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Abstract

Sebaceous glands perform complex functions, and are centrally involved in the pathogenesis of 

acne vulgaris. Current techniques for studying sebaceous glands are mostly static in nature, 

whereas the gland’s main function – excretion of sebum via the holocrine mechanism – can only 

be evaluated over time. We present a longitudinal, real-time alternative – the in vivo, label-free 

imaging of sebaceous glands using Coherent Anti-Stokes Raman Scattering (CARS) microscopy, 

which is used to selectively visualize lipids. In mouse ears, CARS microscopy revealed dynamic 

changes in sebaceous glands during the holocrine secretion process, as well as in response to 

damage to the glands caused by cooling. Detailed gland structure, plus the active migration of 

individual sebocytes and cohorts of sebocytes were measured. Cooling produced characteristic 

changes in sebocyte structure and migration. This study demonstrates that CARS microscopy is a 

promising tool for studying the sebaceous gland and its associated disorders in three-dimensions in 

vivo.

Introduction

Sebaceous glands play a predominant role in the etiology and pathology of acne vulgaris, 

the most prevalent skin disorder affecting over 85% of adolescents and many adults (Bhate 

and Williams, 2013). Many current therapies for acne (e.g. isotretinoin (Rigopoulos et al., 

2010), anti-androgens (Katsambas and Dessinioti, 2010), and photodynamic therapy 

(Sakamoto et al., 2010)) assert their effects, at least in part, by damaging sebaceous glands 

and/or suppressing their secretory function. This central involvement of sebaceous glands in 

acne, as well as the increasing appreciation for the complex neuro-immuno-endocrine 
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functions performed by sebaceous glands, has led to a growing interest in the study of 

sebaceous gland physiology (Nejati et al., 2013). Of the various currently available 

investigative techniques, three-dimensional morphometric analysis of sebaceous glands has 

been found to be especially informative (Hinde et al., 2013). This is typically achieved by 

confocal microscopy in epidermal whole mounts, which requires ex vivo labeling of the 

glands (e.g. by immunofluorescence) (Hinde et al., 2013), and thus, by necessity, limits the 

data to a static “snap shot” in time. This limitation is particularly significant since the 

gland’s main function – the excretion of sebum via the holocrine mechanism – is a dynamic 

process that can only be evaluated over time. In this study we carried out in vivo, label-free 

longitudinal imaging of individual sebaceous glands using coherent anti-Stokes Raman 

scattering (CARS) microscopy. CARS microscopy is a non-linear imaging technology that 

can selectively visualize lipids based on their chemical structure to reveal dynamic changes 

in sebaceous glands, both during their normal holocrine secretion process, as well as in 

response to damage caused by cryotherapy. No stains or genetic manipulations are needed 

for in vivo CARS microscopy, making it a promising tool for investigating sebaceous gland 

biology.

CARS microscopy is a highly sensitive, chemically-selective imaging technique capable of 

real-time, non-perturbative imaging in vivo (Evans et al, 2005). The image contrast in CARS 

microscopy arises from molecular vibrational modes, such as the CH2 bonds in lipids. A 

non-linear Raman technique, CARS uses a pair of laser pulse trains, called "pump" (at a 

frequency ωp) and "Stokes" (at a frequency ωs), whose energy difference is set to correspond 

to a molecular vibration of interest (Evans and Xie, 2008). The combined pulses generate a 

beat frequency at ωp −ωs that can coherently drive specific molecular vibrations. When 

molecules that contain such vibrations are present in the microscope focal volume, strong 

emission at a new wavelength, called “anti-Stokes”, is generated at ωas = 2ωp −ωs that can 

be readily collected using standard multiphoton filters and detection schemes (Evans and 

Xie, 2008). CARS is a multiphoton process, and as such, only generates emission at the 

objective focal point, enabling threedimensional molecular imaging hundreds of microns 

deep in tissue (Wright et al, 2007). The turbid tissue environment strongly backscatters the 

anti-Stokes signal, allowing for highly sensitive imaging of tissue lipids in the cell 

membrane, cytoplasm, and other structures in vivo. (Evans et al, 2005)

CARS is a spectroscopic technique that can be used to quantitatively measure chemical 

species present in intact tissue (Evans and Xie, 2008). In providing three-dimensional 

images with different chemical "weightings", CARS and other coherent Raman imaging 

tools (Freudiger et al, 2008; Saar et al, 2011) can be considered microscopic analogs to 

spectroscopic MRI, which have sub-micron spatial and video-rate temporal resolution. 

CARS microscopy is particularly sensitive to lipids, as their long hydrocarbon chains 

contain a multitude of CH2 moieties that have strong Raman vibrational modes. These 

properties have made CARS microscopy an attractive technology for biomedical imaging, 

with applications including the skin (Evans et al, 2005), the peripheral nervous system (Huff 

and Cheng, 2007; Jung et al, 2014), and brain (Evans et al, 2007; Fu et al 2008).

