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Abstract

I discuss experimental progress towards developing a material with an isotropic,

negative index of refraction at optical frequencies. The simplest way to make such a

material is to create a metafluid, or a disordered collection of subwavelength, isotropic

electromagnetic resonators. Small clusters of metal particles, such as tetrahedra, serve

as these constituents. What is needed are methods for manufacturing these structures

with high precision and in sufficient yield that their resonances are identical.

Jonathan Fan et al. [Science, 328 (5982), 1135-1138, 2010] demonstrated that col-

loidal self-assembly is a means of preparing electromagnetic resonators from metal

nanoparticles. However, the resonances are sensitive to the separation gaps be-

tween particles. Standard synthesis routes for metal nanoparticles yield crystals or

nanoshells that are inadequate for metafluids due to polydispersity, faceting, and

thermal instabilities. To ensure that the separation gaps and resonances are uniform,

more monodisperse spherical particles are needed. An additional challenge is the self-

assembly of tetrahedral clusters in high yield from these particles. In self-assembly

approaches that others have examined previously, the yield of any particular type of

cluster is low.

In this dissertation I present solutions to several of these problems, developed in

collaboration with my research group and others. We demonstrate that slow chem-

ical etching can transform octahedral gold crystals into ultrasmooth, monodisperse
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nanospheres. The particles can serve as seeds for the growth of larger octahedra which

can in turn be etched. The size of the gold nanospheres can therefore be adjusted

as desired. We further show that in colloidal mixtures of two sphere species that

strongly bind to one another, the sphere size ratio determines the size distribution of

self-assembled clusters. At a critical size ratio, tetrahedral clusters assemble in high

yield. We explain the experimentally observed 90% yield with a nonequilibrium “ran-

dom parking” model based on irreversible binding. Simulations based on this model

reveal that 100% yield of tetrahedra is possible in principle. Finally, we combine

these results and present methods for the self-assembly and purification of tetrahe-

dral plasmonic nanoclusters, the simplest building blocks for isotropic metafluids.
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Chapter 1

Introduction

The limits of technology are frequently determined by physical constraints. For in-

stance, the fundamental limit on the speed of information transfer is the speed of light

in vacuum, a physical constant. Transistors are limited in size by the sizes of atoms,

and this imposes a constraint on the operational speed of conventional computers.

Revolutionary technologies arise when a new technique or a new material makes it

possible to reach beyond constraints that had once been considered fundamental.

Another example of such a limit is the range of indices of refraction accessible in

materials at optical frequencies. The index of refraction is the ratio of the velocity

of light in vacuum to its phase velocity in a particular material. It is a measure of

how light slows down in the material and is therefore related to how that material

interacts with light. Substances like glass and water have refractive indices greater

than 1 because light travels more slowly in them than in vacuum. Metals and other

materials that do not transmit light have complex indices of refraction with sub-

stantial imaginary parts, which are related to absorption. The ability to engineer a
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material with a refractive index close to or less than zero can significantly broaden

the range of material properties available. A negative index at optical frequencies

could enable completely new optical devices, from wave guides to perfect lenses and

perhaps even technologies that until now have sounded like science fiction, such as

invisibility cloaks.

In this dissertation, I present experimental work aimed at reaching beyond conven-

tional limits on refractive index in the visible. In particular, I examine the possibility

of isotropic negative refraction and demonstrate solutions to several of the experi-

mental obstacles that have kept it beyond reach.

1.1 Negative Refraction

A material with a negative index of refraction would be quite different from the

materials people encounter in everyday life. Typically, the propagation direction of

light changes at the interface between two dielectric media such that the light bends

toward or away from the normal, as illustrated in Figure 1.1(a). If instead light

travels from a material with a positive index to one with a negative index, it bends

so that its Poynting vector S points toward the opposite side of the normal, as shown

in Figure 1.1(b). In this case, the law of refraction (equation 1.1) is still satisfied at

the interface,

n1 sin θ1 = n2 sin θ2, (1.1)

but the angle of refraction is negative.

For centuries after Ibn Sahl, Willebrørd Snell, and others independently discovered
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Figure 1.1: Light refracts at the interface (blue) between two media. (a) In con-
ventional refraction, light bends toward or away from the normal as it crosses the
interface. (b) Changing the sign of the refractive index results in the new propaga-
tion direction pointing toward the opposite side of the normal.

this law [14], there were no materials shown to have a refractive index less than

zero. The idea of negative refractive index was considered physically impossible until

Veselago showed otherwise, in a theoretical argument, nearly fifty years ago [1].

1.1.1 Theory

Veselago began by pointing out how the refractive index arises in the dispersion

equation. For an isotropic substance and a monochromatic wave of frequency ω, the

wave vector k and material properties are related by

k2 =
ω2

c2
εrµr. (1.2)

Here εr is the relative electric permittivity or dielectric constant of the material and

µr is the relative magnetic permeability, defined by the usual constitutive relations
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for non-chiral materials [15]:

D = εE = ε0εrE (1.3)

B = µH = µ0µrH. (1.4)

Their product defines the refractive index n:

n2 = εrµr. (1.5)

The sign of the refractive index appears at first to be ambiguous if the product of

εr and µr is real:

n = ±√εrµr. (1.6)

Furthermore, according to this equation, the refractive index is real as long as εr and

µr are both positive or both negative. Under what circumstances is n negative and

real? To answer this question, one must reexamine several fundamental results of

electromagnetism and carefully trace how εr and µr propagate through them.
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Left-Handed Materials

I begin with Maxwell’s Equations in macroscopic media,

∇ ·D = ρfree

∇ ·B = 0

∇× E = −∂B

∂t
(1.7)

∇×H = Jfree +
∂D

∂t
. (1.8)

If one assumes monochromatic plane waves, the electric and magnetic fields can be

written in the form

E = E0e
i(k · r−ωt)

B = B0e
i(k · r−ωt).

Taking derivatives of these expressions and substituting into Faraday’s Law (1.7),

it can be shown that

k× E = ωB.

If one takes the cross product of E with each side of this equation and employs vector

identities, one finds

E2k− (E ·k) E = ω (E×B) . (1.9)

Since E ·k = 0, the wave vector k must point in the same direction as E×B.

Next I show that the wave vector does not necessarily point in the direction of en-
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ergy flow. Poynting’s Theorem [16, 17] states that energy flow in the electromagnetic

wave is determined by the Poynting vector S:

S = E×H. (1.10)

The Poynting vector and the wave vector point in the same direction when B and H

point in the same direction, but this holds only when µ is positive, per equation 1.4.

When µ is negative, the energy flow and phase velocity are in opposite directions. In

a material where ε < 0 and µ < 0, the vectors E, H, and k therefore do not obey the

usual right hand rule (which still applies to S but not to k). Veselago thus coined

the term “left-handed” for substances with negative ε and µ [1].

Figure 1.2: Light of frequency ω can propagate through a material only if the
product of ε (ω) and µ (ω) is positive. Common transparent dielectrics are in the
upper right quadrant and metals occupy the upper left at optical frequencies. Left-
handed materials are in the lower left quadrant. This figure is based on Figure 7 in
Veselago [1], Figure 1 in Ramakrishna [2], and Figure 1.2 in Cai and Shalaev [3].
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Figure 1.2 illustrates the space of conceivable materials in terms of permittivity

and permeability [1, 2, 3]. In general this picture is incomplete because ε and µ can

have substantial imaginary parts, which are related to absorption and impact the

refractive index and attenuation loss in a material. Here I assume they are negligible

to illustrate key features of the parameter space. Most materials have positive µ,

which confines them to the upper half of this diagram. In the upper right quadrant,

(εµ) > 0, so the refractive index is real, and the phase velocity and Poynting vector

point in the same direction. Dielectrics like plastic, glass, and water are in this

quadrant. In the upper left and lower right quadrants, (εµ) < 0, so the refractive

index is imaginary, according to equation 1.5, and fields decay exponentially inside

the material. Metals at optical frequencies are in the upper left quadrant. Some

natural magnetic materials up to GHz frequencies occupy the lower right [1, 2, 3].

Left-handed materials are found in the lower left quadrant, where light can propagate

but the phase velocity direction is reversed.

Refractive Index of Left-Handed Materials

I have not yet clarified whether one should choose the plus sign or minus sign

for the refractive index of a left-handed material in equation 1.6. To resolve this

question, I consider refraction of light at an interface. Two scenarios are illustrated

in Figure 1.3. In Figure 1.3(a), light impinges at normal incidence on a left-handed

material from a right-handed one. Causality and symmetry require that the Poynt-

ing vector points in the same direction in both media. In the left-handed medium,

however, k points opposite to S, so it follows that the phase velocity is reversed and
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the wave vector points toward the interface in both media.

Figure 1.3: Refraction at an interface between right- and left-handed media. (a)
At normal incidence, causality requires that the Poynting vector direction (black)
remain constant across the interface, which means the wave vector (green) must
change directions. (b) When the angle of incidence is nonzero, the wave must be
refracted at a negative angle. Wave fronts are shown in gray.

Now I examine the case when the angle of incidence is nonzero, as shown in Fig-

ure 1.3(b). Causality requires that light transmitted into the left-handed material

must have the vertical component of its Poynting vector S pointing downward, just

as in the right-handed medium. The wave vector must therefore have an upward

component, as in Figure 1.3(a). Also, the phase must be continuous across the in-

terface in order to satisfy the electromagnetic boundary conditions (assuming that

the interface has not been engineered to introduce phase discontinuities [18]). Owing

to the horizontal component of the wavevector in the right-handed medium, lines of

constant phase travel horizontally along the interface. The wave vector in the left-

handed medium must therefore have a horizontal component in the same direction

as its right-handed counterpart. Accordingly, the Poynting vector points down and

to the left. The refracted ray must lie on the side of the normal opposite to where

8



Chapter 1: Introduction

one would ordinarily expect to find it, and the angle of refraction is negative.1 Thus

the left-handed material must have a negative refractive index to satisfy the law of

refraction (equation 1.1).

1.1.2 Potential Applications

Negative refractive index remained a theoretical curiosity until John Pendry pre-

dicted a practical application [19]. Pendry extended Veselago’s work by considering

image formation by a flat slab with isotropic εr = −1 and µr = −1, surrounded by

vacuum. Veselago had pointed out that such a slab could behave like a lens because

light from an object close to the slab is brought to a focus on the other side [1], as

illustrated in Figure 1.4. In a plane parallel to and close to the slab, Pendry argued,

Figure 1.4: A flat slab of thickness d with n = −1 can bring light from a nearby
object to a focus on the opposite side. Two example “object planes” O1 and O2

correspond to different “image planes” I1 and I2. Each object is a distance 2d away
from its image.

1Veselago analyzed refraction at the interface between right- and left-handed media by invoking
boundary conditions on E and H, rather than causality and phase continuity, but reached the same
conclusion [1].

9



Chapter 1: Introduction

the electric field can be expressed in terms of a Fourier expansion,

E (r, t) =
∑
kx,ky

E (kx, ky) ei(k · r−ωt). (1.11)

In vacuum, the dispersion equation (1.2) requires that

kz =
√
ω2c−2 −

(
k2x + k2y

)
. (1.12)

This expression gives a real value for the transverse wave vector kz as long as k2x+k2y <

ω2c−2. For high spatial frequencies corresponding to k2x + k2y > ω2c−2, however, kz is

imaginary. These Fourier components of the electric field would normally be lost to

the image plane as evanescent waves.

Pendry calculated the Fresnel coefficients for transmission through and reflection

from this slab and concluded that the reflection coefficient is 0, and the transmission

coefficient is

T = e−ikzd. (1.13)

These evanescent waves are amplified in the negative-index slab. Pendry thus came

to the surprising conclusion that flat sheets of negative-index material can be used

as “perfect lenses,” in that they recover all Fourier components of the electric field

in the image plane. The conventional Abbe diffraction limit [20] does not apply to

such a lens because information about subwavelength structure, which is ordinarily

carried in the evanescent waves, is propagated to the image plane.

It is important to note that Pendry’s perfect lens does not magnify. Instead, if

an object is placed close to the slab, it forms a real image on the opposite side that
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is exactly the same size as the object. Practical implementation of such a device

would require a camera with subwavelength pixels. Alternative “hyperlens” designs

can magnify but have more complex geometry and material requirements [21, 22].

Nevertheless, if researchers could fabricate a negative-index material and engineer a

suitable way to record images, it would be a revolutionary technology. Biological

samples might be imaged at nanoscale resolution without damage by electron beams,

and photolithography techniques could reach a new regime for nanofabrication [3].

More generally, however, the availability of negative-index materials would give

scientists and engineers far greater control over the optical properties of materials.

Maxwell Garnett’s theory [23] and Effective Medium Theory [24, 25, 3] explain how

tunable effective optical properties emerge from combining materials with different

refractive indices. Negative-index materials would make it possible to create new

classes of composites and optical devices and may lead to new designs for anisotropic

materials as well. For example, the technique of transformation optics [26] enables

devices in which light travels along arbitrary, pre-programmed paths, but it requires

precise control over εr and µr anisotropically at all points. The ability to engineer

these material properties with precision could permit a practical implementation of

this strategy for new technologies like invisibility cloaks [8] or light harvesters [27, 28].

1.2 Metamaterials

Metamaterials are artificial substances designed to exhibit physical properties that

are not found in naturally occurring materials. No materials are known to exhibit

µ < 0 naturally at optical frequencies [3], and thus there are no known natural
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substances that exhibit a negative index of refraction. The design of metamaterials

with negative index requires a deeper understanding of how the electric permittivity

and magnetic permeability of a given material are determined and how they can be

manipulated.

1.2.1 Theory

To understand how to make a material with negative µr, one might first ask how

to make a negative εr. Negative εr occurs in noble metals like gold and silver at

optical frequencies [4]. One can explain this phenomenon using the Drude model.

Drude Model for the Permittivity of Metals

I begin by noting that the relative dielectric function εr is related to the electric

field E and the polarization density P through the relationship

D = ε0E + P = ε0εrE = εE. (1.14)

The polarization density P is the average electric dipole moment per unit volume, by

definition [3]. In a metal, it can be expressed as

P = −ner (t) , (1.15)

where n is the free electron density, −e is the electron charge, and r (t) is the change in

position of free electrons as a function of time. When monochromatic light impinges

on a metal, the electric field varies sinusoidally in time and exerts a driving force on
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free electrons at the surface of the metal. The equation of motion for an electron can

be expressed as [5, 3]

me
∂2r (t)

∂t2
+meΓ

∂r (t)

∂t
= −eE0e

−iωt, (1.16)

where me is the mass of the electron and E0e
−iωt is the incident electric field. Γ is

a damping constant, related to viscous friction from inelastic collisions between elec-

trons, electron-phonon coupling, and inelastic scattering from impurities [29]. This

model assumes that all inelastic collisions may be treated with the same damping

constant and it neglects long-range interactions between electrons or between the

electron and bound ions [30]. It also says nothing about electrons within the ions.

The equation of motion has the solution

r (t) =
eE0

me (ω2 + iωΓ)
e−iωt. (1.17)

This equation describes collective oscillations in the free electron gas in the metal,

associated with quasiparticles called plasmons. If one uses this result to substitute

for r (t) in equation 1.15 and then substitute the resulting expression for P in equa-

tion 1.14, one finds an expression for the relative dielectric function:

εr (ω) = 1−
ω2
p

ω2 + iΓω
, (1.18)

13
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where ωp is the metal’s plasma frequency,

ωp =

√
ne2

ε0me

. (1.19)

Impact of Electric Dipole Resonances on Permittivity

Equation 1.18 only accounts for free electrons, but bound electrons contribute

to the dielectric functions of metals as well. At optical frequencies, some bound

electrons in noble metals can transition between bands. For instance, electrons can

transition from the 5d to the 6sp state in gold when excited by light [31]. Since these

electrons are bound, they are effectively subject to a restoring force −kbrb (t), and

their equation of motion is

me
∂2rb (t)

∂t2
+meΓb

∂rb (t)

∂t
+ kbrb (t) = −eE0e

−iωt. (1.20)

Here Γb is the damping coefficient for bound electrons. The solution to this differential

equation has a form similar to equation 1.17, but with a characteristic frequency

ωb =
√
kb/me due to the restoring force:

rb (t) =
eE0

me (ω2 − ω2
b + iωΓb)

e−iωt. (1.21)

If one includes the bound electrons in the expression for the polarization density

(equation 1.15), the result for the dielectric function becomes

εr (ω) = εb (ω)−
ω2
p

ω2 + iΓω
, (1.22)
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where

εb (ω) = 1−
ω2
pb

ω2 − ω2
b + iΓbω

. (1.23)

Here Γb is the damping coefficient for bound electrons and ωpb, the equivalent of a

plasma frequency for bound electrons, is related to their number density in the same

way that ωp depends on the number density of free electrons (equation 1.19). Because

the relative dielectric function is complex, it can be written in terms of a real part

and an imaginary part:

εr (ω) = ε′r + iε′′r , (1.24)

where

ε′r (ω) = 1−
ω2
p

ω2 + Γ2
−

ω2
pb (ω2 − ω2

b )

(ω2 − ω2
b )

2
+ ω2Γ2

b

(1.25)

ε′′r (ω) =
ω2
pΓ

(ω2 + Γ2)ω
+

ω2
pbωΓ

(ω2 − ω2
b )

2
+ ω2Γ2

b

. (1.26)

The last terms in equations 1.25 and 1.26 come from the bound electrons. These

electrons contribute a Lorentzian resonance to the dielectric function, evident from

equation 1.23 and shown in Figure 1.5. Here the real (ε′b) and imaginary (ε′′b ) parts

have been plotted using the values h̄ωb = 2.8 eV, h̄ωpb = 3.0 eV, and h̄Γb = 0.6 eV

for gold [3], obtained by fitting to measured optical properties. The peak in (ε′′b ),

centered at about 450 nm, corresponds to increased absorption for blue and green

light, which gives gold its signature color. Near this resonance, the real part (ε′b)

varies substantially, and even drops below zero.

The free electron contribution to the dielectric function may be included as well to
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Figure 1.5: Contribution of bound electrons to the real (green) and imaginary (blue)
parts of the relative dielectric function of gold, calculated using equation 1.23. This
plot is based on Figure 2.5 in Cai and Shalaev [3].

calculate the refractive index of gold using equation 1.22 and assuming that µr = 1 at

optical frequencies. The refractive index in this case has both real (n) and imaginary

(k) components, both of which are plotted as a function of wavelength in figure 1.6.

Here I use the values h̄ωp = 9.1 eV and h̄Γ = 0.072 eV, based on the experimental

data of Johnson and Christy [4], which are widely used [3]. The model and data agree

well, particularly at wavelengths longer than 500 nm and far into the infrared.

This analysis reveals that electric dipole resonances affect the bulk permittivity

and refractive index of a material. Moreover, because εr is a material property that is

meaningful only at length scales on the order of a wavelength or longer, subwavelength

components of a composite material [24, 25, 3] can also alter the effective permittivity

of the material if they introduce electric dipole resonances.

How can one introduce electric dipole resonances into a transparent dielectric?

One way is to dope it with metallic nanoparticles. If an electromagnetic wave il-

luminates a subwavelength metal particle, the free electrons at the surface of the
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Figure 1.6: Refractive index (blue) and extinction (green) for gold. Solid curves are
calculated using equation 1.22. Data (circles) are from Johnson and Christy [4].

metal are subject to the same forces as the free electrons described by equation 1.16.

However, the fact that they are constrained to a small volume introduces a restoring

force −Kr (t), where the spring constant K depends on the size and geometry of the

particle.

me
∂2r (t)

∂t2
+meΓ

∂r (t)

∂t
+Kr (t) = −eE0e

−iωt (1.27)

Equation 1.27 has the same form as equation 1.20, the equation of motion for the

bound electrons, a damped harmonic oscillator model. It shows that the free electrons

in a nanoparticle have a resonant frequency ω0 =
√
K/me. The oscillation of the free

electron gas in response to the external field is illustrated in Figure 1.7.

Unlike the resonance of the bound electrons, the resonance of the free electrons

in the nanoparticle can be tuned geometrically since the spring constant K is related

to the particle size. The spring constant and resonance frequency both increase

with decreasing particle radius. Spectroscopy measurements have confirmed that the

electric dipole resonance redshifts with increasing particle size [32, 33]. Effective
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Figure 1.7: Electromagnetic waves drive oscillations in the free electrons at the
surface of a metal nanoparticle, creating an electric dipole resonance. This figure is
based on Figure 1 of Moores and Goettmann [5].

Medium Theories [23, 24, 25, 3] relate the optical properties and volume fraction

of metal nanoparticles to the macroscopic permittivity of the metamaterial. Thus,

adjusting the size and shape of subwavelength metal particles in a dielectric makes it

possible to engineer a metamaterial with controlled εr and index of refraction.

Achieving εr < 0 requires a narrow resonance. This means that absorption must

be small relative to scattering, or, equivalently, the scattering cross section σscatt of

the nanoparticle must exceed its absorption cross section σabs. These parameters are

different functions of the particle radius R [34, 35]:

σscatt ∝ R6

and

σabs ∝ R3

for R � λ. Thus, larger nanoparticles have sharper resonances. For gold nanoparti-

cles, the scattering cross section exceeds the absorption cross section when the particle
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diameter is larger than 80 nm [36].

