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Abstract

Charge carriers in graphene mimic two-dimensional massless Dirac fermions with

linear energy dispersion, resulting in unique optical and electronic properties. They exhibit

high mobility and strong interaction with electromagnetic radiation over a broad frequency

range. Interband transitions in graphene give rise to pronounced optical absorption in the

mid-infrared to visible spectral range, where the optical conductivity is close to a univer-

sal value σ0 = πe2/2h. Free-carrier intraband transitions, on the other hand, cause low-

frequency absorption, which varies significantly with charge density and results in strong

light extinction at high carrier density. These properties together suggest a rich variety of

possible optoelectronic applications for graphene.

In this thesis, we investigate the optoelectronic properties of graphene by measuring

transient photoconductivity with optical pump-terahertz probe spectroscopy. We demon-

strate that graphene exhibits semiconducting positive photoconductivity near zero carrier

density, which crosses over to metallic negative photoconductivity at high carrier density.

These observations are accounted for by the interplay between photoinduced changes of

both the Drude weight and carrier scattering rate. Our findings provide a complete picture

to explain the opposite photoconductivity behavior reported in (undoped) graphene grown

epitaxially and (doped) graphene grown by chemical vapor deposition. Our measurements

also reveal the non-monotonic temperature dependence of the Drude weight in graphene, a

unique property of two-dimensional massless Dirac fermions.

iii



Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1

2 Background: graphene and electrodynamics of solids 3
2.1 Electronic properties of graphene . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Electrodynamics of solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Coherent terahertz spectroscopy 21
3.1 Time-domain terahertz spectroscopy . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Time-resolved optical pump-terahertz probe spectroscopy . . . . . . . . . . . 33

4 Experimental techniques 45
4.1 Laser source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Terahertz generation and manipulation . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Detection system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Optical pump-THz probe experiments . . . . . . . . . . . . . . . . . . . . . . 52

5 Observation of negative terahertz photoconductivity in doped graphene 58
5.1 Sample description and characterization . . . . . . . . . . . . . . . . . . . . . 59
5.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Analysis and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Semiconducting-to-metallic photoconductivity crossover in graphene 67
6.1 Sample description and characterization . . . . . . . . . . . . . . . . . . . . . 68
6.2 Tunable terahertz photoconductivity . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Non-monotonic temperature dependence of the Drude weight . . . . . . . . . 86

A Application of TRTS to a high Tc superconductor 93

iv



Contents

Bibliography 102

v



List of Figures

2.1 Graphene lattice structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Graphene tight binding bands . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Ambipolar resistance modulation in a graphene device . . . . . . . . . . . . . 8
2.4 Drude conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Drude weight for pristine graphene . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Graphene interband conductivity . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Illustration of THz generation by optical rectification . . . . . . . . . . . . . . 23
3.2 Schematic of electro-optic sampling . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Schematic of terahertz spectrometer . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Geometry for time-domain terahertz spectroscopy experiments . . . . . . . . . 30
3.5 Example of time-domain terahertz spectroscopy data . . . . . . . . . . . . . . 32
3.6 Schematic of time-resolved optical pump-terahertz probe spectroscopy exper-

iment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Frequency-resolved transient photoconductivity of GaAs. . . . . . . . . . . . . 37
3.8 Time-resolved transient photoconductivity of Si. . . . . . . . . . . . . . . . . . 39

4.1 Schematic of terahertz spectroscopy setup . . . . . . . . . . . . . . . . . . . . 46
4.2 Setting proper chopper phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Pump beam delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Temporal smearing due to oblique-incidence pump pulse . . . . . . . . . . . . 53
4.5 Pulse sequence for double-modulation DAQ detection. . . . . . . . . . . . . . 55
4.6 Depiction of pump chopper phase setting . . . . . . . . . . . . . . . . . . . . . 56
4.7 Raw data from double-modulation DAQ detection experiment. . . . . . . . . 57

5.1 Complex terahertz-frequency conductivity of graphene . . . . . . . . . . . . . 60
5.2 Negative photoconductivity in CVD graphene . . . . . . . . . . . . . . . . . . 62
5.3 Frequency-resolved transient negative photoconductivity in graphene . . . . . 64
5.4 Two scenarios for photoinduced conductivity changes in graphene . . . . . . . 65

6.1 Transparent graphene device schematic and transport . . . . . . . . . . . . . 69
6.2 Control pump-probe experiment on transparent device without graphene . . . 70
6.3 Tunable terahertz photoconductivity in graphene . . . . . . . . . . . . . . . . 74

vi



List of Figures

6.4 Influence of detector response on frequency-resolved photoconductivity . . . . 75
6.5 Time- and density-dependence of tunable photoconductivity . . . . . . . . . . 78
6.6 Additional time- and density-dependent data . . . . . . . . . . . . . . . . . . 79
6.7 Temperature-dependence of chemical potential . . . . . . . . . . . . . . . . . 83
6.8 Simulation of data using temperature-dependent Drude weight and scattering

rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.9 Fluence dependence of photoconductivity crossover . . . . . . . . . . . . . . . 88
6.10 Calculated photoconductivity neglecting temperature-dependence of chemical

potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.11 Finite-difference time-domain simulation of optical pump-terahertz probe ex-

periment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.12 Conservation of spectral weight in graphene . . . . . . . . . . . . . . . . . . . 92

A.1 Optical conductivity of optimally doped LSCO . . . . . . . . . . . . . . . . . 95
A.2 Scheme for measuring pump-induced change to superfluid density . . . . . . . 96
A.3 Raw pump-probe data at representative temperatures . . . . . . . . . . . . . 97
A.4 Fluence- and temperature-dependent decay rates in LSCO . . . . . . . . . . . 98
A.5 Cartoon depicting different Rothwarf-Taylor recombination mechanisms . . . 100

vii



Acknowledgments

Graduate school is often compared to running a marathon, but in my experience,

it is more akin to participating in the World Rally Championship. While the driver of the

winning car receives the majority of the praise and recognition, his victory is made possible

by a large team of navigators, mechanics, and managers. There are many ups and downs,

some epic crashes, and not all participants finish. In the same way, while this dissertation

bears my name, it would not have been possible without a massive team working behind

the scenes to ensure my success, and completion was not guaranteed at the outset.

I am first and foremost grateful to my research advisor, Professor Nuh Gedik, for

the many opportunities he has provided to me over the past several years. He trusted me

with the freedom to pursue projects that interested me and gave me the resources to see

them through to completion. In this he taught me to be an independent researcher, and for

that I thank him.

Gedik group members past and future have also contributed immensely to my

graduate career. Working closely with Joshua Lui has truly been a pleasure. He came

alongside me early on, when I had a huge pile of data and an aimlessly written manuscript,

and showed me how to turn it into a story worth telling. His attention to detail and skill at

providing context elevated my work to a higher level of quality. Dan Pilon got me started

in the laser lab, introduced me to terahertz spectroscopy, and helped troubleshoot myriad

equipment problems. He was also a good companion with whom to suffer through our

innumerable laser malfunctions and repairs. My former officemate now professor Darius

“the Torch” Torchinsky is the best experimentalist I know and taught me much of what

I know about lasers and optics. I have learned so much through sharing many scientific

(and otherwise) conversations with Fahad Mahmood, Edbert Sie, Ozge Ozel, David Hsieh,

Changmin Lee, Mahmoud Ghulman, Inna Vishik, Timm Rohwer, and James McIver. I also

need to acknowledge Wilfredo Gonzalez, our Spectra-Physics laser service engineer, who

viii



Acknowledgments

made this dissertation possible by keeping the amplifier up and running when it seemed

determined to ruin me.

My other committee members, Prof. Jenny Hoffman and Prof. Subir Sachdev,

graciously shared their time to meet with me and made sure research was progressing sat-

isfactorily. Monica Wolf and Lisa Cacciabaudo, administrators at MIT and Harvard, were

instrumental in making my dual-institution graduate school experience as smooth as pos-

sible. Former Harvard administrator Sheila Ferguson’s admonition, “Don’t give up easy,”

helped keep me going when research was difficult.

I certainly could not have done any of the work presented in this thesis without

samples. Yong Cheol Shin and Wenjing Fang in the group of Jing Kong at MIT generously

provided high-quality CVD graphene samples, assisted with characterization, and creatively

solved fabrication challenges. Aside from obtaining graphene, I also had to fabricate the

samples into devices, a task completely outside the expertise of my group. Without the

patience and generosity of Valla Fatemi, Javier Sanchez-Yamagishi, Qiong Ma, Hadar Stein-

berg, Patrick Herring, and Nathan Gabor in Pablo Jarillo-Herrero’s group, this would not

have been possible. They taught me everything I know about device fabrication, trained me

to use their lab equipment, helped me troubleshoot measurements, and put up with endless

questions from me. My research would not have been successful without their help.

I am grateful to the many other mentors I have had over the years. Prof. Dimitri

Basov and his students Omar Khatib, Drew LaForge, Brian Chapler and Alex Schafgans

at UC San Diego first introduced me to research in condensed matter physics and have

continued to graciously share their time and wisdom with me. Dimitri’s postdoc Mumtaz

Qazilbash (now professor at College of William and Mary) walked me through my first

publication as lead author. Prof. Dan Arovas provided me with a solid foundation in

statistical physics, and his lecture notes for several classes have served as indispensable

ix



Acknowledgments

references throughout my graduate career. Prof. David Lee of Gordon College and Mr. Rob

Lapointe of Lutheran High School of Orange County first got me interested in physics and

set me on this path.

My many friends at Harvard have greatly enriched my graduate experience. Justin

Song, my fellow defector to MIT, first introduced me to graphene and was a great friend to

have on campus, to play frisbee and eat lunch with. Living at 21 Mellen with Tout Wang,

Tony Jia, Carl Erickson, Dan Huang, and Mithun Mansinghani was a thoroughly enjoyable

experience. Mike Yee, Elise Novitski, and Alex Thomson, along with Justin, always helped

me get out of the lab to eat fine food and share good conversation. Gary Sing and Andrew

Mao from the Harvard Graduate Christian Community have been consistent friends since

they first helped me get settled at Harvard.

My community at Park Street Church has served as a solid foundation for me

during my time in graduate school. It has been a blessing to share life with my friends Seth

van Liew, Dan Cogswell, Adam Kurihara, Chris Pletcher, Jonathan Baker, Andrew Noh,

Matt Carey, Andy Huss, Ben Shuleva, Bryan Collins, Dan Fehlauer, Andy Hopper, Nathan

Hancock and many others.

My family perhaps played the most significant role in my successful completion of

graduate school. My parents, Larry and Shawna, taught me how to work hard and persevere

by their example. I am exceedingly thankful for their unconditional love and support. My

brothers and sisters Jason, Whitney, Kyle, Kayla, Allison, Lauren, Ed, and Sam, my niece

Mariah, and my nephew Jamil have made my visits to California so much more rejuvenating,

and I am thankful for the time we were able to spend together in Cambridge during their

visits.

My wife, Amy, has been more loving, encouraging, and supportive, than I could

have ever asked. I am so proud of her and so thankful for her.

x



To my parents, Larry and Shawna.

xi



Chapter 1

Introduction

Two-dimensional graphene is characterized by its distinctive Dirac electronic struc-

ture and the associated remarkable optical properties, specifically, a strong and broadband

optical absorption from far-infrared to ultraviolet wavelengths [1–4]. The unique absorption

spectrum of graphene, together with the great tunability of its Fermi level by electrical gat-

ing, has made it a promising material for next-generation optoelectronic applications [5–7].

For instance, it exhibits superior functionality as an ultrafast photodetector [8, 9] and pho-

tothermoelectric midinfrared sensor [10]. Additionally, it has been demonstrated to effi-

ciently modulate incident terahertz (THz) radiation [?,11–15], which has recently led to the

fabrication of graphene-based THz detectors [16–18]. To further optimize these optoelec-

tronic devices, it is important to understand the fundamental physics underlying graphene

photodetection.

Optoelectronic properties are most often characterized by performing transport

and photocurrent experiments. A wealth of information has been gained from such ex-

periments. For example, scanning photocurrent experiments have disentangled the relative

importance of photothermoelectric [19–22] and photovoltaic [23] contributions to photocur-

rent generation in inhomogeneous graphene devices. In these experiments, however, contacts

1



Chapter 1 Introduction

and engineered inhomogeneities play dominant roles in the observed phenomenon and can

mask intrinsic properties of light-matter interaction in graphene [24]. Additionally, intrinsic

limits for high frequency device operation are often estimated by extrapolation [8, 9]. Ac-

cess to intrinsic optoelectronic properties on characteristic ultrafast timescales in graphene

would greatly enhance our knowledge and ability to optimize optoelectronic devices based

on graphene.

Time resolved terahertz spectroscopy [24, 25] is capable of measuring the high-

frequency transport properties of graphene without the complications of proximal contacts

[26, 27]. Additionally, it can be incorporated into ultrafast measurements to examine the

effects of optical excitation on the transport properties with sub-picosecond time resolution

[24, 25, 28]. In this dissertation, we apply this technique to study optoelectronic properties

of Dirac fermion quasiparticles in graphene. We demonstrate electrical control over the sign

of the photoconductive response of graphene and report our discovery of unconventional

photoconductivity mechanisms in this unique two-dimensional material.

This dissertation is structured as follows. We first provide relevant introductory

information about graphene, focusing on salient transport properties which will be important

in the analysis of our experiments. We then introduce optical spectroscopic measurements

and discuss mechanisms which give rise to optical absorption in graphene. Next, we discuss

the experimental techniques used for the optoelectronic measurements presented in this

dissertation, highlighting technical improvements made in our lab during the course of this

work. We then present initial measurements of the anomalous negative photoconductive

properties of doped graphene. Finally, we demonstrate control over these properties using

electrical gating and discuss the properties of quasiparticles in graphene which give rise to

the observed phenomena.

2



Chapter 2

Background: graphene and
electrodynamics of solids

2.1 Electronic properties of graphene

Many of graphene’s spectacular transport and optical properties are a direct consequence of

its unique electronic band structure. The strict confinement of carriers to two dimensions

also has a profound impact on graphene’s physical properties. In this section, we review the

elementary electronic properties of graphene.

2.1.1 Graphene lattice in real and reciprocal space

Graphene is a two-dimensional (2D) honeycomb lattice of carbon atoms. The real-space

structure of the lattice is shown in Fig. 2.1. The honeycomb lattice is not a Bravais lattice,

but comprises a triangular lattice with a two-atom basis [2,3]. Alternatively, it can be viewed

as two interpenetrating triangular sublattices, designated A and B. In Fig. 2.1, the atoms

on the A sublattice are colored light grey, while atoms on the B sublattice are colored dark

grey. The lattice primitive vectors are a1 = a0

√
3ŷ and a2 = a0

√
3 [(3/2)x̂+ (1/2)ŷ], where

a0 = 1.42 Å is the carbon-carbon distance. These vectors are shown in Fig. 2.1 as black

3



Chapter 2 Background: graphene and electrodynamics of solids

(a) (b)
a0

a1
a2

b1

b2

K

K’

Figure 2.1: Graphene structure in real and reciprocal space. (a) Real space lattice structure.
Carbon atoms on the A sublattice are light grey, while atoms on the B sublattice are dark
grey. The two primitive lattice vectors a1 and a2 are shown as black arrows. The carbon-
carbon distance is denoted by a0. (b) Brillouin zone in reciprocal space. .

arrows. The lattice basis vectors are τ 1 = 0 and τ 2 = a0

[
(1/2)x̂+ (

√
3/2)ŷ

]
.

The reciprocal lattice vectors can be found in the usual way [29] to be b1 =

(2π/3a0)(x̂ +
√

3ŷ) and b2 = (4π/3a0)x̂. The reciprocal lattice for graphene is therefore

also a honeycomb, but rotated by 90◦ relative to the real-space lattice. The first Brillouin

zone is a hexagon with corners at k1,2 = (2π/3a0)(x̂± ŷ/
√

3). These two points are known

as the K and K ′ points of the Brillouin zone, respectively. All other Brillouin zone corners

can be mapped to one of these two points by a reciprocal lattice vector and hence are equiv-

alent to either K or K ′. No reciprocal lattice vector connects K to K ′, however, so these

two points in momentum space represent distinct electronic wave vectors. Quasiparticles

occupying states near the K (K ′) points are said to occupy the K (K ′) valley. The Brillouin

zone boundary is shown in red in Fig. 2.2.

4



Chapter 2 Background: graphene and electrodynamics of solids

2.1.2 Tight-binding model for electronic band structure

Each carbon atom in the graphene lattice has six electrons. Two electrons fill a closed 1s

shell, while three of the remaining electrons form three sp2 covalent bonds with neighboring

carbon atoms. A single pz orbital remains occupied at each lattice site. The two pz orbitals

on neighboring carbon atoms hybridize to form bonding (π) and anti-bonding (π∗) states.

The lattice periodicity causes these orbitals to merge into a valence and conduction band of

electronic states. Each carbon atom in the lattice contributes one electron that is free to fill

these bands. As a result, intrinsic graphene possesses a completely filled valence band and

a completely empty conduction band [2,3].

The electronic band structure of graphene was first calculated by Wallace in 1947

[30]. It can be easily obtained using the tight binding method [29] by considering the pz

orbitals φpz at each carbon site. One constructs a tight binding wavefunction of the following

form:

ψk =
1√
N

∑
i,α

cαφpz(r − ri,α)eik·ri,α ≡
∑
α

cαχ
α
k(r), (2.1)

where N is the number of lattice sites, ri,α = ri + τα are the vectors connecting different

lattice sites, {cα} are undetermined coefficients, and we have defined χαk(r) = 1√
N

∑
i φpz(r−

ri,α)eik·ri,α . To obtain the tight-binding Hamiltonian and wave functions, we insert this trial

wavefunction into the Schrodinger equation H |ψ〉 = ε |ψ〉 and multiply on the left by 〈χαk|

to yield the eigenvalue equation

〈χαk|H |ψ〉 = cαε, (2.2)

where we have used the fact that 〈χαk|ψ〉 = cα. To solve Eq. (2.2), we need to calculate the

matrix elements

〈χαk|H |ψ〉 =
1

N

∑
i,j

∑
α′

cα′e
ik·(rj,α′−ri,α)

∫
drφ∗pz(r − ri,α)Hφpz(r − rj,α′). (2.3)

5



Chapter 2 Background: graphene and electrodynamics of solids

If we set the on-site energy to zero such that 〈φpz |H|φpz〉 = 0 and restrict our calculation

to nearest-neighbor interactions, the right hand side vanishes unless α 6= α′. We define the

hopping parameter t ≡
∫
drφ∗pz(r − ri,α)Hφpz(r − rj,α′) for α 6= α′ and note that nearest

neighbors are located at ±(τ 2 − rj). Then, performing the sum over i in Eq. (2.3), we

obtain

〈χαk|H |ψ〉 = t
∑
j

ei(−1)αk·(τ2−rj)
∑
α′ 6=α

cα′ . (2.4)

Using this matrix element, Eq. (2.2) can be rewritten in matrix form as 0 t
∑

j e
−ik·(aj−τ2)

t
∑

j e
ik·(aj−τ2) 0


c1

c2

 = ε(k)

c1

c2

 (2.5)

where aj = {0, a1, a2}. Diagonalizing the matrix on the left-hand side yields the dispersion

relations for the valence and conduction bands,

ε(k) = ±t
√

3 + 2 cos(kya0

√
3) + 4 cos(3kxa0/2) cos(kya0

√
3/2). (2.6)

A plot of the resulting band structure is shown in Fig. 2.2.

The simple band structure described by Eq. (2.6) features extraordinary properties.

