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PRINCIPLES AND IMPLEMENTATION OF
DEDUCTIVE PARSING

STUART M. SHIEBER, YVES SCHABES, ∗ AND
FERNANDO C. N. PEREIRA†

�

We present a system for generating parsers based directly on the metaphor
of parsing as deduction. Parsing algorithms can be represented directly as
deduction systems, and a single deduction engine can interpret such de-
duction systems so as to implement the corresponding parser. The method
generalizes easily to parsers for augmented phrase structure formalisms,
such as definite-clause grammars and other logic grammar formalisms, and
has been used for rapid prototyping of parsing algorithms for a variety of
formalisms including variants of tree-adjoining grammars, categorial gram-
mars, and lexicalized context-free grammars.

�

1. INTRODUCTION

Parsing can be viewed as a deductive process that seeks to prove claims about
the grammatical status of a string from assumptions describing the grammatical
properties of the string’s elements and the linear order between them. Lambek’s
syntactic calculi [15] comprise an early formalization of this idea, which more re-
cently was explored in relation to grammar formalisms based on definite clauses
[7, 23, 24] and on feature logics [35, 27, 6].

The view of parsing as deduction adds two main new sources of insights and
techniques to the study of grammar formalisms and parsing:
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1. Existing logics can be used as a basis for new grammar formalisms with
desirable representational or computational properties.

2. The modular separation of parsing into a logic of grammaticality claims and
a proof search procedure allows the investigation of a wide range of parsing
algorithms for existing grammar formalisms by selecting specific classes of
grammaticality claims and specific search procedures.

While most of the work on deductive parsing has been concerned with (1), we will
in this paper investigate (2), more specifically how to synthesize parsing algorithms
by combining specific logics of grammaticality claims with a fixed search proce-
dure. In this way, deduction can provide a metaphor for parsing that encompasses
a wide range of parsing algorithms for an assortment of grammatical formalisms.
We flesh out this metaphor by presenting a series of parsing algorithms literally
as inference rules, and by providing a uniform deduction engine, parameterized by
such rules, that can be used to parse according to any of the associated algorithms.
The inference rules for each logic will be represented as unit clauses and the fixed
deduction procedure, which we provide a Prolog implementation of, will be a ver-
sion of the usual bottom-up consequence closure operator for definite clauses. As
we will show, this method directly yields dynamic-programming versions of stan-
dard top-down, bottom-up, and mixed-direction (Earley) parsing procedures. In
this, our method has similarities with the use of pure bottom-up deduction to
encode dynamic-programming versions of definite-clause proof procedures in de-
ductive databases [3, 19].

The program that we develop is especially useful for rapid prototyping of and
experimentation with new parsing algorithms, and was in fact developed for that
purpose. We have used it, for instance, in the development of algorithms for parsing
with tree-adjoining grammars, categorial grammars, and lexicalized context-free
grammars.

Many of the ideas that we present are not new. Some have been presented
before; others form part of the folk wisdom of the logic programming community.
However, the present work is to our knowledge the first to make the ideas available
explicitly in a single notation and with a clean implementation. In addition, certain
observations regarding efficient implementation may be novel to this work.

The paper is organized as follows: After reviewing some basic logical and gram-
matical notions and applying them to a simple example (Section 2), we describe
how the structure of a variety of parsing algorithms for context-free grammars can
be expressed as inference rules in specialized logics (Section 3). Then, we extend the
method for stating and implementing parsing algorithms for formalisms other than
context-free grammars (Section 4). Finally, we discuss how deduction should pro-
ceed for such logics, developing an agenda-based deduction procedure implemented
in Prolog that manifests the presented ideas (Section 5).

2. BASIC NOTIONS

As introduced in Section 1, we see parsing as a deductive process in which rules
of inference are used to derive statements about the grammatical status of strings
from other such statements. Statements are represented by formulas in a suitable
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formal language. The general form of a rule of inference is

A1 · · · Ak

B
〈side conditions on A1, . . . , Ak, B〉 .

The antecedents A1, . . . , Ak and the consequent B of the inference rule are formula
schemata, that is, they may contain syntactic metavariables to be instantiated by
appropriate terms when the rule is used. A grammatical deduction system is defined
by a set of rules of inference and a set of axioms given by appropriate formula
schemata.