Manipulation of Permeability with Magnetic Dipole Resonance

Since the electric permittivity of a metamaterial can be tuned with electric dipole

resonances, it follows that the magnetic permeability can be tuned with magnetic

dipole resonances. The relative permeability µr is related to the magnetic field H

and magnetization M in the same way that the relative permittivity εr is related to

the electric field E and polarization P. The relationship between B, H, M, and µ

[17, 3],

B = µ0 (H + M) = µ0µrH = µH, (1.28)

parallels that between D, E, P, and ε (equation 1.14). However, magnetic dipole

resonances are more difficult to engineer at optical frequencies than electric dipole

resonances because, above GHz frequencies, the magnetic permeability of all known

naturally occurring materials is always close to the permeability of vacuum. This is

a consequence of the fact that the magnetic field in light interacts with atoms much

more weakly than the electric field does due to the absence of magnetic charge [37].

This asymmetry between electric and magnetic phenomena even led the authors of

a widely used electromagnetism textbook to suggest that magnetic susceptibility is

meaningless at optical frequencies and above [38].

Pendry and colleagues [6] found a solution to this problem: the split-ring resonator.

A split-ring resonator is a planar subwavelength device consisting of concentric, in-

complete loops of metal embedded in a dielectric. Incident electromagnetic waves

can couple strongly to circulating current modes that can be engineered through the
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geometry of the device. The concentric rings of metal give the device inductance L,

while the gaps in the metal and the close proximity of concentric rings provide ca-

pacitance C. Thus, a split-ring resonator is essentially an LC circuit [Figure 1.8(a)].

The resonant frequency of the LC circuit, ω = (LC)−1/2, can be tuned by changing

the rings and gaps.

Figure 1.8: A split-ring resonator uses external electromagnetic waves to establish
a circulating current resonance, like that found in an LC circuit (a), in order to
manipulate µr in a metamaterial. Examples include (b) the original design by Pendry
et al. [6], (c) the first design for which negative refraction was observed [7], and (d)
the resonator used in the first realization of electromagnetic cloaking [8].

Because its current circulates in the plane, a split-ring resonator produces a mag-

netic dipole pointing out of the plane. Thus, light can drive the structure to resonate

magnetically, rather than just electrically. A metamaterial with tunable µr can be

constructed from dense arrays of split-ring resonators. Figure 1.8(b) shows the orig-

inal proposed split-ring resonator [6], and Figure 1.8(c)-(d) show designs from some

of the first successful implementations of these devices [7, 8].

With this theoretical framework in place, the basic requirements for fabricating

metamaterials with exotic optical properties are clear. A metamaterial can be made

from a positive-index material containing a high density of subwavelength structures

whose geometry affords them both electric and magnetic dipole resonances. The

electric resonances control εr and the magnetic resonances control µr. The geometry
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and number density of the structures, along with the materials from which they are

made, determine the effective permittivity and permeability.

1.2.2 Conventional Fabrication Routes

Since metamaterials require subwavelength components, the first ones were de-

signed for macroscopic wavelengths so that they could be built using printed circuit

board technology. Shelby et al. [7] built a metamaterial by printing two-dimensional

arrays of copper split-ring resonators and wires on interlocking circuit-board mate-

rial. They showed that resonators on the millimeter scale, with the design shown in

Figure 1.8(c), led to a negative εr and µr for wavelengths on the order of centimeters.

The measured index of refraction of their metamaterial was n = −2.7 ± 0.1. Other

examples of metamaterials at microwave frequencies, made using similar schemes,

soon followed [8].

Making metamaterials for optical frequencies, however, is a nanotechnological

challenge, because the resonators must be on the order of 100 nm or smaller. The

first candidate techniques for making such structures were top-down methods such

as electron-beam lithography [39, 10] and focused ion beam milling [9, 40]. In both

methods, a beam of charged particles is focused to a small spot on a sheet of material

in order to carve a nanostructure. Although these methods can be used to build split-

ring resonators, they have significant drawbacks. First, they are serial techniques in

which one nanostructure is made at a time, and thus manufacturing bulk quantities

of metamaterial by these methods is slow and expensive. Second, they are limited in

precision and resolution by the spot size, which is typically about 10 nm [3]. While
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this size is much smaller than the resolution limit of techniques like photolithography,

it limits the gap sizes and conductor spacing in the resonator, making it impossible

to use certain designs.

Figure 1.9: Planar split-ring resonator design used for optical metamaterials [9, 10].
(a) Light propagation within the plane can excite a strong magnetic dipole response
for one polarization, since the electric field can drive currents j in the arms of the
resonator. (b) At a different orientation, the magnetic response is much weaker.

Most problematically, these methods produce nanostructures that are inherently

two-dimensional. Split-ring resonators are designed to couple to an electromagnetic

wave coming from a specific direction and having specific polarization. If the resonator

rotates with respect to the source, its electromagnetic response can differ dramatically,

as illustrated in Figure 1.9. Thus, two-dimensional arrays of split-ring resonators are

inherently anisotropic metamaterials. While it is possible to build interlocking arrays

of millimeter-scale split-ring resonators [7] to partially compensate for the anisotropy

of a single two-dimensional array, this is not a straightforward process with their

nanoscale counterparts. It is possible to stack the arrays to create a three-dimensional

lattice of resonators [10, 40] but such lattices are still anisotropic.
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1.3 Metafluids

Many applications, such as perfect lensing [19], require metamaterials with an

isotropic response. Such materials are best fashioned from subwavelength elements

whose resonances are themselves isotropic. Isotropic resonances require nanostruc-

tures of a geometry different from that of planar split-ring resonators.

If isotropic subwavelength resonators could be made, their orientations relative to

one another and relative to the incident light would have no effect on the optical prop-

erties of the metamaterial. Even if the structures were dispersed randomly in a fluid,

where they could translationally and rotationally diffuse, they would still respond to

incident light. Thus, a concentrated colloidal suspension of isotropic electromagnetic

resonators would be a fluid metamaterial, also known as a metafluid [41].

A metafluid could enable additional technologies that are impossible with solid

metamaterials. For instance, they could be used in microfluidic waveguides whose

modes, unlike those of conventional waveguides, could be dynamically adjusted by

tuning the fluid composition and flow rates [42]. Such waveguides have been demon-

strated with aqueous solutions, but the availability of metafluids would expand the

range of refractive indices available for these systems and would make different mode

profiles possible. Fluidic lenses are another potential application. A lens made from

a liquid has a smooth, spherical surface, and its radius of curvature and focal length

can be dynamically adjusted using pressure [43]. As with microfluidic waveguides,

metafluids could be used to increase the range of possible refractive indices for a fluidic

lens. Moreover, they may make it possible to dynamically tune both the curvature

and the refractive index.
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1.3.1 Theory

Urzhumov et al. [41] used plasmon hybridization theory [44, 45], which relates

the electromagnetic resonances of various structures to their symmetries, to show

that some regular polyhedral clusters of metal nanoparticles exhibit isotropic electric

and magnetic dipole resonances [41]. Examples include Platonic solids such as the

tetrahedron, octahedron, and icosahedron.

To understand this prediction, one can consider the tetrahedron, whose symme-

try corresponds to the Td point group. Irreducible representations of the Td group

generate all possible arrangements of four electric dipoles situated at the vertices of

a tetrahedron. Because the representations corresponding to electric and magnetic

dipoles are each three-fold degenerate, these modes are three-dimensionally isotropic.2

Another way to understand this prediction is to consider each face of the tetrahe-

dron as a collection of three metal particles. If there are gaps between these particles,

they form a split ring, analogous to an LC circuit or a conventional split-ring res-

onator [Figure 1.8]. Because there is a fourth particle in the cluster, one can think

of the structure as consisting of four split-ring resonators with different orientations.

No matter how the structure is oriented with respect to incoming light, a magnetic

dipole resonance can be excited in at least one face of the structure, or in at least

three of the four particles, as illustrated in Figure 1.10(a). Thus, to make an op-

tical metafluid, one needs only a dense suspension of tetrahedral clusters of metal

nanospheres [Figure 1.10(b)] [41]. Negative index of refraction requires that the elec-

2The lowest-order electric multipole of the magnetic dipole resonance for the tetrahedron is an
electric octupole (23 = 8) [41].
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tric and magnetic dipole resonances overlap and these resonances are sensitive to the

gaps between the particles. The resonant frequencies can redshift by up to 10% if

the separation gaps decrease by just 1 nm [11], so nanometer precision is required to

ensure that all clusters have uniform resonances.

Figure 1.10: Tetrahedral clusters of metal nanospheres are isotropic electromagnetic
dipole resonators. (a) Any set of three spheres is analogous to a split-ring resonator.
Incident light of an appropriate frequency will excite a magnetic dipole resonance in
at least one face of the tetrahedron, regardless of its orientation. (b) A metafluid is
a dense, disordered collection of these clusters.

Since the building blocks for metafluids are three-dimensional structures, they

cannot be made using conventional fabrication routes, which yield two-dimensional

structures. A promising alternative is to make three-dimensional plasmonic nan-

oclusters “from the bottom up,” using self-assembly. In this scheme, one controls

the interactions between metal nanoparticles in a fluid such that specific clusters can

assemble. The clusters must be as symmetric and as uniform as possible so that their

optical properties are isotropic and reproducible.
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1.3.2 Previous Experiments

The simplest designs for optical metafluids call for symmetric clusters of metal

nanoparticles [41, 37]. There are many methods for making spherical particles of

noble metals. A number of groups have developed mechanisms for making clusters

on this length scale.

Metal Nanoparticles and Nanoshells

The study of gold nanoparticles has a rich history going back at least as far

as Michael Faraday [46]. Modern techniques for the preparation of commercial gold

nanoparticles are based on citrate reduction of HAuCl4 in water [47, 48]. This method

yields particles that are approximately spherical and monodisperse. However, electron

microscope images show that the particles have irregular, polyhedral morphologies,

as shown in Figure 1.11(a).

Figure 1.11: (a) Gold particles prepared by citrate reduction of HAuCl4 are faceted,
polyhedral crystals. This sample is from a batch purchased from Nanopartz, Inc. (b)
Gold nanoshells with silica cores are more spherical and monodisperse but can have
pinholes and the gold may dewet from the silica. Scale bars are 200 nm.
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Gold nanoshells are preferred for many applications because they are more spher-

ical. Oldenburg et al. [49] developed a procedure for synthesizing these particles,

which consist of a gold film grown on a spherical silica core. The thickness of the gold

layer can be controlled during synthesis, so that the ratio of core to shell diameter can

be used to tune the electric dipole resonance [49, 44]. However, pinholes can develop

in the gold layer [Figure 1.11(b)] and this can lead to dewetting or other changes in

nanoshell morphology [50]. Smooth, spherical metal particles with superior thermal

stability are needed for further progress in metafluid engineering.

Cluster Self-Assembly

Many groups have investigated colloidal self-assembly as a means of preparing

small clusters. One method involves attaching particles to the surfaces of emulsion

droplets and then evaporating fluid from the droplets. Capillary forces bring the

particles togther in small clusters with well-defined, symmetric configurations such

as tetrahedra and octahedra [51, 52]. However, the method generates a mixture of

clusters, and the yield of any single type is low, unless the clusters are separated by

size by using a density gradient [53]. It is also possible to control the geometry of

nanoparticle clusters by assembling “patchy particles” [54, 55], but it is not clear how

to make metal nanoparticles with well-defined nonspherical geometries.

It is possible to assemble small numbers of metal nanoparticle clusters. Drying

a colloidal suspension of gold nanoshells on a dielectric substrate results in the self-

assembly of two-dimensional clusters. Triangular clusters assembled this way have

been shown to exhibit a magnetic dipole resonance [11]. It is also possible to assemble
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plasmonic clusters in templated patterns on substrates [56, 57], but because they must

assemble on a surface, the yield is limited compared to that of self-assembly in bulk.

New routes to self-assembly of three-dimensional plasmonic nanoclusters have

emerged recently. For instance, Urban et al. [58] encapsulated small numbers of

metal nanoparticles in polymer spheres. They found evidence of isotropic response

in a gold nanoparticle tetrahedron. However, this method offers little control over

interparticle separations, and the yield of any particular cluster geometry is limited.

An alternative is to assemble large clusters from metal nanoparticles on the surface

of a much larger dielectric particle [59, 60]. This method is claimed to yield materials

with a magnetic response at optical frequencies, but one cannot control the number of

nanoparticles per structure or the gaps between the nanoparticles. One can mitigate

this problem by using icosahedral viruses as the dielectric particles and directing

gold nanoparticles to bind at their vertices [61]. A high yield of icosahedral clusters

is possible in principle, but the virus must be genetically engineered to exhibit thiol

groups at the desired sites on the capsid, and even then, many clusters are incomplete

icosahedra. Moreover, all of these approaches have used irregular nanoparticles or

unstable nanoshells.

1.4 Overview

Our goal is develop a material exhibiting isotropic negative refraction at optical

frequencies. Metafluids are the most promising route to such properties, since they

contain isotropic electromagnetic resonators, and the arrangement and orientation of

the resonators need not be controlled. Since a metafluid can be made from three-
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dimensional clusters of plasmonic nanospheres, colloidal self-assembly appears to be

the most promising way, if not the only way, to make one.

In this dissertation, I present our progress towards this goal. First, I show in

Chapter 2 that spherical, smooth, monodisperse, and stable gold nanoparticles can

be made by combining nanocrystal growth with slow chemical etching. My collabora-

tors and I demonstrate that the plasmonic behavior of these individual nanospheres

is reproducible and uniform, unlike that of conventional gold nanoparticles. In Chap-

ter 3, I show that self-assembly of tetramers in high yield is experimentally achievable.

We accomplish this by mixing spherical particles with larger spheres that can bind

randomly and irreversibly to the smaller ones. In Chapter 4, I discuss simulations of

magnetic resonances in tetrahedral gold clusters and examine how key geometric pa-

rameters affect the resonance. In Chapter 5, I apply our nonequilibrium self-assembly

method to our spherical gold particles and present methods for the self-assembly and

purification of tetramers composed of gold nanospheres. Finally, in Chapter 6, I

propose some experiments to build on these results and to ultimately demonstrate

high-yield self-assembly of isotropic, reproducible electromagnetic resonators for op-

tical frequencies.
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Chapter 2

Ultrasmooth, Highly Spherical

Monocrystalline Gold Particles for

Precision Plasmonics

Reprinted figures and text with permission from Lee, Schade, Sun et al., ACS

Nano, 7 (12), 11064–11070 (2013). Copyright 2013 by the American Chemical Society.

2.1 Introduction

In equilibrium, a nanoscale crystal adopts a polyhedral morphology to minimize

its surface free energy. As a result, metallic nanoparticles grown near equilibrium form

facets [62, 63, 64]. Although the plasmon resonances and ease of functionalization

[65] make such particles promising for bottom-up assembly of optical resonators [11,

66] and isotropic metamaterials [41], it is difficult to make structures whose optical
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properties are reproducible from one particle or one multiple-particle cluster to the

next since the resonances are often sensitive to features such as sharp corners [67],

number of facets [68], roughness [69], and overall size and shape [70]. Moreover, the

interparticle optical coupling varies significantly with nanometer-scale changes in gap

distance [71] and orientation [72]. The ideal particle for self-assembly of plasmonic

structures is therefore not a polyhedron, but a spherical crystal without facets or

grain boundaries. However, producing such particles is a materials challenge, since

spherical crystals are not stable under any growth conditions.

Here we show that a cyclic process of slow growth followed by slow chemical

etching, which selectively removes edges and vertices, results in ultrasmooth, highly

spherical monocrystalline gold particles. The etching process, which is functionally

similar to (but chemically different from) that used to make monocrystalline silver

nanospheres for surface-enhanced Raman spectroscopy [73, 74], effectively makes the

surface tension isotropic, so that spheres are favored under quasi-static conditions.

The resulting spherical crystals display uniform scattering spectra and consistent

optical coupling at small separations, even showing Fano-like resonances [12] in small

assemblies. The cyclic process we demonstrate could be extended to other metals

and, because it is scalable up to particle sizes of 200 nm or more, might be used

to create strongly scattering particles for sensors [36, 75], electromagnetic resonators

[41], and other optical devices [76].

The challenge of synthesizing metallic nanoparticles with controlled morphology

is intimately connected to how crystals grow. Unlike silica or polymer nanoparticles,

metallic nanoparticles are crystalline and tend to adopt distinct facets when grown in a
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bulk suspension. As first described by Gibbs [77] and Wulff [78], facets form because

they minimize the surface free energy, which is a function of the exposed crystal

planes. The number of facets can be controlled by chemically inhibiting the growth

of certain crystal surfaces. This method has been used to produce nanoparticles

with a variety of different shapes, including tetrahedra [62], octahedra [63, 67], cubes

[67], and higher-order polyhedra [64]. However, even pseudospherical particles [79]

produced this way have small facets.

We are not aware of any growth method that results in smooth, spherical nanocrys-

tals. Quasi-spherical gold nanoparticles grown near equilibrium tend to increase in

polydispersity and ellipsoidal eccentricity with increasing average particle diameter

[80, 81]. Nevertheless, fundamental studies of plasmonic phenomena [82, 66] have pro-

ceeded under the assumption that such particles are adequate substitutes for spheres.

An alternative is heterogeneous growth on a spherical dielectric shell, which produces

nanoshells [49] that are spherical but polycrystalline, and as a result have rough sur-

faces and grain boundaries that can lead to additional losses in plasmonic applications.

Nanoshells are also subject to dewetting [83] and thermal instabilities [50].

Our solution to this quandary is to use both growth and etching, rather than

simply adjusting the growth conditions, to make solid gold nanospheres. The growth

step produces single-crystalline polyhedral particles, while the chemical etching step

selectively removes edges and vertices while leaving the crystal structure intact. It

is important that both steps are quasi-static, to avoid instabilities. The effect of the

reduction-oxidation etching process is analogous to introducing an isotropic surface

tension, which leads to spherical particles as the particle size decreases. By alternating
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between anisotropic growth and isotropic etching, we create smooth, spherical, single-

crystalline particles of any desired size, up to 200 nm and conceivably larger. These

spherical crystals are smoother than state-of-the-art polycrystalline or commercial

particles and, as a result, show much more uniform optical properties, making them

ideal building blocks for self-assembly of plasmonic nanostructures.

2.2 Results and Discussion

2.2.1 Synthesis of Uniform, Stable Gold Nanospheres

We start by synthesizing single-crystalline gold octahedra, following a procedure

similar to that of Li et al. [63]. (See Section 2.4.1 for details.) The particles grow

by the slow reduction of chloroauric acid (HAuCl4) in ethylene glycol, which acts

as a reducing agent at elevated temperature, with poly(diallyl dimethyl ammonium

chloride) (polyDADMAC) and phosphoric acid (H3PO4). PolyDADMAC, a cationic

polyelectrolyte, stabilizes the nanoparticles, and phosphoric acid controls the reduc-

tion rate of chloroauric acid [63]. The resulting uniform gold octahedra are 135.4 ±

12.5 nm in edge length [Figure 2.1(a)]. A small number of particles with different

shapes, such as decahedra and truncated triangular bipyramids, are also formed in

this reaction but constitute less than 5% of the total.

To smooth the vertices and edges, we add an oxidizing agent, chloroauric acid,

to the unwashed gold octahedron suspension after it cools. Chloroauric acid favors

oxidation of the gold atoms specifically at vertices and edges, where the atoms have

the lowest coordination [84]. Although chemical etching processes have been used
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Figure 2.1: Growth followed by etching produces uniform, monocrystalline nano-
spheres. (a) Schematic diagram of shape evolution of gold particles during the etch-
ing process. SEM images of gold nanoparticles after chemical etching for various
durations show the gradual transformation from octahedra to spheres. Scale bars are
200 nm. (b) Particle size as a function of etching time after the addition of HAuCl4
in different concentrations. (c) Electron diffraction pattern of an octahedral particle
and a spherical particle, showing that both are single crystals. (d) Sequential states
in the simulated etching of a gold octahedron with edge length 40 atoms. The color
of each atom corresponds to its coordination number CN and energy.
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to change the shape of polyhedral metal nanoparticles into exotic shapes, in general

these processes do not produce uniform spheres [85]. Our etching process differs

in that it is designed to be slow, so as to avoid instabilities leading to anisotropy,

polydispersity, or significant reductions in particle size. Over the course of 20 h, the

particles progress from octahedra to truncated octahedra, quasi-spheres, and finally

smooth gold nanospheres of diameter 112.3 ± 8.2 nm [Figure 2.1(a)]. As shown in

Figure 2.1(b), the particle size decreases abruptly at first and then decreases more

slowly as the oxidation-reduction reaction approaches equilibrium, and the chemical

potential difference vanishes. Electron diffraction patterns of individual octahedra

and spheres [Figure 2.1(c)] indicate that each nanoparticle is a single, face-centered

cubic crystal, both before and after the etching reaction.

Monte Carlo simulations of the etching process (Section 2.4.1), using atom energies

calculated as a function of coordination number using the embedded atom method

[86], show that the oxidation conditions alone can explain the transformation to a

sphere. The embedded atom method calculations predict that gold vertex atoms

have a free energy of 26 kBT and edge atoms of 10 kBT relative to the [111] faces.

These conditions favor the removal of vertices and edges before faces, as shown in

Figure 2.1(d). Although these simulations do not model diffusive dynamics, they do

show that energetics favor the transition to a spherical morphology before the surface

layers on the faces of the original octahedron are completely removed. Because the

difference in free energy between faces is only 3.9 kBT , the anisotropy in the surface

tension is small compared to the difference in free energy between edges and faces or

between vertices and faces. Thus the surface tension is effectively isotropic, and it
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favors the removal of regions of high curvature.