The valence and conduction bands are degenerate at the K and K ′ points with ε = 0. Away

from these points in k−space, known as the Dirac points (DP), the dispersion is linear, e.g.,

ε(k) = 3
2a0t|k−K| for the K valley. This is analogous to the dispersion relation for massless

relativistic particles, ε(k) = ~c|k|, where c = 3× 108 m/s is the speed of light. Indeed, one

can write down a low-energy Dirac approximation to the tight-binding Hamiltonian around

the K and K ′ valleys in the form

HD = ~vFk · σ = ~vF

 0 kx − iky

kx + iky 0

 , (2.7)

where σ is a vector of Pauli matrices and vF = 3
2a0t/~. For graphene, t ≈2.5 eV, so

vF ≈ c/300 [2, 3]. The effective Dirac Hamiltonian HD is easily diagonalized to obtain the

6



Chapter 2 Background: graphene and electrodynamics of solids

Figure 2.2: Graphene tight binding bands. The boundary of the first Brillouin zone is shown
in red. The valence and conduction bands meet at zero energy at the corners of the Brillouin
zone. Around these points, the dispersion is approximately linear and conical.

eigenvalues ε(k) = ±~vF|k|. The eigenstates are two component spinors [2, 3, 31]

|ψ〉 =
1√
2

 1

±eiθk

 eik·r, (2.8)

where θk = tan−1(ky/kx) and the upper (lower) component corresponds to the probability

amplitude to find the electron on the A (B) sublattice [2, 3]. The Dirac approximation

is valid for energies |ε| . 0.4t ≈ 1 eV and therefore provides an excellent framework to

describe transport and optical phenomenon in graphene [2,3]. The linear dispersion relation

also results in a density of states that depends linearly on energy, g(ε) = 2|ε|/π(~vF)2, which

has many important implications for physics in graphene. The eigenstates [Eq. (2.8)] can

be used to calculate transport and optical properties of graphene, including its interband

optical conductivity and the coupling of electrons to phonons.

7
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Figure 2.3: Ambipolar resistance modulation in a graphene device. The resistance R(Vg)
was measured in a two-terminal geometry. The peak at Vg − V0 = 0 corresponds to the
charge neutrality point (CNP), where εF = n = 0. As electrons (Vg > 0) or holes (Vg < 0)
are added to the graphene sheet, the resistance decreases from its maximum value.

2.1.3 Transport properties

The electronic structure described above, along with the strict confinement of carrier motion

to two dimensions, leads to several unique and remarkable electronic properties. A graphene

sheet is straightforwardly incorporated into a field-effect transistor geometry, after which the

carrier density in the sample can be easily tuned by application of a gate voltage [1,32]. The

zero-gap band structure allows the ability to easily tune between electron and hole carriers,

in contrast to gapped conventional two-dimensional electron gases (2DEGs) [3]. This allows

one to measure sample properties as a function of carrier type and density. Ambipolar

resistance modulation, in which the resistance peaks when the gate voltage minimizes the

carrier density, but decreases when either electrons (Vg > 0) or holes (Vg < 0) are introduced

to the system, allows calibration of the absolute carrier density. Fig. 2.3 shows an example

of ambipolar resistance modulation measured on a device in our lab. The minimum carrier

density [known as the charge neutrality point (CNP)] occurs at Vg − V0 = 0.

Electron-phonon interaction contributes to both momentum and energy relaxation

8
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in graphene [33–38]. Acoustic phonons are likely the dominant scattering mechanism in

ultra-clean graphene [34, 39, 40], and contribute a small amount to scattering in normal

graphene samples at room temperature [41, 42]. Optical phonon scattering is largely sup-

pressed at room temperature because the phonon energies are extremely high, around 200

meV [2, 3]. At elevated electronic temperatures, however, two subsets of optical phonons

(one with energy ∼190 meV at Γ, the other with energy ∼150 meV at K) couple strongly

to quasiparticles [33, 36, 43, 44]. These effects have been observed in nonlinear transport

experiments [45–47] and in ultrafast pump-probe measurements [33, 44]. In ultrafast opti-

cal measurements, quasiparticles in graphene can reach extremely high temperatures after

photoexcitation, which allows them to couple efficiently to optical phonons. This has been

observed in graphene and graphite both by elevated scattering rates [33, 48] and elevated

nonequilibrium phonon populations after photoexcitation [49–51].

As we will discuss below in connection with intraband conductivity of solids (§2.2.1),

the dc conductivity at low temperature is given by

σdc =
e2v2

F

2
g(εF)τ(εF), (2.9)

where g(εF) and τ(εF) are the density of states and the transport scattering time at the Fermi

level, respectively [3]. Most experimental measurements of graphene’s dc conductivity ob-

serve σdc ∝ n, where n is the gate-controlled carrier density in the sample [2,3,32,52] (except

in exceptionally clean devices [39,40]). This, combined with the fact that g(εF) ∝ εF ∝
√
n,

suggests that τ(εF) ∝ εF. Such a density-dependent scattering time is consistent with

charged impurity-dominated momentum relaxation in most devices [3, 52–54]. In contrast

to semiconductor 2DEGs, where optical phonon scattering dominates at room tempera-

ture, charged impurity scattering limits mobility in most graphene samples even at room

temperature [3].

9



Chapter 2 Background: graphene and electrodynamics of solids

2.2 Electrodynamics of solids

Optical measurements provide a powerful tool for investigating the electronic properties of

solids. For example, they are invaluable in studying band structure through interband ab-

sorption [55], as well as electronic transport properties and interactions [56]. In this section,

we describe features of optical properties of graphene in the infrared range of the electro-

magnetic spectrum and discuss their relevance to the work presented in this dissertation.

2.2.1 Drude model for free carrier electrodynamics

The Drude model for the electrodynamic response of free charge carriers is widely successful

in describing the low-energy electrodynamics of metals and doped semiconductors, despite

initially being derived from a purely classical model [55–57]. In Drude’s original formulation,

he considered electrons in a solid as point particles free to move in a lattice of stationary

ions. The ions were also treated as point particles [29, 58]. He assumed that the electrons

collided with the ions, with an average time interval τ between collisions. Further, each

collision randomly oriented the direction of the electrons’ velocity. The speed of an electron

after a collision was set by the Maxwell distribution.

In the presence of a spatially homogeneous, time-dependent external electric field

E(t) = E(t)x̂ = E0e
−iωtx̂, the classical equation of motion for the electron momentum p in

the x coordinate is

ṗ = −Γp− eE(t), (2.10)

where Γ = 1/τ is the damping rate introduced by collisions with the static ions. This

differential equation can be easily solved by Fourier transformation,

−iωp(ω) = −Γp(ω)− eE0. (2.11)

10
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Figure 2.4: Real (solid) and imaginary (dashed) parts of the Drude conductivity. The real
part is a Lorentzian function centered at ω = 0. The real and imaginary parts are equal at
ω = Γ, and the area under the real part for ω > 0 is (π/2)(ne2/me).

Solving for p, we find

p(ω) =
−eE0

Γ− iω
. (2.12)

To relate this expression for momentum to the conductivity, we first note that the classical

momentum of an electron is related to its velocity v by p = mev (me is the bare electron

mass). Additionally, the charge current is given by j(ω) = −nev = −nep(ω)/me ≡ σ(ω)E0,

where n is the density of electrons in the material. Combining these relations with Eq.

(2.12), we arrive at an expression for the ac conductivity of the electron system:

σ̃(ω) = σ1(ω) + iσ2(ω) =
ne2

me

1

Γ− iω
. (2.13)

This function describes a complex Lorentzian centered at zero frequency, shown in Fig. 2.4.

The half-width at half-maximum of the real part of the Lorentzian is equal to the scattering

rate Γ. When ω = Γ, σ1 = σ2 = max[σ2(ω)]. Additionally, the area under σ1(ω) is equal to

(π/2)(ne2/me). This will be discussed in more detail later in the context of sum rules and

conservation of spectral weight (§2.2.3).

While originally derived classically, the Drude form for σ̃(ω) also arises as a limiting

11



Chapter 2 Background: graphene and electrodynamics of solids

case of the semiclassical Boltzmann expression for conductivity, as well as from the fully

quantum Kubo formula. We sketch the derivations here. The Boltzmann expression for

conductivity in 3 dimensions within the relaxation-time approximation is given by [29,59,60]

σ̃(ω) = Ne2

∫
d3k

(2π)3

v2(k)

3

1

Γ(ε(k))− iω

(
−∂f

0

∂ε

)
(2.14)

where N is the degeneracy, v(k) = ~−1∂ε/∂k is the carrier band velocity, Γ(ε(k)) =

1/τ(ε(k)) is the energy-dependent relaxation rate, f0 is the Fermi distribution, and we

have considered an isotropic system so that
〈
vα(k)vβ(k)

〉
= v(k)2/3. For a Fermi system

with parabolic dispersion, v2(k) = 2ε/m∗, with (m∗)−1 = ~−2∂2ε(k)/∂k2 the effective mass

of the charge carriers. A change of variables from k to ε yields

σ̃(ω) =
2e2

3m∗

∫
dεg(ε)ε

1

Γ(ε)− iω

(
−∂f

0

∂ε

)
, (2.15)

where the density of states g(ε) is defined by

g(ε) = N

∫
d3k

(2π)3
δ(ε− ε(k)). (2.16)

When the temperature is low relative to the Fermi energy, the Fermi function is approxi-

mately a step function, and
(
−∂f0/∂ε

)
≈ δ(ε− εF). In many metals, εF ∼ 1-10 eV, so the

condition that kBT � εF is easily satisfied at most experimentally relevant temperatures.

This allows us to evaluate the integral and reveals that the physics is determined by the

Fermi surface properties. For fermions with ballistic dispersion and twofold spin degeneracy,

g(ε) = (3/2)n/εF [60], so we recover the Drude form

σ̃(ω) =
ne2

m∗
1

Γ(εF)− iω
. (2.17)

Here the free electron mass of the original Drude model has been replaced by the band

mass of quasiparticles in the solid and the scattering rate is the scattering rate at the Fermi

energy. Taking the ω → 0 limit recovers the formula for the dc conductivity in Eq. (2.9).

12
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The Boltzmann result is notably different for the 2D massless Dirac fermions in

graphene. For these quasiparticles, ε(k) = ~vF|k|, v(k) = vFk̂, and g(ε) = 2|ε|/π(~vF)2, as

we noted above in §2.1.2. Additionally, it is important to consider the finite temperature

case because graphene can easily be tuned between the εF � kBT and εF � kBT regimes

with an electrostatic back gate. We therefore cannot simply approximate the derivate of the

Fermi function as a delta function. In this case we begin with Eq. (2.14) modified for a 2D

massless Dirac system, which takes the form

σ̃(ω) =
Ne2v2

F

2

∫
d2k

(2π)2

1

Γ(ε(k))− iω

(
−∂f

0

∂ε

)
. (2.18)

We can use the identity (−∂f0/∂ε) = f0(ε)[1 − f0(ε)]/kBT and the assumption that Γ is

independent of energy to evaluate the integral, resulting in

σ̃(ω) =
2e2

π~2
kBT ln

[
2 cosh

(
µ(T )

2kBT

)]
1

Γ− iω
≡ D

π

1

Γ− iω
, (2.19)

where D is known as the Drudge weight [11]. When the density is nonzero and the tem-

perature is low compared to the chemical potential µ(T ), then D ≈ (e2/~2)µ(T ). This

differs from the normal metallic case, where σ ∝ n, independent of temperature [Eq. 2.17].

In contrast, for Dirac fermions, the conductivity explicitly depends on temperature, and

σ ∝ µ ∝
√
n. In the limit of vanishing density (µ → 0), D ∝ kBT . Wallace calculated

that n ∝ T 2 for undoped graphene [30], so here too D ∝
√
n. A plot of D as a function of

temperature at different carrier densities is shown in Fig. 2.5. A more detailed calculation

of D for graphene and comparison with conventional materials is presented in §6.2.2. It is

also important to note that, while Eq. (2.19) predicts σdc = 0 for εF = 0 and T = 0, several

theoretical studies predict a nonzero “minimal conductivity” even at zero temperature and

density [3]. The controversy surrounding the minimal conductivity in graphene does not

play a role in the analysis of our experiments, which were all performed at room tempera-

ture or above. We also note that, for graphene, the scattering rate Γ/2π typically lies in the
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Figure 2.5: Drude weight D for pristine graphene as a function of temperature at differ-
ent values of the Fermi energy εF, calculated using Eq. (2.19). For completely undoped
graphene, D increases linearly with temperature. At very high densities (εF � kBT ), D
decreases quadratically with temperature. When εF ∼ kBT , however, D depends non-
monotonically on temperature.

terahertz frequency range (∼10 meV) [11–14,61].

Finally, the Drude form for intraband conductivity can be obtained in a fully

quantum treatment. The Kubo formula relates the conductivity response function to cur-

rent fluctuations in the system in thermal equilibrium, and can be easily derived using

Fermi’s Golden Rule [55, 57, 62]. For a zero-temperature Fermi system interacting with an

electromagnetic field, the transition rate is

W =
2π

~
∑
n

| 〈n|Hint |0〉 |2δ(~ω − εn + ε0) (2.20)

where {|n〉} are the excited states of the system, |0〉 is the ground state (Fermi sea), Hint =

−
∫
drJ(r)·A(r) describes the interaction between the system and the electromagnetic field,

and εn and ε0 are the energies of the excited states and ground state, respectively. Here,

the electric field is given by E(r, t) = −∂A(r, t)/∂t, where A(r, t) is the vector potential

in the Coulomb gauge (∇ ·A = 0), and J(r) = −(e/2)
∑

i[viδ(r − ri) + δ(r − ri)vi] is the

current operator [62].
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Chapter 2 Background: graphene and electrodynamics of solids

For a monochromatic plane wave, A(r, t) = (i/ω)E(r, t) = (i/ω)E0 exp[i(q·r−ωt)]

and Hint = −(i/ω)e−iωtJ̃
∗
q ·E0. Here J̃q =

∫
drJ(r) exp(−iq · r) is the Fourier transform of

the current operator. The transition rate then becomes

W =
2π

~2ω
E2

0

∑
n

| 〈n| J̃∗q |0〉 |2

ωn − ω0
δ(ω − ωn + ω0) (2.21)

where ωi = εi/~ and we have restricted our attention to the case where the current is parallel

to the applied field. Anticipating the result, we have also written (1/ω2) from the matrix

element as 1/[ω(ωn − ω0)], since the δ-function requires that ω = ωn − ω0. We next use the

identity δ(ω − ωn + ω0) = (1/2π)
∫
dt exp[i(ω − ωn + ω0)t] to write

W =
1

~2ω
E2

0

∑
n

∫
dt
〈0| eiH0t/~J̃qe

−iH0t/~ |n〉 〈n| J̃∗q |0〉
ωn − ω0

eiωt. (2.22)

Since eiH0t/~J̃qe
−iH0t/~ = J̃q(t) in the interaction picture, we can rewrite the numerator as

〈0| J̃q(t) |n〉 〈n| J̃
∗
q |0〉.

We can relate this transition rate to the optical conductivity by appealing to the

relation P = σ1(ω)E2
0 = ~ωW/V, where P is the power absorbed by the sample per unit

volume V [57]. Utilizing the dipole approximation q ≈ 0, we can immediately read off from

Eq. (2.22),

σ1(ω) =
1

~
∑
n

∫
dt
〈0| J̃0(t) |n〉 〈n| J̃∗0 |0〉

ωn − ω0
eiωt, (2.23)

which, remembering that ω = ωn − ω0, can be written in the more familiar form

σ1(ω) =
1

~ω

∫
dt| 〈0| J̃0(t)J̃

∗
0 |0〉 |2eiωt. (2.24)

This is the Kubo formula, which is an example of the fluctuation-dissipation theorem relating

current fluctuations to dissipation by absorption of optical radiation. The Drude form is

recovered when one assumes that correlations in current fluctuations decay exponentially

in time, i.e., J̃0(t) = J̃0(0) exp(−Γ|t|) [55]. This assumption is just the relaxation time
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approximation, which was used above in the calculation of the conductivity within the

Boltzmann formalism. Inserting this into Eq. (2.23)

σ1(ω) =
1

~
∑
n

| 〈n| J̃0 |0〉 |2

ωn − ω0

∫
dteiωt−Γ|t| =

Γ

Γ2 + ω2

∑
n

2

~
| 〈n| J̃0 |0〉 |2

ωn − ω0
, (2.25)

which we already recognize has Lorentzian frequency dependence of the real part of the

Drude conductivity.

It can be shown [55,57] that the sum in Eq. (2.25) is equal to ne2m∗/2 for quasi-

particles with parabolic dispersion. For q = 0, J̃ =
∫
drJ(r) = −(e/m∗)

∑
i pi. Using this

equality, Eq. (2.25) becomes

σ1(ω) =
e2

m∗
Γ

Γ2 + ω2

∑
n

2

m∗
| 〈n|

∑
i pi |0〉 |2

~(ωn − ω0)
. (2.26)

In single particle quantum mechanics, the summand 2| 〈n| p |0〉 |2/[m∗~(ωn − ω0)] is known

as the oscillator strength fn,0 and obeys the sum rule
∑

n fn,0 = 1 [63]. For quasiparticles

in a solid, the sum in Eq. (2.26) is equal to the density, and we recover the Drude form of

Eq. (2.13) [55,57].

2.2.2 Interband absorption in graphene

Interband conductivity in graphene can also be calculated using Fermi’s Golden Rule for the

transition rate at finite temperature (accounting for both absorption and emission processes)

[55,57],

Wv→c =
2π

~
∑
i,f

|〈f |V |i〉|2 δ(~ω − εf + εi) [f(εi)− f(εf )] , (2.27)

where V is the part of the Hamiltonian that describes the interaction with the electromag-

netic field and f(ε) = (1 + exp[(ε − µ)/kBT ])−1 is the Fermi-Dirac distribution function.

Here |i〉 and |f〉 are electron states in the valence and conduction band, respectively. Eq.

(2.27) can be evaluated within the massless Dirac approximation of Eq. (2.7) by making the
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substitution p = ~k → p − (e/c)A, where A is the vector potential of the electromagnetic

wave. The Hamiltonian is then H = H0 + V = vF(p − (e/c)A) · σ. Within the dipole

approximation for a linearly polarized light wave, where A = (cE0/ω)e−iωtx̂,

V =
evF

ω

0 1

1 0

E0. (2.28)

Using this and Eq. (2.8) for the wavefunction, we find |〈f |V |i〉|2 = (e2v2
FE

2
0/ω

2) sin2(θki)δkf ,ki .

When we insert this into Eq. (2.27), the δkf ,ki kills the sum over final states. We convert

the sum over initial states to an integral over momentum
∑
ki
→ A

∫
d2k/(2π)2 (with A

the area of the sample) and integrate to obtain

Wv→c =
e2E2

0A
16~2ω

[
f

(
−~ω

2

)
− f

(
~ω
2

)]
. (2.29)

To obtain the optical conductivity from this expression, we again use the relation

for power absorbed per unit area [57], P = σ1(ω)E2
0 = ~ωWv→c/A, and multiply by 4 to

account for the spin and valley degeneracy, so that the final result is

σ1(ω) =
πe2

2h

[
f

(
−~ω

2

)
− f

(
~ω
2

)]
. (2.30)

For undoped graphene at zero temperature, this reduces to the frequency-independent “uni-

versal” ac conductivity of graphene [64–66], σ1(ω) = σ0 = πe2/2h. At finite carrier density

and zero temperature, Eq. (2.30) becomes σ1(ω) = σ0θ(~ω − 2εF), where θ(x) is the step

function. This describes the phenomenon of Pauli blocking, in which transitions for photon

energies below ~ω = 2εF are prohibited either due to the absence of electrons in the valence

band (hole doped regime) or the presence of electrons in the conduction band (electron

doped regime) [65, 67, 68]. A plot of the conductivity described by Eq. (2.30) at various

temperatures and with Fermi energy set to 125 meV is shown in Fig. 2.6. Note that the

temperature dependence of the chemical potential was included, so that the absorption onset

at ~ω = 2|µ| decreases with increasing temperature.
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Figure 2.6: Interband conductivity of massless Dirac fermions at various temperatures with
the Fermi energy set to εF = 125 meV, plotted using Eq. (2.30).

