge by chance, due to these positions’ ability to tag classical alleles with
different risk. To eliminate this possibility, we conducted a permutation test. In each permutation,

for each of the three genes (e.g HLA-DQB1, -DRB1, and -DQA1) we preserved the sample’s
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case/control status and gender/region covariates. To preserve allelic associations, we preserved
the groups of samples with the amino acid sequence (4-digit classical allele) at each gene. We then
randomly reassigned the amino acid sequence corresponding to each classical allele in each
permutation, and repeated the forward-search analysis. We repeated this permutation 10,000
times, each time selecting the combination of two, three, and four amino acid positions that produce
the best model (as measured by deviance). If the amino acids were merely tagging the effects of
certain haplotypes, the effects we observed in the real data would not be more significant compared
to those generated from permutations. To obtain the permutation-based p-value, we calculate the
proportion of permutated models that exceeds the goodness-of-fit of the best model in the

unpermuted data.

Testing for non-additivity and interactions
We defined haplotypes across the HLA-DRB1-DQA1-DQB1 locus based on unique
combinations of amino acid residues across the three genes. As non-additive effects can be
observed only when sufficient numbers of homozygous individuals are present, we limited the
interaction analysis to a subset of common haplotypes or classical alleles with frequencies greater
than 5%. We excluded all individuals with one or more haplotypes that fell below this threshold.
We constructed an interaction model, which included additive terms for each common

haplotype and interaction terms between all possible pairs of common haplotypes.

m-1 m

m-1 n-1
log(odds;) = f5, + Eﬁl,j'xi,j +E E(pj,/xi,jxi,/ + Eﬁz,kyi,k + sz,
j=1 k=1

j=l1=j+1

(Equation 2)
where ¢is the interaction effect size. We determined the improvement in fit with each successive
model by calculating the change in deviance, and used a significance threshold of p = 0.05/h, where

h is the total number of interactive parameters added to the original additive model.
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HLA-DR3/DR4 classical allele interactions

To characterize the DR3/DR4 interaction, we defined 12 interaction terms, where each term
represents a potential interaction between a classical allele on the DR3 haplotype (DRB1*03:01,
DQA1*05:01, DQB1*02:01) and a classical allele on the DR4 haplotype (DRB1*04:01 or DRB1*04:04,
DQA1*03:01, DQB1*03:02). We only looked at trans interactions, since haplotype analyses already
account for classical alleles that occur together in cis. We began with a null model that included
additive effects for all haplotypes. Then, we individually tested each of the 12 interaction terms by
adding each term to the null model separately. Once again, we used the change in deviance to assess

the improvement in fit, using p=0.05/21=2.4x10-3 as the threshold.

Amino acid interaction analysis

To determine whether amino acid positions can explain haplotypic interactions, we defined
haplotypes across the DRB1-DQA1-DQBI1 locus based on the 141 amino acid positions imputed in
this locus. To ensure that a significant number of homozygous individuals were present, we
excluded all amino acid residues with less than 5% frequency prior to creating the haplotypes. We
also excluded any individual who had one or more amino acids that fell below this threshold.

We began with a null model that included additive effects for each amino acid haplotype.
Then, for each pair of amino acid positions [38], we added a set of nq x nrinteraction terms, where
each term specifies a trans interaction between one variant at each position, and n, represents the
total number of variants at position p. Each pair of amino acids was tested in a separate model, and
we calculated the change in deviance to determine the improvement in fit. Monomorphic amino

acid positions were excluded from this analysis, since they were constant across all individuals.

Analysis of amino acid positions considering non-additive effect
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We wanted to show that the independently associated risk-modulating amino acid positions
remained unchanged after including non-additive effects. To this end, we repeated the forward-
search analysis after incorporating non-additive terms into the regression model. In this analysis,
each variant is coded as 0/1/2 for allelic dosage; and an additional heterozygote factor is added,

which equals 1 only if the individual is heterozygotic for this allele /haplotype.