Given a grammatical deduction system, a derivation of a formula B from as-
sumptions A1, . . . , Am is, as usual, a sequence of formulas S1, . . . , Sn such that
B = Sn, and for each Si, either si is one of the Aj , or Si is an instance of an axiom,
or there is a rule of inference R and formulas Si1 , . . . , Sik

with i1, . . . , ik < i such
that for appropriate substitutions of terms for the metavariables in R, Si1 , . . . , Sik

match the antecedents of the rule, Si matches the consequent, and the rule’s side
conditions are satisfied. We write A1, . . . , Am ` B and say that B is a consequence
of A1, . . . , Am if such a derivation exists. If B is a consequence of the empty set of
assumptions, it is said to be derivable, in symbols ` B.

In our applications of this model, rules and axiom schemata may refer in their
side conditions to the rules of a particular grammar, and formulas may refer to
string positions in the fixed string to be parsed w = w1 · · ·wn. With respect to
the given string, goal formulas state that the string is grammatical according to
the given grammar. Then parsing the string corresponds to finding a derivation
witnessing a goal formula.

We will use standard notation for metavariables ranging over the objects under
discussion: n for the length of the object language string to be parsed; A,B,C . . .
for arbitrary formulas or symbols such as grammar nonterminals; a, b, c, . . . for
arbitrary terminal symbols; i, j, k, . . . for indices into various strings, especially the
string w; α, β, γ, . . . for strings or terminal and nonterminal symbols. We will often
use such notations leaving the type of the object implicit in the notation chosen
for it. Substrings will be notated elliptically as, e.g., wi · · ·wj for the i-th through
j-th elements of w, inclusive. As is usual, we take wi · · ·wj to be the empty string
if i > j.

2.1. A First Example: CYK Parsing

As a simple example, the basic mechanism of the Cocke-Younger-Kasami (CYK)
context-free parsing algorithm [12, 38] for a context-free grammar in Chomsky
normal form can be easily represented as a grammatical deduction system.

We assume that we are given a string w = w1 · · ·wn to be parsed and a context-
free grammar G = 〈N,Σ, P, S〉 , where N is the set of nonterminals including the
start symbol S, Σ is the set of terminal symbols, (V = N∪Σ is the vocabulary of the
grammar,) and P is the set of productions, each of the form A→ α for A ∈ N and
α ∈ V ∗. We will use the symbol⇒ for immediate derivation and ∗⇒ for its reflexive,
transitive closure, the derivation relation. In the case of a Chomsky-normal-form
grammar, all productions are of the form A→ B C or A→ a.

The items of the logic (as we will call parsing logic formulas from now on) are of
the form [A, i, j], and state that the nonterminal A derives the substring between
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Item form: [A, i, j]

Axioms: [A, i, i+ 1] A→ wi+1

Goals: [S, 0, n]

Inference rules:
[B, i, j] [C, j, k]

[A, i, k]
A→ B C

Figure 1. The CYK deductive parsing system.

indices i and j in the string, that is, A ∗⇒ wi+1 · · ·wj . Sound axioms, then, are
grounded in the lexical items that occur in the string. For each word wi+1 in the
string and each rule A → wi+1, it is clear that the item [A, i, i + 1] makes a true
claim, so that such items can be taken as axiomatic. Then whenever we know that
B
∗⇒ wi+1 · · ·wj and C

∗⇒ wj+1 · · ·wk — as asserted by items of the form [B, i, j]
and [C, j, k] — where A → B C is a production in the grammar, it is sound to
conclude that A ∗⇒ wi+1 · · ·wk, and therefore, the item [A, i, k] should be inferable.
This argument can be codified in a rule of inference:

[B, i, j] [C, j, k]
[A, i, k]

A→ B C

Using this rule of inference with the axioms, we can conclude that the string is
admitted by the grammar if an item of the form [S, 0, n] is deducible, since such an
item asserts that S ∗⇒ w1 · · ·wn = w. We think of this item as the goal item to be
proved.

In summary, the CYK deduction system (and all the deductive parsing systems
we will define) can be specified with four components: a class of items; a set of
axioms; a set of inference rules; and a subclass of items, the goal items. These are
given in summary form in Figure 1.