2.2.3 Sum rules and conservation of spectral weight

In §2.2.1, we encountered the f -sum rule when deriving the Drude conductivity from the

Kubo formula. There exist several other sum rules which relate the optical constants of a

material (permittivity, conductivity, etc.) to the number of particles in the system [56]. The

f -sum rule for solids requires that

∫ ∞
0

σ1(ω)dω =
πne2

2me
, (2.31)

where σ1(ω) is the real (dissipative) part of the optical conductivity, n is the total density

of electrons in the material (including all valence and ion core electrons), and me is the free

electron mass. This relation is required by causality and can be derived from the Kramers-

Kronig relations [69, 70]. The quantity on the right hand side, πne2/2me, is known as the

spectral weight SW, and the sum rule implies that the spectral weight is constant for a given

material, regardless of any changes in temperature, pressure, or other external parameters.

Eq. 2.31 is not very useful in practice because it requires knowledge of σ1(ω)

for all ω, but it entails other, more useful relations. Specifically, one can define partial
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sum rules relating to different dissipation mechanisms, such as a sum rule associated with

intraband Drude absorption [56]. Measuring changes in spectral weight can be useful for

understanding physical processes in solids. The spectral weight due to Drude absorption

can be easily calculated by direct integration:

(SW)intra =

∫ ∞
0

σintra,1(ω)dω =

∫ ∞
0

ΓD

π(Γ2 + ω2)
dω =

D

2
. (2.32)

For graphene at zero temperature, (SW)intra = (e2/~2)εF/2. Note that it is independent of

the scattering rate, regardless of the form of D.

It is not as straightforward to calculate the spectral weight due to the interband

absorption (SW)inter in graphene within the Dirac approximation because the universal

conductivity is constant and extends to infinite frequency. In practice, a cutoff frequency

ωco around which the Dirac approximation fails must be introduced. Then the spectral

weight due to universal conductivity (at T = 0) is given by

(SW)inter =

∫ ωco

0
σinter(ω)dω =

∫ ωco

0

πe2

2h
θ(~ω − 2εF)dω =

e2

4~2
(~ωco − 2εF). (2.33)

When the graphene is intrinsic (εF = 0), then the spectral weight is just the universal con-

ductivity times the cutoff frequency. The difference in spectral weight between the intrinsic

case and the finite-density case is (∆SW)inter = −(e2/~2)εF/2, which precisely cancels the

increase in intraband spectral weight [Eq. (2.32)]. Spectral weight is conserved: SW =

(SW)intra + (SW)inter = (e2/4~2)~ωco. Any changes in interband spectral weight must be

accompanied by changes in intraband spectral weight. While Eqs. (2.32) and (2.33) were

presented for T = 0, the spectral weight is conserved even at finite temperature, provided

(εF, kBT ) are smaller than ~ωco [65, 71]. Indeed, changing T or changing εF with an ex-

ternal gate results in transfer of spectral weight between (SW)intra and (SW)inter. Electric

field control of spectral weight transfer has been experimentally observed in infrared spec-

troscopic measurements of backgated graphene devices [11, 12]. Temperature-dependence
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of the spectral weight distribution has been observed in graphite [72]. In both cases, while

the distribution of spectral weight between (SW)intra and (SW)inter changed due to external

perturbations, the total spectral weight was conserved. Consequences of spectral weight

conservation on the photoconductive response of graphene will be discussed later in chapter

6.
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Chapter 3

Coherent terahertz spectroscopy

There exist numerous techniques to probe the optical conductivity of solids over a

wide range of photon energies ranging from µeV to eV [55,57]. As discussed in chapter 2, the

relevant energy scales for free-carrier electrodynamics in graphene lie in the terahertz (THz)

range. Historically, the THz range of the electromagnetic spectrum, usually considered as

0.1 – 10 THz, has been difficult to access experimentally [26,27]. In this chapter, we discuss

time-domain terahertz spectroscopy, an optical technique based on ultrafast lasers that is

able to access the THz gap. It has the additional advantage that it can be incorporated into

pump-probe measurements to investigate the properties of a system after photoexcitation

with ultrafast time resolution [25,28].

3.1 Time-domain terahertz spectroscopy

Time-domain terahertz spectroscopy (TDTS) is a powerful technique that allows access to

the electrodynamic response of solids at energy scales relevant for many physical processes

[26,27]. In contrast to conventional optical spectroscopies such as Fourier transform infrared

spectroscopy, in which optical intensities are measured in the frequency domain, TDTS

utilizes coherent generation and detection of THz radiation in the time domain. This leads to
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distinct advantages over frequency-domain spectroscopies in the form of enhanced dynamic

range and phase sensitivity [26]. Specifically, as discussed below, the phase sensitivity allows

direct extraction of complex material optical constants in the measured frequency range.

This contrasts with other spectroscopies which require Kramers-Kronig analysis of optical

spectra measured over broad frequency ranges and are susceptible to errors induced by

incorrect high- and low-frequency extrapolations [70].

3.1.1 THz generation and detection – nonlinear optics

For the measurements presented in this dissertation, we utilized nonlinear optics to generate

and detect THz radiation. Pulses were generated by frequency conversion of an ultrashort

(∼100 fs) near infrared optical pulse using a second-order nonlinear effect called optical

rectification. Detection occured by the inverse process, known as the Pockels effect, using

free-space electro-optic sampling.

Optical rectification

A simplified description of optical rectification is useful to develop intuition for the THz

generation process. In optics, the polarization P of a dielectric medium is often written as

a power series in the electric field: P (E) = ε0(χ(1)E+χ(2)E2 +χ(3)E3 + · · · ). In basic elec-

tromagnetic theory, one typically only considers the first-order contribution [69, 73]. When

strong electric fields are present, however, higher-order terms can become important [74].

Optical rectification is a second-order nonlinear optical effect in which an electromagnetic

wave at frequency ω induces a polarization in a nonlinear material that depends on the

first two powers of E(t), e.g., P (t) = ε0
[
χ(1)E0 cos(ωt) + χ(2)E2

0 cos2(ωt)
]
for a monochro-

matic wave E(t) = E0 cos(ωt). The part of the polarization that depends on the second

power of the incident electromagnetic wave can be rewritten using a trigonometric identity
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E0 ETHz ~ ∂2P
∂t2

P ~  E0 
2

Figure 3.1: Illustration of THz generation by optical rectification. As an optical pulse
propagating along the z-axis with electric field E0 ∝ exp[iω(t − z/c)] exp[−(t − z/c)2/2τ2]
and passes through a nonlinear medium, it generates a nonlinear polarization P (t) ∝
|E0(t)|2 which also passes through the medium. At each point in the medium, this
time-dependent polarization radiates according to Maxwell’s equations. The radiated field
ETHz ∝ (∂2P/∂t2).

as PNL(t) = ε0χ
(2)E2

0 [1 + (1/2) cos(2ωt)]. The first term in this expression represents a dc

polarization POR induced by an oscillating electric field and is termed optical rectification.

The second term represents second harmonic generation, and will not be considered further.

Terahertz generation through optical rectification occurs when a nonlinear material

is illuminated by a strong optical light pulse (the generation pulse) [27]. The process can be

described by a wave equation with a source,

∂2ETHz

∂z2
− n2

c2

∂2ETHz

∂t2
=

1

ε0c2

∂2POR

∂t2
, (3.1)

where z is the propagation direction and n is the linear refractive index at THz frequencies

[27, 74]. In linear optics, the term on the right-hand side is usually an external current,

but here it is due to the nonlinear interaction of the generation pulse with the material,

with POR = ε0χ
(2)|E0|2, where E0(t) ∝ exp(−t2/2τ2) exp(−iωt) is the electric field of the

generation pulse. The “dc” polarization POR ∝ exp(−t2/τ2) then acts as a time-dependent

dipole, which basic electrodynamics dictates will result in a radiated electromagnetic field
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[69, 73],

ETHz(t) ∝
∂2

∂t2
exp(−t2/τ2) =

4

τ4

(
t2 − τ2/2

)
exp(−t2/τ2). (3.2)

This process is depicted in Fig. 3.1. To see that the frequency of the radiated field indeed

lies in the terahertz range, we can compute the Fourier transform,

ETHz(ω) ∝ (ω2τ)e−ω
2τ2/4. (3.3)

For a typical generation pulse duration τ ∼ 100 fs, this function contains frequencies from

0–8 THz and peaks at ω/2π ≈ 3 THz.

It is important to emphasize that this is an overly simplified description of optical

rectification in real materials [27,74]. A more sophisticated analysis would take into account

effects of propagation of both the generation pulse E0(t) and the THz pulse ETHz(t) through

the nonlinear medium, frequency-dependent material susceptibilities, and other complica-

tions [27, 74]. These effects limit the useable frequency range of ETHz(ω) to around 0.2–3

THz. Additionally, the amplitude and polarization of the generated THz electric field de-

pend strongly on the orientation of the crystal axes of the nonlinear medium relative to

the polarization and wavevector of the generation pulse electric field E0. For example, zinc

telluride (ZnTe) is a zincblende crystal with a large second-order nonlinear susceptibility

that is often used for optical rectification [27]. In this material, THz emission is maxi-

mum when the generation pulse propagates along the [110] axis with E0 at an angle of

θ = sin−1(
√

2/3) ≈ 54.7◦ from the [001] axis (towards the [1̄10] axis) [27]. When this is the

case, ETHz ‖ E0 and the THz pulse propagates collinearly with the generation pulse.

Free-space electro-optic sampling

Coherent terahertz pulses are detected using a technique known as free-space electro-optic

sampling [27]. This method relies on the Pockels effect (or linear electro-optic effect), another

24



Chapter 3 Coherent terahertz spectroscopy

ZnTe (110)

ETHz

Eo

Figure 3.2: Schematic of electro-optic sampling. A THz pulse and optical pulse co-propagate
through a ZnTe crystal. The presence of the THz field induces birefringence in the crystal
which changes the polarization of the optical pulse. Note that the pulse durations are not
to scale in this figure.

second-order nonlinear optical effect that results from the same nonlinear susceptibility as

optical rectification [27, 74]. In contrast to optical rectification, no simple intuitive descrip-

tion of the Pockels effect in terms of basic electromagnetism exists. Phenomenologically, the

effect can be described as electric field-induced birefringence. Initially, the refractive index

for propagation of an optical pulse Eo through a nonlinear crystal does not depend on the

orientation of the light polarization relative to the crystal axes. Through a second-order

interaction with the crystal, the presence of ETHz changes the optical refractive index for

different polarizations as the pulse propagates along certain crystal axes.

The induced birefringence depends sensitively on the relative polarizations of the

THz and optical light fields, as well as their alignment relative to crystal axes of the electro-

optic (EO) material. The general case is quite complicated, and the reader is referred to
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Refs. [74, 75] for a rigorous discussion. Here, we consider the specific relevant case of a

linearly-polarized optical pulse propagating perpendicular to the (110) face of ZnTe, with

the [001] crystal axis parallel to the x̂ axis in the laboratory frame (Fig. 3.2). The EO

sampling signal is maximized when ETHz ⊥ x̂ (i.e., ETHz ⊥ [001]) [75]. Then the refractive

index for Eo parallel to (x̂ + ŷ) becomes n− ≈ no − (1/2)n3
or41ETHz, while the refractive

index for Eo parallel to (x̂− ŷ) becomes n+ ≈ no + (1/2)n3
or41ETHz [27, 74, 75]. Here no is

the refractive index of the ZnTe at the optical pulse frequency and r41 is the EO coefficient

for the ZnTe crystal.

When ETHz ⊥ x̂, the EO sampling signal can be maximized by setting Eo ‖ ETHz

or Eo ⊥ ETHz [75]. We consider the former situation: Eo = Eoŷ. The ZnTe detection crystal

is oriented such that the fast axis (i.e., axis along which the optical pulse experiences index

n− < no) is parallel to (x̂ + ŷ) and the slow axis is parallel to (x̂ − ŷ) (Fig. 3.2). It is

most convenient to rotate the lab frame by π/4 into a frame in which the x′ and y′ axes

are parallel to the fast and slow axes of the ZnTe, respectively. In this frame, the optical

electric field is

E′o =
Eo√

2

1

1

 . (3.4)

The Jones matrix [76] for propagation through the crystal with different indices of refraction

is

P =

ein−ωL/c 0

0 ein+ωL/c

 (3.5)

where ω is the probe pulse frequency, L is the EO crystal thickness, and c is the speed of

light in vacuum. The optical electric field after the ZnTe can be found by taking E′o → PE′o:

E′o =
Eo√

2

ein−ωL/c
ein+ωL/c

 = ein−ωL/c
Eo√

2

 1

ei(2δn)ωL/c

 , (3.6)
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where δn = (1/2)n3
or41ETHz. For convenience, we define ϕ ≡ (2δn)ωL/c. From Eq. (3.6),

we see that propagation through the EO crystal has introduced a phase shift ϕ between the

x′ and y′ components of E′o.

To measure this phase shift, the optical pulse is propagated through a quarter-wave

(λ/4) plate and a polarizing beam splitter (Wollaston prism) before being sent to a pair of

photodiodes. The λ/4 plate introduces an additional π/2 phase shift, so

E′o = ein−ωL/c
Eo√

2

 1

ei(ϕ+π/2)

 . (3.7)

Rotating back to the original lab frame,

Eo = ein−ωL/c
Eo

2

1 + ei(ϕ+π/2)

1− ei(ϕ+π/2)

 . (3.8)

Next, the Wollaston prism splits the beam so that the x-polarized component of Eo is sent

to one photodiode and the y-polarized component to a second photodiode. The intensity

incident upon each photodiode is given by the magnitude of the Poynting vector, S =

(1/2)
√
ε0/µ0 (Eo ·E∗o) ẑ [69]. From Eq. (3.8), we find

Sx(y) =
I0

2
(1± sinϕ) ẑ ≈ I0

2
(1± ϕ) ẑ, (3.9)

where I0 = (E2
o/2)

√
ε0
µ0

[73]. The difference in intensities on the two photodiodes is then

∆I = |Sx| − |Sy| = I0ϕ. From above, ϕ = ωL
c n

3
or41ETHz, so

∆I/I0 =
ωL

c
n3

or41ETHz. (3.10)

Eq. (3.10) is accurate as long as
[
(ωL/c)n3

or41ETHz

]
� 1, which is satisfied for most EO

sampling measurements made for spectroscopic purposes. With r41 = 3.9 pm/V and no ≈ 3

at 800 nm [27,75], ∆I/I0 ≈ 5% for ETHz = 0.6 kV/cm.

To measure the time dependence of ETHz(t) using free space EO sampling, one

first splits an optical pulse from an ultrafast laser into two paths (Fig. 3.3). One part
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Delay
Generation beam

Detection beam

THz beam

Figure 3.3: Schematic of THz setup. The beam from the laser is split into a generation
beam and a detection beam. The THz pulse and detection pulse co-propagate through a
ZnTe EO crystal. By varying the time overlap of the THz and detection pulses, the time
dependence of ETHz is measured.

of the pulse is used to generate a THz pulse by optical rectification in a ZnTe crystal (as

described in the previous subsection). The second part of the pulse is combined with the

generated THz pulse using a thin-film beam splitter, after which they co-propagate through

a second ZnTe crystal. Since the optical pulse is much shorter than the THz pulse, it only

experiences the field strength ETHz(t) at the time at which they are overlapped. To map

out the full t-dependence, one simply changes the relative path lengths using a mechanical

delay (“Delay” in Fig. 3.3). In the example data of Fig. 3.5, negative times correspond to

the situation in which the optical probe pulse reaches the ZnTe crystal before the THz pulse,

i.e., the detection pulse path is shorter than the generation pulse path + THz pulse path.

As a result, no EO signal is measured. One then uses the mechanical delay to increase the

detection pulse path length so that the pulse arrives at the ZnTe at the same time as the

leading edge of the THz pulse. Increasing the detection path further changes the measured

EO signal by an amount proportional to the strength of ETHz(t) at the time of overlap and

eventually results in the THz pulse propagating through the detection crystal before the

detection pulse arrives.
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3.1.2 Measuring optical constants using time-domain spectroscopy

In time-domain spectroscopy, one measures the electric field waveform E(t) of a coherent

light pulse. The recorded signal contains both amplitude and phase information. By Fourier

transforming the time-domain data, the amplitude |E(ω)| and phase φE(ω) of the electric

field as a function of frequency are obtained. TDTS is most often performed in a transmission

geometry (Fig. 3.4). In order to use this technique to extract the optical properties of a

material, the measured light transmitted through the sample needs to be compared to the

light incident on the sample. To accomplish this, one measures both a pulse transmitted

through the sample of interest, as well as a pulse transmitted through a known reference.

For optically thick samples, an empty aperture or vacuum is often used as the reference.

For a thin film sample on a substrate, the reference is often a bare substrate identical to the

one on which the sample is deposited.

To extract the material properties from the measured waveforms, one uses the

Fresnel equations (not the Frenzel equations!), which describe the transmission and reflection

of electromagnetic waves from interfaces [69, 73]. The Jones matrix formalism is useful for

analyzing the effects of multiple interfaces on an incident electromagnetic wave [76]. In this

formalism, the electric field of the light wave is represented by a two-component vector,

E = (Ex, Ey). A 2×2 matrixM is assigned to each optical element or interface encountered

by the wave as it propagates through an optical system. The electric field after propagating

through the optical system, Ef , is found by sequentially multiplying the initial electric field

Ei by the matrix representing each optical element: Ef = MN ·MN−1 · · ·M2 ·M1 ·Ei. In the

case relevant for TDTS without any polarization-altering optics, we can choose the electric

field to be polarized along, say, the x̂ axis so that we only consider the x component of E,

and the matrices all become constants. This allows us to extract the material properties

of a given sample if the incident electric field is known, as outlined below. Note that this
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n = 1

ñ

n = 1G~

Ei Et

�
Figure 3.4: Geometry for TDTS measurements. Interaction of the incident pulse Ei with the
material results in an attenuated and distorted transmitted pulse Et, which can be either
the sample pulse Esam or reference pulse Eref (see text for details). Reflected pulse Er is
not shown.

analysis must be performed in the frequency domain for polychromatic waves.

For a thin film sample and bare substrate reference (Fig. 3.4), the analysis proceeds

as follows. The frequency-domain electric fields transmitted through the sample and refer-

ence are given by Ẽsam = tG01P (ñs, `sam)t10Ẽi and Ẽref = t001P (ñs, `ref)t10Ẽi, respectively.

Here Ẽi is the incident field and P (ñs, `sam(ref)) = exp(iñsω`sam(ref)/c) is the coefficient

for propagation through the sample (reference) substrate with complex refractive index

ñs = ns + iks and thickness `sam(ref), and

tG01 =
2

1 + ñs + G̃Z0

;

t10 =
2ñs

1 + ñs
(3.11)

are the transmission coefficients for the front face and back face of the sample or reference.

Here G̃ = G1 + iG2 is the complex conductance of the thin film sample and Z0 = 376.6 Ω

= 2α(h/e2) is the impedance of free space (with α = 1/137 the fine structure constant).

Taking the ratio Ẽsam/Ẽref yields

t̃ ≡ Ẽsam

Ẽref

=
tG01P (`sam)

t001P (`ref)
=
eiñsω∆`/c

1 + Z0G̃
ñs+1

, (3.12)
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where ∆` = `sam − `ref is the difference in thickness between the sample and reference

substrates. This expression can be directly inverted to obtain the complex sheet conductance

of the sample:

G̃ =
ñs + 1

Z0

(
eiñsω∆`/c

t̃
− 1

)
. (3.13)

For samples of different dimension D, the sheet conductance is related to the conductivity

σ̃ by the relation G̃ = σ̃dD−2, where d is the thickness of the thin film sample. Graphene

can be considered to be two-dimensional, in which case the conductance and conductivity

are equal: G̃ = σ̃. We will therefore use “conductance” and “conductivity” interchangeably.