Testing for discordance effect sizes between T1D and Rheumatoid Arthritis

DRB1#13 and #71 show strong independent effects in both T1D and RA. We tested whether
the individual residues at each position confer differential risk or protection between the two
diseases, using previously described method 3. Given a multi-allelic amino acid position with m
residues, we calculated the multivariate log-odds ratios (log-OR) of the residues by including in the
logistic regression the binary markers corresponding to each residue 3. We excluded the most
common residue in controls as the reference (therefore the log-OR and variance for that residue are
both 0). Let ay, az, ... am-1and by, by, ... bm-1 be the multivariate log-ORs in the two diseases; and let v,
V2, ... Vm1and uy, U, ... um-1 be the variances around the log-OR estimates. To test the discordance of

effect sizes between the two diseases, we calculated the statistic

Z (a; — b;)?
i=1.m—-1 V; +U;

This is y2 distributed with m-1 degrees of freedom under the null.

We note that the RA and T1D datasets likely shared a proportion of control samples (from
the British 1958 Birth Cohort and Blood Service). However, we do not expect inflated discordance,
as had any bias been introduced by shared controls, it would tend toward artificial concordance,

rather than discordance.

Proportion of phenotypic variance explained

207



We assumed the liability threshold model, and calculated the proportion of phenotypic variance
explained (h?) by a combination of variants using previously described methods 45.

We used a model based on the biometrical model from Fisher 6 and the liability threshold
model from Pearson and Lee 7. We assumed that disease risk is the consequence of an underlying
liability score that is normally distributed with a mean of zero and a variance of one, and that
individuals with a score above a pre-specified threshold get disease 8. The value of hZ is defined by
the variance between genotypic groups (V) divided by the total population variance (V:), which
equals the sum of V; and variance within group (Vi); or,

h? =Vy/(Vg + V)

Vy, the between-group variance, is defined as

> pi -5

Where p;is the population frequency of a genotypic group i; X; is the mean of the group; and x is the
grand mean of the population.

To estimate the h? explained by HLA-DRB1-DQA1-DQB1, we estimated the multivariate ORs
of 67 haplotypes (each occurring at least four times in the dataset) defined by all amino acids in the
locus, using the most common haplotype in controls as the reference. Similarly, to calculate h?
explained by DQB1#57, DRB1#13, DRB1#71, we calculated the control frequencies and
multivariate ORs of 29 haplotypes (with at least four copies) defined by these three positions.

We next assumed that the alleles are in Hardy-Weinberg equilibrium, and calculated the
genotype frequency (p;) and prevalence of disease within each possible diploid genotype (f;). Given

that the disease is rare, relative risk approximately equals the odds ratio, therefore

_ RR;xF
" Y piXRR;

We assumed V;within each genotypic groups to be 1. We then determined the liability

threshold within each genotype (T;) using the normal inverse cumulative distribution function.

208



Next, we could assume that the shift of liability threshold of the reference genotype group, Tr from
the population threshold is 0. Assuming equal within-genotype variance of 1, the shift in liability
threshold equals the difference in the genotypic means; that is, x; = T; - Tret. The grand mean of the

population can then be updated as

x = Zpini-

INFO score calculation for DRB1-DQA1-DQB1 haplotypes

To assess the imputation quality of a given DRB1-DQA1-DQB1 haplotype, we calculated the
INFO score from the ratio of the observed variance in dosage to the expected variance under Hardy-
Weinberg equilibrium °:

INFO = Y4
2(p)1-p)

where x is the imputed dosage and p is the frequency of the allele. An INFO score close to 0
indicates poor imputation quality, while a score closer to 1 indicates higher quality; a value greater
than 1 is also possible. Due to the presence of non-additive effects that inflated the disease risk in

heterozygotes, the allele distribution in disease cases deviated from Hardy-Weinberg equilibrium.