In this study we used CARS microscopy to image normal sebaceous glands in mouse ears, 

before and after cryotherapy. Cryotherapy was an early (mid-1900s) treatment for acne, 
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traditionally performed by applying liquid nitrogen (−196°C) or a “slush” of frozen carbon 

dioxide and acetone (−78°C) onto an area with acne until “superficial freezing” was 

achieved (Dobes and Keil, 1940; Graham, 1975). It has also been reported previously that 

sebaceous glands are especially sensitive to cooling-induced injury (Gage et al., 1979). For 

the cryotherapy group in this study, we have applied cooling parameters found to be 

effective at damaging sebaceous glands, without causing gross cryogenic injury to the 

surrounding tissue (Gage et al., 1979, Figures S1–S3).

Results and Discussion

Normal sebaceous glands

Using CARS microscopy, sebaceous glands were easily seen due to their high contrast, and 

were imaged in three-dimensions with subcellular resolution. Intracellular lipid lobules were 

visible as bright granules within each sebocyte, while nuclei and cell membranes were 

visible in dark contrast due to their lower lipid content. The CARS images are consistent 

with the established characteristics of holocrine secretion. Sebocyte progenitor cells residing 

at the periphery of the gland develop into mature sebocytes, while migrating from the 

periphery to the central, ductal portion of the gland. These fully mature sebocytes then 

rupture their cell membranes and release their lipid contents, via the infundibulum (which 

also contains the hair shaft), ultimately onto the skin surface (Thody and Shuster, 1989). In 

this study, the CARS signal was weakest in the lipid-poor progenitor sebocytes located 

along the periphery, becoming stronger in sebocytes in the interior portions of the gland, and 

strongest at the ductal outlet (Figure 1a, marked “1”). This signal pattern corresponds to the 

accumulation of lipids in maturing sebocytes as they migrate from the periphery towards the 

gland duct. Characteristic subcellular structures including lipid granules, nuclei, and cell 

membranes, were observed to gradually degrade, and were eventually lost in sebocytes 

immediately adjacent to gland outlets. This corresponds to mature sebocytes undergoing cell 

death and releasing their lipid contents (Figure 1a, marked “2”). In addition, there was a 

strong CARS signal along the hair shaft, consistent with a lipid coating (Figure 1a, marked 

“3”, verified with a lipophilic stain in Figure S4).

Using small tattoos as landmarks, we were able to repeatedly locate individual sebaceous 

glands over the course of serial imaging sessions carried out for up to two weeks. With this 

method, we were able to track individual sebocytes within the glands as they migrated 

towards the gland duct during holocrine secretion (Figure 1 b–d). Individual sebocytes and 

cohorts of sebocytes were identified in glands over time by their connectivity to adjacent 

cells, which was maintained throughout the process of sebocyte migration. This connective 

pattern was maintained, even as the sebocytes’ shape and size progressively changed during 

migration. The sebocytes migrated at a rate of approximately one cell layer (concentric 

about the gland outlet) per day. Since each gland consists of roughly 6–8 lipid-containing 

cell layers, the migration rate observed by CARS microscopy is consistent with previous 

findings that sebocyte turnover occurs over approximately 7–14 days (Bertalanffy, 1957; 

Epstein and Epstein, 1966; Plewig and Luderschmidt, 1977). The data presented here marks, 

to our knowledge, previously unreported sebocyte migration visualization directly observed 

as it occurs in vivo. The ability to monitor holocrine secretion over time – both by detecting 
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deviations from the normal patterning of CARS signal in sebaceous glands, and by tracking 

the rate of sebocyte migration – should be a powerful tool for studying the myriad 

physiologic (e.g. androgen levels) and exogenous (e.g. therapeutic agents) factors that can 

affect sebaceous gland function. CARS microscopy could be used to investigate many 

currently unknown aspects of sebaceous gland physiology, e.g. sebocyte migration patterns, 

spatial and temporal relationships between sebocyte migration and lipid accumulation, and 

(in combination with other imaging modalities) the real-time interactions between sebocytes 

and other cells/organisms such as leukocytes or bacteria. In addition to its utility as a 

research tool, CARS microscopy could also potentially be used in clinical settings to non-

invasively monitor sebaceous gland-related disease progression and response to therapy. 

Adapting CARS microscopy to clinical use will require adjustments in instrumentation (such 

as miniaturization of device components, and including tissue- stabilizing fixtures), which 

have been successfully achieved before for other optical imaging systems, e.g. confocal 

microscopy (Rajadhyaksha et al., 1999; Nehal et al., 2008).