2.2.2 Cyclic Growth and Etching Process

The etching process leaves the crystal structure of each particle unperturbed, re-

sulting in true spherical crystals, as evidenced by high-resolution transmission electron

micrographs [Figure 2.2(a)]. To further confirm that the crystalline order extends to

the boundary of the nanospheres, we used 112.3 ± 8.2 nm gold spheres produced by

our growth and etching process as seeds for a second growth reaction [Figure 2.2(b)]

(Section 2.4.1). This resulted in larger octahedra with edge length 156.5 ± 13.8 nm

[Figure 2.2(c)]. If the original spheres were not monocrystalline, we would not expect

that the regrowth reaction would result in such uniform and smooth octahedra.

The seeded growth experiments also illustrate a route to larger gold nanospheres

through cyclic etching and growth. We initiated another etching reaction using the

regrown octahedral particles and found that these too transformed into spheres. The

new batch of nanospheres was larger (131.2 ± 9.5 nm) than the original seed spheres

we had obtained after 20 h. We produced larger octahedral gold particles in a third

growth step (173.3 ± 15.1 nm), and as we continued this procedure, we obtained

smooth gold spheres of diameter 200 nm after seven iterations (Section 2.4.1). We

know of no other route to such large and uniform gold particles.

Annealing experiments (Section 2.4.1) show that these spherical crystals, though

metastable with respect to the polyhedral morphology, are in fact more stable than

quasi-spherical gold nanostructures. We find that in the absence of etching reagents

the nanospheres maintain their shape at temperatures up to 200 ◦C. At 250 ◦C,
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Figure 2.2: Nanospheres produced by growth and etching are single crystals that
can be used as seeds for further growth. (a) High-resolution transmission electron
micrograph of a gold nanosphere shows that the crystalline order extends to the edge
of the particle. Scale bar is 2 nm. Inset shows the electron diffraction pattern. (b)
Schematic diagram of iterated etching and regrowth of gold nanoparticles to produce
large particles. (c) Scanning electron micrographs show particles after repeated etch-
ing and growth steps. Scale bars are 200 nm. (d) Scanning electron micrographs
taken before and after annealing a sample of gold spheres at 250 ◦C in pentanediol
for 12 h. Scale bars are 200 nm.
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the particles start developing facets, as shown in Figure 2.2(d). In contrast, gold

nanoshells melt at temperatures as low as 175 ◦C due to grain boundaries and fis-

sures [50]. The enhanced stability suggests that the spherical crystals not only are

monocrystalline but also have a low level of defects that might compromise thermal

stability.

2.2.3 Circularity and Size Distribution

The other state-of-the-art particles for studies of plasmonic phenomena are quasi-

spherical gold particles produced from citrate reduction of HAuCl4 in water [47, 48].

These have been used in several recent experiments to study phenomena such as

surface-enhanced Raman scattering [75], Fano resonances [66], nanoparticle-microca-

vity-based sensing [87], and quantum limits of plasmonic coupling [82]. However, we

find that these particles are much less smooth and spherical than the nanospheres

produced through growth and etching. We quantify these differences using image

analyses of transmission electron micrographs (Figure 2.3).

Starting with a TEM image of a single nanoparticle, we use the software program

ImageJ to threshold and filter the image. We then sample over all angles in the

plane of the image to compute the maximum Feret’s diameter (dF ) of the region

representing the nanoparticle. This represents the longest line segment that can be

drawn from one side of the particle to another. We define the “circularity” (c) of the

particle as the ratio of its area (A) in the filtered image to the area of a circle whose

diameter is equal to dF , expressed in the equation c = 4A/πd2F . A perfectly circular

particle corresponds to c = 1; the circularity decreases toward zero as the particle’s
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Figure 2.3: Distribution of circularity and diameter of spherical gold crystals (blue)
and citrate-stabilized gold nanoparticles (red), as measured from TEM images of sam-
ples of 200 particles using image processing. A perfectly circular particle corresponds
to c = 1; the circularity decreases toward zero as the particle’s outline deviates from
a circle. Insets show micrographs corresponding to key parts of each distribution.
Scale bars are 100 nm.

outline deviates from a circle. From the area A that we measure in each image, we

can also compute an average diameter of each particle, d = (4A/π)1/2. From the

distribution of d for each colloid, we can measure its polydispersity.

We measure c and d for equal numbers of gold nanospheres made through growth

and etching and citrate-stabilized gold particles purchased from British Biocell In-

ternational (BBI), which are prepared using a proprietary method based on the pro-

cedure developed by Turkevich et al. [47] As shown in Figure 2.3, the distributions

of the circularity, c, and the diameter, d, for these particles are more than twice
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as broad as they are for particles of comparable size from the growth and etching

technique. The spherical crystals have an average diameter of 99.5 nm with a stan-

dard deviation of 2.9 nm. They are more monodisperse than a comparable sample of

citrate-stabilized particles, whose average diameter is 98.8 nm with a standard devia-

tion of 7.2 nm. Moreover, the median citrate-stabilized particle deviates from perfect

circularity (1.000) more than twice as much as the median spherical crystal; the me-

dian circularity of the spherical crystals is 0.954 and that of the citrate-stabilized

particles is 0.896.

2.2.4 Reproducible Scattering Spectra of Gold Nanospheres

The qualitative advances in particle uniformity, sphericity, smoothness, stability,

and monocrystallinity afforded by the growth and etching technique [Figure 2.4(a)]

enable the assembly of plasmonic structures with uniform and reproducible optical

properties. We demonstrate this through several experiments examining the spec-

tra of individual particles and assemblies thereof. To test the optical uniformity of

the nanospheres, we record dark-field scattering spectra from individual particles de-

posited on a glass slide (Section 2.4.2), shown in Figure 2.4(b). We find that the

standard deviation of the resonance peak wavelength for our spherical crystals is 5.7

nm, nearly 7 times smaller than that of commercial citrate-stabilized particles.

The nanospheres also show uniform spectra when their surface plasmons interact

with those of a metal surface only 10 nm away. Unlike individual particles on a glass

slide, this system enables us to probe higher-order plasmon modes in the context

of coupling. We place the particles on a smooth gold film with an aluminum oxide
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Figure 2.4: Reproducibility of gold nanoparticle scattering spectra. (a) Scanning
electron micrographs of gold nanoparticles synthesized by citrate reduction or growth
and etching. Scale bars are 200 nm. (b, c) Measured scattering spectra for citrate-
stabilized nanoparticles and spherical crystals. Particles in (b) are on a glass slide
and in (c) are on a gold film with a thin dielectric spacer. Insets show polarization
and propagation direction of incident light.
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spacer (Section 2.4.2) and measure their scattering spectra with p-polarized light at

a 65◦ angle of incidence. In this geometry, the interaction results in a low-energy

bonding mode and a higher energy antibonding mode, both of which are broadened

due to the finite film thickness [88]. We find that for the nanospheres produced

through growth and etching, the standard deviation in peak wavelength is nearly 6

times smaller than it is for citrate-stabilized particles of similar size [Figure 2.4(c)].

Furthermore, features like the smaller peak near 530 nm and the minimum near

550 nm are more reproducible for the spherical crystals than for the citrate-stabilized

particles, some of which do not exhibit these features at all. For the spherical crystals,

the wavelength of the small peak has a standard deviation of only 0.74 nm and may

in fact be much smaller, as this value is comparable to the instrumental broadening

of our spectrometer apparatus; for the citrate-stabilized particles the distribution

is nearly 5 times as broad. The standard deviation of the ratio of the small peak

intensity to the minimum intensity is 3.5 times larger for citrate-stabilized particles

than for spherical crystals. Because the coupling that leads to these features depends

sensitively on azimuthal symmetry and the distance between the particle and the gold

film [88], the results suggest that nanospheres produced by growth and etching are

round and smooth down to the nanometer scale.

2.2.5 Scattering Spectra of Quadrumer Cluster

To demonstrate that these particles may be used for self-assembly of artificial

plasmonic molecules and other nanostructures showing complex coupling between

plasmon modes, we prepare symmetric four-particle clusters (“quadrumers”) on TEM
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Figure 2.5: Scattering spectra of quadrumer cluster. (a) Experimental and (b)
calculated near-normal incidence dark-field scattering spectra of a gold nanosphere
quadrumer under long-axis (gray) and short-axis (black) polarization. Minima appear
in both the experimental and calculated spectra near 980 nm when the polarization
is parallel to the short axis of the quadrumer. We attribute this minimum to a Fano-
like resonance because it occurs for only one polarization. Adsorption of organic
molecules during the etching process results in a spacer on the order of 2 nm between
the particles. Some discrepancies between the theoretical and experimental spectra at
short wavelengths are likely due to scattering from other parts of the sample and have
been observed in previous experiments [11, 12]. Inset shows a transmission electron
micrograph of a quadrumer. Scale bar is 200 nm.
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grids (Section 2.4.2) and measure their scattering spectra using near-normal incidence

dark-field spectroscopy [89]. A narrow minimum appears in the spectrum near 980

nm when the polarization of the incident light is parallel to the quadrumer’s short

axis [Figure 2.5(a)]. The minimum disappears when the polarization is parallel to the

quadrumer’s long axis. These spectral features, characteristic of a Fano-like resonance

[12], are in good agreement with calculated scattering spectra [Section 2.4.2 and

Figure 2.5(b)] for a quadrumer modeled by uniform, spherical gold nanoparticles.

The resonance results from interference between quadrupolar and higher-order modes

of the nanoparticles [12]. This shows that the spherical nanocrystals can be used

to fabricate plasmonic structures with similar properties to those made using gold

nanoshells [11].

2.3 Conclusion

The method we have demonstrated to produce highly uniform, single-crystalline

gold nanospheres can be used to address longstanding problems in the field of plas-

monics. Particles on the order of 100 nm and larger are important for many ap-

plications because the scattering cross section exceeds the absorbance cross section

for gold particles larger than 80 nm [34, 35]. The cyclic process we demonstrate can

easily produce particles of 200 nm or larger, without the eccentricities and polydisper-

sity typical of gold particles larger than 30 nm produced from established protocols.

Indeed, conventional synthesis routes yield particles that are so heterogeneous that

some groups have made use of the heterogeneity to fabricate asymmetric structures

from a single batch of particles [66]. Furthermore, the high monodispersity of the
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particles we demonstrate should facilitate the self-assembly of nanoparticle clusters

with uniform linear or nonlinear optical resonances, which could in turn be used to

fabricate optical metafluids [41] or to investigate enhanced optical four-wave mixing

[90]. Narrow size distributions are required to control not only the spectral features

but also the morphology and yield of clusters in certain assembly schemes [91]. A

similar cyclic process of anisotropic growth followed by isotropic etching could be used

to design spherical crystals of other metals, which might find uses as building blocks

for optical sensors and circuits [75, 76], probes for biomedical applications [36, 92],

nucleation sites for nanobubble generation [93, 94], and components for other appli-

cations in which smoothness, thermal stability, and uniformity of the optical response

are critical.

2.4 Materials and Methods

2.4.1 Morphological Transformations

Chemicals

Ethylene glycol (anhydrous, 99.8%), gold(III) chloride trihydrate (≥ 49.0% metals

basis), poly(dimethyl diallyl ammonium chloride) (Mw 400 000 - 500 000, 20 wt% in

H2O), phosphoric acid (85 wt% in H2O), chloroplatinic acid hydrate (99.995% metals

basis), ethanol (≥ 99.5%), hexadecyltrimethylammonium bromide (≥ 99.0%), sodium

dodecyl sulfate (92.5 - 100.5%), and polyvinylpyrrolidone (Mw 55 000) were purchased

from Aldrich and used without further purification.
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Synthesis of Octahedral Gold Particles

Octahedral particles were synthesized by a modified polyol process as described

in a previous report by Li, et al [63]. When we used hydrochloric acid, we always

found octahedral particles smaller than 100 nm, and we also found many byproducts

from the reaction, including dodecahedra and trigonal plates. We tested several

different acids and we found that phosphoric acid produced larger octahedral particles

(> 100 nm) with the fewest impurities. The exact reason for the better results with

phosphoric acid is not clearly understood.

A 20 mL anhydrous ethylene glycol solution was stirred with a magnetic bar in a

glass vial, and then 0.4 mL of polyDADMAC (20 wt% in H2O, Mw 400 000 - 500 000)

and 0.8 mL of 1 M H3PO4 solution were added. The mixture was stirred for 2 more

minutes, and 0.02 mL of a 0.5 M HAuCl4 aqueous solution was added under stirring.

The mixture was maintained at room temperature for 15 min, and then the solution in

the glass vial was loaded into an oil bath for 30 min, which was maintained at 195 ◦C

throughout the reaction. During the reaction, the color of the solution changed from

yellow to colorless and then, gradually, to purple and finally brown. We centrifuged

the solution at 13 000 rpm and redispersed the precipitates in ethanol three times to

remove the excess reactants and byproducts.

Etching Octahedral Particles to Form Spheres

To convert the octahedral gold nanoparticles to gold nanospheres, 5 µL of a 0.5

M HAuCl4 solution was added into the unwashed gold octahedra suspension (20 mL,

8.9 × 10−3 wt%) at room temperature. The color of the suspension changed from
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brown to pink. The size of the gold nanocrystals decreased from 135.4 ± 12.5 nm to

112.3 ± 8.2 nm over 20 h, and the particles evolved from octahedra to spheres.

At room temperature, ethylene glycol no longer behaves as a reducing agent,

so growth of the nanocrystals is suppressed and the addition of chloroauric acid

initiates an etching reaction. This etching process is driven by redox reactions and

the concentration of HAuCl4 controls the etching rate. To investigate this, we added

three different amounts of chloroauric acid to equal volumes of unwashed octahedral

particles. We found that decreasing the concentration of chloroauric acid slows the

etching rate over the 20 h period.

To investigate whether there was another adjuvant that played a critical role in

etching the gold octahedral particles, we tested the chemical ingredients used in our

experiments. Only the mixture of HAuCl4, polyDADMAC, and gold octahedral par-

ticles suspended in ethylene glycol exhibited a color change to orange [Figure 2.6(a)],

accompanied by the transformation of the octahedra into spheres [Figure 2.6(b)-

(g)]. PolyDADMAC may form a complex with AuCl−2 when Au from the octahedral

particles is oxidized. Consequently, the removal of gold atoms from the octahedra

continues as the product of this reversible reaction is steadily removed. It is well

known that complexation of AuCl−4 and AuCl−2 with a surfactant facilitates oxidation

of Au0, although the standard oxidation potentials of Au0 to AuCl−4 and AuCl−2 are

large negative values (respectively -1.002 and -1.154 V, versus a normal hydrogen

electrode) and the equilibrium constant for reaction 2.1 is very low [95].

AuCl−4 + 2Au0 + 2Cl− ←→ 3AuCl−2 ,K = 1.9× 10−8 (2.1)
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Figure 2.6: (a) Photographs of (1) the Au octahedron colloid solution before etching
(20 mL, 8.9 × 10−3 wt%), and with the addition of (2) polyDADMAC (20 wt%, 0.4
mL); (3) H3PO4 (1 M, 0.8 mL); (4) HAuCl4 (0.5 M, 5 µL); (5) polyDADMAC and
H3PO4; (6) H3PO4 and HAuCl4; or (7) polyDADMAC and HAuCl4. SEM images of
gold particles from a suspension (20 mL, 8.9× 10−3 wt%) after adding (b) polyDAD-
MAC aqueous solution (20 wt% in H2O, 0.4 mL); (c) H3PO4 aqueous solution (1 M,
0.8 mL); (d) HAuCl4 (0.5 M, 5 µL) aqueous solution; (e) polyDADMAC and H3PO4;
(f) H3PO4 and HAuCl4; or (g) polyDADMAC and HAuCl4. Scale bars are 200 nm.

This suggests that the etching rate may depend on the quantity of polyDADMAC

added. In control experiments, we added only 1/10 or 1/100 of the normal amount of

polyDADMAC solution to the gold octahedron suspension, waited 20 hours as usual,

and observed larger, less smooth Au particles (Figure 2.7). This indicates that less
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Figure 2.7: SEM images of Au particles after the addition of HAuCl4 (0.5 M,
5 µL) and (a) 400 µL, (b) 40 µL, or (c) 4 µL of polyDADMAC into the washed gold
suspension for a reaction time of 20 h. Scale bar: 200 nm.

etching occurs when less polyDADMAC is added. We tested other surfactants in ad-

dition to polyDADMAC and the results are shown in Figure 2.8. Cetyltrimethyl am-

monium bromide (CTAB, a cationic surfactant) was effective in the chemical etching

process but sodium dodecyl sulfate (SDS, an anionic surfactant) and polyvinylpyrroli-

done (PVP, a nonionic surfactant) were not. CTAB may form complexes with gold

chloride anions, however, as has already been reported in previous articles [96, 97].

Moreover, because of the relatively high viscosity of ethylene glycol, the particles

were stable against sedimentation and ions presumably diffused slowly, which made

Figure 2.8: TEM images of Au colloids after the addition of HAuCl4 (0.5 M, 5 µL)
and (a) CTAB (20 wt% in H2O, 0.4 mL), (b) SDS (20 wt% in H2O, 0.4 mL), or (c)
PVP (20 wt% in H2O, 0.4 mL) to the Au octahedron suspension. Scale bar: 200 nm.
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it possible to control the extent and uniformity of chemical etching.

To investigate the etching rate’s dependence on chloroauric acid, we tested three

different amounts of chloroauric acid with the same quantity of polyDADMAC (0.4

mL). We found that decreasing the concentration of gold salt slowed the etching rate

over the 20 h period. We determined the particle sizes as functions of reaction time

from measurements of SEM images of samples taken at different times during the

experiment (Figure 2.9). In all cases, the particle size decreased abruptly at first and

then saturated as the oxidation-reduction reaction approached equilibrium and the

chemical potential difference vanished.

Figure 2.9: SEM images of the gold nanocrystals (a) 30 min., (b) 3 h, (c) 6 h, and (d)
10 h after the etching reaction began with 10 µL gold precursor. And SEM images
of the gold nanocrystals (e) 30 min., (f) 1 h, (g) 3 h, and (h) 6 h after the etching
reaction began with 15 µL gold precursor. Scale bars are 200 nm.

To understand how the different initial nanocrystal morphologies transformed dur-

ing the etching reaction, we used SEM to observe samples of the mixture from vari-

ous times throughout the etching process. The octahedral particles transformed into
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spheres through etching fastest (Figure 2.10). The truncated triangular bipyramids

changed shape at a slower rate but they all eventually became spheres. The final gold

spheres are uniform in size and shape regardless of the seed particles’ shapes.

Figure 2.10: SEM images of the gold nanocrystals (a) 3 min., (b) 6 min., (c) 50
min., and (d) 4 h after the etching reaction began with 5 µL gold precursor. Scale
bars are 200 nm.

X-ray diffraction (XRD) patterns in Figure 2.11 reveal that the {111} facet is

dominant for the gold octahedron, in agreement with observations by other groups

[63, 98]. Other crystal planes including {200}, {220}, and {311}, consistent with the

standard spectrum of fcc gold (JCPDS no. 89-3697), are also exposed at surfaces

during the chemical etching process.

Iterative Growth and Etching

In one experiment, we used our spherical gold crystals as seeds for octahedral

re-growth. The unwashed gold sphere suspension in a glass vial was loaded into an
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Figure 2.11: XRD patterns of gold structures from octahedron to truncated octa-
hedron, quasi-sphere, and sphere. The standard XRD patterns for fcc gold (JCPDS
no. 89-3697) are shown as a bar diagram at bottom.

oil bath at 195 ◦C for 1 h. We started with 112.3 ± 8.2 nm gold spheres in suspension

with the 5 µL of chloroauric acid that had previously been added for etching. After

the first regrowth, we obtained octahedral particles of edge length 156 ± 13.8 nm.

We initiated another etching reaction using these re-grown octahedral particles by

adding 5 µL of chloroauric acid. We found that these too transformed into spheres.

The resulting spheres were larger (131.2 ± 9.5 nm) than the original seed spheres

we had obtained after 20 h. We produced larger octahedral gold particles in a third

growth step, and as we continued this procedure, we obtained larger smooth gold oc-
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Figure 2.12: Iterative growth and etching of gold octahedra. a, (i-x) SEM images of
gold octahedra and nanospheres after iterative growth and etching with addition of
5 µL aqueous HAuCl4 solution. (i) initial growth, (ii) 1st etching, (iii) 1st regrowth,
(iv) 2nd etching, (v) 2nd regrowth, (vi) 3rd etching, (vii) 3rd regrowth, (viii) 4th
etching, (ix) 4th regrowth, (x) 5th etching. b, With the addition of 20 µL of 0.5 M
aqueous HAuCl4 solution, (i) smaller gold nanospheres and (ii) larger gold octahedra
were produced from 197.5 nm gold octahedra shown in a(ix) and then (iii) 200.7 nm
gold nanospheres were produced by etching 234.6 nm gold nanospheres in b(ii) with
the addition of 5 µL of 0.5 M aqueous HAuCl4 solution. Average particle sizes refer
to edge length for octahedra and diameters for spheres. Scale bars are 200 nm.
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tahedra after each successive iteration. Electron micrographs of the resulting spheres

and octahedra after successive iterations are shown in Figure 2.12.

Transformation Back to Polyhedra at High Temperature

Figure 2.13: SEM images of Au particles after the solvo-thermal process in 1,5-
pentanediol at 250 ◦C for a total reaction time of (a) 5 min, (b) 10 min, (c) 15 min,
and (d) 30 min. Scale bars are 200 nm.