Therefore, we calculated INFO scores using the variance and allele frequency in controls only.
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CHAPTER 6

Conclusion and discussion
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SUMMARY

The understanding of genetic risk of human diseases and traits have advanced rapidly and
expanded beyond the Mendelian models of rare, fully penetrant traits. Through a decade of
genome-wide association studies, we have discovered hundreds of genomic loci associated with
disease risk, and come to appreciate the polygenic architecture of common diseases. Autoimmune
diseases are among the most successful disease groups that gained tremendous insight through
GWAS; nearly 200 genomic loci have been found to be associated with dozens of these diseases,
including rheumatoid arthritis (RA), systemic lupus erythematosus, inflammatory bowel diseases,
type 1 diabetes, celiac disease, multiple sclerosis, and many more.

GWAS studies identify regions of the genome that harbor variants that influence disease
risk, but cannot directly reveal the causal genetic changes or illustrate their pathogenic mechanisms.
Therefore, ongoing efforts in the field must address at least two challenges: 1) localizing the
association signals to pinpoint causal variants, and 2) functional interpretation of known variants’
roles in pathogenesis. The work presented in this dissertation devised and applied both “top-down”
and “bottom-up” approaches (see Chapter 1) to address both challenges. To do so, we considered
two “categories” of risk loci - namely, those in the human leukocyte antigen (HLA) genes, and the
non-HLA loci - separately.

The method presented in Chapter 2 was an example of the “top-down” approach to follow-
up on genome-wide association studies, by integrating genetic data with other biological data types
to deduct relevant biological pathways and other global properties implicated by the risk loci. In
this study, we hypothesized that genes perturbed by risk variants of a given disease function
specifically in tissues and cell types that are crucial in the pathogenic process; and that to identify
the cell types, the cell-specific gene expression may serve as proxies to function. By examining
compendia of cell-specific gene expression profiles, we showed that genes in autoimmune disease

risk loci were indeed specifically expressed in relevant immunological cells. In particular, we found
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CD4+ effector memory T (Tem) cells to be relevant in the pathogenesis of rheumatoid arthritis, celiac
disease, and type 1 diabetes.

We next hypothesized that immunological phenotypes and functions vary among
individuals under genetic influence. We profiled population variation in CD4+ Tgum cells’ peripheral
abundance, proliferation, and expression of immune genes. In this study, we used multi-parametric
flow cytometry to study blood samples of over 200 individuals using, producing over 1000
cytometric data samples. To analyze these samples efficiently, we developed X-Cyt, a user-guided
automated data-partitioning tool based on parametric clustering. In Chapter 3, we demonstrated
that X-Cyt rapidly and robustly analyzes large-scale profiling data samples. In contrast to previously
developed automated analytical methods, X-Cyt allows the user to define a template according to
which all samples are partitioned. The incorporation of user guidance ensures intuitive and
interpretable partitioning outcome; in addition, the use of a template both allows simultaneous
alignment across samples and dramatically decreases computational time.

In Chapter 4, we showed variation in immunological traits of CD4+ effector memory T cells,
including cell abundance, proliferative response to stimulation, and the expression of immune
genes in disease risk loci. Variation in these traits in the population correlated with single
nucleotide polymorphisms. Specifically, a quarter of the assayed immune genes were under
expression regulation by nearby single nucleotide changes (expression quantitative trait loci, or
“eQTL"). In particular, nearly a quarter of the eQTLs we observed were not previously detected in
peripheral blood, which consists of heterogeneous cell types. We noted, however, that only a small
percentage (<5%) of SNPs associated with RA, CeD, or T1D, were eQTLs of nearby genes. This study
was an example of a “bottom-up” method to follow up on genetic data; in this case, rather than
studying one specific locus, we used high-throughput technologies to examine many candidate

regions.
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Finally, the HLA genes have long been known to confer strong risk toward type 1 diabetes;
however, the highly polymorphic nature and complex linkage structure in the HLA region challenge
efforts to pinpoint causal variants. In Chapter 5, we used statistical imputation and fine-mapped the
HLA genes, and identified individual amino acid sites in HLA molecules that drive risk toward type
1 diabetes. In addition to confirming the primary role of amino acid position 57 of the HLA-DQ 8
chain, we found that positions 13 and 71 of the HLA-DR f8 chain conferred strong independent risk.
Polymorphisms at these three positions together explained 80% of the genetic risk harbored in the
HLA region. Furthermore, we discovered multiple genotypes that exhibited non-additive risk effects

through pairwise interactions.