This deduction system can be encoded straightforwardly by the following logic
program:

nt(A, I1, I) :-
word(I, W),
(A ---> [W]),
I1 is I - 1.

nt(A, I, K) :-
nt(B, I, J),
nt(C, J, K),
(A ---> [B, C]).

where A ---> [X1,. . .,Xm] is the encoding of a production A→ X1 · · ·Xn in the
grammar and word(i,wi) holds for each input word wi in the string to be parsed.
A suitable bottom-up execution of this program, for example using the semi-näıve
bottom-up procedure [19] will behave similarly to the CYK algorithm on the given
grammar.
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2.2. Proofs of Correctness

Rather than implement each deductive system like the CYK one as a separate
logic program, we will describe in Section 5 a meta-interpreter for logic programs
obtained from grammatical deduction systems. The meta-interpreter is just a vari-
ant of the semi-näıve procedure specialized to programs implementing grammatical
deduction systems. We will show in Section 5 that our procedure generates only
items derivable from the axioms (soundness) and will enumerate all the derivable
items (completeness). Therefore, to show that a particular parsing algorithm is
correctly simulated by our meta-interpreter, we basically need to show that the
corresponding grammatical deduction system is also sound and complete with re-
spect to the intended interpretation of grammaticality items. By sound here we
mean that every derivable item represents a true grammatical statement under the
intended interpretation, and by complete we mean that the item encoding every
true grammatical statement is derivable. (We also need to show that the grammat-
ical deduction system is faithfully represented by the corresponding logic program,
but in general this will be obvious by inspection.)

3. DEDUCTIVE PARSING OF CONTEXT-FREE GRAMMARS

We begin the presentation of parsing methods stated as deduction systems with
several standard methods for parsing context-free grammars. In what follows, we
assume that we are given a string w = w1 · · ·wn to be parsed along with a context-
free grammar G = 〈N,Σ, P, S〉.

3.1. Pure Top-Down Parsing (Recursive Descent)

The first full parsing algorithm for arbitrary context-free grammars that we present
from this logical perspective is recursive-descent parsing. Given a context-free gram-
mar G = 〈N,Σ, P, S〉, and a string w = w1 · · ·wn to be parsed, we will consider a
logic with items of the form [ • β, j] where 0 ≤ j ≤ n. Such an item asserts that
the substring of the string w up to and including the j-th element, when followed
by the string of symbols β, forms a sentential form of the language, that is, that
S
∗⇒ w1 · · ·wjβ. Note that the dot in the item is positioned just at the break point

in the sentential form between the portion that has been recognized (up through
index j) and the part that has not (β).

Taking the set of such items to be the formulas of the logic, and taking the
informal statement concluding the previous paragraph to provide a denotation for
the sentences,1 we can explore a proof theory for the logic. We start with an axiom

[ • S, 0] ,

which is sound because S ∗⇒ S trivially.

1A more formal statement of the semantics could be given, e.g., as

[[[ • β, j]]] =

{
truth if S

∗⇒ w1 · · ·wjβ

falsity otherwise .
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Item form: [ • β, j]

Axioms: [ • S, 0]

Goals: [ • , n]

Inference rules:

Scanning
[ • wj+1β, j]
[ • β, j + 1]

Prediction
[ •Bβ, j]
[ • γβ, j] B → γ

Figure 2. The top-down recursive-descent deductive parsing system.

Note that two items of the form [ • wj+1β, j] and [ • β, j + 1] make the same
claim, namely that S ∗⇒ w1 · · ·wjwj+1β. Thus, it is clearly sound to conclude the
latter from the former, yielding the inference rule:

[ • wj+1β, j]
[ • β, j + 1]

,

which we will call the scanning rule.
A similar argument shows the soundness of the prediction rule:

[ •Bβ, j]
[ • γβ, j] B → γ .

Finally, the item [ • , n] makes the claim that S ∗⇒ w1 · · ·wn, that is, that the
string w is admitted by the grammar. Thus, if this goal item can be proved from
the axiom by the inference rules, then the string must be in the grammar. Such a
proof process would constitute a sound recognition algorithm. As it turns out, the
recognition algorithm that this logic of items specifies is a pure top-down left-to-
right regime, a recursive-descent algorithm. The four components of the deduction
system for top-down parsing — class of items, axioms, inference rules, and goal
items — are summarized in Figure 2.

To illustrate the operation of these inference rules for context-free parsing, we
will use the toy grammar of Figure 3. Given that grammar and the string

w1w2w3 = a lindy swings (1)
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S → NP VP
NP → Det N OptRel
NP → PN
VP → TV NP
VP → IV

OptRel → RelPro VP
OptRel → ε

Det → a
N → lindy

PN → Trip
IV → swings

TV → dances
RelPro → that

Figure 3. An example context-free grammar.

we can construct the following derivation using the rules just given:

1 [ • S, 0] axiom
2 [ •NP VP, 0] predict from 1
3 [ •Det N OptRel VP, 0] predict from 2
4 [ • a N OptRel VP, 0] predict from 3
5 [ •N OptRel VP, 1] scan from 4
6 [ • lindy OptRel VP, 1] predict from 5
7 [ •OptRel VP, 2] scan from 6
8 [ •VP, 2] predict from 7
9 [ • IV, 2] predict from 8

10 [ • swings, 2] predict from 9
11 [ • , 3] scan from 10

The last item is a goal item, showing that the given sentence is accepted by the
grammar of Figure 3.