We conducted an annealing experiment to test the stability of our gold nanospheres

in the absence of the etching reaction. We washed a batch of spherical gold crystals

more than 10 times in ethanol and redispersed them in 1,5-pentanediol. We then

heated the mixture to just below the boiling point of pentanediol (250 ◦C) for half an

hour. We found that under these conditions, the particles gradually transform back to

polyhedra, as shown in Figure 2.13. Facets begin to form on the particles in less than

30 minutes. After 12 hours, the particles show significant faceting and some of them

have merged together as dimers. Many of them appear to have adopted a truncated

octahedral morphology, in agreement with predicted shape transformations prior to
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melting [99]. This implies that increased mobility at the crystal surface at 250 ◦C

is sufficient to transform the particles to a faceted morphology. In a similar experi-

ment, we washed and redispersed gold nanospheres in ethylene glycol and heated the

suspension nearly to its boiling point (200 ◦C) for 12 hours. These particles showed

no evidence of morphological transformation.

Comparison to Citrate-Stabilized Gold Nanoparticles

Figure 2.14: Scanning electron micrographs of gold nanoparticles purchased from
various suppliers and as prepared with our growth and etching technique. Scale bars
are 200 nm.

Citrate-stabilized gold nanoparticles were purchased from British Biocell Interna-

tional or BBI (100 nm), Strem Chemicals (90 nm), and Nano Partz (100 nm). Inspec-

tion of the particles with scanning electron microscopy (Figure 2.14) revealed that all

three colloids consisted of faceted or lumpy particles which were not all the same size.
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Qualitatively, these micrographs show that these conventional gold nanoparticles are

not perfectly spherical or monodisperse. We used one of these colloids (BBI, 100 nm

diameter) for more thorough quantitative comparison with the spherical gold crystals.

Monte Carlo Simulation of Chemical Etching

Starting with an octahedral nanoparticle defined in a space of fcc lattice sites,

we calculate the energy of each atom based on its coordination number using the

embedded atom method [86]. We then proceed with a grand canonical Metropolis

algorithm [100, 101, 102] to select lattice sites at the surface of the crystal for either the

insertion or removal of one atom at a time. The probability of insertion is determined

from the change in free energy that would result,

Wn→n+1 = min

(
1,

Vacc
XΛ3 (n+ 1)

e

(
µ−

∆En+1,n
kBT

))
(2.2)

similar to the method explained in a previous study [102], with a few differences.

In equation 2.2, n is the number of atoms in the nanocrystal and Λ is the thermal

wavelength, given by
(

h
2πmkBT

)
. The volume where particles can be created Vacc

is given by the number of occupied and unoccupied lattice sites with coordination

number CN > 0 multiplied by the volume of a gold atom,
(
4
3
πr3Au

)
. Thus it includes

not only the volume of the crystal itself but also the volume of a surface layer of

lattice sites where an atom could be inserted such that it would form at least one

bond with another atom already in the crystal. The chemical potential is calculated

from µ = RT ln aM, where the activity aM is taken as the initial concentration of

chloroauric acid added to start the reaction. Molecules in solution at and outside the
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surface of the nanocrystal are not modeled.

One difference between the present algorithm and the previous study [102] is that

the change in energy due to the insertion of an atom, ∆En+1,n, includes not only the

decrease in energy from forming bonds with other atoms but also an energy increase

of 3.700 eV due to the etching reaction. This value is the difference between the

reduction potential (-0.228 eV) of reaction 2.1, calculated from reduction potentials

for half-reactions reported elsewhere [96], and the binding energy of the atoms in the

bulk of the crystal with CN = 12, which is -3.928 eV according to embedded atom

method calculations.

Another difference in the present algorithm is that the probability is normalized by

dividing by a large constant, X, chosen throughout the present study to be 109. This

has the effect of slowing the entire simulation down, while introducing a preference for

the insertion or removal of atoms at sites where the change results in a larger decrease

in the system’s free energy. We include this factor so that we can observe which areas

of the crystal are modified first preferentially. This modification to the standard

grand canonical Metropolis algorithm is acceptable because it should have no effect

on the equilibrium state to which the simulation converges. We are not primarily

interested in the equilibrium state anyway, which in this case is the dissolution of the

crystal entirely. Instead, we are interested in how the system gradually changes as

it slowly equilibrates. In our experiments we have to terminate the etching reaction

after a certain period of time and we observe that the nanospheres continue to shrink

as long as the reactants are present, so we do not assume that the system in fact

reaches an equilibrium state.
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Figure 2.15: Number of atoms in a model octahedral nanocrystal as a function
of etching simulation run time, color-coded by coordination number, CN. The edge
length is initially 40 atoms, or 42 680 atoms total. The percentage of atoms with
CN < 6 is negligible. The dashed white line marks the point when original faces of
the octahedron have been completely removed. Until the very end of the simulation
the majority of atoms are in the interior of the crystal with CN = 12.
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The probability of removal of an atom from the crystal is calculated similarly:

Wn→n−1 = min

(
1,

Λ3n

XVacc
e

(
−µ−

∆En−1,n
kBT

))
(2.3)

where in this case X = 109 as before and ∆En−1,n represents the increase in energy

due to breaking bonds between atoms by removing an atom from the crystal, plus a

decrease in energy of 3.700 eV due to the chemical reaction.

We start with an octahedron of edge length 40 atoms for a total of 42 680 atoms.

The vertices are removed first, followed by the edges, and then the crystal gradually

becomes more and more spherical as the original facets are slowly removed. This

is reflected in Figure 2.15, which shows how the number of atoms with different

coordination numbers CN changes over the course of the simulation. Initially there

are many atoms with CN = 9 on the faces of the octahedron and this number gradually

diminishes as the faces are slowly removed. It takes roughly 10 million attempts at

insertion or removal of atoms before all the atoms are etched away; the vast majority

of attempts result in no change to the crystal at all. The simulation is this slow due

to our large probability suppression factor, X.

2.4.2 Optical Properties of Gold Nanospheres

Preparation of Nanoparticles on a Glass Slide

We prepared samples for spectroscopy measurements by drying a droplet of dilute

gold nanosphere suspension on a glass slide. The slide was treated with oxygen plasma

at 60 W for 10 s to make the surface more hydrophilic. Immediately afterward
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we placed onto the slide a droplet of gold nanosphere suspension that had been

sonicated for at least 1 min in a bath sonicator. We measured spectra from individual

particles after the droplet dried in air. Both the spherical crystals and the citrate-

stabilized particles were deposited on the same glass slide for dark-field spectroscopy

measurements. Scanning electron microscopy confirmed that the vast majority of

particles on the sample were well-dispersed, sitting several micrometers apart rather

than occurring in clusters.

Preparation of Particles on Gold Film Separated by a Dielectric Layer

We prepared samples by drying a droplet of dilute gold nanosphere suspension on

a substrate consisting of a thin Al2O3 layer on top of a template-stripped gold film

supported on a glass slide. To prepare the substrate, we first deposited 120 nm of

gold onto a cleaned silicon wafer with electron beam evaporation. Then we placed a

small drop of UV-curable epoxy (Norland Optical Adhesive 65 from Thorlabs, Inc.)

on top of the gold film and put a glass slide on top before curing it under a UV

lamp for 20 min. The wafer was stripped off of the film so that the film could be

transferred entirely to the glass slide but retain a wafer-smooth surface. Next, 10 nm

of Al2O3 was deposited onto the exposed surface of the gold film using atomic layer

deposition. We treated the Al2O3 surface with oxygen plasma at 60 W for 10 s to

make the surface more hydrophilic and then immediately placed a droplet of gold

nanosphere suspension on it. We let the droplet air dry and then measured scattering

spectra of individual particles on the film.
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Self-Assembly of Plasmonic Clusters and Dark-Field Spectroscopy

We prepare gold nanoparticle quadrumers by drying a droplet of dilute gold

nanosphere suspension on a London finder Formvar TEM grid (LF200), purchased

from Ted Pella. We place 2 µL droplets of gold nanosphere colloid on the grids and let

them air dry. Some of the particles assemble into clusters on the Formvar surface due

to capillary forces while drying [11]. We locate individual clusters on the grid using

a Zeiss Libra 120 TEM operating at 60 keV and we record micrographs at different

magnifications so that the clusters can later be located (using the London finder grid

pattern) for dark-field spectroscopy [11]. We conduct near-normal incidence dark-field

spectroscopy as described by Fan et al. [89].

FDTD Simulations of Scattering Spectra

To calculate the quadrumer’s scattering spectra we conducted finite-difference

time-domain (FDTD) simulations with a total-field scattered-field implementation

[103] using the commercial software package Lumerical, version 6.5.11. We simulated

two different polarizations for the incident light. Our simulation volume was 1 µm

× 1.3 µm × 0.5 µm and our mesh for FDTD calculations consisted of 1 nm3 cubes.

The grid boundaries in the simulation space were perfectly matching layers (PML).

Within this volume our model quadrumer is based on measurements of the experi-

mental system’s geometry. We simulated particles of diameter 130 nm, corresponding

to measurements of our experimental quadrumer that we obtained with transmission

electron microscopy. The simulated particles have optical properties of gold, following

the Johnson and Christy standard [4]. The simulated particles are embedded in a
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dielectric elliptical disc of major axis 174 nm, minor axis 126 nm, and depth 60 nm.

The refractive index of this disc is 1.45. The particles embedded in this disc are sep-

arated from each other by gaps of 1.5 nm. The Formvar substrate is not modeled in

the simulation. The simulated particles are large enough compared to the mesh size

that surfaces in the simulation are relatively smooth. We verified that this mesh size

was adequate by checking that the simulations converged in the near-infrared spectral

region of interest even as we fine-tuned the mesh size. The simulated quadrumer, as

rendered by Lumerical, can be seen in Figure 2.16.

Figure 2.16: Rendering of a model quadrumer used for FDTD simulations, as viewed
(a) along the major axis, (b) perpendicular to the plane of the axes, and (c) at an
angle. Gold spheres of diameter 130 nm are embedded in an elliptical disc of constant
refractive index 1.45 (blue). Purple arrow indicates propagation direction of incident
light and dark blue arrows indicate electric field orientation for 0◦ polarization.

An electromagnetic plane wave pulse is introduced, corresponding to a 700 nm

- 1400 nm wavelength range. This plane wave propagates in a direction indicated

by the purple arrow in Figure 2.16 for an angle of incidence of 20◦, approximately

the same angle of incidence that we used in the near-normal incidence dark-field
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spectroscopy technique. We obtained the scattering spectrum by collecting the power

in the scattered field from a cone with a numerical aperture of 0.65, situated on the

same side of the source as the spectrometer in our experimental system.

Differences Between Experiment and Simulation

There are differences between the calculated and measured spectra of the quad-

rumer, especially at wavelengths shorter than about 900 nm. As discussed by Fan et

al. [11], these discrepancies arise due to scattering from parts of the sample that are

not modeled in the simulation. This includes interactions between the cluster and the

thin Formvar substrate as well as scattering from other particles or TEM grid bars

that are close to the quadrumer.

Another reason for differences between the simulated and experimental scattering

spectra is inhomogeneous changes in the Formvar substrate due to beam damage

from the TEM that is used to locate the cluster. TEM images of quadrumers that

have already been imaged at higher magnification show circular patterns of beam

damage, as shown in Figure 2.17. The electron beam can warp the Formvar or even

puncture it. Combined with local heating from the metal nanoparticles, this may

result in inhomogeneous variations in the substrate geometry or even the contact

angle between the substrate and the nanoparticles. Beam damage to the substrate

may result in variations in its refractive index that are not captured in the simulations

either.

A layer of material is observed surrounding the nanoparticles in a cluster under

TEM. It is unclear whether this is a consequence of beam damage or simply material
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Figure 2.17: Transmission electron micrographs of quadrumer clusters of spherical
gold crystals. (a) A low magnification image shows evidence of beam damage due to
previous high magnification work on the same part of the sample. There is a circular
region of beam damage which appears brighter in the image and a dark crease in
the Formvar running parallel to a grid bar. (b) Higher magnification image of a
quadrumer reveals the inhomogeneous nature of the Formvar substrate over a length
scale of 100 nm. (c) High magnification image of a quadrumer shows material in the
gaps between the particles, which causes the edges of the particles at the center of
the cluster to appear blurry.

that adsorbs to the particles during or before TEM sample preparation. The elliptical

disc of dielectric material in the simulation is meant to model this layer, but its

refractive index is treated as a fitting parameter. Our simulation models neither

the exact morphology of this layer nor potentially inhomogeneous variations in the

refractive index within it.
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Chapter 3

Tetrahedral Colloidal Clusters

from Random Parking of

Bidisperse Spheres

Reprinted figures and text with permission from Schade et al., Phys. Rev. Lett.,

110, 148303 (2013). Copyright 2013 by the American Physical Society.

3.1 Introduction

Understanding the geometry of clusters formed from small particles is a fundamen-

tal problem in condensed matter physics, with implications for phenomena ranging

from nucleation [104] to self-assembly [51]. Colloidal particles are a useful experi-

mental system for studying cluster geometry and its relation to phase behavior [105]

for several reasons: they are large enough to be directly observed using optical mi-
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croscopy; their assembly can be understood in terms of geometry [106, 107]; and they

can be driven to cluster by a variety of controllable interactions, including capillary

forces [51], depletion [108], fluctuation-induced forces [109], or DNA-mediated attrac-

tion [110]. Colloidal clusters are also useful materials in their own right. They can

be used, for example, as building blocks for isotropic optical metamaterials known as

metafluids [41, 37, 11]. Tetrahedral clusters are of particular interest for metafluids

since the tetrahedron is the simplest cluster with isotropic dipolar symmetry [41]. An

unsolved challenge for this application is to determine the interactions and conditions

that enable assembly of bulk quantities of highly symmetric, uniform clusters such as

tetrahedra.

With this motivation in mind, we study experimentally the geometry and size

distribution of binary clusters formed when small colloidal spheres are mixed with

an excess of large spheres that stick irreversibly and randomly to their surfaces (Fig-

ure 3.1). An obvious way to control the cluster geometry in such binary systems is to

vary the size ratio. One might expect that at certain ratios the particles could arrange

into dense clusters or “spherical packings” – arrangements of spheres around a central

Figure 3.1: Two colloidal sphere species are mixed together to form clusters.

66



Chapter 3: Tetrahedral Colloidal Clusters from Random Parking of Bidisperse
Spheres

sphere that maximize surface density [111, 112, 113]. Such packings have long been

used in modeling the microstructure of dense, disordered atomic systems [114, 115].

But unlike atoms, colloidal particles can stick irreversibly, such that two particles

bound to a third show no motion relative to one another. This type of binding occurs

frequently in strongly interacting, monodisperse colloidal suspensions, which conse-

quently form fractal aggregates instead of dense glasses [116, 117]. Similarly, in the

binary systems we study, the irreversible and stochastic process of sticking precludes

the formation of dense or symmetric packings. The large spheres park, rather than

pack, on the surfaces of the small spheres.

3.2 Results and Discussion

3.2.1 Experimental Results

Surprisingly, this random and nonequilibrium process can produce clusters of uni-

form size. Our experiments show that at a size ratio α = Rlarge/Rsmall = 2.45, where

Rlarge and Rsmall are the sphere radii, nearly all of the clusters contain four large

spheres stuck to a smaller sphere (Table 3.1). In these experiments we use a 100:1

stoichiometric ratio of the two sphere species, statistically ensuring that each cluster

contains only one small sphere surrounded by two or more larger spheres. After wait-

ing several days for the average cluster size to saturate, we measure the distribution

of N , the number of large spheres bound to each small sphere. (See Section 3.4.3 for

details.) We do not include single large spheres, non-specifically aggregated clusters

of large spheres, or clusters with multiple small spheres. While there are many iso-

67



Chapter 3: Tetrahedral Colloidal Clusters from Random Parking of Bidisperse
Spheres

Table 3.1: Experimentally observed cluster size distributions for charged colloids.
Percentages of total are listed. The distribution for α = 2.45 (bold) is sharply peaked
at N = 4.

Size ratio α 1.94 2.45 3.06 4.29

N = 6 6.3 0.0 0.0 0.0
N = 5 39.2 0.8 0.0 0.0
N = 4 54.4 90.2 18.6 0.7
N = 3 0.0 6.6 69.9 35.9
N = 2 0.0 0.8 10.9 51.0
N = 1 0.0 0.8 0.6 11.1
N = 0 0.0 0.8 0.0 1.3

lated large spheres due to the high stoichiometric ratio, the latter two types of cluster

are rare.

The N = 4 tetramers that we observe are not dense packings or, in general,

symmetric arrangements. As can be seen from the images in Figure 3.2, there is space

between the large particles, and the resulting tetrahedra are irregular. Moreover, the

ratio α = 2.45 is well below the value α = 4.44 found by Miracle et al. [118] for

efficient tetrahedral packing in binary atomic clusters. In fact, at α = 4.29, closer

to this bound, we see much smaller clusters and few tetrahedra. The sparsity of

large spheres in the clusters is a result of the irreversible, nonequilibrium, random

binding: once the big particles stick to the smaller ones, we do not see them detach

or move relative to one another. We expected such a stochastic process to lead to a

much broader distribution of clusters. At other values of α it does (Table 3.1), but

at α = 2.45 we obtain 90% tetramers.

The high yield of tetramers occurs in two experimental systems with different types

of interactions. In both systems the interactions are specific, strong, and short-ranged,

and the particles do not rearrange once bound. In the first system the clustering is
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Figure 3.2: (a) Oppositely charged polystyrene spheres cluster due to electrostatic
attraction. Optical micrograph shows a tetramer (N = 4). (b) Polystyrene spheres
labeled with complementary DNA strands (not to scale) cluster due to DNA hy-
bridization. Optical micrograph shows a trimer (N = 3); the small, central sphere is
fluorescent.

driven by electrostatic interactions. We mix large, positively-charged particles with

small, negatively-charged particles, as shown in Figure 3.2(a). To adjust α we use

several different particle sizes (Section 3.4.1). We add salt to reduce the Debye length

to approximately 3 nm, small enough to ensure that the interaction range does not

significantly influence the effective particle size. In the second system the clustering

is driven by hybridization of grafted DNA strands (Section 3.4.2). As shown in

Figure 3.2(b), we mix small and large spheres labeled with complementary DNA

oligonucleotides [119]. We work well below the DNA melting temperature so that the

attractive interaction is many times the thermal energy [120].
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3.2.2 Random Parking Theory

To better understand why the distribution is sharply peaked atN = 4 for α = 2.45,

we use simulations and analytical techniques that account for the irreversibility of the

aggregation process.

Simulation Results

Our simulations use a “random parking” algorithm [13, 121, 122, 123] to model

the formation of clusters. The algorithm involves attaching large spheres to randomly

selected positions on the surface of a small sphere, subject to a no-overlap constraint

(Section 3.4.4). We do not model the finite range of the interactions, which in both

experimental systems is small compared to the particle size, or the diffusion of the

particles prior to binding. In accord with experimental observations, the particles are

not allowed to rearrange once bound. We repeat the process numerically to obtain

distributions of cluster sizes as a function of a single parameter, α.

The simulations find a 100% yield of tetramers at the size ratio α ≈ 2.41. As in

the experiments, the large particles in these tetramers are not densely packed, and the

clusters are therefore distorted tetrahedra. We also find that while the yield of any

particular cluster can be maximized by varying α [Figure 3.3(a)], the yield approaches

100% only for dimers (N = 2) and tetramers (N = 4). Interestingly, the yield curve

for tetramers has a cusp at its peak, showing that the size ratio αc at the maximum

is a mathematical critical point.

The simulated distributions agree well with those found experimentally [Figs. 3.3(b)

and 3.3(c)] for both electrostatic and DNA-mediated interactions. For instance, at
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Figure 3.3: (a) Yield curves, as determined by simulations, for N -particle clusters,
2 ≤ N ≤ 8, where the critical size ratio αc is marked with a black line. Below are
histograms for (b) DNA-labeled particles (left) at α = 1.90 and (c) charged particles
(right) at α = 2.45, as observed in experiments (colored bars) and as predicted from
simulations (gray bars). Error bars are 95% confidence intervals (Wilson score interval
method).
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α = 2.45 with electrostatic interactions, we find a sharply peaked distribution con-

sisting almost entirely of tetramers. This value of α is close to but not precisely at the

critical value, so a small yield of trimers is predicted and observed experimentally. In

contrast, at α = 1.90 we find a mixture of mostly N = 4 and N = 5 clusters in both

the DNA system and simulations. Some discrepancy arises between the simulated

and experimental histograms because the yield curves in Figure 3.3(a) are steep; a

slight error in the effective size ratio can shift the cluster distribution. Neverthe-

less, the random sphere parking model successfully reproduces both the large yield of

tetrahedra near αc and the details of the measured histograms at various other α.

Origin of Geometrical Critical Point

That we can reproduce the same phenomenon in two different experimental sys-

tems and in a one-parameter model suggests that the critical size ratio αc has a uni-

versal, geometrical origin. Intuitively, one might expect that it is related to packing

constraints on the large spheres. Other theoretical studies of random sphere parking

[121, 13] have calculated the maximum number of large spheres Nmax that can fit

around a small sphere at a given α. However, this bound cannot by itself explain why

the yield of tetramers can reach 100% while that of other clusters, such as trimers or

hexamers, cannot. At a given α, it tells us only why no clusters larger than Nmax(α)

can form, but it says nothing about the probability of forming smaller clusters with

different arrangements.