In order to reliably extract the conductivity of a thin film sample using the above

procedure, the complex refractive index of the substrate must be known. To obtain this

information, one measures the electric field pulse transmitted through a bare substrate,

Ẽsubs = t001P (ñs, `subs)t10Ẽi, and a pulse transmitted through a vacuum reference, Ẽref =

P (1, `subs)Ẽi, where P (1, `subs) = exp(iω`subs/c) describes propagation of the electromag-

netic wave through a slab of vacuum with the same thickness as the substrate. Taking the

ratio Ẽsubs/Ẽref , we find for the transmission coefficient:

t̃ =
4ñs

(1 + ñs)2
ei(ñs−1)ω`subs/c. (3.14)

This is a transcendental equation for ñs that cannot be solved analytically. Several ap-

proaches exist to numerically solve for ñs, but for the measurements presented in this disser-

tation we chose to use the method developed by Duvillaret et al. (Ref. [77]). This approach

is robust and straightforward to implement. It has the added advantage that it can be

extended to extract the substrate thickness `subs in addition to the optical constants [78],

which helps to remove systematic error associated with ∆` [Eq. (3.13)].

An example of typical TDTS data is shown in Fig. 3.5. The top panels show

the time- and frequency-domain signals measured after transmission through a 1 mm-thick
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Figure 3.5: Example of TDTS data. Top panels display the electric field of the pulse
transmitted through a reference, in this case a bare LaSrAlO4 substrate. Bottom panels
display the pulse transmitted through the sample, a thin film of the cuprate superconductor
La2−xSrxCuO4 (x = 0.16) on a LaSrAlO4 substrate.

LaSrAlO4 substrate. Only the absolute value of frequency-domain signal is presented in

the right panel, i.e., it does not include the phase. The bottom panels show the time- and

frequency-domain electric fields transmitted through a 52 nm thin film of the cuprate super-

conductor La2−xSrxCuO4 (x = 0.16) on a 1 mm LaSrAlO4 substrate at T = 4 K. Compared

to the top panels, it is apparent that the pulse transmitted through the superconducting

sample is strongly reduced in amplitude and phase shifted. Indeed, the phase shift, shown in

the inset of the top-right panel, is in the range π/4 < φ < π/2 for all measured frequencies.

From the measured attenuation and phase shift, the optical conductivity can be extracted

using Eq. (3.13). The large phase shift reflects the large imaginary conductivity charac-

teristic of superconductors. Further discussion of the static and time-resolved terahertz

properties of La2−xSrxCuO4 is presented in the appendix.
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τ

t

E TH
z

Figure 3.6: Schematic of time-resolved optical pump-terahertz probe spectroscopy experi-
ment. The “local” probe pulse time is denoted by t, while the pump-probe delay is denoted
by τ .

3.2 Time-resolved optical pump-terahertz probe spectroscopy

The terahertz spectroscopic measurements described in §3.1.2, enabled by the nonlinear

optical techniques discussed in §3.1.1, have proven extremely useful for characterizing ma-

terials in equilibrium conditions. Time-resolved optical pump-terahertz probe spectroscopy

(or time-resolved terahertz spectroscopy, TRTS) extends the utility of TDTS by allowing

characterization of low-energy electrodynamics in samples out of equilibrium [24,28,56]. In

this technique, a sample is first photoexcited by a strong optical pulse. Then at some time

delay τ after photoexcitation, which can be adjusted, the electrodynamic response is probed

by a THz pulse. There are two characteristic time scales involved in these experiments (Fig.

3.6). First is the time t at which the THz pulse is sampled, the “local” time. Second is the

time delay between optical pump and THz probe pulses, denoted as τ . Measuring the THz

properties of the sample under study as a function of pump-probe delay yields information

about the nonequilibrium state induced by photoexcitation and the dynamical return to the

equilibrium state. Different information can be obtained by varying one of the time scales,
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t or τ , with the other held fixed. In certain cases, one must obtain a full array of data as a

function of both t and τ in order to properly interpret the results [79]. The different cases

are discussed in the following sections.

3.2.1 1D probe scans

The 1D probe scan is a straightforward nonequilibrium extension of the static THz spec-

troscopy described in §3.1.2. In this experimental protocol, the pump-probe delay τ is held

fixed at some value while t is varied to measure the THz waveform transmitted through the

photoexcited sample [79]. This method is valuable for cases in which the nonequilibrium

sample response changes slowly over the timescale of the THz pulse, and it cannot be reliably

applied to very early time dynamics (. 1 ps) [80]. It can be used to extract nonequilibrium

transport properties of a sample, such as time-dependent carrier densities n(τ) and scat-

tering rates Γ(τ) in GaAs or Si semiconductors [24, 79, 81], or superfluid densities ρs(τ) in

superconductors [28,56,82–84] (see also appendix A).

Typically one measures the photoinduced change to the field transmitted through

the sample at given pump-probe delay τ , termed the “differential field” ∆Eτ (t), rather than

measuring the full field after photoexcitation. This allows the ability to detect smaller pho-

toinduced changes to the sample’s optical properties. The differential field can be related to

the photoinduced change to the optical properties of the sample if a reference is collected by

measuring the THz pulse transmitted through the sample in the absence of photoexcitation,

the “equilibrium field” E0(t). For a thin film on a transparent (ñs = ns + 0i) substrate, the

differential conductivity ∆σ̃τ (ω) can be related to the measured signal by [26,85,86]

∆σ̃τ (ω) ≈ −ns + 1

Z0

∆Ẽτ (ω)

Ẽ0(ω)
(3.15)

where ∆Ẽτ (ω) and Ẽ0(ω) are the complex Fourier transforms of ∆Eτ (t) and E0(t), re-

spectively. This relation can be derived from the Fresnel equations for the transmission
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coefficient [Eqs. (3.11)] as follows. If we denote the equilibrium film conductivity σ̃0 and

the nonequilibrium conductivity at pump-probe delay τ by σ̃τ , then

∆T̃τ

T̃0

=
−Z0(σ̃τ − σ̃0)

1 + ns + σ̃τZ0
≈ −Z0∆σ̃τ

1 + ns
(3.16)

where ∆T̃τ = T̃τ − T̃0, T̃τ = tστ01 from Eqs. 3.11, and in the last step we have assumed that

σ̃τZ0/(ns+ 1)� 1. For graphene on quartz, with σ̃τ ≈ στ,1 ∼ 10e2/h and ns = 2.1 [87], the

error introduced by this approximation is a few percent. Solving for ∆σ̃τ , and multiplying

∆T̃τ and T̃0 by Ẽi(ω) (where Ẽi(ω) is the THz field incident on the sample), one recovers

Eq. (3.15).

The simplest method to collect a 1D probe scan data set is to fix the pump-probe

delay τ and measure the THz probe pulse by adjusting the detection beam path length,

as discussed above in §3.1.1. When this method is used, however, different time points of

the THz probe pulse (i.e., different values of t) experience different pump-probe delays. To

see why this is the case, it is helpful to consider the experimental technique used to vary t

and τ . Consider the case when the pump pulse path length is chosen such that the pump

pulse arrives at the sample at the same time as the main peak of the THz pulse (τ = 0

in Fig. 3.6). The leading edge of the THz pulse then arrived at the sample before the

pump pulse arrived, and so transmitted through a sample still in equilibrium. The peak

of the THz pulse propagates through the sample just as it interacts with the pump pulse,

and therefore experiences the largest pump-induced modulation. Finally, the trailing edge

of the THz pulse passes through the sample as the response has already begun to relax

to equilibrium. By measuring ∆Eτ (t) solely through changing the detection pulse path,

one measures a THz pulse with this complicated history. If the sample response changes on

timescales much longer than the THz pulse duration, then this is not an issue. For graphene,

however, the characteristic relaxation timescale for photoconductivity is around 1–2 ps, so

35



Chapter 3 Coherent terahertz spectroscopy

the sample changes significantly as the pulse propagates through.

If one is interested in measuring the sample properties at a time delay τ after

photoexcitation, then one must obtain a measurement of ∆Eτ (t) in which all values of

t experience the same pump-probe delay τ . There are multiple methods to accomplish

this [79]. The simplest is to record the data as described above at all relevant t and τ , then

numerically extract the desired data. Alternatively, one can simultaneously adjust the pump

and detection beam path lengths to accomplish the same effect. To understand this, recall

that earlier local times (smaller t) correspond to shorter detection path lengths. In contrast,

earlier pump-probe delays (smaller τ) correspond to later arrival times of the pump pulse

to the sample (THz pulse reaches the sample before the pump pulse) and therefore longer

pump pulse path lengths. For concreteness, consider Fig. 3.6 with the scale of t set such

that t = 0 corresponds to the peak of the THz pulse. To measure ∆Eτ (t < 0), the pump

pulse path length must be made shorter (increasing τ) so that the pump pulse arrives at the

sample earlier relative to the THz peak. Similarly, for ∆Eτ (t > 0), the pump pulse path

must be made longer (decreasing τ). If the pump pulse path length is adjusted for each

value of t in this way, then the measured ∆Eτ (t) will have the same pump-probe delay for

each t. Often, this is sufficient to allow one to analyze the data as described in §3.2.1 for 1D

probe scans. This method was used for all 1D probe scans presented in this dissertation.

An example of 1D probe scan data is shown in Fig. 3.7. The left panel shows

E0(t) (black solid curve) and ∆Eτ (t) (red dashed curve) obtained a few picoseconds after

photoexciting semi-insulating gallium arsenide with a 1.55 eV pump pulse. ∆Eτ (t) is every-

where opposite in sign to E0(t), i.e., ∆Eτ/E0 is negative for all times t. From Eq. (3.15),

we see that this corresponds to positive photoconductivity (i.e., ∆στ > 0). This is shown

in the right panel, where we have plotted ∆σ̃τ (ω) calculated directly from Eq. (3.15) (red

dots), assuming that the photoexcited carriers are confined to a thin conducting film of
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Figure 3.7: Transient conductivity of GaAs measured by 1D probe scans a few picoseconds
after photoexcitation. The left panel shows the electric field E0(t) of the THz pulse trans-
mitted through the sample in equilibrium (black line) and the photoinduced change ∆Eτ (t).
The right panel shows the complex differential conductivity extracted using Eq. (3.15) (red
dots), setting the thickness of the conducting layer to d = 0.9 µm, the penetration depth
at the pump photon energy [79]. A fit to the Drude model is also shown (black lines). The
scattering rate Γ/2π of the photoexcited carriers is almost exactly 1 THz.

thickness equal to the penetration depth at 1.55 eV. The experimental data can be fit by

the Drude model to extract a photocarrier scattering rate Γ/2π ∼ 1 THz. Further analysis

of photoconductivity in GaAs is presented in Ref. [24] and references therein.

3.2.2 1D pump scans

If one is interested in the temporal dynamics of photoexcited carriers rather than their

transport properties at a single time delay, one performs a 1D pump scan. In this experiment,

the pump-probe delay τ is varied while the local THz time t is held fixed, usually at the

peak of the waveform t = tpeak [79]. This technique provides access to the time-dependence

of the material properties after photoexcitation averaged over frequency. It is most useful

when the differential conductivity is only weakly frequency dependent and mostly real, i.e.,

∆σ̃τ (ω) ≈ ∆στ,1 ≈ const. In this case, photoexcitation primarily changes the amplitude of

the THz field transmitted through the sample, and ∆σ̃τ can be directly related to ∆Eτ/E0.
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To justify this claim, we consider the Fourier representation of the electric field transmitted

through the sample as a function of time,

E0(t) =

∫
dω

2π
T0(ω)Ẽi(ω)e−iωt, (3.17)

where Ẽi(ω) is the Fourier transform of the incident THz pulse. After photoexcitation, this

expression becomes

Eτ (t) =

∫
dω

2π
Tτ (ω)Ẽi(ω)e−iωt, (3.18)

where τ is the time delay between pump and probe pulses. Then we have

∆Eτ (0) = Eτ (0)− E0(0) =

∫
dω

2π
∆Tτ (ω)Ẽi(ω), (3.19)

where ∆Tτ (ω) = Tτ (ω)− T0(ω) and we have set t = tpeak = 0. Therefore,

∆Eτ
E0

=

∫
dω
2π∆Tτ (ω)Ẽi(ω)∫
dω
2πT0(ω)Ẽi(ω)

. (3.20)

For a real and weakly ω-dependent transmission coefficient before and after photoexcitation,

∆T and T0 can be taken outside the integrals, which then cancel, leaving

∆Eτ
E0

=
∆Tτ
T0

= −∆στ,1Z0

ns + 1
. (3.21)

Note that the condition that the transmission coefficients are approximately real and frequency-

independent also requires the substrate to be transparent to THz light, ñs ≈ ns + i0.

One can see from Eq. (3.20) that the quantity ∆Eτ/E0 is much more difficult to

interpret when Tτ and T0 depend on frequency. This is because the imaginary part of the

transmission coefficient affects the phase of the transmitted pulse. If photoexcitation changes

the material properties in a complex, frequency dependent way, there is no straightforward

method to separate contributions to ∆Eτ/E0 from changing the amplitude and changing

the phase of the transmitted pulse. One must therefore exercise caution when interpreting

∆Eτ/E0 in materials with high mobility [88].
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Figure 3.8: Transient conductivity of Si measured by 1D pump scan. Photoexcitation at
τ = 0 drastically increases the conductivity of the sample by introducing free photocarriers,
reducing the amplitude of the transmitted signal by 50%.

A typical 1D pump scan is shown in Fig. 3.8. This figure shows the pump-

induced change to the transmission through high-resistivity silicon of the THz peak as a

function of pump-probe delay τ . For τ < 0, the probe pulse transmitted through the sample

before the arrival of the pump pulse, so the differential field is zero. Around τ = 0, the

conductivity increased sharply (recall, ∆σ ∝ −∆Eτ/E0). This is nearly identical to the

behavior observed in GaAs (Fig. 3.7). The long-lived photoconductivity signal reflects the

long lifetime of photocarriers in Si, which results from the indirect band gap in this material.

Further discussion of the nonequilibrium THz properties of Si is presented in Ref. [89] and

references therein.

3.2.3 2D time-resolved spectroscopy

Simply performing isolated 1D probe scans is insufficient when one is interested in very early

time dynamics, and 1D pump scans can be subject to artifacts when the sample response
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depends strongly on frequency [79, 80, 90]. In these cases, one must collect a 2D data set

consisting of ∆Eτ (t) as a function of both τ and t. This is because the finite bandwidth of

the electro-optic detection system can distort the measured pulses and introduce artifacts to

the extracted material properties. The detector response function must then be included in

the data analysis either by deconvolving the measured signal [79,80] or by simulation using

finite-difference time-domain methods [91,92].

Detector response

If one is interested in extracting rapidly-varying sample properties at pump-probe delays

<1 ps after photoexcitation, the procedure described in §3.2.1 is not sufficient to remove

experimental artifacts from the data [79]. This is because the EO detector response func-

tion has a finite bandwidth which limits the measurement’s time resolution and can intro-

duce frequency-domain artifacts to the data [27, 80, 93–95]. The detector response function

takes into account imperfect phase matching between the THz pulse and detection pulse,

frequency-dependence of the nonlinear susceptibility, THz absorption, and finite detection

pulse duration. Of these, imperfect phase matching (i.e., different phase velocities for Eo

and ETHz) has the largest limiting effect on the bandwidth [94]. It is important to note that

the detector response depends strongly on the EO crystal thickness, with thinner crystals

causing less pulse distortion than thicker crystals [27].

To take these effects into account, one approach is to record data in the simple

way (hold pump stage fixed for each τ and measure ∆Eτ (t) by sweeping detection stage),

then deconvolve the signal along the t axis from the detector response, then project onto the

appropriate time axis [79,80]. Alternatively, one can simulate the data using finite-difference

time-domain analysis, and take the detector response into account before comparison with

data [91,92]. This is the preferred approach taken in this dissertation.
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Finite-difference time domain analysis

The finite-difference time-domain (FDTD) method is a numerical approach to solving Maxwell’s

equations [96, 97]. Because solutions are computed in the time-domain, it is ideally suited

for analyzing time-resolved terahertz spectroscopy experiments [91, 92]. The process starts

with Maxwell’s equations in dielectric media in the absence of sources, reproduced here (in

SI units) for completeness [69]

∇ ·D = 0, ∇ ·B = 0

∇×E +
∂B

∂t
= 0, ∇×H− ∂D

∂t
= 0. (3.22)

Along with the constitutive relations D(t) = ε(t)∗E(t) and B(t) = µ(t)∗H(t), these provide

a complete description of electrodynamics in materials (here ‘∗’ represents a convolution).

For the purposes of this section, these equations can be greatly simplified. First, we are

only interested in linear, isotropic, nonmagnetic media, so the directions of the fields do not

change and µ(t) = µ0. Additionally, we are only concerned with propagation in one spatial

dimension, so we can choose E = Ex̂ and H = Hŷ so that the curls become partial derivates

in the ẑ direction. Finally, we will rescale H by Z0 =
√
µ0/ε0 so that the equations become

∂D

∂x
= 0,

∂H

∂y
= 0

∂E

∂z
+

1

c

∂H

∂t
= 0,

∂H

∂z
− 1

c

∂D

∂t
= 0. (3.23)

To solve these equations numerically, we need to convert them into a set of discrete

equations. The standard method of accomplishing this was introduced by Yee in 1966 [96].

He imagined that the electric and magnetic fields within a numerical cell were offset from

each other by half a step ∆z. Additionally, they were evaluated at time steps also offset by

half a time step ∆t. Then D(z, t)→ D(k∆z,m∆t) ≡ Dm
k and H(z, t)→ H[(k+ 1

2)∆z, (m+

1
2)∆t] ≡ Hm+ 1

2

k+ 1
2

, where m and k are integers. Using this scheme, we can discretize the time
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derivatives using finite-difference approximations [98], obtaining

∂H

∂t
≈

Hm+ 1
2

k+ 1
2

−Hm− 1
2

k+ 1
2

∆t


∂D

∂t
≈

[
Dm+1
k −Dm

k

∆t

]
. (3.24)

We next approximate the spatial derivatives in the same manner,

∂H

∂z
≈

[
Hm
k+ 1

2

−Hm
k− 1

2

∆z

]
∂E(t)

∂z
≈
[
Emk+1 − Emk

∆z

]
. (3.25)

We can now insert these approximations into Maxwell’s equations and solve for the fields at

the most recent time step to obtain

H
m+ 1

2

k+ 1
2

=H
m− 1

2

k+ 1
2

+
c∆t

∆z

[
Emk+1 − Emk

]
(3.26)

Dm+1
k =Dm

k +
c∆t

∆z

[
H
m+ 1

2

k+ 1
2

−Hm+ 1
2

k− 1
2

]
. (3.27)

These equations are known as the update equations for FDTD in one dimension. For

nondispersive media, D is related to E by simple multiplication: D(t) = εE(t). It is then

trivial to obtain Ekm once Dk
m has been updated in Eq. (3.27).

In order to propagate a wave through the numerical grid, sources must be intro-

duced. For the time dependence of the source field, we used a measured time-domain THz

pulse. We first deconvolved it from the detector response using the method of Larsen et

al. [92]. To introduce the source to the grid, we used the total field / scattered field method,

which allows the introduction of a source which only propagates in one direction [99,100]. In

addition to introduction of the source, proper boundary conditions must be implemented. If

appropriate boundary conditions are not used, spurious reflections will occur at the bound-

ary of the grid due to the fact that EmN+1 and Hm
− 1

2

are not defined at the edges of the
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N−point grid. In 2D and 3D FDTD, the perfectly-matched layer is often used. While this

method can also be used in 1D FDTD, we implemented a simpler solution known as the

“perfect 1D boundary condition” [99].

To simulate materials with dispersive susceptibilities, simple division relating Ekm

and Dk
m is no longer possible. We used the auxiliary differential equation method [92,97,100,

101]. We first recall that in the frequency domain D(ω) = E(ω)+P (ω) = ε0[ε∞+χ(ω)]E(ω)

where P (ω) is the material polarization, ε∞ is the dielectric constant due to higher-lying

optical resonances, and χ(ω) is the electric susceptibility [69,73]. For a Lorentzian resonance,

of which the Drude conductivity is a special case, χ(ω) = ω2
p/(ω

2
0 − ω2 + iγω), so P (ω) =

ε0[ω2
p/(ω

2
0 − ω2 + iγω)]E(ω). The time-dependent polarization associated with this must

therefore satisfy the differential equation

∂2P

∂t2
+ γ

∂P

∂t
+ ω2

0P (t) = ε0ω
2
pE(t). (3.28)

To avoid working with second-order derivatives, we define the time-dependent current func-

tion J(t) ≡ ∂P (t)/∂t [99]. Inserting this into Eq. (3.28) and applying the same finite-

difference approximations as before, we obtain update equations for J and P :

J
m+ 1

2
k =

[
2ε0ω

2
p∆t

2 + γ∆t

]
Emk +

[
2− γ∆t

2 + γ∆t

]
J
m− 1

2
k −

[
2ω2

0∆t

2 + γ∆t

]
Pmk

Pm+1
k = Pmk + ∆tJ

m+ 1
2

k . (3.29)

After obtaining Pm+1
k , we can find Em+1

k = (1/ε0)[Dm+1
k − Pm+1

k ]. Note that P and J

occupy the same grid sites as E and D. The update procedure is then as follows:

1. update H using Eq. (3.26),

2. update J and P using Eqs. (3.29),

3. update D using Eq. (3.27),
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4. update E by subtracting P from D.