The above derivation, as all the others we will show, contains just those items
that are strictly necessary to derive a goal item from the axiom. In general, a
complete search procedure, such as the one we describe in Section 5, generates items
that are either dead-ends or redundant for a proof of grammaticality. Furthermore,
with an ambiguous grammar there will be several essentially different proofs of
grammaticality, each corresponding to a different analysis of the input string.

3.1.1. Proof of Completeness We have shown informally above that the inference
rules for top-down parsing are sound, but for any such system we also need the
guarantee of completeness: if a string is admitted by the grammar, then for that
string there is a derivation of a goal item from the initial item.

In order to prove completeness, we prove the following lemma: If S ∗⇒ w1 · · ·wjγ
is a leftmost derivation (where γ ∈ V ∗), then the item [ • γ, j] is generated. We
must prove all possible instances of this lemma. Any specific instance can be
characterized by specifying the string γ and the integer j, since S and w1 · · ·wj are
fixed. We shall denote such an instance by 〈γ, j〉. The proof will turn on ranking
the various instances and proving the result by induction on the rank. The rank of
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the instance 〈γ, j〉 is computed as the sum of j and the length of a shortest leftmost
derivation of S ∗⇒ w1 · · ·wjγ.

If the rank is zero, then j = 0 and γ = S. Then, we need to show that [ •S, 0] is
generated, which is the case since it is an axiom of the top-down deduction system.

For the inductive step, let 〈γ, j〉 be an instance of the lemma of some rank r > 0,
and assume that the lemma is true for all instances of smaller rank. Two cases
arise.

Case 1: S
∗⇒ w1 · · ·wjγ in one step. Therefore, S → w1 · · ·wjγ is a rule of the

grammar. However, since [ • S, 0] is an axiom, by one application of the
prediction rule (predicting the rule S → w1 · · ·wjγ) and j applications of
the scanning rule, the item [ • γ, j] will be generated.

Case 2: S
∗⇒ w1 · · ·wjγ in more than one step. Let us assume therefore that S ∗⇒

w1 · · ·wj−kBγ
′ ⇒ w1 · · ·wjβγ

′ where γ = βγ′ and B → wj−k+1 · · ·wjβ.
The instance 〈Bγ′, j − k〉 has a strictly smaller rank than 〈γ, j〉. Therefore,
by the induction hypothesis, the item [ • Bγ′, j − k] will be generated. But
then, by prediction, the item [ •wj−k+1 · · ·wjβ, j − k] will be generated and
by k applications of the scanning rule, the item [•B, j] will be generated.

This concludes the proof of the lemma. Completeness of the parser follows as a
corollary of the lemma since if S ∗⇒ w1 · · ·wn, then by the lemma the item [•, n]
will be generated.

Completeness proofs for the remaining parsing logics discussed in this paper
could be provided in a similar way by relating an appropriate notion of normal-form
derivation for the grammar formalism under consideration to the item invariants.

3.2. Pure Bottom-Up Parsing (Shift-Reduce)

A pure bottom-up algorithm can be specified by such a deduction system as well.
Here, the items will have the form [α • , j]. Such an item asserts the dual of
the assertion made by the top-down items, that αwj+1 · · ·wn

∗⇒ w1 · · ·wn (or,
equivalently but less transparently dual, that α ∗⇒ w1 · · ·wj). The algorithm is
then characterized by the deduction system shown in Figure 4. The algorithm
mimics the operation of a nondeterministic shift-reduce parsing mechanism, where
the string of symbols preceding the dot corresponds to the current parse stack, and
the substring starting at the index j corresponds to the as yet unread input.

The soundness of the inference rules in Figure 4 is easy to see. The antecedent
of the shift rule claims that αwj+1 · · ·wn

∗⇒ w1 · · ·wn, but that is also what the
consequent claims. For the reduce rule, if αγwj+1 · · ·wn

∗⇒ w1 · · ·wn and B → γ,
then by definition of ∗⇒ we also have αBwj+1 · · ·wn

∗⇒ w1 · · ·wn. As for complete-
ness, it can be proved by induction on the steps of a reversed rightmost context-free
derivation in a way very similar to the completeness proof of the last section.