Therefore we also examine a different bound, one not previously discussed in the

context of random sphere parking: the “minimum parking” curve Nmin(α). Nmin is
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the smallest number of hard spheres that can be positioned on a smaller sphere such

that another sphere cannot fit. To understand this bound, consider a simple, one-

dimensional analogy to car parking on a busy city street, where if a space opens up

that is large enough to fit a car, it is filled. The minimum parking number occurs when

all drivers have been equally inconsiderate, leaving spaces between their parked cars

that are all slightly too small for another car to fit. This lower bound is meaningful

only at long times, when all available parking spaces have been filled. The long-time

limit holds also for our experiments and simulations, which we carry out until the

average cluster size has saturated.

Whereas the upper bound Nmax(α) is straightforwardly related to solutions of

the well-known spherical packing problem [112, 124], the calculation of the lower

bound Nmin(α) requires a different approach. In our clusters, the distance between

the centers of any two big spheres must be at least 2Rlarge. Consider then a sphere

of radius (Rsmall +Rlarge) that circumscribes the centers of the parked spheres. If this

sphere is completely covered with N circles of radius 2Rlarge, it will be impossible

to add an (N + 1)th large sphere. We are led naturally to the spherical covering

problem, a problem with a rich history in mathematics. Like spherical packings,

spherical coverings are solutions to an extremum problem: they are arrangements

of N points on a sphere that minimize the largest distance between any location

on the sphere surface and the closest point [112]. But unlike spherical packings,

spherical coverings need not correspond to arrangements of nonoverlapping spheres.

We therefore solve for the minimum parking curve by examining the solutions to

the spherical covering problem [124] at each N and manually verifying that they
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Figure 3.4: Nmax (solid gray) and Nmin (black) as functions of α. Cluster images show
sphere configurations at discontinuities of these curves. Average cluster sizes from
simulations (dashed gray line) and experiments (blue and red data points) are shown.
We characterize the statistical dispersion in each distribution by the average absolute
deviation from the median, indicated by dotted light gray lines for simulations and
vertical bars for experiments.

correspond to nonoverlapping configurations.1

Our analytical results for the bounds reveal why αc is a special point: it is the

only nontrivial point where the calculated maximum and minimum parking curves

come together (Figure 3.4). Analytically we find the location of the critical value to

be αc = (1+
√

2) ≈ 2.41, very close to the values where the experimental distributions

are peaked. At α slightly larger than this value, the minimum parking configuration

corresponds to two spheres placed at opposite poles (Nmin = 2), and the maximum N

1See Appendix A for additional details.
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is obtained by first parking three large spheres next to one another, so that there is

room for one more sphere to park (Nmax = 4). At α slightly smaller than αc , the big

spheres can park along orthogonal axes about the small sphere to make an octahedron

(Nmax = 6). The minimum N is obtained by placing four spheres as far from each

other as possible, so as to make the addition of a fifth impossible (Nmin = 4). Thus,

as we increase α through αc, Nmax goes from 6 to 4 and Nmin from 4 to 2, and the

two curves become infinitesimally close.

The parking process is therefore geometrically constrained to yield clusters with

exactly N = 4 particles in the limit α → αc. A simple geometric argument sheds

some light on this result. At αc there is always room for four large spheres to park.

Parking more spheres requires that at least three park precisely along a great circle

of the smaller particle, but the probability of this happening randomly is zero. Thus

irreversible binary aggregation, a stochastic process, has a deterministic feature at the

critical size ratio: although the space between the large spheres can vary, all clusters

must be tetramers. Our numerical approach confirms that the statistical dispersion

in the cluster size distribution vanishes at αc, as shown in Figure 3.4.

The experimental and simulated distributions differ slightly due to two effects.

First, the measured sizes tend to be smaller than the simulated ones because a few

parking spaces remain unfilled even at long times. This effect is more pronounced

for larger spheres, which diffuse more slowly and encounter the small spheres less

frequently. The systems most affected are the electrostatic ones at α = 3.06 and 4.29.

Second, the experimental size ratios can vary by 5% due to polydispersity. Both of

these factors increase the width in the experimental distributions and diminish the
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achievable yield of tetramers near αc. The random parking model also assumes the

interactions are infinitesimally short-ranged and isotropic. It would not be valid if,

for example, there were surface inhomogeneities on length scales comparable to the

particle radii. Nevertheless, the experimental data indicate that near αc a tetramer

yield of at least 90% is possible, and the model is useful for predicting cluster size

distributions in two very different colloidal systems.

3.3 Conclusion

These results have both fundamental and practical consequences. On the funda-

mental side, the particle size ratio could affect the jamming threshold in bulk packings

of bidisperse spheres. Previous simulations of these systems have shown that the dis-

tribution of coordination numbers also depends on the size ratio [125] and may be

modeled using random parking [122]. This contrasts with dense atomic systems like

metallic glasses [114, 115] in which the atoms have some freedom to rearrange locally.

In these systems packing constraints may explain structure and coordination better

than parking arguments.

On the practical side, this random aggregation process is a simple way to mass

produce tetrahedral clusters in theoretically 100% yield. Although the tetrahedra we

produce are irregular in that the distance between the large spheres can vary, it may

well be possible to form large quantities of symmetric tetrahedra simply by shrinking

the small spheres after the tetramers have formed [126]. An additional step, such as

density gradient centrifugation [51], will also be required to separate the assembled

clusters from the many unbound large particles. Furthermore, although the yield will
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approach 100% only for dimers and tetramers, the yield of any N -particle cluster

can be maximized by choosing the appropriate size ratio. For instance, the yield of

octahedral clusters, also promising candidates for building metamaterials [37], may

surpass 70% at α = 1.42.

The size ratio in binary colloidal systems thus emerges as a valuable control param-

eter for directed self-assembly. Moreover, because it does not require precise control

over the interactions, random parking offers a robust and simple way to make colloidal

clusters that are more monodisperse than those prepared through other methods [51].

3.4 Materials and Methods

3.4.1 Electrostatic Interactions

Charged colloidal polystyrene spheres were purchased from Invitrogen as “IDC

surfactant-free latex” in batches as listed in Table 3.2.

Table 3.2: Charged particles used in electrostatic system experiments. Values for
surface charge from data sheets provided by manufacturers.

Mean diameter Surface functionality Fluorescent? Surface charge

0.49 µm carboxylate-modified latex (CML) yes −262 µC/cm2

0.95 µm amidine no +23.7 µC/cm2

1.2 µm amidine no +18.2 µC/cm2

1.5 µm aldehyde-amidine no +18.2 µC/cm2

2.1 µm amidine no +30.2 µC/cm2

A 100 µL sample of each colloid was diluted to 1% weight by volume. This was

then vortexed for a few seconds and bath-sonicated for 10 seconds. We cleaned the

particles by centrifuging and redispersing them several times in deionized (DI) water,

using the following wash procedure.
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1. Colloids were centrifuged for 5 minutes at 6 600g.

2. Supernatant was removed and 190 µL of DI water was added to each sample.

3. Samples were vortexed for 5 seconds each and then bath-sonicated for 10 sec-

onds.

Because the washing procedure involves centrifugation at high acceleration, it can

cause the particles to aggregate. The vortexing and sonication steps break apart the

majority of these aggregates, but some small aggregates remain and can later appear

as clusters showing non-specific aggregation. We do not count these non-specific

aggregates when we characterize the cluster size distribution.

We performed six wash cycles. After the last centrifugation, the supernatant was

replaced with 40 µL of DI water, rather than 190 µL as before. Then 50 µL of 20

mM NaCl was added to each sample to achieve an overall salt concentration of 10

mM. This screens the repulsion between like particles before mixing.

We prepared mixtures of the positively and negatively charged particles such that

each mixture contained one batch of positively charged particles at 1% w/v. In

each mixture, the number ratio of the large (positively charged) to small (negatively

charged) spheres was 100 : 1. The salt concentration in each mixture was 10 mM

NaCl. Each mixture consisted of large and small particles with a different size ratio

α = Rlarge/Rsmall, as listed in Table 3.3.

Each mixture was stored in a micro-centrifuge tube and vortexed at 3 000 rpm,

bath-sonicated for 20 seconds, and then mounted on a Glas-Col Rugged Rotator to

tumble slowly at 4 ◦C. Each mixture tumbled for at least three days before observation

78



Chapter 3: Tetrahedral Colloidal Clusters from Random Parking of Bidisperse
Spheres

Table 3.3: Size ratios and components of binary mixtures of charged colloids.

α Large particles Small particles

1.94 0.95 µm amidine (+) 0.49 µm CML (-)
2.45 1.2 µm amidine (+) 0.49 µm CML (-)
3.06 1.5 µm aldehyde-amidine (+) 0.49 µm CML (-)
4.29 2.1 µm amidine (+) 0.49 µm CML (-)

to reduce the effects of sedimentation on local particle concentrations throughout the

mixture. To make it easier to identify and characterize one cluster at a time, we

diluted samples of the mixtures to 0.1% w/v just prior to observing the distribution

of cluster sizes.

Electrostatics Control Experiment

In the experiments outlined above, each mixture contained particles with surface

charges of opposite sign. In a separate control experiment, we mixed particles of

two different sizes but with surface charges of the same sign. Both components in

our control mixture were carboxylate-modified latex (CML) colloids with a size ratio

α = 2.24, as listed in Table 3.4.

Table 3.4: Colloids used in electrostatic system control experiment.

Mean diameter Surface functionality Fluorescent? Surface charge

0.49 µm CML yes −262 µC/cm2

1.1 µm CML no −31.5 µC/cm2

We washed these colloids using the procedure outlined above and then mixed them

in a 100 : 1 number ratio. After letting them tumble at 4 ◦C for several days, we

measured the cluster size distribution. As shown in Figure 3.5, fewer than 1% of the

small particles bind to large particles when they have surface charges of the same

sign. Non-specific aggregation is therefore rare in the charged colloidal systems.
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Figure 3.5: Cluster size distribution in a mixture of 1.1 µm non-fluorescent CML
particles and 0.49 µm fluorescent CML particles in a 100 : 1 number ratio, showing
that particles with surface charge of the same sign rarely form clusters.

Experiments Without Salt

In another set of experiments, mixtures of charged colloidal particles were pre-

pared as described above, but without salt. The number ratio of positively charged

spheres to negatively charged spheres was again 100 : 1, and several size ratios α were

investigated, as listed in Table 3.5. As in the experiments with 10 mM NaCl, we

tumbled the mixtures for several days before measuring the distribution of clusters.

Table 3.5: Size ratios and components of binary mixtures without salt.

α Large particles Small particles

1.09 1.2 µm amidine (+) 1.1 µm CML (-)
1.36 1.5 µm aldehyde-amidine (+) 1.1 µm CML (-)
1.94 0.95 µm amidine (+) 0.49 µm CML (-)
2.45 1.2 µm amidine (+) 0.49 µm CML (-)
3.06 1.5 µm aldehyde-amidine (+) 0.49 µm CML (-)
4.29 2.1 µm amidine (+) 0.49 µm CML (-)
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Figure 3.6 shows that the average cluster sizes in these mixtures were smaller than

the average sizes predicted from simulation and those observed in mixtures containing

10 mM NaCl. For instance, at α = 2.45 with 10 mM NaCl the average cluster size is

N = 3.9, but when there is no salt in the system the average cluster size is N = 2.7.

For the four size ratios for which there is data both without salt and with 10 mM

NaCl, we found that clusters are 20% to 35% smaller when no salt is added.

Figure 3.6: Average cluster sizes from simulations (dashed dark gray) and electro-
static experiments with (red data points) and without (cyan) salt. Widths of the
cluster size distributions are indicated by dotted light gray lines for simulations and
vertical error bars for experiments.

These experiments show that electrostatic repulsion affects the cluster assembly.

This observation is consistent with other recent experiments [127] showing that the

cluster size distribution in binary mixtures depends on ionic strength when the salt

concentration is less than 10 mM. In our mixtures with 10 mM NaCl, the Debye length

is approximately 3 nm, very small compared to the particle sizes, so the large spheres

do not interact with each other except at small distances. The random parking model
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should be more appropriate for systems like these where the interaction range is much

smaller than the particle size. This is because the random parking model assumes

no interactions between the particles except for a hard-core repulsion and irreversible

binding on contact between spheres of two different types.

3.4.2 DNA-Colloid Interactions

In another set of experiments, we mixed small and large spheres labeled with com-

plementary 65-base ssDNA oligonucleotides purchased from Integrated DNA Tech-

nologies:

• Sequence A: 5’-biotin-51xT-TGTTGTTAGGTTTA-3’

• Sequence B: 5’-biotin-51xT-TAAACCTAACAACA-3’

The oligonucleotides terminate with a biotin group, which allows us to graft them

to streptavidin-coated polystyrene particles using a protocol from Dreyfus et al. [119].

We purchased the streptavidin-coated polystyrene particles from Bangs Laboratories,

Inc. with the following diameters:

• 0.21 µm, fluorescent, to be coated with sequence B

• 0.39 µm, fluorescent, to be coated with sequence B

• 0.51 µm, fluorescent, to be coated with sequence B

• 0.97 µm, non-fluorescent, to be coated with sequence A

We dissolved the DNA strands in water in 20 µM concentration. We mixed 20 µL

of this DNA solution with 10 µL of 1 wt % streptavidin-coated polystyrene particles
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with 120 µL of phosphate buffer in a 1.7 mL propylene micro-centrifuge tube. Each 50

mL batch of buffer contained 0.0128 g KH2PO4, 0.0707 g K2HPO4, 0.1467 g NaCl, and

0.250 g F108 surfactant in 50 mL of deionized water. We filtered the buffer through

a 0.2 µm membrane before use. We prepared a separate batch containing no salt so

that the salt concentration could be adjusted by combining the two. We vortexed

the mixtures at 3 000 rpm for 5 seconds and bath-sonicated them for 10 seconds. We

incubated them at room temperature for 30 minutes to allow the ssDNA to graft to the

surface of the particles. Then we washed the colloids using the following procedure:

1. We centrifuged the colloids for 3 minutes at 12 000g.

2. We removed the supernatant and added 100 µL of 50 mM NaCl buffer to each

sample.

3. We vortexed the samples for 5 seconds at 3 000 rpm and then bath-sonicated

them for 10 seconds.

As in the charged particle system, the centrifugation step can create aggregates,

some of which survive the vortexing and sonication steps and appear as non-specifically

aggregated clusters. We washed each colloid three times to remove excess DNA from

the system, and then incubated each at 55 ◦C for 30 minutes. We then washed three

more times, incubated at 55 ◦C for another 30 minutes, and washed three times again.

At this point the salt concentration in the buffer was adjusted to 20 mM. The A- and

B-labeled particles were mixed in a 100 : 1 (large : small) number ratio such that the

larger particles were at a volume fraction of about 0.1%. Three separate mixtures

were prepared, as listed in Table 3.6.
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Table 3.6: Size ratios and components of mixtures with DNA-driven interactions.

α Large particles Small particles

1.90 0.97 µm, sequence A 0.51 µm, sequence B
2.49 0.97 µm, sequence A 0.39 µm, sequence B
4.62 0.97 µm, sequence A 0.21 µm, sequence B

After the mixtures had been prepared, we followed the same procedure that we

used for the charged colloid system.

DNA-Colloid Control Experiment

In the experiments outlined above, each mixture contained particles labeled with

complementary DNA strands. In a separate control experiment, we mixed particles

of two different sizes but labeled with identical ssDNA.

Figure 3.7: Cluster size distribution in a mixture of 0.97 µm non-fluorescent particles
and 0.51 µm fluorescent particles in a 100 : 1 number ratio, coated with the same
non-self-complementary DNA sequence (A).
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Both components in our control mixture were streptavidin-coated polystyrene

colloids labeled with sequence A. We used 0.97 µm (non-fluorescent) and 0.51 µm

(fluorescent) particles, for a size ratio α = 1.90. We functionalized the particles with

DNA using the same procedure described above and then mixed them in a 100 : 1

number ratio. After tumbling them at 4 ◦C for several days, we measured the cluster

size distribution. Figure 3.7 shows that fewer than 2% of the small spheres bind to

large spheres when they are coated with the same DNA sequence. The low amount of

non-specific aggregation is expected, since we designed sequence A to have a negligible

amount of self-hybridization even at 0 ◦C.

3.4.3 Measurement of Cluster Size Distribution

To measure the distribution of cluster sizes in a particular mixture, we placed

a 5 µL, 0.1% w/v sample between two cover slips and then sealed it at the edges

with UV-curable epoxy (Norland Optical Adhesive 61). We observed each sample

under differential interference contrast with a 100X oil-immersion objective on a Nikon

Eclipse TE2000-E inverted microscope. We used fluorescence to identify the small

spheres.

We obtained the distribution by counting the number of clusters at each N . N = 0

is a small sphere without any large spheres adsorbed, N = 1 a small sphere attached

to a single large sphere, etc. We also counted clusters containing multiple small

spheres and clusters formed through non-specific aggregation. The number of such

clusters is small compared to the total number of clusters counted. Thus, we do not

include these in the histograms.
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Our counting procedure is designed to avoid errors from double counting. We

begin by counting clusters in the field of view (FOV) on the microscope, scanning

through z to find clusters that may initially be out of focus. The Brownian motion of

each cluster eventually brings all particles into view. We can therefore determine the

number of large and small spheres in each cluster through direct observation. Once

we have recorded all clusters in the FOV, we translate the FOV to another part of

the sample located more than one FOV away. We repeat this process to build up the

histogram, rastering the FOV over the sample. We count more than 60 clusters at

each size ratio and more than 120 clusters at size ratios greater than 2. The entire

histogram for a given mixture is recorded in one session on the microscope.

3.4.4 Random Sphere Parking Calculations

Monte Carlo Simulations

We simulate the cluster size distribution for spheres undergoing a random sequen-

tial adsorption or “random parking” process. We use an algorithm based on Monte

Carlo trials. These consist of two stages:

Coarse stage We repeatedly try to insert a disc of radius r = Rlarge/(Rlarge+Rsmall)

on the surface of the unit sphere. The center of the disc is randomly and uniformly

distributed on the sphere. If the disc overlaps any discs that are already “parked”,

we reject it; otherwise we add it to the list of parked discs. After a fixed number of

consecutive rejections, (typically Ncoarse = 104), we switch to the fine stage.
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Fine stage We compute the remaining regions of possible insertion and then try to

insert an additional disc. We choose the center of the disc randomly and uniformly

from these regions.

To find the regions of possible insertion, we first compute the arcs that form their

boundaries: Given a central disc of radius r, neighboring disc centers must lie on

or outside a concentric circle of radius 2r. We erase arcs that lie in the interior of

the concentric circles of radius 2r about each neighboring disc. If the central circle

contains any unerased arcs, these are added to our roster of arcs.

We do this for each parked disc center, and then stitch together the remaining

arcs to form the regions to which another disc center could be added. To find the

area of each region, we inscribe the region in a circumcircle and use a Monte-Carlo

integration method to determine the ratio of the area of the region to the area of its

circumcircle.

The algorithm terminates when the list of remaining arcs in the fine stage is empty,

at which point the final number of inserted discs is recorded.

Bounds on Cluster Size Distribution

The upper and lower bounds Nmax and Nmin on the cluster size distribution can be

calculated from spherical codes [124] corresponding to known solutions to the prob-

lems of spherical packings (Nmax) and spherical coverings (Nmin). Spherical packings

are arrangements of N points on a unit sphere that maximize the smallest distance

between any two of them [112, 124]. For a given α we determine Nmax(α) by looking

up the spherical packing [124] with the largest N for which the minimal distance
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between points is at least 2α/(1 + α). Our calculation of Nmin(α) is more involved,

as explained in Appendix A.
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FDTD Simulations of Plasmonic

Nanoclusters

4.1 Introduction

Fluid metamaterials, also known as metafluids, are composed of subwavelength

structures that show isotropic electric and magnetic dipole resonances [41, 37]. Elec-

tromagnetic resonators can self-assemble from metal nanoparticles [11] and symmetric

three-dimensional structures are required for isotropic resonances. The challenge is

to assemble these structures in high yield and with high precision. In Chapter 3,

we show that random sphere parking enables the self-assembly of tetramers in up to

100% yield, in principle. One simply requires control over the size ratio of two species

of spherical particles that bind to one another randomly and irreversibly. However,

the clusters that form this way are distorted tetrahedra; the separation gaps between

the particles vary and a fifth particle sits at the center of each cluster [91].
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What is the optimal geometry for a tetrahedral plasmonic resonator for use as

a metafluid constituent? To answer this question, one must understand how the

magnetic dipole resonance of the structure depends on several geometric and ma-

terial parameters. Light must couple strongly to the magnetic resonance mode in

the structure for it to be useful in a metafluid. Tuning the optical properties of a

metafluid requires adjusting the resonances, so it is also important to understand

which parameters are available for shifting the resonant frequency.

4.2 Methods

We conduct finite-difference time-domain (FDTD) simulations to understand how

various parameters of gold nanoclusters affect their magnetic dipole resonances. Us-

ing the commercial software program Lumerical, we model clusters consisting of gold

nanoshells with silica cores, similar to those assembled by Fan et al. [11]. The optical

properties of gold in the simulations are based on the measurements by Johnson and

Christy [4]. In our simulations we suspend each cluster in water (εr = 1.77, inde-

pendent of wavelength) and surround it with perfectly matched (absorbing) layers on

all sides. We illuminate each structure with a plane-wave pulse with a wavelength

spread from 600 nm to 1200 nm or broader. A circulating current mode produces

a strong oscillating magnetic dipole, narrow in frequency, at the center of the struc-

ture. The far-field radiation from the magnetic dipole excitation is proportional to

the intensity of the magnetic resonance excited at the center. Thus the normalized

magnetic field intensity in the frequency domain at the center reveals the frequency

of this resonance, if it exists.
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We examine how the magnetic dipole resonance depends on structural parameters

of the tetrahedral cluster. For instance, we adjust the core/shell diameter ratio x from

0 (solid 150-nm gold spheres) to 0.87 (10-nm-thick gold layer on a 130-nm silica core),

holding the separation gaps constant at 20 nm. We also increase the separation gaps

to characterize how they affect the magnetic resonance. Additionally, we vary the

dielectric function of the particles, insert an additional metal sphere at the center

of the cluster, and add roughness to the particles’ surfaces to see how each of these

parameters affects the magnetic dipole resonance.