Response to cryotherapy

Individual sebaceous glands were monitored over time to examine their response to 

cryotherapy (Figure 2). Following a single cold exposure at −8°C, there was a gradual loss 

of subcellular structures in sebocytes (including nuclei, intracellular lipid granules, and cell 

membranes), alongside a reduction in lipid-content in each gland (Figure 3). These findings 

are consistent with previous findings (Gage et al., 1979), as well as our own histologic 

results (Figure S3). The cooling treatment did not substantially change the lipid 

composition, as confirmed by Raman spectroscopy (Figure S5). CARS signal along the hair 

shaft was substantially reduced, and in some cases completely abolished, after cooling 

treatment (Figures 3, S4). This indicates that lipid excretion into the infundibulum may be 

halted after cooling.

Sebocyte loss appears to occur first along the periphery of the gland, while the cells in the 

central portions of the gland persisted the longest. This finding is surprising because lipid-

rich cells are thought to be especially susceptible to cryotherapy, due to the propensity of 

lipids to crystallize at temperatures higher than the water ice-point (Manstein et al., 2008; 

Quesada-Cortes et al., 2008). This observation would lead one to expect that more mature 

sebocytes near the gland outlet should be more vulnerable to damage caused by lipid 

crystallization. The unexpected pattern of cell loss, as well as the low temperature required 

to induce discernable damage to the sebaceous glands, suggest that other mechanisms 

besides lipid crystallization may contribute to the damage to sebaceous glands caused by 

cryotherapy.

CARS microscopy showed that the treated sebaceous glands began showing signs of 

recovery 1–2 weeks after treatment, which correlates with histology (Figure S3). Post-

treatment recovery appeared to occur in a somewhat disorganized manner, with gland 

features that were observed to deviate from normal. Distribution of sebocytes was 

discontinuous in some cases, with sebocytes present seemingly at random over different 

parts of the gland. Unilocular lipid-rich structures, devoid of nuclei or intracellular lipid 

granules, were often found mid-gland, instead of near the gland duct (Figure 4).
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While most of the sebaceous glands were able to recover after cooling treatment, some of 

the glands never recovered within the course of the experiment (Figure 2), which suggests 

that some sebaceous glands may be permanently damaged by cooling. Future studies to 

characterize the glands that do and do not recover following cryotherapy, as well as the post-

cooling recovery process, should be helpful for optimizing treatment parameters in our 

practical aim of improving cryotherapy for acne vulgaris.

In this study we have demonstrated, to our knowledge previously unreported, the ability to 

precisely monitor the dynamic behavior of sebaceous glands in vivo longitudinally, with 

subcellular resolution, and without the need for exogenous labeling or genetic manipulation. 

This capability of CARS microscopy makes it a promising tool for studying the sebaceous 

gland and its associated disorders. We have directly measured sebocyte migration, and the 

effects of a cold cycle on sebaceous glands in vivo using CARS. Surprisingly, this study 

revealed sensitivity of sebocytes at the gland periphery to cold injury. We also determined 

the recovery of a population of glands.

In addition to monitoring sebaceous glands with CARS microscopy alone, as we 

demonstrated in this study, additional imaging modalities could be combined with CARS for 

even more comprehensive studies, especially for disease models. Two of the most prevalent 

disorders involving sebaceous glands – acne vulgaris and rosacea – both involve additional 

factors besides sebocytes themselves: colonization by propionibacterium acnes in acne, and 

dysfunction of the local vascular system in rosacea. Combining the monitoring of sebocytes 

by CARS microscopy with quantitative imaging of these related factors is likely to yield 

additional mechanistic insights into these disorders and contribute significantly to the 

development of effective therapies.

Materials & Methods

Animals

All animal procedures were performed in compliance with the Public Health Service Policy 

on Humane Care and Use of Laboratory Animals, and approved by the Massachusetts 

General Hospital Institutional Animal Care and Use Committee. The mouse ear model was 

chosen for this study because of its high density of sebaceous glands, as well as ease of 

access. Adult female BALB/c mice (12–16 weeks old) purchased from Jackson Lab (Bar 

Harbor, ME) were used for all experiments. During cooling and microscopy procedures the 

animals were anesthetized by inhaled isoflurane (1–3%). For cooling treatment, the ear was 

placed upon a conductive cooling plate, and held in place by an insulation block weighing 

100g. Temperature in the cooling plate was maintained by computer-controlled 

thermoelectric coolers. The treated ears were held against the cooling plate at −8°C for 10 

minutes each. Untreated ears were used as controls. Small tattoos were placed in the ears to 

serve as landmarks, so that the same sebaceous glands can be identified and imaged 

repeatedly over the course of the study. 5 treated and 4 control animals were imaged in this 

manner, with 3–4 glands in each animal imaged at various intervals. For microscopy, the ear 

being examined was flattened and secured to a glass coverslip using a thin layer of methyl 

cellulose solution (Fisher Scientific, Pittsburgh, PA).
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CARS Microscopy