The following derivation shows the operation of the bottom-up rules on example
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Item form: [α • , j]

Axioms: [ • , 0]

Goals: [S • , n]

Inference Rules:

Shift
[α • , j]

[αwj+1 • , j + 1]

Reduce
[αγ • , j]
[αB • , j] B → γ

Figure 4. The bottom-up shift-reduce deductive parsing system.

sentence (1):
1 [ • , 0] axiom
2 [a • , 1] shift from 1
3 [Det • , 1] reduce from 2
4 [Det lindy • , 2] shift from 3
5 [Det N • , 2] reduce from 4
6 [Det N OptRel • , 2] reduce from 5
7 [NP • , 2] reduce from 6
8 [NP swings • , 3] shift from 7
9 [NP IV • , 3] reduce from 8

10 [NP VP • , 3] reduce from 9
11 [S • , 3] reduce from 10

The last item is a goal item, which shows that the sentence is parsable according
to the grammar.

3.3. Earley’s Algorithm

Stating the algorithms in this way points up the duality of recursive-descent and
shift-reduce parsing in a way that traditional presentations do not. The summary
presentation in Figure 5 may further illuminate the various interrelationships. As
we will see, Earley’s algorithm [8] can then be seen as the natural combination of
those two algorithms.

In recursive-descent parsing, we keep a partial sentential form for the material
yet to be parsed, using the dot at the beginning of the string of symbols to remind
us that these symbols come after the point that we have reached in the recognition
process. In shift-reduce parsing, we keep a partial sentential form for the material
that has already been parsed, placing a dot at the end of the string to remind us that
these symbols come before the point that we have reached in the recognition process.
In Earley’s algorithm we keep both of these partial sentential forms, with the dot
marking the point somewhere in the middle where recognition has reached. The dot
thus changes from a mnemonic to a necessary role. In addition, Earley’s algorithm
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localizes the piece of sentential form that is being tracked to that introduced by a
single production. (Because the first two parsers do not limit the information stored
in an item to only local information, they are not practical algorithms as stated.
Rather, some scheme for sharing information among items would be necessary to
make them tractable [16, 4].)

The items of Earley’s algorithm are thus of the form [i, A → α • β, j] where α
and β are strings in V ∗ and A → αβ is a production of the grammar. As was
the case for the previous two algorithms, the j index provides the position in the
string that recognition has reached, and the dot position marks that point in the
partial sentential form. In these items, however, an extra index i marks the starting
position of the partial sentential form, as we have localized attention to a single
production. In summary, an item of the form [i, A → α • β, j] makes the top-
down claim that S ∗⇒ w1 · · ·wiAγ, and the bottom-up claim that αwj+1 · · ·wn

∗⇒
wi+1 · · ·wn. The two claims are connected by the fact that A→ αβ is a production
in the grammar.

The algorithm itself is captured by the specification found in Figure 5. Proofs
of soundness and completeness are somewhat more complex than those for the
pure top-down and bottom-up cases shown above, and are directly related to the
corresponding proofs for Earley’s original algorithm [8].

The following derivation, again for sentence (1), illustrates the operation of the
Earley inference rules:

1 [0, S′ → • S, 0] axiom
2 [0, S → •NP VP, 0] predict from 1
3 [0,NP→ •Det N OptRel, 0] predict from 2
4 [0,Det→ • a, 0] predict from 3
5 [0,Det→ a • , 1] scan from 4
6 [0,NP→ Det •N OptRel, 1] complete from 3 and 5
7 [1, N → • lindy, 1] predict from 6
8 [1, N → lindy • , 2] scan from 7
9 [0,NP→ Det N •OptRel, 2] complete from 6 and 8

10 [2,OptRel→ • , 2] predict from 9
11 [0,NP→ Det N OptRel • , 2] complete from 9 and 10
12 [0, S → NP •VP, 2] complete from 2 and 11
13 [2,VP→ • IV, 2] predict from 12
14 [2, IV→ • swings, 2] predict from 13
15 [2, IV→ swings • , 3] scan from 14
16 [2,VP→ IV • , 3] complete from 13 and 15
17 [0, S → NP VP • , 3] complete from 12 and 16
18 [0, S′ → S • , 3] complete from 1 and 17

The last item is again a goal item, so we have an Earley derivation of the gram-
maticality of the given sentence.