4.3 Results and Discussion

Figure 4.1: FDTD simulation results for a trimer suspended in water. (a) The trimer
consists of 150 nm gold spheres with 100 nm silica cores and 10 nm gaps between the
gold shells. It is illuminated with a light pulse in one of two polarizations. (b) The
plot shows the magnetic field intensity at the center of the structure as a function of
frequency for each polarization.

First we consider the trimer, an arrangement of three gold nanoshells and the
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simplest analogue of a split-ring resonator that can be constructed from metal spheres

[Figure 4.1(a)]. When the magnetic field is perpendicular to the plane of the trimer,

and the electric field is in the plane, the pulse strongly couples to the magnetic dipole

mode because the electric field is aligned with the gaps between the spheres, and

the magnetic flux through the center oscillates. This coupling is evident from the

strong resonance near 900 nm in Figure 4.1(b). For a perpendicular polarization, the

coupling is weaker and the resonance occurs at higher frequency. These differences

between the resonant frequencies and their amplitudes illustrate the anisotropy of the

trimer and support other theoretical and experimental studies [128, 11].

Figure 4.2: FDTD simulation results for a tetrahedron suspended in water. The
tetrahedron consists of 150 nm gold spheres with 100 nm silica cores and 20 nm gaps
between the gold shells. (a) We simulate the tetrahedron’s response in four different
orientations for a given polarization. (b) Magnetic field intensity at the center of
the structure. The colors of the curves correspond to the colored outlines of the
orientations shown at left. Inset shows a colormap of magnetic field enhancement in
the E-k plane of the structure at resonance (λ = 860 nm) when oriented as shown in
the picture at left with the dark blue outline.

We next examine a tetrahedron composed of gold nanoshells [Figure 4.2(a)] to
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test whether it produces an isotropic magnetic response. Isotropy in this sense means

that the cluster responds identically for all orientations of the tetrahedron. As shown

in Figure 4.2(b), rotating the tetrahedron does not affect the magnetic dipole excita-

tion. The invariance of the resonance with respect to orientation supports previous

predictions [41] and observations [58]. The small discrepancies between the curves

are likely due to numerical factors, such as how the simulation mesh is defined for

each orientation of the cluster.

Since we use solid gold nanoparticles in our experiments while previous studies

have used gold nanoshells [11, 129, 57], we examine the dependence of the magnetic

resonance on the core/shell diameter ratio x. We vary x from 0 (solid 150 nm gold

spheres) to 0.87 (10 nm thick gold layer on a 130 nm silica core), as shown in Fig-

ure 4.3(a), holding the interparticle separation gaps constant at 20 nm. The resonance

redshifts with increasing x, consistent with enhanced capacitive coupling within the

nanoshells due to the larger interior cavity. We see that for x < 0.67, when the gold

layer is thicker than the gold skin depth, increasing the gold thickness negligibly af-

fects the resonance, consistent with results reported elsewhere [41]. The capacitive

coupling increases with decreasing separation gaps between the spheres, as shown in

Figure 4.3(b). As the gaps become smaller, the resonance intensifies and redshifts,

consistent with expectations from the LC circuit analogy.

Previous studies have indicated that high index contrast alone can produce mag-

netic behavior in nanostructures, as observed in silicon carbide [130, 131]. We in-

vestigated the magnetic resonance for a tetramer composed of solid particles made

out of an idealized high-index dielectric, similar to diamond in permittivity but non-
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Figure 4.3: Magnetic field intensity in the frequency domain at the centers of sim-
ulated tetramer structures. (a) The resonance redshifts with increasing core/shell
diameter ratio x. Solid gold spheres correspond to x = 0 while x = 0.87 represents
large silica cores with thin gold shells. (b) The resonance redshifts and strengthens
when the separation gap between gold nanoshells decreases from 20 nm to 5 nm.
(c) We compare magnetic resonances of tetrahedra of gold nanoshells to those of
tetrahedra of spheres made out of an idealized dielectric with high index contrast.
The separation gaps are 5 nm for both structures. (d) The addition of a smaller
gold sphere at the center of the gold nanoparticle tetrahedron has a minor impact on
the magnetic dipole resonance. (e) Surface roughness can shift the magnetic dipole
resonance, but the shift is likely due to a decrease in the effective interparticle gap.
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dispersive. As depicted in Figure 4.3(c), the magnetic resonance can be observed, but

with much weaker coupling and at a higher resonant frequency than that predicted

for a tetramer of gold particles. Thus, a dielectric tetramer is less attractive as a

metafluid building block than a metal tetramer.

We also use FDTD simulations to examine some practical considerations regarding

the assembly of the tetramer. When we place a small gold sphere at the center of

the tetramer in our simulations, the magnetic dipole resonance does not shift in

frequency, as shown in Figure 4.3(d). Moreover, the strength of the resonance is

only slightly diminished by the presence of the central gold sphere. Therefore, a

self-assembly approach in which metal particles assemble into a tetrahedron on the

surface of another metal particle does not compromise the resulting magnetic dipole

resonance. The presence of a small metal particle at the center of the structure might

affect the electric dipole resonance, but we have not examined that effect.

Additionally we study the effect of surface roughness on the resonance by dotting

the surfaces of the gold nanoshells in our simulation with gold bumps. We see a

small shift in the resonance behavior [Figure 4.3(e)], but this shift can be attributed

to a decrease the effective separation gap between the spheres. Thus, although it

would be important in practice to keep the spheres as smooth as possible, slight

surface roughness may not severely degrade the magnetic resonance of the cluster.

This particular simulation is by no means conclusive, as surface roughness is difficult

to parametrize [132]. In this simulation, we added gold bumps to all of the spheres

in an identical, symmetric pattern. However, as the electron micrographs in 2.14

indicate, surface roughness in general is neither symmetric nor identical from one
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particle to another. The faceting shown in the commercial gold particles could likely

be detrimental for coupling because of the high fields near the sharp edges of the

particles.

4.4 Conclusion

Our FDTD simulations support the findings reported elsewhere [41, 58] that a

tetrahedral structure consisting of four gold nanoparticles exhibits isotropy in its

magnetic dipole response, a long-sought property for metamaterial applications. The

resonance is sensitive to geometric parameters such as the separation gaps between

particles and the core/shell diameter ratio, so a high degree of precision would need to

be attained over these parameters before a bulk suspension of tetramers could be used

as a practical metafluid. As the core/shell diameter ratio x increases, the resonance

weakens, redshifts, and becomes more sensitive to x. Solid metal spheres, rather than

nanoshells, would serve as ideal building blocks for these resonators because they

correspond to x = 0. As shown in Chapter 2, it is possible to make smooth gold

nanospheres experimentally.

Additionally, our simulations indicate that the presence of a metal nanoparticle at

the center of a tetramer is not necessarily problematic for its optical properties. Such

structures could be assembled from metal nanoparticles by using a random parking

approach [91]. Because random parking results in 100% yield of tetramers when the

diameter ratio of the spheres is αc = 1 +
√

2, all that is required for the high-yield

assembly of ideal magnetic resonators is a means of applying this technique with

smooth gold nanospheres.
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Self-Assembly of Tetrahedral

Plasmonic Nanoclusters

5.1 Introduction

When a subwavelength conducting structure interacts with light, its geometric

and material properties can result in exotic optical phenomena. Such structures can

act as magnetic resonators [6, 7, 9], optical nanocircuits [76], plasmonic antenna ar-

rays [18], and photonic traps for individual proteins [133]. Flat metal nanostructures

can be fabricated for these applications with techniques like electron-beam lithog-

raphy and focused ion beam milling [3]. However, some optical phenomena, like

isotropic magnetic resonances, a key to producing metafluids [41, 37], require three-

dimensional subwavelength structures. One way to produce the structures is colloidal

self-assembly, wherein the interactions between nanoparticles suspended in a fluid

direct their spontaneous organization into three-dimensional structures. Colloidal
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self-assembly has been used to create plasmonic nanoclusters that exhibit optical

magnetism [11] and Fano interference [12, 66], but isotropic resonance requires high-

symmetry clusters such as tetrahedra [41]. Although there are some methods to self-

assemble these structures – for example, polymer encapsulation [58] or attachment to

dielectric cores [60, 61] – there is as yet no method that can produce structures with

reproducible, isotropic optical properties in high yield.

Here we show that tetrahedral plasmonic clusters can self-assemble in high yield

from metal nanoparticles that irreversibly bind to one another. We mix gold nanopar-

ticles with smaller particles such that there is a specific attractive interaction between

the two sizes (Figure 3.1). The large particles bind to the small particles irreversibly

and randomly. In a previous report [91], we showed that this process, which is de-

scribed in the mathematics literature as “random parking” [121, 13], results in a high

yield of irregular tetrahedra if α, the ratio of the large to small sphere diameter, has

the critical value αc = 1+
√

2. We extend this work using spherical gold nanocrystals

that are prepared through a combination of synthesis and chemical etching such that

they are monodisperse and smooth down to the nanometer scale. Unlike the nanopar-

ticles used in previous metafluid studies, spherical nanoparticles of this quality may

result in clusters with precise, reproducible plasmonic properties [132].

5.2 Self-Assembly Experiments

As in Chapter 3, we pursue two different strategies for directed self-assembly

of clusters. In each of our experiments, either DNA hybridization or electrostatic

forces give rise to strong, short-ranged, attractive interactions that drive cluster self-
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assembly. One difference in this study is that we use particles on the 0.1 µm scale,

rather than on the 1 µm scale. The size of the DNA strands is closer to the particle

size at this smaller length scale. Another difference is that, rather than polystyrene,

in this study we use gold particles, which have higher density and different surface

chemistry. We must use different methods to attach DNA strands to these particles.

5.2.1 DNA-Mediated Interactions

To prepare a colloidal mixture in which DNA strands mediate interactions, we

first design ssDNA sequences so that they can create a strong bond between two

nanoparticles. The DNA sequences are:

• Sequence X: 5’-thiol-50xT-CCACATCAACCTACT-3’

• Sequence Y: 5’-thiol-50xT-AAGAGTAGGTTGATG-3’

The last 12-base portions of the sequences, closest to the 3’ ends, are complemen-

tary to one another. We check computationally that the sequences are not self-

complementary [134, 135], because self-complementarity could result in aggregation

of each species before mixing. We purchase the oligonucleotides from Integrated DNA

Technologies, Inc. (IDT). From British Biocell International (BBI), we purchase gold

particles that are made with a proprietary technique based on citrate reduction of

HAuCl4 in water [47, 48].

Functionalization of Gold Nanoparticles with Thiolated DNA

Our procedure for grafting DNA strands to citrate-stabilized gold particles is

similar to other protocols in the literature [32, 136], with a few differences. First, we
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use borate buffer (diluted from 20X stock, Thermo Scientific) rather than phosphate

buffer. Second, we add salt to the particles slowly over a period of days. This ensures

that even particles as large as 100 nm remain stable during the salting process. A

summary of our procedure follows and more details can be found in Appendix B.

We begin by adding 200 µL of 0.1 M dithiothreitol (Research Products Inter-

national Corp.) in deionized water to 100 nmol of each oligonucleotide as received

from IDT, and then we wait for one hour. Dithiothreitol cleaves disulfide bonds be-

tween thiolated DNA strands so that the thiol groups can bind to the surface of gold.

Then we purify the deprotected DNA solutions by elution through NAP-5 columns

(Sephadex G-25 DNA grade, GE Healthcare Life Sciences). This step removes the

dethiothreitol. From this point on, we keep our DNA solutions frozen or on ice to

minimize the formation of new disulfide bonds between strands.

At this point we add the DNA to the particles and begin the salting process.

First, we measure the concentrations of DNA and gold particles using UV-vis spec-

trophotometry (NanoDrop 1000). We add DNA solution to a 2 mL aliquot of gold

particle suspension. For 50 nm gold, we add about 18 000 times as many DNA strands

as particles, so that the DNA concentration is 1 µM. For 100 nm gold, the ratio is

100 000 and the DNA concentration is 25 nM. Next we adjust the buffer to 50 mM

borate and 0.01 wt % sodium dodecyl sulfate (SDS) and let the mixture incubate for

at least one hour at room temperature. Over the next three days, we gradually add

NaCl to the solution to increase its salt concentration in 25 mM increments, until

it reaches a final concentration of 250 mM NaCl. During each salting step, we also

increase the DNA concentration in 100 nM increments to maximize the DNA loading
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on the particles [32].

We incubate the particles at room temperature for three days and then wash them.

We pellet them in a centrifuge for 20 minutes (700g for 50 nm particles, 300g for 100

nm particles) and then replace the supernatant with an aqueous buffer containing 50

mM borate buffer and 100 mM NaCl. We repeat this procedure for a total of three

wash cycles. At the end of the last wash we add supernatant to resuspend each sample

to just 10% of its original volume, so that each suspension is at a high concentration.

Thereafter we store the DNA-functionalized particles at 4 ◦C.

Bidisperse Mixtures

We dilute the DNA-labeled 50 nm gold particles with buffer containing 50 mM

borate and 100 mM NaCl, and then prepare mixtures of 100 nm particles and 50 nm

particles in different approximate stoichiometric ratios (1:1, 10:1, 100:1, and 1000:1).

We tumble the mixtures for four days on a Glas-Col Rugged Rotator. In the 1:1

mixture, the color of the solution gradually changes from orange to pale purple,

indicating aggregation. The other mixtures do not show a color change. This lets us

determine by eye which mixtures have a sufficiently high stoichiometric ratio of large

particles to small particles such that small clusters are statistically favored over large

aggregates [91]. We select the 10:1 mixture for further investigation.

5.2.2 Electrostatic Interactions

In a separate set of experiments, we mix gold particles with smaller particles

whose surface charge is opposite in sign. The choice of material for the smaller
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particle species is quite flexible, and we investigate several different types of particle.

Positively Charged Gold Nanospheres

For the large particles in the electrostatic scheme, we use gold nanospheres that are

exceptionally smooth, round, and monodisperse. These particles can be prepared by

synthesis of gold octahedral nanocrystals [63], followed by a slow chemical reaction

that etches the particles and preferentially removes atoms from their vertices and

edges. The reaction proceeds in the presence of polyDADMAC, which stabilizes the

particles and gives them a positive surface charge. As shown in Chapter 2, this

reaction can be halted after the facets of the crystal have been removed, resulting in

spherical nanocrystals. We prepare these particles using the same method described

in Chapter 2.

To understand the electrostatic interactions, we characterize the particle surface

charge. We measure the zeta potential (ζ) of dilute suspensions of spherical gold

crystals using a Malvern ZetaSizer Nano-ZS. As an experimental control, we also

measure the zeta potential of dilute suspensions of gold nanoparticles of a similar size

purchased from British Biocell International (BBI). The measured zeta potentials are

shown in Figure 5.1.

The conventional gold nanoparticles have a negative surface charge (〈ζ〉 = −45

mV) but the spherical crystals are positively charged (〈ζ〉 = 39 mV), likely owing to

the cationic polymer used in the synthesis. Because of this positive surface charge,

the method described in Section 5.2.1 for functionalizing gold particles with oligonu-

cleotides does not work for these particles. Instead, negatively charged particles may
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Figure 5.1: Zeta potential distributions of (a) 100 nm gold particles stabilized by
citrate and (b) 110 nm spherical crystals prepared from chemical etching of gold
octahedra. We plot three independent measurements of each colloid.

be used as the smaller particle species so that self-assembly of large particles on the

surface of small particles proceeds due to electrostatic interactions [91].

Negatively Charged Particles

For the small particles, we use either gold nanoparticles functionalized with DNA

strands or carboxylate-functionalized polystyrene nanoparticles. The 50 nm gold

particles (BBI) are functionalized with DNA using the same method described in

Section 5.2.1. We purchase 42 nm polystyrene particles from PolySciences and use

them without further chemical modification. Although the polystyrene nanoparticles

are fluorescently labeled, this is not a necessary feature for our method. Both of these

particle types are strongly negatively charged due to the presence of long, anionic
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molecules on their surfaces (DNA in the case of the gold particles and carboxylated

polystyrene for the polystyrene particles).

We adjust the buffer of our DNA-functionalized gold particles before mixing them

with the spherical gold crystals. We use 50 nm gold particles labeled with DNA se-

quence Y. We centrifuge the particles at 700g for 20 minutes to pellet them, replace

the supernatant with either 2 mM NaCl or 10 mM NaCl, and then repeat this process

for a total of three wash cycles. We make samples with two different salt concentra-

tions, so that we can combine the colloids to obtain an intermediate concentration.

We wash the polystyrene nanoparticles using a centrifugal filtration device (Vi-

vaspin 500, Sartorius Stedim Biotech). We add 500 µL of 0.2 wt % polystyrene colloid

to the device and then centrifuge it at 2900g for 10 minutes. The device contains a

filter with a 300 000 dalton molecular weight cutoff, which permits the aqueous solu-

tion to flow through but stops the nanoparticles. Then we add an additional 500 µL

of water and repeat this process for a total of three wash cycles. After the last wash,

we resuspend the nanoparticles in 10 mM NaCl to make up 100 µL total volume.

Bidisperse Mixtures

We mix each species of negatively charged nanoparticles with the positively charged

gold spheres. We combine them in a variety of number ratios (1:20, 1:2, 5:1, 50:1),

as we do in our experiments with DNA-mediated interactions. We mix the suspen-

sions such that the final salt concentration of each mixture is either 10 mM or 1 mM

NaCl. We also prepare control samples containing no small particles. Then we tumble

the mixtures on a Glas-Col Rugged Rotator at room temperature for more than 12
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hours. In the 10 mM NaCl samples, we observe a color change from orange to pale

purple, indicating aggregation. The 1 mM NaCl samples with high stoichiometric

ratios, however, are stable. As before, we look for the mixture containing the highest

number density of small particles that does not exhibit aggregation and select this

sample for further study.

5.3 Characterization of Nanoparticle Clusters

To characterize the results of our self-assembly experiments, we use density gra-

dient centrifugation followed by electron microscopy. Each of these techniques yields

information about the contents of the mixture.

5.3.1 Density Gradient Centrifugation

Theory

Brownian particles of different sizes or masses can be separated by centrifugation

in a density gradient column. The density gradient is prepared in a centrifuge tube

and contains high-density fluid at the bottom and low-density at the top. One loads

a small colloidal sample at the top of the column. The average density of the sample

must be less than that of the fluid at the top of the column to avoid a Rayleigh-Taylor

instability, which occurs if a light fluid is supporting a heavier fluid [137]. At high

centrifugal acceleration, particles of higher density move toward the bottom of the

tube. If the fluid density were uniform over some distance along the tube, the arrival

of heavier particles at that point in the tube would create a Rayleigh-Taylor instability
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between the fluid at that point and the fluid below. The presence of a continuous

gradient in fluid density prevents this instability [53, 51]. In this scheme, the particles

are denser than the densest region of fluid, so that the separation depends on the time

over which the acceleration is applied. If the time is too long, all particles will pellet

at the bottom.

To understand how this technique works, we consider an isolated particle in the

frame of its container. The centrifuge tube is not an inertial reference frame because

it revolves around the axis of the centrifuge, as illustrated in Figure 5.2(a). Thus, an

Figure 5.2: (a) Centrifugation of tubes containing density gradient columns and
colloidal samples in a hanging-bucket centrifuge. (b) A close-up of a centrifuge tube
and the forces that act on a colloidal particle (not to scale).

outward fictitious centrifugal force Fcent acts on the particle in this frame:

Fcent = mω2r. (5.1)

Here m is the mass of the particle, ω is the angular velocity, and r is a vector that
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points outward from the rotation axis with a magnitude equal to the distance between

the particle and the axis. The mass of the particle can be expressed as the product of

its density ρp and volume Vp, which in turn can be expressed in terms of the particle’s

radius Rp:

Fcent = ρp

(
4

3
πR3

p

)
ω2r. (5.2)

There is correspondingly a fictitious force on the fluid surrounding the particle, which

results in an apparent inward buoyancy force Fb on the particle in accord with

Archimedes’s Principle [53]:

Fb = −mdispω
2r = −ρf

(
4

3
πR3

p

)
ω2r, (5.3)

where ρf is the fluid density.

The particle experiences a drag force Fdrag as it moves through the fluid. If the

particle is more dense than the fluid (the usual case), the force opposes outward

motion of the particle and, by Stokes’ Law [138], takes the form

Fdrag = −6πRHηvr̂, (5.4)

where RH is the hydrodynamic radius of the particle, η the fluid viscosity, and v the

speed of the particle through the fluid. For constant angular velocity ω a particle at

distance r from the axis reaches a terminal velocity vt (r) on a time scale that is short

compared to r/v. Therefore at each r, the forces are balanced [Figure 5.2(b)] such
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that

6πRHη (r) vt (r) = (ρp − ρf (r))

(
4

3
πR3

p

)
ω2r, (5.5)

where the viscosity η (r) and the fluid density ρf (r) are functions of r.