The excitation light for CARS microscopy was generated using a pair of high repetition rate, 

low pulse power infrared lasers for deep, non-perturbative imaging in skin in vivo. (Evans et 

al, 2005) Briefly, a 7 ps, 1064 nm, mode-locked Nd:Vanadate laser (PicoTRAIN, High-Q 

Laser) was used to synchronously pump an optical parametric oscillator (OPO) (Levante, 

APE) that produced wavelength-tunable 3 ps duration pulses. A portion (500 mW) of the 

1064 nm output was used as the Stokes beam. For imaging of the lipid-rich sebum, the pump 

beam from the OPO was tuned between 814 and 816 nm to be in resonance with methylene 

stretching vibrations. The pump and Stokes pulse trains were combined using a 950 short 

pass dichroic mirror (Chroma Technology) and overlapped in time using a delay line.

The combined pump and Stokes beam were steered into the infrared side port of a modified 

Olympus FV1000 confocal laser scanning microscope. The beam was aligned through the 

microscope as described elsewhere (Jung et al, 2012). A UPlanSApo 20× 0.75NA objective 

was used as the objective lens for all experiments. The epi-collected anti-Stokes emission 

was passed through a 650 nm, 25 nm bandpass filter (Chroma Technology) and focused onto 

a Hamamatsu H7422PA-40 photomultiplier tube. The current output of the photomultiplier 

tube passed through a high-speed current amplifier (Femto, HCA-4M-500K) and was 

detected using Olympus input/output hardware. Images were acquired using the built-in 

Olympus FV10 software.

Images were collected at standard acquisition rates (2 sec/frames, 2 us per pixel, Kalman 

averaging of 3) using approximately 30 mW of pump and 35 mW of Stokes power at the 

focus. Animals were examined following imaging sessions to look for evidence of tissue 

perturbation, including redness or swelling. No signs or symptoms of tissue damage or 

perturbation were observed. Animals were mounted on a motorized state (Prior, H117 stage) 

with 0.01 µm resolution, which enabled precise and repeatable imaging of sebaceous glands 

over the course of days and weeks. Near-infrared light that passed through the thin mouse 

ear was collected on the microscope's transmission detector to create transmission images.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
CARS imaging of normal sebaceous glands. (a) A sebaceous gland showing intracellular 

lipid granules (blue arrow), nuclei (red arrow) and cell membranes (green arrow). (1) CARS 

signal intensity increases as sebocytes approach the gland duct, corresponding to lipid 

accumulation as sebocytes mature. (2) Sebocytes near the duct show the highest CARS 

signal and lose cellular structures corresponding to cell death and lipid content release. (3) 

Hair shafts are coated with secreted lipid. (b–d) Sebocyte migration in the same sebaceous 

gland shown in (a) over 3 consecutive days. Five sebocytes are marked in separate colors to 
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facilitate identification. As the sebocytes migrated to the gland duct (*), there is a loss in 

intracellular structures and a concomitant increase in CARS signal. Scale bar: 50 µm.

Jung et al. Page 10

J Invest Dermatol. Author manuscript; available in PMC 2015 July 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Transmission microscopy images of sebaceous glands before and after cryotherapy. A tattoo 

(T) was used as a landmark so that the same sebaceous glands could be identified across 

different imaging sessions. Four sebaceous glands (green arrows) were randomly chosen for 

longitudinal monitoring. Changes in overall gland structure can be seen after cooling. Most 

glands appeared to recover eventually, but a few were unable to recover within the study 

period (one such gland marked by red arrow). The “grainy” background in images taken pre-

treatment and at later time points is caused by light transmitting through the subcutaneous 
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fat. The clearing of this background in early post-treatment days is likely due to changes in 

tissue refractive index caused by transient edema. Scale bar: 100 µm.
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Figure 3. 
CARS images of 4 individual sebaceous glands (marked by green arrows in Figure 2) at 

different times post-cooling, showing both damage to gland structures and subsequent 

recovery. Green background denotes glands with normal morphology. Blue background 

denotes glands showing damage to intracellular structures, while the general gland structure 

remained relatively intact. Yellow background denotes glands showing severe damage, with 

major disruption in overall gland structure. Red background denotes time points where 

CARS signal could not be detected. Scale bars: 50 µm.
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Figure 4. 
Sebaceous glands at various stages of recovery, showing abnormal gland features such as 

discontinuous distribution of sebocytes, with sebocytes present seemingly at random over 

different parts of the gland (a); presence of unilocular lipidrich structures, devoid of nuclei 

or intracellular lipid granules in middle-peripheral portions of the gland, instead of near the 

gland duct (a, b, c). Other glands were able to recover normal gland features at the same 

time point (d). All glands were imaged at 8 days post-cooling. Scale bars: 50 µm.
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