DISCUSSION

The risk of common diseases follows a polygenic architecture, in that it is the result of
multiple variants; they are therefore also referred to as complex-trait diseases. While linkage
studies and genome-wide association studies facilely identify regions of the genome that harbor
risk variants, fine-mapping and mechanistic follow-up are much more complicated. Linkage
disequilibrium is one complicating factor, especially in the HLA, as the causal variant may be
obscured while many nearby variants may appear statistically equivalent. Fine-mapping may
benefit partially from dense-genotyping, or ultimately sequencing, large numbers of samples. For
example, we fine-mapped the HLA signal in type 1 diabetes by increasing the sample size and
genotype density through statistical imputation.

Complex-trait diseases and their causal variants contrast sharply with that of Mendelian
diseases in several major ways. Mendelian diseases are often the results of single mutations that
directly affect the synthesis, structure, or function of key proteins. In contrast, the causal variants of
complex-trait diseases often localize to the vast parts of the genome that do not code for proteins,

and currently have no annotated functional role. Unlike the fully penetrant Mendelian mutations,
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each single complex-trait variant may carry a small effect size, and is neither necessary nor
sufficient to cause diseases. To further complicate efforts to model and study these variants, they
may exhibit non-additive effects (the risk of diseases is not directly proportional to the allelic
dosage), either due to dominance or interactions among variants. Finally, environmental factors
may significantly modify the effects of genetic variants.

Autoimmune diseases are very common in the world population, and have benefited
tremendously from GWAS. Although the clinical presentations of autoimmune diseases are diverse
and affect multiple organ systems, laboratory studies and clinical data clearly indicate the
involvement of the immune system. The biology of immune system is as complex and intricate, if
not more so, as that of the genome. This dissertation followed a systematic approach of first
identifying the most likely main players in a given disease, e.g. CD4+ effector memory T cells in
rheumatoid arthritis, and then focusing on the relevant cell type(s) to investigate its functional
pattern under genetic influence. Of course, this is an oversimplification; nevertheless, in-depth
understanding of individual components is a relatively convenient, targeted, well-controlled, and
arguably necessary initial step to understanding a complex system.

Many autoimmune diseases share a distinct feature — which is a blessing and a curse - that a
large proportion of genetic risk is attributed to coding variants in the HLA genes. HLA molecules
present antigenic peptides to effector cells of the immune system; the risk variants likely alter the
repertoire of antigens that can be recognized and presented. For decades, however, statistical and
functional fine-mapping have been stymied by the extremely polymorphic nature and linkage
disequilibrium in the HLA region. Our discovery of amino acid sites that drive type 1 diabetes risk
offer clear candidates for functional follow-up. Positions 13 and 71 of the HLA-DR f chain line the
P4 pocket of the molecule, which is an amino acid binding pocket also implicated in rheumatoid

arthritis and follicular lymphoma.
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Many have suggested that the non-coding variants are expression quantitative trait loci
(eQTL), and affect disease risk by regulating the expression levels of genes. There are many
possible mechanisms for this regulation. For example, a single nucleotide change in the promoter
motif near the gene body may change the binding affinity of transcription factors, thus act as a cis
(local)-eQTL. Similarly, a mutation in a distant enhancer may increase or decrease the transcription
of the gene, thus acting as a trans (distant)-eQTL. This hypothesis has led to many eQTL studies to
search for risk variants that regulate gene expression. However, many genes are differentially
expressed in different cell types, at different times, and depend on specific signaling cascades.
Therefore, the presence of eQTLs may be difficult to detect in bulk blood samples without
appropriate stimulation. To investigate the behavioral pattern of the most relevant cells, in this case,
the CD4+ effector memory T cells, we searched for cis-eQTLs of immune genes before and after T
cell receptor stimulation. By doing so, we detected more cis-eQTLs for these genes than previously
found in bulk peripheral blood. Strikingly, only about 5% of the risk variants associated to the
diseases overlapped with cis-eQTL signals. The power to detect gene regulation by risk variants
may have been limited by several factors. For example, we did not assay genome-wide transcription
or examine trans-effects; we used generic T cell stimulation approach (anti-CD3/CD28) rather than
antigen-specific stimulations; and furthermore, although the focus on stimulated CD4+ effector
memory T cell increased our ability to observe eQTLs in general, we may have missed variants that
affect other cell types. Nevertheless, the low level of overlap between the observed eQTLs and
disease-associated variants suggests that while regulation of gene expression is a plausible
mechanism through which disease risk is modulated, it cannot explain the majority of associations