Rearranging this equation to solve for vt (r), we find

vt (r) =
2

9

(ρp − ρf (r))ω2r

η (r)

(
R3

p

RH

)
. (5.6)

Thus, at any particular r in the centrifuge tube, two particles with the same density

and different sizes travel at different speeds. This occurs because the ratio R3
p/RH

generally increases with particle size and all other variables on the right side of equa-

tion 5.6 are the same for two particles at the same location and of the same density.

This argument holds for clusters of particles as well, assuming that fluid is not

entrained by the cluster. For a tetrahedral cluster of spheres, for example, the hydro-

dynamic radius of the tetramer is related to the hydrodynamic radius of one of its

constituent particles [139, 140] by

RH,tetra ≈ 1.844×RH,sphere. (5.7)

If the tetrahedral cluster contains spheres of mass m, the mass of the cluster is 4m,

which means that the velocity of a tetrahedral cluster of spheres will be higher than
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that of a single unbound sphere at any location in the centrifuge tube:

vt,tetra ≈
4

1.844
× vt,sphere

vt,tetra ≈ 2.17× vt,sphere.

We have assumed that entrainment of fluid by the cluster is negligible. This analysis

suggests that in general larger clusters travel faster than smaller clusters, as long as

they are more dense than the surrounding fluid.

Experiments

We prepare sucrose density gradients using the freeze-thaw method [141]. We

make three solutions, starting from solutions of 50 wt % sucrose in water, 50 mM

borate, and 100 mM NaCl that are filtered through a 0.2 µm membrane (bottle-top

vacuum filter, Corning).

1. 25 wt % sucrose in water

2. 25 wt % sucrose, 50 mM borate, 100 mM NaCl in water

3. 25 wt % sucrose, 1 mM NaCl in water

To make the gradients, we first load 4.25 mL of these solutions into several Ultra-

Clear Thinwall Tubes (11 × 60 mm, Beckman Coulter), seal them with at least two

layers of parafilm, and sonicate them for 5 minutes. We place the tubes in a -80 ◦C

freezer for at least half an hour, and then move them to room temperature to thaw

for 1.5 hours. After the solutions melt completely, we return them to the freezer for
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another cycle. We leave the tubes in the freezer for storage after the third freezing

step, and we remove them to thaw only when we are ready to use them.

In a typical density-gradient centrifugation run, we first choose a gradient from

one of the gradients listed above, so that the borate and salt concentrations match

those of the nanoparticle suspension. Once it has melted, we load 10 µL of the

nanoparticle suspension onto the top of the fluid column. To do this, we pipette the

suspension into the column so that the pipette tip touches the inner wall of the tube

just below the meniscus. We hold the pipette at a large angle from the vertical and

deposit the sample at a rate of about 1 µL/s. Then we centrifuge the samples in

a hanging-bucket centrifuge (Allegra X-15R, Beckman Coulter). We centrifuge the

density gradients at 500g or 1000g for time intervals ranging from 5 to 30 minutes,

depending on the particle sizes, and we adjust the angular velocity at the lowest

possible angular acceleration and deceleration (with braking).

After centrifuging, we look for evidence of particles or clusters separated into

different bands. We do this by examining each tube by eye under dark field with a

flashlight positioned under the tube, as shown in the photograph in Figure 5.3(a).

If the separation is incomplete, we centrifuge for a longer time. If not, we take a

photograph and then use the image processing program ImageJ to measure vertical

intensity profiles along the tubes. We extract bands from the tubes using a syringe

with a blunt pipetting needle [Figure 5.3(b) and Figure 5.3(c)]. To capture each band,

we remove approximately 250 µL of fluid. We centrifuge these fractions at 250g for

20 minutes and remove the supernatant to concentrate the contents of each band. We

redisperse each fraction by gentle pipetting.
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Figure 5.3: (a) Density gradient centrifugation for 15 minutes at 500g of a mixture
of gold particles of sizes 60 nm, 80 nm, and 100 nm. The differences in color occur
because the particles have different electric dipole resonances, which redshift with
increasing particle size. Parafilm is visible at the top of the tube. (b) We insert a blunt
pipetting needle to extract the band of 80 nm particles. (c) Dark field illumination
shows that a portion of the 80 nm particle band has been removed. Scale bar is 1 cm.

5.3.2 Electron Microscopy

Our scanning electron microscopy (SEM) sample preparation technique is designed

to produce a dry sample of clusters on a flat substrate while preventing the formation

of a ring deposit or “coffee ring.” Typically when a colloidal droplet dries, evapora-

tion occurs most rapidly near the edge, and pinning of the contact line to the solid

substrate results in capillary flow outward from the center of the droplet towards the

edge [142]. The result is that most of the solid particles in the droplet dry in aggre-

gates near the edge, which precludes determination of the sizes and arrangements of

clusters as they existed in suspension.

We avoid this problem by inducing an attraction between the solid colloidal parti-

cles and the solid substrate before the droplet dries. We accomplish this by preparing
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samples with the following procedure. We sonicate aluminum SEM stubs (Electron

Microscopy Sciences) and 5 mm × 5 mm silicon wafer chips (Ted Pella product no.

16008) in isopropanol, then methanol, and then acetone (all HPLC-grade) to clean

them. We let them air dry in a fume hood and then immerse the wafers in a solution

of 1 wt % poly(diallyl dimethyl ammonium chloride), also known as polyDADMAC

(Polysciences), for at least 30 minutes. PolyDADMAC is a cationic polyelectrolyte

and it gives the wafer a positive surface charge [143, 144]. Then, holding each wafer

piece with tweezers, we rinse each with deionized water and dry it with compressed

nitrogen. We place a droplet of colloid on the silicon wafer and wait 10 minutes for

the particles to sediment and adsorb to the substrate. Then we rinse the droplet off

with deionized water and immediately dry the wafer with compressed nitrogen again.

Most of the particles are rinsed off with the droplet but some remain bound to the

wafer’s surface.

We use conducting paint (Electrodag 502, Ted Pella) to affix the wafer to an

aluminum stub. Samples containing polystyrene particles are sputter-coated with 2

nm of platinum/palladium to improve the imaging contrast. We examine our samples

with a field-emission scanning electron microscope (Zeiss Ultra55 or Supra55VP). In

each instrument, we use both an Inlens detector and an Everhardt-Thornley detector

to obtain micrographs.
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5.4 Results and Discussion

5.4.1 Faceted Particles

We prepare mixtures of two types of nanoparticles that can strongly bind to one

another. First, we design thiolated single-stranded oligonucleotides whose melting

temperature is greater than 50 ◦C [134, 135], so that they will form a strong bond at

room temperture. We graft these DNA strands to gold nanoparticles of diameter 50

nm or 100 nm using the procedure given in Section 5.2.1. We aim for a high density

of strands on the particles’ surfaces, so that when two particles with complementary

strands come together, the number of DNA duplexes bridging the particles is high,

resulting in a strong bond [145]. We mix the two species of particles in different

number ratios and we tumble them at room temperature for several days. Each

mixture contains 100 mM NaCl so that the Debye length is 1 nm [146], and the

particles interact only at small separations.

Density Gradient Centrifugation

As a control experiment to test for non-specific aggregation, we load a sample of

DNA-labeled 100 nm gold particles in 100 mM NaCl into a density gradient prepared

with 25 wt % sucrose and 100 mM NaCl using the freeze-thaw method [141]. After

centrifuging at 500g for 10 minutes, we see a single bright band with a faint band

below it, as shown in the photograph and intensity profile in Figure 5.4(a). This

suggests that the majority of the particles in this sample are unbound and that non-

specific aggregation is rare.
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Figure 5.4: Photographs of colloidal gold mixtures after density gradient centrifu-
gation, with vertical intensity profiles shown at the side. (a) 100 nm gold particles
labeled with DNA strands move as a broad band through a sucrose density gradient.
A faint second band, evident from the intensity profile at left (dashed gray arrow), in-
dicates that non-specific aggregation occurs but is rare. (b) A mixture of 100 nm and
50 nm gold particles labeled with complementary DNA strands separates into bands
after density gradient centrifugation. The first and fourth bands are pronounced,
corresponding to unbound particles and tetramers. Scale bar is 1 cm.

Density gradient centrifugation of a mixture of 50 and 100 nm gold particles,

labeled with complementary DNA strands, reveals the presence of clusters. As shown

by Figure 5.4(b), a sequence of faint yellow bands appears below the bright band at

the top. The bright band appears at roughly the same height as the bright band in

the tube that contains the control mixture, which suggests that it too corresponds

to unaggregated 100 nm gold particles. The lower bands do not occur in the control

mixture. The fourth band is the brightest, suggesting that tetramers are the most

common type of cluster that assembles. We extract each band, starting from the top

of the tube, for further investigation by electron microscopy.
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Scanning Electron Microscopy

Figure 5.5: (a) Photograph of density gradient column containing a mixture of
100 nm and 50 nm gold particles, labeled with complementary DNA strands, after
centrifugation. Scale bar is 1 cm. (b) Scanning electron micrograph of the top band,
showing that it contains unbound 100 nm particles. Scale bar is 1 µm. (c) Below the
top band are dimers and trimers, as well as some singlets. Scale bar is 1 µm. (d)
SEM images of tetramers (distorted tetrahedra) found in the fourth band. Scale bar
is 100 nm.

Scanning electron microscopy reveals that the bright band at the top of the density

gradient column after centrifugation contains unbound large particles, as shown in

Figure 5.5(a)-(b). Very few particles are in contact with other particles in this sample,

indicating little non-specific aggregation in this band and negligible contamination of

this band from the other bands in the tube. The bands just below the bright band

at the top are faint. Dimers appear in the second band and trimers in the third,

but there are also many unbound 100 nm particles, as shown in Figure 5.5(c). The

contamination of these bands by unbound particles likely occurs because some of the

unbound particles from the top band mix into the bands below during extraction.
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The fourth band contains many tetramers, as shown in Figure 5.5(d). Most of the

tetramers lie flat on the silicon wafer, most likely due to capillary forces during drying.

Because the size ratio of the large to small spheres, α = Rlarge/Rsmall ≈ 2 : 1, is small,

any tetramer that forms has sufficiently large gaps so that the large spheres could

rearrange on the surface of the small particle [91]. We also observed this phenomenon

in previous experiments [129] on dried clusters of DNA-labeled gold nanoshells. In

this sense, these flattened clusters are a limiting case of distorted tetrahedra.

Nevertheless, the density gradient and SEM images indicate that self-assembly

in this colloidal mixture yields a substantial percentage of tetramers. A random

sphere parking model predicts [91] roughly a 60% yield of tetramers and 40% yield

of pentamers at this size ratio. In our experiments we see many dimers and trimers,

however. The presence of clusters smaller than tetramers may be due to the length of

the DNA strands, which is comparable to the particle sizes. Single-stranded DNA has

a persistence length of 1 - 2 nm in a 100 mM NaCl solution [147], so multiple strands

on one particle can associate with strands on an adjacent particle. As a result,

on each small particle, the percentage of DNA that is free to form new duplexes

decreases faster as the cluster grows than it would if the strands were much smaller

than the particle size [129]. The random parking model may need to be modified

when the interactions are mediated by ssDNA comparable in size to the nanoparticles.

Furthermore, neither of the particle species is particularly spherical or monodisperse,

which limits the relevance of a random-parking description and broadens the expected

cluster size distribution [91].
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5.4.2 Spherical Particles

The ideal particles for self-assembly in this experiment therefore are not polyhedral

gold nanocrystals but rather monodisperse gold nanospheres. We can prepare such

particles with the method described in Chapter 2, but we find evidence of some non-

specific aggregation between these particles. Density gradient centrifugation of the

control sample shows a wide bright band, as shown in Figure 5.6(a). This band

is not as sharp as the bright band resulting from density gradient centrifugation of

DNA-labeled 100 nm gold particles, as shown in Figure 5.4(a). The bottom portion

of this band contains clusters of gold nanospheres, as determined by SEM analysis.

The appearance of these clusters in the absence of any oppositely charged particles

indicates that the gold nanospheres are not sufficiently stable to obtain a high yield

of tetrahedra.

Nevertheless, the gold nanospheres bind specifically to negatively charged par-

ticles in mixtures. In one set of experiments, we use 42-nm carboxylate-modified

polystyrene nanospheres as the small particle species. Density gradient centrifuga-

tion of a mixture again yields a wide bright band, as shown in Figure 5.6(b). SEM

analysis shows that the bottom portion of the band contains clusters of gold spheres

without any polystyrene particles as well as aggregates containing both kinds of parti-

cles. Some aggregates of polystyrene particles appear in this mixture as well, perhaps

as a consequence of the way in which they are washed. The significant amount of non-

specific aggregation in this system results in poor control over cluster self-assembly.

In another set of experiments, we mix the positively charged gold nanospheres

with smaller citrate-stabilized gold particles labeled with DNA strands. The citrate-
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Figure 5.6: Photographs of mixtures of nanoparticles after centrifugation in density
gradient columns (left) and scanning electron micrographs of samples extracted from
the bottom of the wide band in each column (right). Scale bar is 1 cm for photographs.
(a) A control sample of spherical gold crystals in 1 mM NaCl shows non-specific
aggregation. Scale bar for electron micrograph is 1 µm. (b) A mixture of spherical
gold crystals and 42 nm carboxylate-modified polystyrene particles. Scale bar is 100
nm. (c) A mixture of spherical gold crystals and 50 nm DNA-labeled gold particles.
Scale bar is 100 nm.
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stabilized gold particles are less spherical than polystyrene particles [132], but the

DNA strands give them a large negative charge [148] so that they are stable at

even higher salt concentrations [32]. Furthermore, the interaction between the DNA

strands on the small particles and polyDADMAC on the surface of the larger nano-

spheres is precisely the same interaction by which DNA-labeled particles stick to the

surface of positively charged silicon wafers in our SEM sample preparation technique.

The results of one of these experiments are shown in Figure 5.6(c). Again there

is a single wide band in the density gradient column, rather than well-resolved bands

corresponding to clusters of different sizes, owing to non-specific binding between the

large gold particles. However, we also find many clusters containing four uniform

100-nm gold spheres bound to a single DNA-labeled 50-nm particle. These clusters

constitute a minority of the self-assembly products; non-specifically aggregated gold

spheres are the majority component. However, the presence of the tetramers suggests

that at higher salt concentrations this system could show strong, specific binding

corresponding to random sphere parking [91]. If the stability of the gold nanospheres

could be improved, then it should be possible to achieve self-assembly of tetrahedral

clusters in high yield.

5.5 Conclusion

Our results demonstrate two laboratory techniques that can be used to charac-

terize clusters assembled from nanoparticles. While density gradient centrifugation

has been used to separate clusters of microspheres [51, 52, 55], here we show that it

can separate irregular clusters of metal nanoparticles. Even dilute species in a 10 µL
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sample can be identified by visual inspection of the density gradient column, making

this a valuable technique for bulk characterization and purification. Second, we have

demonstrated a method to characterize individual self-assembled nanostructures on a

dry substrate without incurring the coffee ring effect. By adsorbing suspended clus-

ters to a charged substrate and then rinsing the fluid away, we minimize the effects

of capillary forces during drying, which would otherwise obscure cluster sizes and

geometry. Together these methods deliver important information about nano-scale

self-assembly products. They could be implemented to better understand systems

from DNA origami [149] to virus capsids [150] and metafluids [61].

More importantly, we have shown that random parking is a promising route to

bulk production of tetrahedral plasmonic nanostructures. The yield has not yet been

optimized, but the data indicate that strong, specific, nonequilibrium binding is at-

tainable in a mixture of gold nanoparticles, thus fulfilling the key requirement for a

random parking self-assembly scheme [91].
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Conclusion and Outlook

We have demonstrated several crucial steps toward the practical realization of

optical metafluids that could exhibit a negative index of refraction. First, we have

shown that it is possible to synthesize spherical, monodisperse building blocks for

plasmonic structures. While spherical particles are frequently regarded as the simplest

morphologies to prepare in polymeric particles, this is not the case for metals. We

now understand how to prepare gold spheres with sizes up to at least 200 nm. This

is important because particles of 80 nm or larger are needed to avoid large losses.

Similar synthesis strategies are possible with other noble metals [151].

We have also demonstrated that it is possible to achieve at least a 90% yield

of tetrahedral clusters through nonequilibrium self-assembly. We accomplished this

by taking advantage of a geometric critical point, not previously reported in the

mathematics literature, that affects the way spheres randomly and irreversibly bind

to – or “park” on – smaller spheres. Tetrahedral clusters are the simplest possible

building blocks for isotropic metafluids [41], and no self-assembly scheme that we are
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aware of produces clusters of a single type in comparable yield. Furthermore, our

simulations show that 100% yield of tetramers is possible in principle, and yields of

70% or more are possible for trimers and octahedra, two other structures that are

useful for engineering plasmonic resonances [37, 11].

Finally, we have implemented nonequilibrium self-assembly in binary mixtures of

nanoparticles and shown that the random parking model is applicable on this length

scale as well. Density gradient centrifugation and electron microscopy reveal that

tetrahedral clusters are the dominant species when non-specific aggregation is negli-

gible. That density gradient centrifugation successfully separates disordered nanopar-

ticle clusters into bands for purification demonstrates the power of this technique for

characterizing the results of colloidal self-assembly, even with nanoscale components.

The technique may be particularly important for separating clusters from unbound

nanoparticles, a by-product of any random-parking assembly scheme. The combi-

nation of random parking for high yield of tetrahedra with this purification method

could allow the unbound particles to be separated and reused so that, ultimately,

none of the building blocks are wasted.

6.1 Opportunities for Further Investigation

Our results cast light on important areas for further inquiry, many of which we

continue to actively investigate. For instance, non-specific aggregation must be elim-

inated in our spherical gold particles. We hypothesize that this aggregation occurs

because individual polyDADMAC chains can form bridges between particles. This

hypothesis would also account for why polyDADMAC-covered particles bind to a
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substrate coated with the same material. It may be possible to solve this problem

by functionalizing the gold nanospheres with a thiolated polymer after the etching

reaction is complete, to saturate any exposed regions of the gold surface and sterically

stabilize the nanospheres. If this functionalization does not inhibit further functional-

ization with oligonucleotides, the particles would become versatile reagents in directed

self-assembly schemes.

Another important challenge is creating regular tetrahedra from our nonequilib-

rium self-assembly method. Although random sphere parking results in tetramers

in theoretically 100% yield, the clusters are disordered tetrahedra, and the separa-

tion gaps between the particles vary. The asymmetry makes it impossible to achieve

uniform and isotropic resonances [41], and the gaps allow capillary forces to flatten

clusters during drying. As a consequence, it is difficult to measure optical properties

of individual, undistorted clusters.

It may be possible to solve both of these problems using another geometric trick:

changing the sphere size ratio after the clusters self-assemble. One might assem-

ble tetramers in high yield at the critical size ratio αc = 1 +
√

2, as illustrated in

Figure 6.1(a), and then increase the size ratio to

α→
√

2√
3−
√

2
≈ 4.45. (6.1)

Above this size ratio the maximum parking number drops to 3 [13, 124], which

means that the large spheres in a tetramer are geometrically constrained to adopt

tetrahedral symmetry in order to maintain contact with the small sphere. It may be

possible to implement this scheme by substituting a thermoresponsive nanogel, such
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Figure 6.1: A possible strategy for self-assembly of regular tetrahedra in high yield:
(a) Tetramers assemble in high yield through random parking at the critical size
ratio (red arrow). If we then adjust the size ratio (blue arrow), we can turn them
into regular tetrahedra. (b) One way to do this is through the use of DNA strands
(orange and green) that form hairpins, decreasing the length of the tethers between
the particles. The hairpinning changes the effective size ratio (c) by making the shell
of DNA surrounding each particle thinner (dashed black circles), and in turn making
the separation gaps between the particles more uniform.
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as poly(N-isopropylacrylamide) or PNIPAm, for the small sphere [126]. PNIPAm

particles as small as 42 nm shrink to 55% of their initial diameter as the temperature

rises from 28 ◦C to 40 ◦C [152], which is enough to change the size ratio in a binary

mixture from αc ≈ 2.41 to α ≈ 4.38, almost precisely the desired shift. Moreover,

they are negatively charged and thus serve as an ideal small-particle species to mix

with positively charged gold nanospheres. We are experimentally investigating this

system in collaboration with Dr. Jin-Gyu Park.

It may also be possible to adjust the size ratio after clusters self-assemble using

DNA nanotechnology. In binary mixtures of DNA-labeled nanoparticles, the shell

of DNA surrounding each particle must be taken into account in determining the

effective size ratio of the mixture. It may be possible to modify our DNA sequences

so that the spacer portion of each sequence forms a hairpin when the temperature falls

below some threshold, as illustrated in Figure 6.1(b). The hairpin formation could

pull the large particles closer to the small particle and to one another, as depicted

in Figure 6.1(c), increasing the effective size ratio and reconfiguring the structure

[153] to make the separation gaps between the gold nanoparticles more uniform.

Yet another solution is to replace the small particle with a DNA construct or other

nanostructure with symmetric and specific binding sites [61] to achieve more control

over the geometry of the structure than one can obtain through random parking. My

colleague Nabila Tanjeem is investigating this option.

We also need to investigate other materials to make the nanostructures themselves.