In this way, the fields at future time t + ∆t can be calculated if the fields at time t are

known, and the evolution of the fields in dispersive media can be simulated.

With these results in hand, it is straightforward to extend FDTD to simulate

TRTS experiments. One simply makes the material parameters ω2
p, γ, and ω2

0 in Eq. (3.29)

depend on timestep. In this way, one can simulate the propagation of a THz pulse through

a material whose properties are changing during the propagation [91,92]. By repeating the

calculation at a variety of time delays τ , one can mimic realistic experimental conditions.

Finally, the resulting FDTD data can be convolved with the detector response to compare

with experiment.

3.2.4 Other frequency-domain artifacts

Another frequency-dependent artifact can arise when the pump spot size is smaller than

THz probe spot [79]. This occurs because the THz spot size is often different for different

frequencies, with higher frequencies (shorter wavelengths) being focused more tightly than

lower frequencies (longer wavelengths). If the pump beam is smaller than the average THz

spot size, then it may influence higher frequencies more than lower frequencies, which can

skew the frequency dependence of the measured photoconductivity [79]. For this reason, we

always kept the spot size of the pump beam around twice the size of the estimated THz

spot size. The spot sizes of the 800 nm pump beam and the THz probe beam on the sample

were typically ∼7 mm and ∼4 mm, respectively, to ensure approximately homogeneous

photoexcitation of the probed sample area.
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Experimental techniques

A significant portion of this dissertation work involved building and improving

the optical systems used to perform TRTS measurements in our lab. In this chapter, we

outline several of these changes and describe techniques that were implemented to expand

the capabilities of the experimental system.

4.1 Laser source

We used a Spectra-Physics Spitfire Pro titanium-doped sapphire (Ti:sapph) ultrafast am-

plifier as our laser source. The amplifier was seeded by a Tsunami Ti:sapph oscillator and

pumped by an Empower 30 Q-switched Nd:YLF laser operating at 527 nm. The Tsunami

was pumped by a Millennia Nd:YAG laser operating at 532 nm. The amplifier produced

laser pulses with center wavelength 800 nm (photon energy ~ω = 1.55 eV), full-width at

half maximum (FWHM) time duration <100 fs, and energy around 800 µJ at a repetition

rate of f = 5 kHz (average power ∼4 W). The pulses were first split by an 80/20 beam

splitter, where 80% of the pulse was transmitted to be used for optical pump excitation.

The remaining 20% was reflected and used for THz generation and detection. We used a

pellicle beam splitter (nominally a 92%T/8%R beam splitter) to further split the laser pulses
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Figure 4.1: Schematic of terahertz spectroscopy setup in the Gedik Lab at MIT.

into the THz generation and THz detection paths. A schematic of our THz generation and

detection setup is shown in Fig. 4.1. Details of THz generation and detection are discussed

in the following sections.

4.2 Terahertz generation and manipulation

The THz probe pulses were generated by optical rectification of the 1.55 eV laser pulses in

a 1 mm thick ZnTe crystal and detected by electro-optic sampling in a second ZnTe crystal

(see next section for detection system details). We used a thin piece of black high-density

polyethylene (HDPE) to block the residual generation beam. We chose HDPE because it is

opaque to the 1.55 eV laser pulses and is highly transparent in the THz frequency range [27].

We used a set of four 90◦ off-axis parabolic mirrors (OAPMs) in a confocal geometry to

collect the THz beam, focus it onto the sample, recollect it, and finally focus it onto the

ZnTe detection crystal. Many groups use two pairs of identical OAPMs, but we have found
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that using a shorter focal length for the final OAPM increased the dynamic range of the

measurement. The longer focal length of the first OAPM set the desired magnification,

while the short focal length of the final OAPM resulted in a smaller THz spot size on the

detection crystal, which increased the field strength ETHz and hence the EO sampling signal

∆I/I0. The effective focal lengths of the OAPMS in our setup are 6”, 4” (× 2), and 3” for

mirrors 1–4, respectively.

To further improve the dynamic range of our measurements, we adjusted the power

and spot size of the generation beam on the ZnTe generation crystal. The size of the

beam was chosen to optimize the balance between diffraction losses associated with a small

THz generation spot and minimizing the THz spot size at the sample. Assuming that the

THz beam could be treated as a Gaussian beam expanding from a waist at the generation

crystal, the spot size at the sample was set by the spot size on the crystal multiplied by the

magnification ratio of the OAPMs (M=4”/6” = 0.67). We found that a generation beam

radius (1/e in intensity) of around 1 mm was optimum, i.e., resulted in a small enough

spot size at the sample but also allowed collection of sufficient low-frequency light. The

power was controlled by a thin-film polarizer (Newport 11B00UP.26) and half-wave (λ/2)

plate combination. We found that ∼220 mW of average power (pulse energy u = 44 µJ;

fluence F = 700 µJ/cm2) directed to the crystal was the maximum we could apply before

the crystal began to glow white in the center, indicating higher-order or non-perturbative

optical processes, which can cause long-term damage.

To improve the stability of the measured THz signal, we constructed an enclosure

for the entire optical system. The enclosure was built from black anodized aluminum ex-

trusions and black HDPE side panels with removable clear acrylic lids (80/20, Inc.). The

generation beam path, from the laser output to the generation crystal, was therefore pro-

tected from fluctuations induced by air currents and, to some extent, local temperature
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fluctuations. Additionally, the entire THz beam path was enclosed in a custom box that

was constantly purged with dry air to reduce absorption lines caused by water vapor [102].

The relative humidity was kept below 0.1% during measurements. The dry air source was a

commercial regenerative air dryer (DelTech WM-13N) which sourced the air from the build-

ing lines, filtered it, and dehumidified it with desiccant. The self-regenerative design of the

air dryer allowed continuous operation with minimal service interventions (e.g., desiccant

replacement). This method was more cost-effective and convenient than purging with nitro-

gen gas. Since the air supply was essentially limitless, the flow rate could be made as high

as necessary to purge the box. It was important, however, to set the flow to the minimum

value necessary to achieve 0.1% relative humidity because high flow rates could introduce

noise to the signal.

4.3 Detection system

In all measurements presented in this dissertation, the THz probe pulses were detected by

EO sampling of the 800 nm laser pulses in a ZnTe crystal. As mentioned above, the thickness

of the detection crystal influences the detector response function, which can cause error in

the spectrum of the detected pulse if the sample properties change at a rate comparable

to or greater than the bandwidth of the detector. For all static measurements, we used

a 1 mm thick detection crystal to maximize the signal to noise ratio, since the detected

signal is approximately linearly proportional to the crystal thickness [Eq. (3.10)]. For

frequency-resolved ultrafast measurements, we used a thin detection crystal to minimize

the errors associated with the detector response function [80]. Instead of simply using a

thinner crystal, we used a hybrid crystal in which a 100 µm-thick layer of (110)-cut ZnTe

was optically epoxied to a 1 mm-thick ZnTe with a different cut. The thick region did not
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contribute to the EO sampling signal, but prevented the presence of multiple reflections

(etalons) in the signal.

For the measurements presented in chapter 5, we measured the EO signal using

the standard lock-in implementation. We used a pair of ThorLabs DET36A reverse biased

photodiodes terminated with 110 kΩ resistors as our detectors. The output signals from

the photodiodes were sent directly to the A and B inputs of a lock-in amplifier (Stanford

Research Systems SR830). The amplifier was phase-locked to a mechanical chopper (New

Focus 3501) and set to “A−B” mode to detect the difference between theA andB inputs. For

equilibrium measurements, the chopper modulated the THz generation beam at a frequency

asynchronous with the laser repetition rate. We typically used frequencies around 500 Hz.

For time-resolved nonequilibrium measurements, the pump beam was chopped to allow

detection of the small differential changes in the signal induced by the pump pulses. The

lock-in signal was sent to a computer via a GPIB connection.

For the measurements presented in chapter 6, we collected the data with a data

acquisition (DAQ) card as described by Werley et al. [103] instead of the conventional lock-

in detection scheme. For equilibrium measurements, we chopped the THz generation beam

at half of the laser repetition rate, f/2 = 2.5 kHz, so that every other generation pulse

was blocked. As a result, the THz pulse was present for every other detection pulse that

passed through the ZnTe detection crystal. For every two pulses emitted by the laser, four

signals were measured: A1, A2, B1, and B2, corresponding to the peak intensities of the first

and second pulses on diode A and diode B, respectively. From these signals, we extracted

the EO sampling signal by calculating ∆I/I0 ∝ ETHz as follows. We set the phase of the

chopper such that the THz field was present for the first pulse but not the second. In that

case,
1

2

(
A1

A2
− B1

B2

)
=

1

2

(
I0 + ∆I

I0
− I0 −∆I

I0

)
=

∆I

I0
. (4.1)
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a b

Figure 4.2: Depiction of method to set proper phase on generation beam chopper. (a)
Generation beam spot on ZnTe when the chopper phase is set correctly. (b) Generation
beam spot on ZnTe when the chopper phase is 90◦ away from the correct phase.

This method has the advantage that the recorded signal is directly proportional to the THz

field, and the proportionality constants are known [Eq. (3.10)] (Refs. [27, 103]). One can

therefore calculate the THz electric field strength directly. This is not necessary when simply

performing spectroscopic measurements, but can be useful when using high-field THz pulses

as the source of photoexcitation [104].

To implement the DAQ detection method, the optical chopper with a 60-slot wheel

installed was used to modulate the THz generation beam. It was phase locked to a trigger

signal provided by the laser system after having the timing adjusted by a digital delay

generator (DDG, Stanford Research Systems DG535). The correct phase between laser

trigger and chopper was chosen by looking at the laser spot on the ZnTe generation crystal

after it passed through the chopper. To set the correct phase, we first adjusted the phase on

the chopper controller until a notable interference fringe appeared across the center of the

laser spot on the ZnTe generation crystal [Fig. 4.2(b)]. We then increased or decreased the

phase by 90◦ to ensure that the entire generation beam spot was transmitted (pulse 1) or

blocked (pulse 2) by the chopper blade [Fig. 4.2(a)]. The output from the chopper was sent

to the DAQ card (National Instruments PCI-6143) to trigger the pulse sequence acquisition.
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The sampling rate was set by a signal sent directly from the DDG to the DAQ card. The

timing on the DDG was chosen so that the DAQ would sample the peak of the photodiode

signal for each pulse [103].

For both detection methods, it was important to focus the detection beam at ap-

propriate points along the beam path. Focusing the detection beam onto the ZnTe detection

crystal greatly enhanced the THz signal because it ensured that essentially the entire de-

tection spot was located at the center of the THz spot, where the THz electric field was

strongest. This then increased the EO sampling signal since ∆I/I0 ∝ max(ETHz). Without

focusing, the EO signal would be proportional to the THz field strength averaged over the

spot size, which could be around a factor of two smaller than max(ETHz). In our setup, we

used a 2-to-1 telescope to focus onto the detection crystal with a 200 mm focal length plano-

convex lens to focus and a 100 mm focal length plano-convex lens to re-collimate the beam.

Beyond focusing onto the detection crystal, the 2-to-1 telescope had the added advantage

that the beam was smaller after the telescope so that it was easier to guide through the λ/4

plate and Wollaston prism to the balanced photodiodes. It was also important to focus the

detection beam onto the photodiodes. This ensured that the entire laser spot was within

the active area of the diode and therefore reduced noise associated with pointing instability,

which can cause a large beam to walk off the active diode area.

Minimizing the amount of scattered laser light that reached the diodes was also

crucial to minimize noise. This was especially important for the lock-in detection method,

since light scattered by the optical chopper was modulated at the same frequency as the

actual THz signal. We implemented two methods to prevent scattered light from reaching

the diodes. First, we placed the lenses that focused the detection beam onto the diodes

inside long lens tubes mounted directly to the diode housing. This effectively reduced the

numerical aperture by preventing light incident at large angles from reaching the detectors.
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lens
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Figure 4.3: Schematic of different pump beam delivery methods. (a) Pump beam inci-
dent upon the sample at oblique incidence, appropriate for measurements with slow sample
timescales. (b) Pump beam incident upon sample at normal incidence, useful when sample
dynamics are fast. A pellicle beam splitter sends part of the pump beam to an off-axis
parabolic mirror, which collimates and reflects the pump to the sample. The residual pump
beam transmitted through the pellicle is blocked with a beam block.

Additionally, we used blackout materials to build an enclosure around the detection optics,

which further prevented scattered laser light, as well as ambient room light, to reach the

diodes. These two measures greatly improved the sensitivity of our TRTS system.

4.4 Optical pump-THz probe experiments

4.4.1 Pump beam delivery

We routed the pump beam to the sample two different ways, shown in Fig. 4.3. The first,

and simplest, was to simply send the beam directly to the sample at an oblique angle [Fig.

4.3(a)]. This method worked well for samples which exhibited dynamics slow compared

to the pulse widths, but degraded the time resolution when the dynamics were fast. This

is because the THz spot size on the sample was large, typically a few mm across. The

pump waist had to be even larger to ensure homogeneous photoexcitation, so the obliquely-

incident pump pulse front did not reach the sample at the same time at each point of the

sample surface, as depicted in Fig. 4.4. From this figure, it is apparent that the time

smearing, defined as the difference in arrival time of the two edges of the pump pulse front,

52



Chapter 4 Experimental techniques

θ
w

cΔt

Figure 4.4: Diagram depicting the cause of temporal smearing when the pump beam is
incident upon the sample at oblique incidence. Here w is the width of the pump beam, θ is
the angle of incidence, and ∆t = w tan θ/c is the temporal smearing.

is ∆t = w tan θ/c, where w is pump beam width, θ is the angle of incidence, and c is the

speed of light. For a beam with width w = 3 mm incident at θ = 15◦, the time smearing

is ∆t ≈ 2.5 ps. For samples such as conventional semiconductors and superconductors,

decay times are typically tens of picoseconds, so this smearing does not adversely affect the

measurements. In graphene, however, decay times are on the order of a few picoseconds,

so the smearing introduced by an obliquely-incident pump beam can drastically affect the

measured sample response.

The second pump beam routing method solved this problem by sending the pump

beam to the sample at normal incidence, co-propagating with the THz probe beam [Fig.

4.3(b)]. To accomplish this, we inserted a large pellicle beam splitter coated for 50/50

reflection/transmission at 633 nm (Edmund Optics) into the THz beam path between the

first two OAPMs. A lens was used to focus the pump beam before the pellicle. As the

beam expanded, it was partially reflected by the pellicle. The reflected portion impinged

upon the second OAPM, which collimated it and reflected it to the sample. Since the pump

beam and probe beam then propagated collinearly, the time resolution was only limited by

the pulse widths or detector response. Additionally, all photoexcited regions of the sample
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experienced the same pump-probe delay, so no frequency or time dependent artifacts were

introduced.

4.4.2 Detection for pump-probe measurements

The DAQ detection method described above has the additional advantage that it can eas-

ily be extended to nonequilibrium pump-probe measurements. For these experiments, we

chopped the THz generation beam at frequency f/2 = 2.5 kHz and the pump beam at

frequency f/4 = 1.25 kHz. During each period of the pump chopper, we measured the

intensity of the four laser pulses that passed through the ZnTe EO detection crystal and

reached the balanced photodiodes (Ai and Bi, with i = 1 − 4). In a typical sequence, the

THz pulse was present in the ZnTe while the first and third pulses passed through, but not

during the second and fourth (Fig. 4.5). For the first pulse, the THz had interacted with

the sample in the presence of pump excitation, whereas for the third pulse, the THz had

interacted with the sample without pump excitation. By comparing the pulses with and

without THz (third and fourth), we extracted the THz field strength E0(t) using Eq. (4.1).

By comparing the two pulses with that passed through the ZnTe crystal with THz, one with

and one without the pump beam (first and third), we extracted the pump-induced change

to the THz field, ∆Eτ (t) as follows. We denote the intensities of the pulses that reach the

diodes I0±∆I when the THz was present without the pump and I0± (∆I + δI) when both

pump and THz were present. Then

1

2

(
A1

A3
− B1

B3

)
=

1

2

(
I0 + (∆I + δI)

I0 + ∆I
− I0 − (∆I + δI)

I0 −∆I

)
(4.2)

=
1

2

(
δI

I0 + ∆I
+

δI

I0 −∆I

)
=
δI

I0

(
1

1− (∆I/I0)2

)
.
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I0I0 ± ΔII0I0 ± (ΔI + δI)

Pulse 1 2 3 4

Detection

Terahertz

Pump

Figure 4.5: Pulse sequence for double modulation DAQ detection in optical pump-THz
probe measurements. After passing through the ZnTe detection crystal, each of the four
detection pulses passed through a quarter-wave plate and was split by a Wollaston prism.
The cross-polarized pulses were then sent to a pair of balanced photodiodes A and B. The
bottom row labels the intensity of the each detection pulse that reached the photodiodes
(“+” sign is for diode A and “−” sign is for diode B). Refer to the text for further details.
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Figure 4.6: Simulated oscilloscope signal used to set the phase of the pump beam chopper.
Left panel shows what the signal should look like when the phase is set correctly. Right
panel shows that the phase is incorrect because the chopper blade is not fully blocking one
of the pump beam pulses.

Since ∆I/I0 was at most ∼12% in our measurements (and typically ∼2.5%), the quantity

in parentheses was always . 1.01 and neglecting it therefore introduced at most a 1% error.

Importantly, it was always the same for a given equilibrium field E0(t = t0), and so did not

depend on pump-probe delay τ . It therefore could not introduce spurious signals (e.g., a

sign change) into a measurement of ∆Eτ (t = t0)/E0(t = t0).

To implement this scheme, we used a ThorLabs MC2000 chopper controller with

MC1F60 chopper blade installed to modulate the pump beam at one-fourth the laser repeti-

tion rate. The blade rotation was triggered by the output of the New Focus optical chopper

that chopped the generation beam. To set the correct phase of the pump beam chopper, we

used a photodiode to detect scattered light from the pump beam after passing the chopper.

The diode signal was sent to an oscilloscope and triggered on the chopper output. When the

chopper phase was set correctly, the pulse train comprised pairs of pulses separated by 400

µs [Fig. 4.6, left panel]. Signs of more than two pulses indicated that the phase was not set

correctly [Fig. 4.6, right panel]. Once the phase was set correctly, the trigger signal from the
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Figure 4.7: Raw data from 1D pump scans on graphene recorded using differential chop-
ping and DAQ card detection at two different applied gate voltages. Black lines show the
equilibrium field E0(t), while red lines show the pump-induced change to the field, ∆Eτ (t).
Simultaneous acquisition of E0(t) and ∆Eτ (t) reduces systematic error due to drift of the
laser system.

ThorLabs MC2000 was sent to the DAQ card to trigger the pulse sequence acquisition. The

signal from the photodiodes was then collected at a sampling rate set by the laser trigger

from the DDG.

Examples of raw data collected using this scheme are shown in Fig. 4.7. These

plots show E0(t) (black lines) and ∆Eτ (t) (red lines) collected by photoexciting a graphene

sample at high electron doping (left panel) and near the charge neutrality point (right panel).