in non-coding regions.

FUTURE DIRECTIONS

Functional follow-up of risk-conferring HLA amino acid sites

220



HLA variants explain the majority of genetic risk of both rheumatoid arthritis and type 1
diabetes and many other autoimmune diseases. Any amino acid residue change in these antigen-
presenting proteins most likely leads to functional changes due to alteration of antigen-binding
properties; however, only a few are relevant to each disease. Our discovery of the three relevant
amino acid sites to type 1 diabetes, as well as the previous discovery of those relevant to
rheumatoid arthritis, open the gate to effective functional validation.

Having knowledge of the specific amino acid residues that confer protection or risk,
investigators can conduct targeted antigen-binding assays using purified HLA molecules with
known peptide sequences, or recombinant proteins with designed mutations. Peptide libraries
from tissue extract, display libraries, and small molecule libraries can all be used to profile the
binding signatures of HLA molecules that differ at the relevant amino acid sites, and reveal the

necessary or sufficient pathogenic antigens.

Immuno-profiling

One approach to understanding the functional role of non-HLA risk loci is to profile
phenotypic and functional variation under genetic influence. Future studies may extend the studies
presented in Chapter 4, by expanding upon several important parameters. First, as technologies
become more affordable, whole genome microarray or RNA-sequencing can be applied to assay all
genes (and isoforms), thus allowing the detection of risk variants that act as trans-eQTLs. Similarly,
recently developed mass cytometry simultaneously interrogates dozens of proteins in single cells,
and can provide an enormous library of functional profiles. Epigenetic changes are also likely to
differ among individuals under genetic influence, thus contributing to variation in immune
response and autoimmune risk. Therefore, future studies can incorporate assays that assess DNA
methylation, histone modification, as well as allele-specific expression. In addition, any immune

response to stimulation is expected to exhibit temporal dynamics that are not yet understood.
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Future studies should assay epigenetic changes, transcription, and protein expression, at multiple
time-points in order to capture this temporal pattern. Finally, in Chapter 4, we used generic T cell
stimulation by anti-CD3/CD28 beads; however, effector immune cells may respond differently
according to antigen-specific stimulation. Therefore, considering all these parameters together,
future studies should strive to capture disease-causing functional variation under the most relevant
conditions, which requires using the disease-specific antigenic stimulation and surveying relevant

genes and proteins at the time of the strongest (or the most differential) response.

Automated analysis of large-scale, high dimensional data

Advances in large-scale genomic and proteomic technologies are allowing efficient
functional characterization of cells under multiple conditions. For example, mass cytometry by time
of flight (CyTOF) is able to assay dozens of surface and intracellular proteins in each cell.
Contrastingly, analytical tools to utilize this high-dimensional data are lagging. Many software
packages are available to analyze flow cytometry and mass cytometry data. However, there is
currently no consensus on how to best extract high-dimensional information from these data. In
addition, there is also no “golden standard” with which to benchmark the output of automated
methods, other than to compare to that of manual analyses, which is not ideal as manual analyses is
low-dimensional by nature. The method to analyze the data may depend on the biological
hypothesis and experimental approach specific to a given study; therefore perhaps no single “best
method” exists. Future development in the field should first aim to establish standard protocols for
quality control and data normalization, so that large-scale, batched, and multi-center collections can

produce comparable data.
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