In the first proposal of a metafluid, the authors noted that the high losses in gold

would be problematic and that volume fractions greater than 50% would be necessary
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to achieve µ < 0 in a metafluid made with gold nanoclusters [41]. It may be possible

to avoid such large volume fractions by using a transition-metal nitride instead of

gold. The dielectric function of titanium nitride (TiN) is similar to that of gold in

the visible, but εr of TiN has a smaller negative real part (ε′r) and a larger imaginary

part (ε′′r) [154]. Consequently, TiN’s refractive index (n) is larger than gold’s and its

absorption index (k) is smaller. As a result, many recent studies have examined it as

a material for building plasmonic nanostructures [155, 156, 157, 158]. These studies

predict that TiN should yield greater field enhancement than gold and figures of merit

that are orders of magnitude higher than gold in some geometries. Further work is

required to understand whether TiN or a related material could be used to make

isotropic resonators for metafluids. If so, it will be necessary to develop synthesis

schemes for TiN nanoparticles that can be used in our self-assembly strategies.

Lastly, our work raises some fundamental questions about the physics of nonequi-

librium self-organization. For instance, random sphere parking requires irreversible

interactions. As a consequence, it is possible to achieve 100% yield of tetramers, an

unexpected result. Is such a high yield possible in an equilibrium system? How do

the yield curves change for random parking of shapes other than spheres? Can this

technique be extended to mixtures of three or more species of particles with different

types of interactions? Is it experimentally possible to achieve 100% yield of trimers

in a two-dimensional system with random parking?

Our work on the synthesis of gold nanospheres raises questions about crystals out

of equilibrium as well. A slow chemical reaction can render the surface tension of

a gold crystal effectively isotropic, resulting in spherical crystals. What other sur-
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face morphologies are accessible with slow reactions that do not reach equilibrium?

Over what range of metals and other crystalline materials can this technique be ap-

plied? Can it be extended to crystals composed of molecules such as DNA [159] or

crystals made from even larger building blocks, such as nanoparticle superlattices

[136]? Throughout the research I have described in this thesis, nonequilibrium sta-

tistical physics results in surprising phenomena which happen to be quite useful for

our purposes. These examples demonstrate the possibilities for other nonequilibrium

self-assembly schemes.

6.2 Final Remarks

It has been fifteen years since Pendry proposed negative refraction as a means of

perfect lensing [19] and eight since Urzhumov et al. introduced the concept of an

isotropic metafluid [41]. It has been my privilege to make contributions towards real-

izing these goals during my graduate studies. Throughout this time, the plasmonics

and metamaterials community has brought intriguing new physics and experimental

possibilities to light. In the arena of colloidal self-assembly, the relationship between

physics and geometry has led to particularly fruitful discoveries, while we are only just

beginning to explore the vast array of possibilities enabled by DNA nanotechnology.

I look forward to the exciting results and provocative questions that these fields will

continue to raise over the next several years.
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Connection Between Spherical

Covering and Minimum Parking

Reprinted text with permission from Schade et al., Phys. Rev. Lett., 110, 148303

(2013). Copyright 2013 by the American Physical Society.

Here we verify that the best known coverings are also optimal solutions to the

minimum parking problem. For a given configuration of N “parked” points on a unit

sphere, let the covering radius rc be the maximum distance between any point on the

sphere to the nearest parked point. Let the packing radius rp be (half) the minimum

of the pairwise distances between the parked points. If the parked points represent

centers of circles with some radius r, it is impossible to add another circle without

overlapping a parked one if and only if the covering radius is less than 2r. The circles

that are already parked do not overlap provided that the packing radius is greater

than r. Therefore, if we are given an optimal solution to the covering problem, that
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is, one that minimizes the covering radius for a given N , it will also be the optimal

minimal parking configuration if the covering radius is less than 2 times the packing

radius.

We manually verify that the best known coverings satisfy this constraint for

N ∈ {4, . . . , 130} by calculating the packing radius for each optimal known covering,

obtained from ref. [124]. Table A.1 shows the covering radius rc, packing diameter

2rp, and difference (in degrees). The difference is always positive, confirming our

statement.

Table A.1: Packing diameters and covering radii for dif-

ferent cluster sizesN , measured in degrees, and the differ-

ences between them. Because the differences are always

positive, we conclude that the optimal covering configu-

ration is also the optimal minimal parking configuration,

at least for N ∈ {4, . . . , 130}.

N 2rp rc 2rp − rc

4 109.47 70.53 38.94

5 90.00 63.43 26.57

6 90.00 54.74 35.26

7 72.00 51.03 20.97

8 61.76 48.14 13.62

9 68.97 45.88 23.09

10 65.53 42.31 23.22
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Table A.1: (Continued)

N 2rp rc 2rp − rc

11 50.65 41.43 9.22

12 63.43 37.38 26.06

13 46.23 37.07 9.16

14 52.58 34.94 17.64

15 45.67 34.04 11.63

16 50.48 32.90 17.58

17 41.63 32.09 9.54

18 45.53 31.01 14.51

19 40.73 30.37 10.36

20 40.01 29.62 10.39

21 39.45 28.82 10.62

22 40.70 27.81 12.89

23 38.99 27.48 11.51

24 36.67 26.81 9.86

25 36.75 26.33 10.42

26 35.12 25.84 9.27

27 38.06 25.25 12.81

28 35.87 24.66 11.21

29 33.86 24.37 9.50

30 31.18 23.88 7.30
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Table A.1: (Continued)

N 2rp rc 2rp − rc

31 29.94 23.61 6.33

32 37.38 22.69 14.69

33 26.61 22.59 4.02

34 30.82 22.33 8.49

35 27.98 22.07 5.90

36 28.78 21.70 7.08

37 31.22 21.31 9.91

38 30.31 21.07 9.24

39 30.73 20.85 9.87

40 30.13 20.47 9.66

41 27.71 20.32 7.39

42 28.34 20.05 8.29

43 27.27 19.84 7.43

44 26.36 19.64 6.72

45 25.15 19.42 5.73

46 29.11 19.16 9.96

47 25.38 18.99 6.38

48 27.70 18.69 9.01

49 24.93 18.59 6.33

50 28.01 18.30 9.71

131



Appendix A: Connection Between Spherical Covering and Minimum Parking

Table A.1: (Continued)

N 2rp rc 2rp − rc

51 24.30 18.20 6.10

52 24.24 18.05 6.19

53 22.56 17.88 4.68

54 25.58 17.68 7.90

55 24.06 17.52 6.54

56 24.89 17.35 7.54

57 23.98 17.18 6.80

58 23.72 17.02 6.70

59 23.69 16.90 6.79

60 24.67 16.77 7.90

61 20.50 16.64 3.86

62 20.43 16.49 3.94

63 21.60 16.37 5.23

64 21.34 16.19 5.15

65 20.78 16.11 4.66

66 21.61 15.96 5.66

67 21.32 15.86 5.46

68 21.74 15.72 6.02

69 20.41 15.60 4.82

70 21.47 15.50 5.98
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Table A.1: (Continued)

N 2rp rc 2rp − rc

71 21.46 15.39 6.07

72 23.06 15.14 7.92

73 17.51 15.12 2.39

74 17.95 15.03 2.92

75 20.02 14.95 5.07

76 19.08 14.85 4.23

77 22.03 14.74 7.29

78 19.14 14.66 4.49

79 19.77 14.56 5.21

80 19.94 14.45 5.49

81 19.07 14.38 4.69

82 20.40 14.29 6.11

83 17.08 14.22 2.86

84 19.93 14.12 5.81

85 19.92 14.05 5.88

86 19.89 13.96 5.93

87 18.70 13.88 4.81

88 19.80 13.79 6.01

89 19.76 13.71 6.05

90 19.83 13.62 6.21
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Table A.1: (Continued)

N 2rp rc 2rp − rc

91 17.18 13.56 3.62

92 17.83 13.49 4.34

93 18.75 13.43 5.32

94 19.15 13.35 5.81

95 18.54 13.29 5.25

96 19.21 13.21 6.00

97 18.38 13.14 5.24

98 18.99 13.06 5.93

99 19.06 13.00 6.06

100 18.58 12.94 5.64

101 18.67 12.87 5.80

102 17.63 12.81 4.82

103 17.51 12.74 4.77

104 18.49 12.67 5.82

105 18.94 12.62 6.32

106 17.66 12.56 5.10

107 18.62 12.50 6.13

108 18.10 12.43 5.67

109 18.23 12.38 5.85

110 18.40 12.30 6.10
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Table A.1: (Continued)

N 2rp rc 2rp − rc

111 18.70 12.25 6.45

112 18.71 12.19 6.52

113 18.28 12.15 6.14

114 16.87 12.10 4.78

115 17.42 12.05 5.37

116 16.27 11.99 4.28

117 17.67 11.94 5.73

118 17.71 11.89 5.83

119 17.09 11.84 5.25

120 17.25 11.79 5.47

121 17.56 11.73 5.83

122 17.70 11.68 6.02

123 14.38 11.64 2.74

124 14.14 11.59 2.55

125 17.38 11.54 5.84

126 17.07 11.49 5.58

127 16.54 11.45 5.09

128 16.50 11.41 5.09

129 16.98 11.36 5.62

130 16.95 11.32 5.63
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Functionalization of Gold

Nanoparticles with DNA

This procedure is based on a protocol I learned from Dazhi “Peter” Sun, while

visiting Oleg Gang’s group at the Center for Functional Nanomaterials (CFN) at

Brookhaven National Laboratory (BNL). Long wait times are in bold for ease of

planning. The entire procedure can be completed in just a couple of days if all

materials are on hand and the required lab equipment is available.

B.1 Materials

• Gold nanoparticles (Au NPs) in suspension, stabilized with citrate1

1According to Peter, the problem with surfactants other than citrate is that they may tightly
bind with Au, thus making the thiolization less efficient. You may need longer time for salting with
thiol-DNA, i.e. instead of 30min every round, you may need 1 hour with longer sonication time. It
is also helpful to add some more thiolated DNA every time you add salt.
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• Thiolated DNA strands as received from IDT (order 1 µmol of each, use HPLC

purification, 50 bases total, 15 bases in sticky end). The particle stability may

depend on the DNA sequence and length [160, 32].2 Note that IDT synthesizes

DNA starting at the 3’ end and most of the errors during synthesis are trunca-

tion errors. Therefore, if the thiol group is on the 5’ end, the purification may

not be important or have much effect.

• Dithiothreitol (DTT) (Powder, RPI Corp. This should smell bad. If it doesn’t

smell bad, it’s expired.)

• Sephadex columns (one for each DNA sequence). illustra, NAP-5 columns,

Sephadex G-25 DNA Grade, 17-0853-02, 50 purifications, contains 0.15% kathon

CG as preservative. (These should arrive with Sephadex gel in them already.

They can be stored at room temperature.)

• Deionized water

• Bucket of ice

• Sodium dodecyl sulfate (SDS)

• Syringes and filters for filtering SDS solution

• Borate buffer (Thermo Scientific, 20X Borate Buffer, product no. 28341, 500

mL bottle, store at room temperature) or phosphate buffer

2According to Peter, generally in experiments, Au functionalized with shorter DNA is less stable,
especially for large particles. He normally uses 30 bases or higher. If you use a longer salting time
and add more DNA gradually, it may help increase the DNA coverage and make the particles more
stable.
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• Sodium chloride (NaCl)

B.2 Procedure

B.2.1 Cleave Disulfide Bonds in Thiolated DNA

IDT provides additional information about why it is important to reduce thiol-

modified oligos before use. Some groups use different methods depending on whether

the thiol group is on the 3’ or 5’ end of the oligo [161]. Peter said that the following

method is ok for both 3’ and 5’ modifications with thiol.

1. Prepare a 0.1 M solution of DTT (154.2 molecular weight) in deionized water.

200 µL of this will be added to each DNA vial. This can be stored in the freezer

when not in use.

2. If using DTT solution from freezer, remove from freezer and wait about an

hour for it to come to room temperature.

3. Centrifuge DNA vial as received from IDT. Check that you can see the blob of

DNA at the bottom of the tube.

4. Add 200 µL of 0.1 M DTT solution to each DNA vial. (No additional water or

buffer added to DNA.)

5. Vortex the DNA vials for 5 seconds and centrifuge them briefly in a small

benchtop centrifuge.

6. Wait one hour. (Begin preparing sephadex columns while you wait though.)
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B.2.2 Use Sephadex Columns to Remove DTT from DNA

1. Prepare a sephadex column for each DNA strand.

(a) Mount the column on a ring stand. Place a Falcon tube below each column

to collect waste. Label each column with the DNA sequence that you will

filter through it.

(b) Open the column and, before adding anything to it, let water drip out of

the column until the water level is at the top of the gel.

(c) Once the water level is at the top of the gel, add 1 mL of deionized water

(or buffer), and let it keep dripping until the water level again comes down

to the top surface of the gel.

(d) Repeat the previous step a total of 10 times (adding 1 mL of DI water at

a time, to wash the gel and make sure it is in the desired buffer prior to

adding DNA and DTT). When doing this, it is not necessary to wait for

the water level to come all the way down to the gel’s top surface each time.

You can just wait a few minutes between adding water each time.

2. Prepare 4 microcentrifuge tubes for each DNA sequence. Label the tubes with

the DNA sequence name and a number for the order in which they’ll be used

for the elution.

3. Prepare a small bucket of ice. (Keep the DNA on ice after elution to prevent

the thiols from forming disulfide bonds again.)
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4. Position the first of the four microcentrifuge tubes below the column. Make

sure the columns are at least 1 cm above the microcentrifuge tubes.

5. Add the full 200 µL of DNA/DTT solution to the column. Immediately add

500 µL of water or buffer, and collect what comes out in the microcentrifuge

tube. (While this is in progress, the same can be done for other DNA sequences.)

6. Once it stops dripping, seal the microcentrifuge tube and immediately put it

in the ice bucket. (Keep the tubes cold when working with them so that the

disulfide bonds won’t form again quickly.)

7. Replace the microcentrifuge tube with the next one, and add another 500 µL

of water or buffer and repeat the process with the other tubes.

8. After all 4 tubes are full, put them in the freezer. Usually the second tube has

the highest DNA concentration.

9. Use UV-vis spectrometry to measure the concentration of DNA in the tubes.

(a) Blank with DI water first. Remember to keep diluted DNA solution on ice

until it is necessary to make a measurement.

(b) Dilute a sample of the DNA solution by a factor of at least 100 for UV-vis

measurement. Repeat measurement with different dilutions (e.g. 100, 200,

300) to determine concentration of DNA solution.

(c) Using extinction coefficient reported by IDT and equation C = Aabs/εL

(Beer-Lambert law), solve for C. Here Aabs is measured absorption, ε is

the extinction coefficient reported by IDT, L is the propagation length
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through the liquid in the cuvette, and C is the concentration. Remember

to multiply by dilution ratio to get back to original concentration.

10. Return DNA to freezer when done.

B.2.3 Gradually Load DNA onto Gold Nanoparticles

See Hurst et al. [32] for details of how many DNA strands can be loaded onto

gold nanoparticles as a function of particle size, salt concentration, spacer length and

type, etc. For example, aim for 300 DNA strands per 10 nm particle, 10 000 DNA

strands per 50 nm particle, or 100 000 DNA strands per 100 nm particle. (Actual

loading will be much less than this.)

1. Before adding any DNA to gold nanoparticles, use dynamic light scattering to

measure their size (hydrodynamic diameter).

2. Also measure concentration of nanoparticles using UV-vis, if not yet known.

For references on gold nanoparticle extinction coefficient and dependence on

particle size, see [162, 33].

3. Prepare a 1 wt % SDS solution in water. It’s probably a good idea to filter this

through a < 1 µm pore membrane. (If using solution from fridge, sonicate for

5 minutes before use.)

4. Vortex the gold nanoparticles for a few seconds.

5. Add 1 mL of the first type of gold nanoparticles to each of 2 microcentrifuge

tubes (volume permitting).
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6. Add DNA of desired sequence to each of the microcentrifuge tubes in volume

that corresponds to the DNA loading that you are aiming for. (See beginning

of this section.)

7. Add 50 µL of 20X borate buffer to each tube to increase DNA loading. (To do

this, place it in the lid of the microcentrifuge tube so that vortexing will mix it

in thoroughly immediately and the buffer will be diluted 20X as intended.)

8. Also add 10 µL of 1 wt % SDS in DI water, only for particles of diameter ≥ 30

nm.

9. Vortex tubes for about 5 seconds.

10. Sonicate tubes for 1 minute. Using pipe cleaners to suspend the tubes in the

sonicator at the desired depth can be useful in this and future steps.

11. Put the tubes on a rotator at room temperature and begin slowly rotating.

12. Let the tubes rotate for 1 - 2 hours. During this time, repeat this process

for gold nanoparticles of other sizes. Later we will add salt (but no additional

buffer) to adjust the salt concentration. An orbital shaker can also be used for

this process. In some groups, they wait much longer at this step (for example,

16 hours) before proceeding to the next steps. This seems worth a try. For

example, see the Supporting Information of [163].

13. Add salt gradually [164, 165, 166] by putting small amounts of concentrated

NaCl in the lid of each microcentrifuge tube and then vortexing to mix it in.

(a) First, centrifuge the tubes for a few seconds.
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(b) The amount of salt to add depends on particle size:

• For 10 nm particles, add 20 µL of 2.5 M NaCl to bring overall concen-

tration to approximately 0.05 M NaCl. (To prepare this, add 0.1461g

NaCl to 1 mL of water.)

• For 20 nm particles and larger, add 10 µL of 2.5 M NaCl to bring over-

all concentration to approximately 0.025 M NaCl. Also add roughly

200 DNA strands per particle (about 0.2 µL) to the suspensions of

these larger nanoparticles at this time (and more for larger particles).

(c) Vortex intermittently for a few seconds to mix in the salt.

(d) Centrifuge the tubes for a few seconds.

(e) Sonicate all the tubes for 10 seconds.

(f) Return the tubes to the rotator and wait at least a half hour.

(g) Repeat this procedure, adding salt every half hour (or even less

often) to gradually increase the salt concentration to 0.25 M NaCl (could

be a bit more for smaller particles and a bit less for larger particles). For

larger particles (≥ 50 nm), increase the salt concentration more slowly and

also add more DNA solution. During the salting process, you may keep

the thawed DNA solution in the refrigerator. In some protocols [167], this

process occurs over a period of a few days for optimal DNA loading.

• For 10 nm particles, salting steps should be 20 µL, 20 µL, 40 µL,

40 µL. (4 steps total.)
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• For 20 nm particles and larger, salting steps should be 10 µL, 10 µL,

10 µL, 10 µL, 10 µL, 10 µL, 20 µL, 20 µL. (8 steps total but roughly

the same overall concentration in the end.) Also add approximately

0.2 µL of DNA solution each time (more for larger particles).

• You may also want to periodically use DLS to measure whether hy-

drodynamic diameter of particles is in fact increasing with the salting

process.

14. When the salting process is finished, leave the tubes on the rotator over-

night.

15. Return the DNA to the freezer for storage.

B.2.4 Wash Particles to Remove Excess DNA

1. The next morning, remove the tubes from the rotator.

2. Prepare buffer: 1 part 20X borate buffer stock (as before), 19 parts DI water, 0.1

M NaCl. (To make 40 mL of buffer, use 38 mL of DI water, 2 mL of 20X borate

buffer stock, and 0.2338 g NaCl.) Filter the buffer through a 0.02 µm membrane.

(To add 0.01 wt % SDS to this buffer later, use the more concentrated solution

of 1 wt % SDS and add 1 part of this to 99 parts buffer. The SDS is to prevent

the particles from sticking to the walls during washing. It’s not needed for the

assembly process, but also won’t hurt the process if it’s in the system at that

point. Don’t add the SDS to the buffer right away.)

3. Centrifuge briefly and then sonicate the tubes, holding them with pipe cleaners.
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4. Wash the particles three times each, as follows:

(a) Centrifuge the particles in order to form a pellet. If you don’t see a pellet,

repeat at higher speed.

• For 10 nm particles, centrifuge at about 6600g for 1 hour.

• For 20 nm particles, centrifuge at about 3000g for 1 hour.

• For 50 nm particles, centrifuge at about 700g for 20 minutes.

• For 100 nm particles, centrifuge at about 250g for 20 minutes.

(b) Remove the supernatant.

(c) Replace the supernatant with 1 mL of buffer prepared earlier (without SDS

added). After the last centrifugation step, resuspend all tubes to 1/10 of

the original volume to obtain 10x higher concentration in the end.

• Note: Only add the SDS for particles ≥ 30 nm and only after the first

wash step to prevent aggregation, using 10 uL of the 1% SDS solution

at a time. Do not add SDS to these particles after resuspending the

last time. If you add SDS, you shouldn’t see gold particles floating at

the top of the liquid after a centrifugation run.

• If desired, after the last wash and resuspension, combine the contents

of the original two tubes.

(d) Vortex for about 5 seconds.

(e) Centrifuge on bench for a few seconds.

(f) Sonicate for about 10 seconds or as needed to make sure particles are

redispersed.
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(g) Repeat this procedure for a total of three wash cycles.

5. Store the particles in the refrigerator after the DNA functionalization and wash-

ing are complete.

B.2.5 Characterize Particles after DNA Functionalization

1. Use DLS to measure hydrodynamic radius, if desired, to confirm increase due

to DNA functionalization.

2. Use UV-vis to measure concentrations of particles.

(a) Blank with buffer first.

(b) Dilute the particles by factors of 2, 4, and 6 for UV-vis measurements.

Measure the extinction spectra.

(c) Using extinction coefficient reported by Au NP vendor and equation C =

Aabs/εL (Beer-Lambert law), solve for C. Here Aabs is measured absorp-

tion, ε is the extinction coefficient reported by the vendor (or calculated

using formulae [33]), L is the propagation length through the liquid in the

cuvette, and C is the concentration. Remember to multiply by dilution

ratio to get back to original concentration. Numbers for C will decrease

as you do this because of the noise floor.

3. Return suspensions to refrigerator for storage after this is completed.
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