Because this method allowed simultaneous measurement of E0(t) and ∆Eτ (t), it reduced

systematic errors associated with drift of the laser system [103, 105]. We confirmed that

our measurement yielded the correct sign of the photoconductivity by comparing to the

photoconductivity measured on a reference Si or GaAs sample. Further discussion of the

data in this figure is presented in chapter 6.
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Chapter 5

Observation of negative terahertz
photoconductivity in doped graphene

Optical pump excitation has been shown to effectively modulate the THz response

of graphene. In particular, previous studies reported enhanced absorption of THz radiation

in optically pumped graphite and graphene [33,106–108]. In these works, the observation was

understood by considering Drude absorption with a fixed (energy-independent) scattering

rate, which typically increased with the population of photoexcited carriers. However, the

small Fermi energy of charge carriers in graphene suggests that non-Drude behavior is likely

to occur at the high transient temperatures encountered in pump-probe experiments, and

the coupling of carriers to hot phonons may alter their scattering rates.

In this chapter,1 we present optical pump-THz probe [24,25] measurements of the

ultrafast far-infrared response of large-area monolayer graphene grown by chemical vapor

deposition (CVD). We observed a transient decrease of THz absorption in graphene sub-

ject to pulsed optical excitation, a result in contrast with the increased absorption reported

previously for epitaxial graphene [106–108]. In addition, the differential THz conductivity

1Most of this chapter is reproduced with permission from A. J. Frenzel, C. H. Lui, W. Fang, N. L. Nair,
P. K. Herring, P. Jarillo-Herrero, J. Kong, N. Gedik, Observation of Suppressed Terahertz Absorption in
Photoexcited Graphene, Applied Phyiscs Letters 102, 113111. Copyright (2013) by the American Institute
of Physics.
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Chapter 5 Observation of negative terahertz photoconductivity in doped graphene

spectrum deviated significantly from the Drude form. We propose that the observed anoma-

lous THz bleaching arises from additional scattering of electrons with optical phonons in

graphene and on the substrate, as well as thermal broadening of the electron distribution

under non-equilibrium conditions.

5.1 Sample description and characterization

Monolayer graphene samples were grown by CVD [109] on copper foils and subsequently

transferred to different THz-transparent substrates, including sapphire, z-cut crystalline

quartz, and borosilicate glass. The monolayer thickness and sample quality of the CVD

graphene were characterized by Raman spectroscopy (inset of Fig. 5.1). The narrow, sym-

metric Lorentzian peak at∼2700 cm−1 indicates that the sample is monolayer graphene. The

absence of a significant feature at ∼1350 cm−1 suggests that the sample has low structural

disorder [110]. We measured the THz absorption spectrum of the CVD samples without

optical excitation and extracted the complex optical conductivity of graphene using the

method described in §3.1.2. Fig. 5.1 displays the conductivity spectrum of a graphene

sample on a quartz substrate at room temperature. The data can be fit well by the Drude

formula

σ̃(ω) =
D

π(Γ− iω)
≈ 2e2

h

(
εF

~Γ− i~ω

)
(5.1)

with a Fermi energy εF ∼ 300 meV and scattering rate Γ ∼ 12 meV (3 THz), correspond-

ing to a carrier density n ∼ 6 × 1012 cm−2 and mobility µ = ev2
F/ΓεF = 2000 cm2/V·s.

These parameters are typical for doped CVD graphene on a substrate [11, 12, 14, 111]. The

approximation D ≈ (e2/~2)εF is valid because εF � kBT , as discussed in §2.2.1.
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Figure 5.1: Complex optical sheet conductivity of graphene from 0.21 to 2.1 THz in units of
e2/h. The measurement was performed at room temperature on monolayer CVD graphene
on a quartz substrate (without optical excitation). A bare quartz substrate was used as a
reference. The blue solid and dashed lines are the real (σ1) and imaginary (σ2) part of the
conductivity, respectively. The data can be fit by the Drude model (thin black lines) with
carrier scattering rate Γ/2π = 3 THz. The inset shows a typical Raman spectrum of our
CVD graphene (excitation wavelength 532 nm). The narrow Lorentzian line shape of the 2D
mode confirms the monolayer thickness of the samples. The small D-mode signal indicates
the high crystalline quality of the samples.
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5.2 Experimental results

Measurements presented here were performed in the low fluence regime (incident pump

fluence ∼10 µJ/cm2) at room temperature and in high vacuum (pressure < 10−5 Torr).

Using the two-temperature model of Ref [44], we estimate that under our experimental

conditions, the maximum transient electronic temperature was . 1000 K and equilibrium

heating of the lattice was negligible. When we pumped the graphene/quartz sample with

800 nm pulses, we observed a significant change in the transmitted THz probe pulses [Fig.

5.2(a)]. Strikingly, the THz transmission was found to increase following pulsed excitation.

For a thin film deposited on a transparent substrate, the differential transmitted electric

field ∆Eτ , normalized to the equilibrium transmitted field E0, is related to the differential

optical conductivity ∆στ as (§3.2.2)

∆Eτ
E0

= −
(

Z0

ns + 1

)
∆στ (5.2)

where ns is the substrate refractive index and Z0 = 2α(h/e2) the impedance of free space.

Our observation of positive ∆Eτ therefore corresponds to negative differential conductivity,

or reduced absorption, in graphene.

Fig. 5.2(b) displays the temporal dynamics of the pump-induced modulation of

the THz transmission, which are well described by an exponential decay with time constant

1/γ = 1.7 ps (Fig. 5.2(b) inset). These data were collected by synchronously adjusting the

detection and pump beam path lengths to ensure that all parts of the THz signal experienced

the same pump-probe delay as described in §3.2.3. It is firmly established that photoexcited

charge carriers in graphene thermalize rapidly and relax some of their energy to a set of

strongly coupled optical phonons within a few hundred femtoseconds [33, 44, 49–51, 112].

The equilibrated subsystem of electrons and optical phonons subsequently cools within a few

picoseconds through the anharmonic decay of the optical phonons. We therefore attribute
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Figure 5.2: (a) Transmission of the THz electric field with (blue) and without (orange)
pump excitation, measured by chopping the THz generation beam. The dashed line is the
pump induced modulation of the transmitted electric field ∆Eτ , scaled by a factor of 10 for
clarity. The inset shows a zoomed-in view of the peak, indicating that ∆Eτ corresponds to a
pump-induced bleaching of the graphene sample. (b) Temporal dynamics of ∆Eτ following
optical pump excitation, measured by chopping the pump beam. The horizontal and vertical
dashed lines are, respectively, the zero pump-probe delay time and the peak position of ∆Eτ .
Inset shows the temporal dynamics of the peak of ∆Eτ (vertical dashed line in main panel).
The red line is a fit to ∆Eτ = A exp(−γτ) with time constant 1/γ = 1.7 ps. The peak value
of the signal corresponds to ∆Eτ/E0 ∼ 5%.
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the observed dynamics of the THz response to the cooling of the coupled electron-phonon

system.

We used Eq. (5.2) to extract the complex differential conductivity spectra (∆σ̃τ =

∆στ,1 + i∆στ,2) from the transmission data in Fig. 5.2(b) at different pump-probe delay

times [Fig. 5.3(a)]. We found that ∆σ1 remained negative for the whole decay process after

pulsed excitation [Fig. 5.3(a)], and for the entire measured spectral range [see, for example,

the spectrum at pump-probe delay 1 ps in Fig. 5.3(b)]. We note that we observed negative

∆στ of similar magnitude and lifetime (both with variation < 20%) at temperatures ranging

from 4 to 300 K. The response was also found to be similar for CVD graphene samples on dif-

ferent substrates (sapphire, quartz and borosilicate glass), and in both ambient and vacuum

conditions. We therefore conclude that it is a general property of highly doped graphene

on a substrate. The results are surprising because the intraband absorption of graphene is

typically described by the Drude model with a constant scattering rate. Increasing the free

carrier population by photoexcitation should lead to enhanced THz absorption, as observed

in epitaxial graphene layers on SiC substrate [106–108], as well as in traditional semiconduc-

tors such as GaAs [80] and Si [89]. The explanation of our experimental data must therefore

lie beyond this simple picture.

5.3 Analysis and discussion

The negative sign and non-Drude spectral shape of the measured differential THz conduc-

tivity in graphene [Fig. 5.3(b)] can be qualitatively understood by considering the increased

scattering rate and broadened carrier distribution present in the transient regime, where the

electron and phonon systems are driven to considerably higher temperatures than in equi-

librium. After pulsed excitation, thermalization and cooling of photoexcited carriers are
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Figure 5.3: (a) Temporal dynamics of the real (upper panel) and imaginary (lower panel)
parts of the differential THz conductivity of optically pumped monolayer graphene. The
black solid line denotes zero pump-probe delay time. (b) Differential THz conductivity 1 ps
after optical excitation (horizontal dashed lines in (a)). The filled and open circles denote
the experimental real (∆σ1) and imaginary (∆σ2) parts of the conductivity, respectively.
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Figure 5.4: Two scenarios for photoinduced changes to Drude conductivity in graphene. (a)
Photoexcitation increases Drude conductivity (red area) relative to value before photoex-
citation (blue area) due to presence of photoexcited carriers. (b) Photoexcitation changes
shape of Drude conductivity (red area) relative to shape before photoexcitation (blue area)
due to increased scattering. In this case, the measured conductivity will be lower at frequen-
cies below the initial scattering rate but higher at frequencies above the initial scattering
rate. Our measurements were performed in the frequency range to the left of the verti-
cal dashed lines. Hence, we observed negative photoconductivity in our doped graphene
samples, corresponding to the mechanism depicted in panel (b).

expected to proceed via emission of strongly coupled optical phonons [49–51] and remote

substrate phonons [38]. The enlarged phase space for scattering at higher carrier tempera-

ture, combined with the increased phonon populations, can result in significantly stronger

electron-phonon scattering. Suppression of free-carrier conductivity due to electron-phonon

scattering at elevated temperature has been observed in ultrafast studies of graphite [33]

and dc transport studies of graphene [41]. This mechanism is also responsible for the current

saturation observed in high-field transport studies of graphene devices [36, 46, 113, 114]. A

recent THz pump-THz probe study also showed signatures of increased intraband scattering

due to heating the electron system with an intense THz pulse [115]. We therefore expect

that increased electron-phonon scattering in the transient regime will lead to the observed

negative differential THz conductivity. A schematic of this mechanism is shown in Fig. 5.4.
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Beyond increased electron-phonon scattering, the energy dependence of carrier

scattering must be considered because of the thermally broadened distribution of the hot

(kBTe ∼ µ) carriers [86]. This will lead to the observed non-Drude spectral shape because

the Drude model assumes a constant (energy independent) scattering rate [29]. The effect

of energy-dependent scattering rates on terahertz photoconductivity has recently been an-

alyzed in more detail by Jensen et al. [116]. Their results are partially consistent with the

picture presented in this chapter. They claim that their model, which neglects temperature-

dependent electron-phonon scattering, reproduces all of their experimental results. We were

unable to reproduce our results without including increased electron-phonon scattering (see

chapter 6).

In summary, we observed reduced absorption of THz radiation and a non-Drude

differential conductivity spectrum in graphene subject to pulsed optical excitation. Our

results can be explained by additional electron-phonon scattering in conjunction with a

thermally broadened carrier distribution. This work demonstrates that the THz response of

graphene is strongly tunable by optical means over a broad frequency range on an ultrafast

picosecond timescale.
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Chapter 6

Semiconducting-to-metallic
photoconductivity crossover in
graphene

The intrinsic properties of Drude absorption in graphene can be revealed by study-

ing its dynamical response to photoexcitation. In particular, optical pump-terahertz probe

spectroscopy provides access to a wide transient temperature range via pulsed optical exci-

tation, and allows measurement of the ac Drude conductivity by a time-delayed terahertz

(THz) probe pulse [24]. This technique has been applied to study transient photoconductiv-

ity (PC) in graphene, but conflicting results have been reported [24,33,61,85,86,107,108,117–

119]. Positive PC was observed in epitaxial graphene on SiC (Ref. [106–108]), while negative

PC was seen in graphene grown by chemical vapor deposition (CVD) [61,85,86,117]. It has

been argued that the opposite behavior in these samples arises from their different charge

densities. Here we study graphene samples with gate tunable carrier density to resolve these

issues and further reveal the unique Drude response of massless Dirac fermions.

In this chapter,1 we present an investigation of the Drude absorption dynamics in

1Most of this chapter is reproduced with permission from A. J. Frenzel, C. H. Lui, Y. C. Shin, J. Kong, N.
Gedik, Semiconducting-to-Metallic Photoconductivity Crossover and Temperature-Dependent Drude Weight
in Graphene, Physical Review Letters 113, 056602. Copyright (2014) by the American Physical Society.
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graphene over a wide range of carrier density and temperature. Using optical pump-THz

probe spectroscopy, we drove the carriers to high transient temperature and probed the

Drude absorption of the hot carriers as they relaxed to equilibrium. By adjusting the gate

voltage, pump-probe delay, and excitation fluence, we were able to observe the change of

Drude absorption over a broad range of carrier density and transient temperature. Near the

charge neutrality point, our samples exhibited positive (semiconducting) ultrafast PC, due

to thermal excitation of electron-hole pairs after photoexcitation. At high charge density,

however, the same samples exhibited negative (metallic) PC due to the decrease of both the

Drude weight and the carrier scattering time at high transient temperature. The observed

density-dependent PC provides a unifying framework for understanding previously reported

positive PC in (undoped) epitaxial graphene and negative PC in (p-doped) CVD graphene.

Additionally, at low charge density, we observed unusual fluence dependence of the THz

Drude response, where the PC first decreased and then increased as the carrier temperature

increased. This is consistent with the behavior expected from the non-monotonic temper-

ature dependence of the Drude weight in graphene. By using the Drude model with an

estimated temporal evolution of the hot carrier temperature, we were able to reproduce all

the main features of our observations.

6.1 Sample description and characterization

A key advance in our experiment was the fabrication of large-area gated graphene devices

without a THz PC response from the substrate [Fig. 6.1(a)]. This is not possible with

commonly used SiO2/Si substrates, which produce large background signal in optical pump-

THz probe experiments (Fig. 3.8). We used z-cut crystalline quartz substrates and deposited

35-nm indium tin oxide (ITO) and 400-nm parylene-C thin films as the back-gate electrode
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Δστ,1: neg neg pos

2-10 meV
  THz probe

1.55 eV pump

ITO
Parylene

Figure 6.1: (a) Schematic of transparent graphene device geometry and experimental method
described in the text. (b) Two-terminal resistance of our device as a function of back
gate voltage Vg. The charge neutrality point, corresponding to maximum resistance, is at
Vg = VCN = 3 V. Voltage ranges of positive and negative photoconductivity (∆στ,1) observed
in our experiment are separated by dashed vertical lines.
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Figure 6.2: Measured temporal evolution of the negative change of the transmitted THz
electric field normalized by the equilibrium THz field at t = 0, i.e., ∆Eτ (t = 0)/E0(t = 0), for
a device before and after the deposition of graphene on the parylene/ITO/quartz substrates.
We used higher pump power (18 mW) in the measurement without graphene than that with
graphene (3 mW) to highlight the negligible photoconductivity of the substrates. Both
measurements were performed at room temperature. The graphene carrier density was set
to the charge neutrality point.

and dielectric, respectively. The z-cut crystalline quartz substrates have slightly higher

refractive index but significantly lower absorption than commonly used fused silica substrates

[27]. We experimentally confirmed that the back-gate structure had negligible pump-probe

response (Fig. 6.2). This ensured that all measured pump-probe signals derived from

the graphene layer. High quality, large area, monolayer CVD graphene sheets [109] were

transferred onto our back-gate substrates. Graphite-paint source and drain electrodes were

attached to graphene with a separation of ∼5 mm. The devices exhibit excellent bipolar

gating behavior with low unintentional doping [Fig. 6.1(b); gate voltage Vg = 3 V ≡ VCN at

charge neutrality, corresponding to unintentional hole doping p = 1.7×1011 cm−2, estimated

from our device capacitance].

ITO is a widely used transparent conducting oxide. Our films were deposited by

radio-frequency (RF) magnetron sputtering in an Ar gas environment. Since the optical

and electrical properties of ITO films depend strongly on RF power [120], oxygen partial

pressure [121], and annealing conditions, we could choose the growth conditions to produce

films with the desired properties (mostly transparent to THz pulses but conducting enough
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to act as gate electrode). By sputtering at high RF power and no oxygen partial pressure, we

obtained as-grown films with sheet resistances ∼500 Ω/� as measured by TDTS and four-

probe electrical measurements. The TDTS measurements revealed a frequency-independent

conductance. The average sheet resistance of 500 Ω/� corresponds to about 80% transmis-

sion through the film, sufficient to allow TRTS measurements with high dynamic range.

We also measured the Hall effect in the four probe van der Pauw geometry for

an ITO film prepared under identical conditions to the ones in our devices. We found an

electron density n ≈ 2×1015 cm−2 and mobility µ ≈ 6 cm2/V s. This density is three orders

of magnitude larger than the highest gate-tuned carrier density in our experiment, while the

mobility is more than two orders of magnitude smaller than that of graphene. Using the

effective mass of carriers in ITO, m∗ = me/2 [122], we could extract the carrier scattering

rate using ΓITO = e/(µm∗). The extracted value of ΓITO/2π = 93 THz is consistent with

the flat frequency response we observed in TDTS measurements. We therefore do not expect

any significant influence of the electrostatic gating on the properties of the ITO layer.

Parylene is a polymer which can be used to form large-area, pinhole-free coatings

[123]. We deposited the parylene-C thin films using a Specialty Coating Systems Labcoter2.

Using the reported room temperature dielectric constant εr ≈ 4 for parylene-C [124], we

estimated the capacitance of our device to be C = εrε0/d ≈ 8.9 nF/cm2. Here ε0 =

8.85 × 10−12 F/m is the permittivity of free space and d = 400 nm is the thickness of

the dielectric layer (see below). We then estimated the gate-induced carrier density by the

formula n = CV/e, yielding n ≈ 5.5×1010×V cm−2, where V is the gate voltage in units of

Volt. This is comparable to standard Si/SiO2 graphene devices, where C ≈ 13 nF/cm2 [3].

The thicknesses and optical constants of the parylene-C gate dielectric and ITO

gate electrode were measured by spectroscopic ellipsometry (J.A. Woollam, Co., Inc. WVASE).

In both cases, we deposited films on silicon wafers with ∼300 nm of thermal oxide grown
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on the surface. This removed ambiguity related to the native oxide thickness on silicon,

since the thickness of the thermal oxide could be quantified before film deposition and the

optical constants of both Si and SiO2 are well known [125]. The films were deposited si-

multaneously with the films used for devices. For both parylene and ITO films, several

models were tested to best fit the measured ellipsometric parameters. The parylene data

were best fit with a two-parameter Cauchy model and surface roughness incorporated using

an effective-medium approximation at the air-parylene and parylene-SiO2 interfaces. The

overall extracted thickness of the film, d ≈ 400 nm, was insensitive to varying the optical

constants. Additionally, the index of refraction at 633 nm agreed with the literature value

n = 1.64 to within 0.5%. Finally, the surface roughness agreed well with AFM data on

films grown under similar conditions. The ITO data were equally well fit by a single Drude

oscillator or a Drude-Lorentz model to account for interband transitions [121]. Both fits

yielded a similar thickness around 35 nm and similar fit quality. The thickness also agreed

with that measured by AFM in a patterned film grown under nominally identical conditions.

6.2 Tunable terahertz photoconductivity

The graphene devices, investigated at room temperature in high vacuum (P < 10−5 Torr),

were photoexcited with 100 fs laser pulses at 1.55 eV photon energy generated using a

5 kHz amplified Ti:sapph laser system. The transient PC was probed by measuring the

complex transmission coefficient of time-delayed picosecond THz pulses (photon energy 2-

10 meV) with controllable time delay τ [Fig. 6.1(a)]. In these measurements, the local

detection time of the picosecond THz pulse was synchronized with the pump pulse such

that the whole THz waveform experienced the same time delay after photoexcitation [79]

(see also §3.2.1). To reduce experimental errors associated with laser drift, we simultaneously
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measured the electric field waveform E0(t) of the THz pulse transmitted through the sample

without the optical pump and the optical pump-induced change of the transmitted field

∆Eτ (t) via electro-optic sampling using a data acquisition card [103, 105]. The resulting

ratio −∆Eτ/E0 (referred to as “differential field") approximately represents the PC, ∆στ,1

(Refs. [24, 33,61,85]).

6.2.1 Experimental results

Pump-probe measurements with incident pump fluence F = 10µJ/cm2 and pump-probe

delay τ = 1.5 ps revealed that the sign of the PC could be changed from positive near

charge neutrality to negative at moderate carrier density [Fig. 6.3]. The measured ∆Eτ (t)

near charge neutrality (Vg = VCN + 2 V) is opposite in sign to E0(t) for all t, reflecting a

photo-induced increase in absorption [Fig. 6.3(a)]. The extracted PC spectrum ∆στ (ω) =

∆στ,1 + i∆στ,2, calculated with the device geometry taken into account, shows a positive

real part [Fig. 6.3(b)]. In sharp contrast, ∆Eτ (t) has the same form and sign as E0(t) when

Vg = VCN + 52 V (n ≈ 3 × 1012 cm−2), indicating a photo-induced decrease in absorption

[Fig. 6.3(d)]. As expected, the real part of the PC, ∆στ,1, is negative in this case [Fig.

6.3(e)].

Frequency-resolved transient conductivity data were collected following the proce-

dure first outlined by Beard et al. [79] and described in §3.2.3. Namely, the pump beam delay

and detection beam delay were synchronously scanned to ensure that all points of the mea-

sured THz waveform experienced the same pump-probe delay. This procedure eliminated

frequency-dependent artifacts in transient conductivity spectra that occur when different

points of the transmitted THz pulse experience different pump-probe delays [126]. The mea-

sured signal at short pump-probe delays can be contaminated by artifacts resulting from

the detector response function, due to the finite bandwidth of electro-optic detection [79].
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Figure 6.3: (a) Measured THz electric field waveform transmitted through the sample in
equilibrium (black line) and pump-induced change in transmitted THz electric field (red
line) at τ = 1.5 ps. Measurements were performed at room temperature in vacuum with
the carrier density set near charge neutrality (Vg = VCN + 2 V) and incident pump fluence
F = 10 µJ/cm2. (b) Real (∆σ1, solid line) and imaginary (∆σ2, dashed line) parts of the
transient THz PC extracted from the data in (a). (c) Theoretical simulation of the PC
spectra under the same conditions as (a-b) using the Drude model described in the text.
(d-f) Experimental data and simulation as in (a-c), but at gate voltage +52 V from the
charge neutrality point (electron density n ≈ 3× 1012 cm−2).

We experimentally verified that these artifacts were not present in our data at pump-probe

delay τ = 1.5 ps by repeating the same measurement with ZnTe detection crystals of two

different thicknesses (1 mm and 100 µm), which have significantly different frequency re-

sponses [27]. The results, shown in Fig. 6.4, reveal that the detector response does not

influence the result at this time delay. The data shown in Fig. 6.3 were collected using the

1 mm crystal, which has a higher sensitivity and therefore improved signal-to-noise ratio.

To determine the influence of the detector response function on the early-time dynamics of

the −∆Eτ/E0 measurements, we have performed finite-difference time domain simulations

- see §6.3.2 below.

To accurately extract the photoconductivity [Figs. 6.3(b,e)] from our experimen-

tal data [Figs. 6.3(a,d)], we used a multilayer model to calculate the transmission of the

THz pulse through a graphene device. For a single interface between two dielectrics with
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Figure 6.4: Photoconductivity at τ = 1.5 ps for charge neutrality (left panel) and electron-
doped regime (right panel) measured using two ZnTe detection crystals with different thick-
nesses (1 mm and 100 µm) and hence different frequency response functions. Solid lines are
real conductivity ∆σ1 and dashed lines are imaginary photoconductivity ∆σ2. There is no
discernable difference between the two measurements (aside from the noise), indicating that
the detector response function does not distort the photoconductivity spectrum.

indices of refraction ni and nj , the reflection and transmission coefficients are given by the

Fresnel formulae R̃ij = (ñi − ñj)/(ñi + ñj) and T̃ij = 2ñi/(ñi + ñj), respectively. For a

dielectric slab with thickness d � λTHz/2n1 (i.e., the round-trip time of the pulse in the

slab is much less than its duration) on a transparent substrate, multiple reflections within

the slab must be taken into account [26]. The total transmission coefficient for the vac-

uum/dielectric/substrate system is given by [77]

T̃ = T̃01P (n1, d)T̃12 × FP =
4n2e

in1ωd/c

(1 + n1)(n1 + n2)
FP, (6.1)

where n0 = 1 for vacuum, n1 is the index of the dielectric, n2 is the index of the substrate,

P (n1, d) = exp(in1ωd/c) accounts for propagation through the dielectric slab, and

FP =
1

1− R̃12R̃10P 2(n1, d)
=

1

1−
(
n1−n2
n1+n2

)(
n1−1
n1+1

)
e2in1ωd/c

is the Fabry-Perot factor, which accounts for multiple reflections within the slab. We have

assumed that n1 and n2 are real for dielectric layers.

Our devices have a vacuum/graphene/parylene/ITO/quartz geometry, so we must
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consider how the transmission coefficient is changed in this case. To account for the presence

of thin graphene and ITO conductors at the interfaces between dielectrics, we change the

previous Fresnel coefficients to T̃i,j = 2ni/(ni+nj + Σ̃(ij)) and R̃i,j = (ni−nj− Σ̃(ij))/(ni+

nj + Σ̃(ij)), where Σ̃(ij) = σ̃(ij)Z0 is the dimensionless conductance of the thin conducting

layer between dielectrics i and j, with Z0 = 2α(h/e2) the impedance of free space [26]. The

total transmission coefficient for the multilayer interface is then

T̃ =
T̃01P (n1, d)T̃12

1− R̃12R̃10p2
1

=
4n2e

in1ωd/c

(1 + n1 + Σ̃(01))(n1 + n2 + Σ̃(12))

1

1−
(
n1−n2−Σ̃(12)

n1+n2+Σ̃(12)

)(
n1−1−Σ̃(01)

n1+1+Σ̃(01)

)
e2in1ωd/c

. (6.2)

This reduces to Eq. (6.1) when Σ̃ → 0. The approximation of infinitely thin conductors is

justified in our devices because dgraphene = 0.3 nm � dITO = 35 nm � dparylene = 400 nm

� λTHz = 300 µm.

To calculate the THz photoconductivity of a conductor between vacuum and a

dielectric in a pump-probe experiment, assuming all other optical properties remain constant

(Fig. 6.2), we write the differential transmission in terms of the conductivity of the layer

before and after excitation (as in §3.2.1):

∆T̃τ

T̃0

=
T̃τ (σ̃(01) + ∆σ̃

(01)
τ )

T̃0(σ̃(01))
− 1,

then solve the resulting expression for ∆σ̃
(01)
τ . The result to first order in ∆σ̃

(01)
τ and ∆T̃ /T̃0

is

∆σ̃(01)
τ = −Z−1

0

(
∆T̃

T̃0

)
N
D
, (6.3)

where N =
[
(1 + n1 + Σ̃(01))(n1 + n2 + Σ̃(12))− (n1 − n2 − Σ̃(12))(n1 − 1− Σ̃(01))e2in1ωd/c

]
and D =

[
(n1 + n2 + Σ̃(12)) + (n1 − n2 − Σ̃(12))e2in1ωd/c

]
.

For our graphene devices, n1 = nparylene = 1.7 (Ref. [127]), n2 = nquartz = 2.1

(Ref. [87]), Σ̃(01) = Σ̃graphene, Σ̃(12) = ΣITO, and d = 400 nm. The measured sheet resistance
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of the ITO film is constant in the THz frequency range and equal to 500 Ω/�, so Σ̃(12) =

377/500 = 0.75. We approximated Σ̃graphene by a Drude term with scattering rate based on

the temperature- and density-dependence discussed in the description of our model below.

The Drude weight was set by the temperature and carrier density calculated using the

capacitance of our device. We note that this model for Σ̃graphene was used for internal

consistency, but any reasonable values for Σ̃graphene produce similar results and do not

change our conclusions. Finally, we note that since the thickness of the parylene layer is

much smaller than the wavelength of the THz pulse, 2nparyleneωd/c ≈ 0.02 and uncertainty

in the value of nparylene does not qualitatively affect the results.

To further investigate the mechanism driving the observed PC sign change, we

measured the temporal (τ) dynamics of ∆στ,1 at various carrier densities. Fig. 6.5(a)

displays the ratio −∆Eτ (t)/E0(t) as a function of τ at fixed t = 0 [Figs. 6.3(a,d)] for

gate voltages between -48 V and +2 V from VCN (incident fluence F = 10 µJ/cm2). The

dynamics exhibits a relaxation time of ∼2 ps, with no systematic dependence on carrier

density. From these dynamical data, we evaluated the differential field averaged over τ ,

〈−∆Eτ/E0〉τ , as a function of gate voltage [Fig. 6.5(c)]. The result demonstrates that the

overall PC signal changes from positive at charge neutrality to negative at moderate charge

density for both electron and hole sides, consistent with dc measurements [23].

Additional data for F = 3 µJ/cm2 are presented in Fig. 6.6. This figure shows

our measurements and simulations of −∆Eτ/E0 and 〈−∆Eτ/E0〉τ using a lower incident

fluence (F = 3 µJ/cm2) than in Fig. 6.5. The inset of Fig. 6.6(b) shows the estimated

temperature profile corresponding to this fluence. The simulation, performed using the same

parameters used to generate Figs. 6.5(b,d) with F = 10 µJ/cm2, also faithfully reproduces

our observations for F = 3 µJ/cm2 [Fig. 6.6(b,d)].
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Figure 6.5: (a) Measured temporal evolution of the negative change in transmitted field
(proportional to the differential conductivity), measured at the peak of the signal in Figs.
6.3(a,d), at different gate voltages. Measurements were performed at room temperature
in vacuum with incident fluence F = 10 µJ/cm2. (b) Theoretical simulation of the THz
dynamics in (a), calculated using the model described in the text. Inset shows the estimated
temperature profile used to model the data. (c) Mean of −∆E(t = 0)τ/E0(t = 0) from τ =
-1 ps to 8 ps, as a function of gate voltage. (d) Simulation of the data in (c).
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6.2.2 Discussion and analysis

The above observations can be qualitatively understood by considering the interplay between

photo-induced changes of carrier population and scattering rate. Photoexcited carriers in

graphene are known to thermalize within a few 10s of fs [44, 128–131]. With the >100 fs

resolution in our experiment, the carriers can be well described by a thermal distribution

at carrier temperature Te for all pump-probe delay times τ . For graphene near the charge

neutrality point, an increase of carrier temperature promotes the free-carrier population

and thus enhances absorption. This behavior mimics that observed in epitaxial graphene

[107, 108] and other semiconductors [24, 79], where optically generated electron-hole pairs

increase the infrared absorption. For graphene with high carrier density, laser-induced carrier

heating only modifies the carrier distribution near the Fermi level, without changing the

total carrier density. The carrier scattering rate, however, increases due to an enlarged

phase space and the presence of hot optical phonons [48]. This causes a reduction of free-

carrier absorption, a behavior analogous to that in metals and observed in p-doped CVD

graphene [61,85,86,117].

For a more thorough understanding of the density dependent PC dynamics, we

consider the Drude model for free carrier conductivity in graphene [11,61,65,85,108],

σ̃(ω) =
D

π(Γ− iω)
. (6.4)

Here, Γ is the transport scattering rate and D is the Drude weight, which quantifies the

oscillator strength of free-carrier absorption. In a metal or semiconductor with parabolic

dispersion, D = πne2/m, independent of temperature [29]. In graphene, a 2D system

with linear dispersion, however, D exhibits a distinctive carrier temperature dependence

[65,132,133]:

D(Te) =
2e2

~2
kBTe ln

[
2 cosh

(
µ(Te)

2kBTe

)]
. (6.5)
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Here we present a simple derivation of this formula. To highlight the peculiarity of graphene,

we calculate the Drude weight D = πσdc/τ for general quasiparticle dispersion ε = A|k|α

in arbitrary dimension d. From the Boltzmann expression for dc conductivity,

σdc = Ne2

∫
ddk

d(2π)d
v2(k)τ(ε(k))

(
−∂f

0

∂ε

)
, (6.6)

where N is the degeneracy, v(k) = ~−1∂ε/∂k = (αA/~)kα−1k̂, τ is the transport scattering

time, f0 is the Fermi distribution, and we have considered an isotropic system so that〈
vα(k)vβ(k)

〉
= v(k)2/d. Assuming τ = τ0 = constant for simplicity,

σdc =
α2A2

~2

Ne2τ0

d

∫
ddk

(2π)d
k2α−2

(
−∂f

0

∂ε

)
=
α2A2

~2

e2τ0

d

∫
dεg(ε)k2α−2

(
−∂f

0

∂ε

)
(6.7)

where the density of states is g(ε) = N
∫

ddk
(2π)d

δ(ε− ε(k)) = γεd/α−1. Inverting the energy-

momentum dispersion, we obtain k = (ε/A)(1/α) so

σdc =
α2A2

~2

e2τ0

d

∫
dεg(ε)(ε/A)2−2/α

(
−∂f

0

∂ε

)
=
α2A2/α

~2

e2τ0

d

∫
dεf0(ε)

∂

∂ε

[
ε2−2/αg(ε)

]
= γ

α2A2/α

~2

e2τ0

d

∫
dεf0(ε)

∂

∂ε

[
ε1+(d−2)/α

]
=
α2A2/α

~2

e2τ0

d

(
1 +

d− 2

α

)∫
dεf0(ε)

[
γε(d−2)/α

]
(6.8)

If α = 2 (parabolic dispersion), the integrand is just the occupation probability f0(ε) times

the density of states, so the integral gives the total number of carriers. The Drude weight

is therefore independent of temperature.

If α = 1, however, this is not the case. Inserting ε = ~vFk and g(ε) = 2|ε|/π(~vF)2
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(i.e., A = ~vF and γ = 2/π(~vF)2) into Eq. (6.7), we obtain

σdc =
e2v2

Fτ0

d

∫
g(ε)

(
−∂f

0

∂ε

)
dε

=
NΩd

d(2π)d
e2τ0

kBTe~dvd−2
F

∫
g(ε)f0(ε)

[
1− f0(ε)

]
dε

=
NΩd

d(2π)d
e2τ0

~dvd−2
F

(kBTe)
d−1

∫ ∞
−∞
|x|d−1 ex−xµ

(ex−xµ + 1)2
dx, (6.9)

where xµ = µ(Te)/kBTe and (−∂f0/∂ε) = f0(ε)[1− f0(ε)]/kBTe. The integral can be easily

evaluated to obtain

D(Te) =
Ne2vF

~
(d = 1)

=
Ne2

2~2
kBTe ln

[
2 cosh

(
µ(Te)

2kBTe

)]
(d = 2)

=
Ne2

6π~3vF
(kBTe)

2

[
π2

3
+

(
µ(Te)

kBTe

)2
]
. (d = 3) (6.10)

In our experiment, photoexcitation resulted in hot carrier temperatures close to the

Fermi energy, kBTe ∼ εF. In this regime, the chemical potential is a decreasing function of

temperature. The chemical potential shift can be calculated by considering the conservation

of the total particle number in the system [29,53]

n =

∫ ∞
0

g(ε)

(
1

e[(ε−µ)/kBTe] + 1
− 1

e[(ε+µ)/kBTe] + 1

)
dε. (6.11)

The temperature-dependent chemical potential is obtained by numerically inverting this re-

lation. Fig. 6.7 displays the chemical potential of charge carriers in graphene as a function of

temperature, along with the analytical results of the low-temperature Sommerfeld approx-

imation for low temperatures [29] and the high-temperature limit of Eq. (6.11) (Ref. [53]).

Using µ(Te) derived from Eq. (6.11), we obtain the temperature-dependence of the Drude

weight shown in Fig. 2.5 of §2.2.1. The Drude weight for linear dispersing systems in 2D

or 3D depends on µ(Te) (instead of n as in systems with parabolic dispersion), resulting in

non-monotonic temperature dependence.
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Figure 6.7: Temperature-dependent chemical potential (black line) in graphene calculated
by numerically inverting Eq. (6.11). The blue dashed line shows the low-temperature
Sommerfeld approximation and the red dashed line shows the analytical high-temperature
limit, εF/[4 ln(2)kBT ].

Expression (6.5) predicts that, in pristine graphene, D(Te) increases linearly with

temperature when kBTe � εF, and approaches (e2/~2)µ ∝
√
|n| for electronic tempera-

tures kBTe � εF. For graphene samples on substrates, charge inhomogeneity and disorder

smear out intrinsic behavior near the Dirac point [54]. We included these effects by using

a phenomenologically broadened chemical potential µ → 4
√
µ4 + ∆4, with ∆ = 80 meV, a

reasonable value for our samples [134]. Here ∆2 is proportional the RMS charge density

inhomogeneity. We estimated an upper bound, ∆ = 110 meV, by fitting the resistance data

of Fig. 6.1 following the procedure outlined in Ref. [134]. A lower bound was estimated by

the value of gate voltage at the charge neutrality point, Vg = 3 V, which corresponds to

p ≈ 1.7×1011 cm−2, or ∆ ≈ 50 meV. For our simulations, we used the average value ∆ = 80

meV. Other choices of ∆ within the estimated range yielded qualitatively similar results.

The other parameter in the Drude model, the scattering rate Γ, depends on chemi-

cal potential µ, carrier temperature Te, phonon temperature Tph, and the specific scattering

mechanisms [34, 135, 136]. In our samples, we expect charged impurities and hot opti-

cal phonons to dominate scattering [34, 36, 48]. We assumed that Γ at room temperature

was dominated by Coulomb impurities [52, 54], with a transport scattering time τ = α|µ|
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(Refs. [54,86,137]). We estimated α = 2.75×10−4 meV−2 from the scattering rate Γ = 12.14

meV (≈3 THz) measured in the CVD graphene sample on quartz substrate with chemical

potential µ = 300 meV due to unintentional doping, described in chapter 5 [61]. We also

included the temperature-dependent scattering due to the graphene optical phonons, using

the T and µ dependence reported in Ref. [36], with the magnitude adjusted to match the

experimental data. The total scattering rate including both contributions is given in meV

by

Γ(Te, Tph) = ΓC + Γop =

(
3642

µ[meV]
+

0.7µ[meV]

e~ωph/kBTe − 1

)
×meV, (6.12)

with ~ωph = 190 meV [36]. We neglected the unknown coupling of carriers to surface polar

phonons in the parylene-C dielectric [23, 135].

We used D(Te) and Γ(Te, Tph) as estimated above to calculate the temperature-

and density-dependent change in conductivity for our experimental conditions, ∆σ1(Te) =

σ1(Te) − σ1(300 K), at representative frequency ω/2π = 1 THz. The result [Fig. 6.8(c)]

shows that ∆σ1(Te) is positive (red area) near charge neutrality (Vg < 5 V), but becomes

negative (blue area) at high carrier density (Vg > 15 V), as anticipated from the qualitative

discussion above.

To simulate the transient PC dynamics, we also considered the temporal (τ) evolu-

tion of the carrier temperature after photoexcitation. Such hot carrier dynamics have been

discussed extensively in the literature. We therefore estimated the transient temperature

profile from previous publications [44,48,138] and simulated the temporal PC dynamics. In

particular, we assumed a biexponential decay with time constants τ1 = 0.3 ps and τ2 = 3.1 ps

and a 200 fs rise time [Refs. [48,138]; see inset of Figs. 6.5(b) and 6.6(b)]. The fast time con-

stant τ1 accounts for thermalization and initial electron-optical phonon equilibration [138],

while the slow time constant τ2 accounts for cooling of the hot electrons [48,138]. Since the

actual carrier and phonon temperatures are inaccessible to our experimental probes, we as-
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Figure 6.8: (a) Temperature-dependent Drude weight [Eq. (6.5)] at different gate voltages.
Saturation at low temperature is due to charge disorder. (b) Estimated temperature depen-
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∆σ1(T ) at ω/2π = 1 THz, for different carrier densities and temperatures, relative to its
value at T = 300 K. Temperature dependence of both Drude weight and scattering rate
were taken into account. (d) Fluence dependence of PC at fixed pump-probe delay τ = 3.5
ps showing the non-monotonic behavior expected from our model.
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sumed that they were equal for simplicity [33,44,48]. The maximum estimated temperature

was ∼800 K for 10 µJ/cm2 incident fluence and ∼500 K for 3 µJ/cm2 incident fluence. The

magnitude of the temperature change was chosen to match the measured data for incident

fluence F = 3 µJ/cm2. We constrained the temperature value between that calculated using

the two-temperature model of Ref. [44] and the maximum value for which all deposited laser

energy was retained in the electronic system. To estimate the temperature at other incident

fluences, we assumed a specific heat proportional to Te. Plots of Te(τ) for two fluences,

F = 3 µJ/cm2 and 10 µJ/cm2, are shown in the insets of Figs. 6.5(b) and 6.6(b).

Based on this temperature profile, we calculated ∆σ̃τ (ω) [Figs. 6.3(c,f)] and

−∆Eτ/E0 [Figs. 6.5(b,d) and 6.6(b,d)]. First, we Fourier transformed an experimental

THz time-domain waveform. Second, we multiplied the resulting frequency-domain spec-

trum by the Fresnel coefficient for our device geometry [Eq. (6.2)], using the conductivity

calculated from our Drude model. Third, we inverse Fourier transformed to obtain the time-

domain waveform at elevated temperature. Finally, we subtracted the original time-domain

waveform at room temperature to obtain the differential change of THz field for a direct

comparison with the experimental pump-probe signal. Our simulations, though based on a

simple model, were found to reproduce all the main features of our observations.

6.3 Non-monotonic temperature dependence of the Drude weight

6.3.1 Experimental results

An essential aspect of our model is the distinctive Drude weight of graphene with non-

monotonic temperature dependence [Eq. (6.5) and Fig. 6.8(a)]. Specifically, for finite

density, D(Te) first decreases to a minimum value as Te increases, then increases linearly with

Te for temperatures much greater than εF (Fig. 6.8(a); Refs. [132, 133]). In order to reveal
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this unique Drude behavior of graphene more directly, we examined the fluence dependence

of −∆Eτ/E0 in the PC crossover regime [Fig. 6.8(d)]. Since Te increases monotonically with

excitation fluence [44,48], any non-monotonicity of D(Te) should also manifest in its fluence

dependence. This phenomenon is indeed observed in our experimental data [Fig. 6.8(d)].

At a representative τ = 3.5 ps near the PC crossover (Vg = -7 V), −∆E3.5 ps/E0 is found

to first decrease and then increase with increasing fluence. This non-monotonic behavior

gradually weakens as the density moved away from the crossover [see, e.g., Vg = -5 V and

-9 V in Fig. 6.8(d)]. This peculiar fluence dependence is observed for all τ = 1 - 8 ps.

We also observed independent evidence for the non-monotonic D(Te) in the tem-

poral PC dynamics at the crossover, where the PC sign flips multiple times as the carriers

are heated up by the pump pulse and subsequently cool. Fig. 6.9 shows the temporal dy-

namics of the gate- and fluence-dependent transient photoconductivity near the crossover

between positive and negative photoconductivity, which further reveal the non-monotonic

temperature-dependence of the Drude weight in graphene. We measured −∆Eτ/E0 at

three gate voltages (top panels) with incident fluence F = 1, 2, 4, 6, 8, 10 µJ/cm2 [magenta

(1 µJ/cm2) to black (10 µJ/cm2); each curve is offset by 0.2 for clarity of presentation]. The

complicated temporal dynamics, characterized by multiple sign changes on a picosecond

timescale, are consistent with our model (bottom panels) including the non-monotonic tem-

perature dependence of the Drude weight. As shown in Fig. 6.8(c), ∆σ1(Te) at intermediate

carrier density is initially negative, then becomes positive as temperature increases. In our

pump-probe experiment, the optical pump pulse initially heated the carriers to high tem-

perature, resulting in a rapid sign change of ∆στ,1 from negative to positive. As the carriers

then cooled, ∆στ,1 changed sign to negative again before returning to zero at equilibrium.

Our observed temporal photoconductivity dynamics (Fig. 6.9, top panels) also follow this

sequence of sign changes, suggesting the importance of the non-monotonic temperature-
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dependence of the Drude weight in graphene. Using the same parameters as before, our

model reproduces this behavior (Fig. 6.9, bottom panels). We note that these temporal

dynamics do not appear in our simulation if we neglect the non-monotonic temperature

dependence of D(Te).

To further illustrate the important role of the decrease of chemical potential as

the temperature rises, we performed the same simulation, but with a constant chemical

potential µ = εF. The results are presented in Fig. 6.10. This model predicts that the

photoconductivity should first be positive, then become negative as temperature increases

(dashed line). This behavior is qualitatively different from that seen in Fig. 6.8(c), as well

as from the experimental observations.

6.3.2 Additional analysis and discussion

We also carried out finite-difference time-domain (FDTD) simulations to further compare

our experimental observations to our model [79, 91, 92]. For computational efficiency, we
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experimental observations.

modeled our graphene sample as a suspended conducting film of thickness 2.5 µm discretized

into 25 grid points of thickness ∆z = 0.1 µm. This thickness was found to satisfy the thin-

film limit (thickness d � wavelength λ) for our experiment, yet still be large enough to

allow reasonable computation times. The total conductance of the film was chosen to match

that of our graphene sample. The time step was chosen to be ∆t = ∆z/2c, satisfying the

Courant stability relation. The incident electromagnetic pulse was introduced using the

total-field/scattered-field method. We used our measured THz pulse, deconvolved from the

detector response, to set the spectrum of the incident electromagnetic wave. To model the

dispersive conductivity of our graphene sample, we used the auxiliary differential equation

method [92], allowing the Drude weight D and scattering rate Γ to vary as a function of time

to simulate the pump-probe experiment. We performed the FDTD simulation at various

pump-probe delays, then convolved with our detector response and projected the resulting

grid onto the t− τ axis to simulate our measured signal.

We compare two representative simulation results, calculated at the crossover
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regime and in the metallic photoconductivity regime, to our experiment in Fig. 6.11. Our

simulations capture the main features of the experimental data. The experiment and FDTD

simulation for a charge density near the crossover [panels (c,d)], where we observe multiple

sign changes in the −∆E(t = 0)τ/E0(t = 0) traces [Fig. 6.9] (which correspond to a ver-

tical line cut along the t = 0 axis of the color maps in Fig. 6.11), show good qualitative

agreement. This provides strong evidence that the measured THz temporal dynamics reflect

the underlying graphene carrier dynamics, even when experimental complications which can

distort the time-domain measurements are taken into account.

The observed non-monotonic temperature dependence of the Drude weight can be

understood intuitively by considering the conservation of spectral weight of optical tran-

sitions [11, 65, 72]. Optical absorption in graphene consists of two contributions: high-

energy interband absorption and low-energy intraband absorption. Interband absorption in

graphene with finite charge density shows an onset at photon energy ~ω = 2|µ| due to Pauli

blocking [11,64,65]. When carriers are heated to moderate temperatures kBTe � εF, µ(Te)

decreases due to particle conservation [29]. The corresponding decrease of onset energy for

interband absorption increases the interband spectral weight. To conserve total spectral

weight, the intraband absorption must decrease. This is depicted in Fig. 6.12. When carrier

temperatures become comparable to εF, however, interband transitions are Pauli blocked

by thermally excited carriers, reducing the spectral weight. This increases the intraband

spectral weight, as has been observed in graphite [72]. This unique behavior originates from

the distinctive linear dispersion of 2D massless Dirac fermions in graphene, and is absent in

conventional materials with parabolic dispersion.

In conclusion, we studied the temperature- and density-dependent Drude conduc-

tivity in graphene through its dynamical response to pulsed photoexcitation. We demon-

strated that the transient photoconductivity of graphene can be tuned continuously from
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in (b) is precisely equal to the blue area in panel (a).

semiconducting to metallic by varying the Fermi level from the charge neutrality point to

either the electron or hole side. Our results resolve the controversy between previous ex-

periments which observed positive photoconductivity in epitaxial graphene and negative

photoconductivity in CVD graphene. By detailed simulation based on the Drude model,

we found that photo-induced changes of both Drude weight and carrier scattering rate play

important roles in the THz photoconductivity dynamics.
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Appendix A

Application of TRTS to a high Tc
superconductor

In addition to the work presented in the main text of this dissertation, I also

performed studies of the high temperature cuprate superconductor La2−xSrxCuO4. Copper-

based superconductors were first discovered nearly thirty years ago, and their understanding

still poses a formidable challenge to condensed matter physicists [139].

Time-domain terahertz spectroscopy is ideally suited for measuring electronic prop-

erties of superconductors and has been used extensively to study the cuprates [82, 83, 140–

150]. These measurements have a typical energy range of 1-10 meV and therefore only access

sub-gap phenomena in cuprates, where the energy gap is typically a few 10s of meV [151].

TDTS and TRTS have previously been used to observe many fascinating phenomena, includ-

ing superconducting phase fluctuations in Bi2Sr2Ca2CuO8+δ [152] and La2−xSrxCuO4 [147],

pair-wise recombination of optically excited quasiparticles in Bi2Sr2Ca2CuO8+δ [83], and the

destruction of the superconducting state via optical excitation in La2−xSrxCuO4 [146].

We begin by discussing low energy electrodynamics in cuprates. We focus on

energy scales below twice the maximum superconducting gap energy, which is ∼20-30 meV

in optimally doped La2−xSrxCuO4 [153]. Below the superconducting transition temperature
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Tc, the electrodynamic response at these energies can be described by the two-fluid model,

in which the optical conductivity arises due to interaction of light with both paired and

unpaired quasiparticles [154],

σ̃(ω) =
ρn(T )

Γ(T )− iω
+ ρs(T )

(
π

2
δ(ω) +

i

ω

)
. (A.1)

The first term is the familiar Drude response, which in a superconductor is due to unpaired

electrons. Here ρn(T ) = nn(T )e2/m∗ is termed the normal fluid density. The second term

is the superfluid response, which takes the form of a δ-function at zero frequency in the

real part and a 1/ω term in the imaginary part. The δ-function reflects the absence of dc

electrical resistance of a superconductor, and the 1/ω imaginary conductivity is required

by the Kramers-Kronig relations. Notably, the prefactor of the 1/ω term in the imaginary

conductivity is precisely ρs(T ), the superfluid density: σ2(ω) ∝ ρs(T ). As electrons pair,

the superfluid contribution to the imaginary part of the conductivity grows dramatically at

low frequencies due to the 1/ω term, while the normal fluid contribution, which is already

small at low energies, decreases. Therefore, by measuring the imaginary conductivity in

the superconducting state at low frequency, one has direct access to the evolution of the

superfluid density with temperature or external perturbation.

Our sample was a thin film of La2−xSrxCuO4 with x = 0.16 (optimal doping),

grown by molecular beam epitaxy on a 1 mm thick LaSrAlO4 substrate [155,156]. The film

thickness was ` = 52 nm, and it had a superconducting transition temperature Tc = 41 K.

The measured optical conductivity of the sample at various temperatures is displayed in Fig.

A.1. The real conductivity (left panel) initially increases as temperature decreases, reflecting

a decrease in quasiparticle scattering rate Γ(T ) [140]. It reaches its maximum at Tc = 41

K, then begins decreasing as spectral weight is transferred to the zero frequency δ-function

according to the Ferrell-Glover-Tinkham sum rule [154]. As expected, the 1/ω response in
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Figure A.1: Real (left) and imaginary (right) conductivity of optimally doped La2−xSrxCuO4

(x = 0.16). The low frequency imaginary conductivity grows rapidly below Tc (right inset)
due to the increasing superfluid density.

σ2(ω) rises dramatically below Tc (right panel). The inset of the right panel shows the value

of the imaginary conductivity at 500 GHz as a function of temperature to emphasize the

rapid increase below Tc, which is due to increasing superfluid density. A detailed analysis

of similar data over a wide range of dopings is discussed in Ref. [147]. These data allow

one to infer properties of the superconducting state by observing how it is perturbed as

temperature is raised. We will next seek to determine what we can learn by perturbing the

superconducting state with an optical excitation.

To measure the change in conductivity after photoexcitation in a simple manner,

we exploited the phase sensitivity of TDTS. Instead of measuring the full electric field

Esam(t) as a function of time at each pump-probe delay τ , we measured the change in

the electric field ∆Eτ (t) at one point in time for each pump-probe delay, as we did for

graphene (chapters 5-6). Here, however, we did not measure ∆Eτ (t = tpeak) because the

conductivity in the superconducting state is both complex and strongly frequency-dependent

[Eq. (A.1); see §3.2.2]. Additionally, perturbing the superconducting state with a light
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Figure A.2: Scheme for measuring pump-induced change to superfluid density. The differ-
ential field ∆Eτ at t = t0 (vertical dashed line) is proportional to the photoinduced change
in superfluid density ∆ρs [157].

pulse does not primarily change the dissipative properties of the sample, but its inductive

properties, since superconductivity primarily leads to an inductive (imaginary) response in

the optical conductivity [Eq. (A.1)]. Changes in the inductive response lead to changes in

the phase of the transmitted pulse, so we chose a time point in the THz waveform which

was maximally sensitive to this phase change.

In Fig. A.2, we display the electric field pulse transmitted through the sample

Esam(t) above Tc (50 K, black line), and below Tc (5.7 K, blue line). The phase shift between

the normal state pulse and the superconducting state pulse is immediately apparent. To

maximize sensitivity to changes in the phase of Esam(t), we chose to measure ∆Eτ (t = t0),

where t0 is the time at which Esam(t) at T = 5.7 K crosses zero, indicated by the dashed

vertical line. It has been established that the photoinduced change in the electric field

this time point is proportional to the photoinduced change in the imaginary part of the

conductivity, and therefore to the change in the superfluid density itself [146,157]: ∆Eτ (t =

t0) ∝ −∆ρs(τ).
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recombination processes.

We display our measurements of ∆Eτ (t = t0) after optical excitation for two tem-

peratures, both well below Tc, in Fig. A.3. Different color curves correspond to different

excitation fluences. The curves have been normalized to their value at the end of the initial

rapid change. At the lowest temperature, we observed a recovery with a rate that depended

strongly on fluence, decreasing with decreasing fluence. At T = 20 K, we observed overall

faster decay rates which still depended on fluence. As T increased further, the rates got

even faster and the fluence dependence eventually vanished (not shown). In order to bet-

ter understand these data, we focus on ∆Eτ (t = t0) during the first few picoseconds after

excitation. The important quantity that we will consider is the recovery rate γ0 in this

short-time regime.

The initial rate γ0 as a function of fluence at a range of temperatures is shown in

Fig. A.4. There are several noteworthy features of this plot. First, in the low-excitation

regime, the rate increases linearly with fluence. Second, at all temperatures, there is a finite

y-intercept, which corresponds to a finite rate of recovery at zero excitation. Additionally, the
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Figure A.4: (a) Initial decay rate as a function of incident fluence at different temperatures
in the superconducting state. (b) Zero-fluence limit of decay rate [y-axis intercept from
panel (a)], which is proportional to the thermal quasiparticle population.

slope of the fitted lines is approximately temperature independent at low temperature, but

decreases at the highest temperatures. Finally, the y-intercept increases monotonically with

temperature. These features provide strong evidence that the superfluid recovery proceeds

by pair-wise recombination of photoexcited quasiparticles [158].

The Rothwarf-Taylor (RT) rate equations [159] can be used to understand the

results presented in Fig. A.4. This set of coupled differential equations describes the coupling

between the quasiparticle population n and the pairing boson population N :

dn

dt
= Iqp + 2γpcN − βn2 (A.2)

dN

dt
= βn2/2− γpcN − γesc(N −Neq). (A.3)

Here Iqp is the external generation rate of quasiparticles (e.g., by excitation with a laser

pulse), γpc is the rate of quasiparticle pair creation by absorption of a phonon, and γesc

is the rate at which pair-creating phonons decay into lower-energy phonons are leave the

photoexcited region [158]. The time rate of change of the quasiparticle population depends

on the density squared because two quasiparticles must meet in order to form a Cooper pair:
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n+ n→ CP.

To analyze Eqs. (A.2-A.3), it is useful to separate n and N into thermal and

photoexcited populations: n = nph +nth and N = Nph +Nth. We additionally assume that

γpc is small compared to the quasiparticle recombination rate [158]. At zero temperature,

the thermal populations vanish, and photoexcited quasiparticles can only recombine with

other photoexcited quasiparticles so that dn/dt = −βn2 and nph + nph → CP is the only

allowed decay process. The recovery rate γ ≡ |(1/n)dn/dt| = βn then depends linearly

on the density of photoexcited quasiparticles. At finite temperature, thermally generated

quasiparticles open another relaxation channel for photoexcited quasiparticles. Instead of

only pairing with each other, they can now also pair with the thermally present quasiparticles

at a rate proportional to the thermal quasiparticle density: nph + nth → CP. In this case,

the first RT equation becomes

dn

dt
= [Iqp+2γpcNph − β(n2

ph + 2nthnph)] + (2γpcNth − βn2
th). (A.4)

In the absence of photoexcitation, the first term in brackets vanishes. Additionally, the quasi-

particles and pairing bosons should be in thermal equilibrium so that dn/dt = (2γpcNth −

βn2
th) = 0→ 2γpcNth = βn2

th. Including our previous assumption that quasiparticle recom-

bination occurs more rapidly than pair creation, Eq. A.4 becomes (after the photoexciting

pulse has passed) dn/dt = −β(n2
ph + 2nthnph). Calculating the total decay rate, we find

γtot = β(nph + 2nth). (A.5)

The total initial recovery rate depends on both the thermal quasiparticle population and the

photoexcited quasiparticle population. Fig. A.5 depicts the allowed recombination processes

schematically.

We can now understand the temperature and excitation dependence of the initial

rate [Fig. A.4(a)]. At low excitation density, nph increases linearly with excitation. There-
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Figure A.5: Cartoon depicting different Rothwarf-Taylor recombination mechanisms. A
photoexcited quasiparticles can form a Cooper pair by meeting either another photoexcited
quasiparticle (left) or by meeting a thermally-generated quasiparticle (right).

fore, since the initial rate is proportional to this density, it will increase linearly with pump

fluence for a fixed thermal population, which is what we observe at low temperatures. We

also see that as nph tends to zero, the rate tends to a finite constant. Eq. (A.5) reveals

that the intercept is proportional to the thermal quasiparticle population. We refer to this

intercept as the “thermal rate” γth.

Finally, we note that this non-equilibrium measurement of the initial decay rate

provides information about the equilibrium normal fluid density as a function of temper-

ature through determination of γth(T ) [Fig. A.4(b)]. Incidentally, quasiparticles in a d-

wave superconductor, such as La2−xSrxCuO4, and in graphene both exhibit a Dirac dis-

persion, though it is anisotropic in the cuprate case [160]. As a result, both graphene and

La2−xSrxCuO4 should exhibit a power law temperature dependence of the quasiparticle

number density [30, 154, 160]. Indeed, a best-fit of the data in Fig. A.4(b) to a power law

γth ∝ Tα yields α ∼ 2, though we clearly need finer temperature steps and greater temper-

ature range to determine α with any degree of certainty. Note that we only fit to the first

four temperature points because the fluence dependence weakens by the higher temperature

points. A power law with α = 2 has been observed in optical pump-probe measurements on
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underdoped La2−xSrxCuO4 [161] and iron pnictide superconductor Ba0.6K0.4Fe2As2 [162].

An interesting future experiment would be to compare the temperature dependence of γth to

that of the thermal quasiparticle density nth(T ) in the same sample. TDTS and OPTP are

ideally suited to this sort of experiment; nth(T ) could be extracted from equilibrium TDTS

measurements, while γth could be extracted from nonequilibrium OPTP experiments.
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