4. DEDUCTIVE PARSING FOR OTHER FORMALISMS

The methods (and implementation) that we developed have also been used for rapid
prototyping and experimentation with parsing algorithms for grammatical frame-
works other than context-free grammars. They can be naturally extended to handle
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augmented phrase-structure formalisms such as logic grammar and constraint-based
formalisms. They have been used in the development and testing of algorithms for
parsing categorial grammars, tree-adjoining grammars, and lexicalized context-free
grammars. In this section, we discuss these and other extensions.

4.1. Augmented Phrase-Structure Formalisms

It is straightforward to see that the three deduction systems just presented can be
extended to constraint-based grammar formalisms with a context-free backbone.
The basis for this extension goes back to metamorphosis grammars [7] and definite-
clause grammars (DCG) [23]. In those formalisms, grammar symbols are first-order
terms, which can be understood as abbreviations for the sets of all their ground
instances. Then an inference rule can also be seen as an abbreviation for all of
its ground instances, with the metagrammatical variables in the rule consistently
instantiated to ground terms. Computationally, however, such instances are gen-
erated lazily by accumulating the consistency requirements for the instantiation of
inference rules as a conjunction of equality constraints and maintaining that con-
junction in normal form — sets of variable substitutions — by unification. (This
is directly related to the use of unification to avoid “guessing” instances in the
rules of existential introduction and universal elimination in a natural-deduction
presentation of first-order logic).

We can move beyond first-order terms to general constraint-based grammar for-
malisms [35, 6] by taking the above constraint interpretation of inference rules as
basic. More explicitly, a rule such as Earley completion

[i, A→ α •Bβ, k] [k,B → γ • , j]
[i, A→ αB • β, j]

is interpreted as shorthand for the constrained rule:

[i, A→ α •Bβ, k] [k,B′ → γ • , j]
[i, A′ → αB′′ • β, j] A

.= A′ and B
.= B′ and B

.= B′′

where ‘ .=’ is the term equality predicate for the constraint-based grammar formalism
being interpreted [35].

When such a rule is applied, the three constraints it depends on are conjoined
with the constraints for the current derivation. In the particular case of first-order
terms and antecedent-to-consequent rule application, completion can be given more
explicitly as

[i, A→ α •Bβ, k] [k,B′ → γ • , j]
[i, σ(A→ αB • β), j]

σ = mgu(B,B′) .

where mgu(B,B′) is the most general unifier of the terms B and B′. This is
the interpretation implemented by the deduction procedure described in the next
section.

The move to constraint-based formalisms raises termination problems in proof
construction that did not arise in the context-free case. In the general case, this is
inevitable, because a formalism like DCG [23] or PATR-II [33] has Turing-machine
power. However, even if constraints are imposed on the context-free backbone of the



15

grammar productions to guarantee decidability, such as offline parsability [5, 24, 35],
the prediction rules for the top-down and Earley systems are problematic. The
difficulty is that prediction can feed on its own results to build unboundedly large
items. For example, consider the DCG

s→ r(0, N)
r(X,N)→ r(s(X), N) b
r(N,N)→ a

It is clear that this grammar accepts strings of the form abn with the variable N
being instantiated to the unary (successor) representation of n. It is also clear that
the bottom-up inference rules will have no difficulty in deriving the analysis of any
input string. However, Earley prediction from the item [0, s → • r(0, N), 0] will
generate an infinite succession of items:

[0, s→ • r(0, N), 0]
[0, r(0, N)→ • r(s(0), N) b, 0]
[0, r(s(0), N)→ • r(s(s(0)), N) b, 0]
[0, r(s(s(0)), N)→ • r(s(s(s(0))), N) b, 0]
· · ·

This problem can be solved in the case of the Earley inference rules by observing
that prediction is just used to narrow the number of items to be considered by
scanning and completion, by maintaining the top-down invariant S ∗⇒ w1 · · ·wiAγ.
But this invariant is not required for soundness or completeness, since the bottom-
up invariant is sufficient to guarantee that items represent well-formed substrings of
the input. The only purpose of the top-down invariant is to minimize the number
of completions that are actually attempted. Thus the only indispensable role of
prediction is to make available appropriate instances of the grammar productions.
Therefore, any relaxation of prediction that makes available items of which all the
items predicted by the original prediction rule are instances will not affect soundness
or completeness of the rules. More precisely, it must be the case that any item
[i, B → • γ, i] that the original prediction rule would create is an instance of some
item [i, B′ → • γ′, i] created by the relaxed prediction rule. A relaxed prediction
rule will create no more items than the original predictor, and in fact may create
far fewer. In particular, repeated prediction may terminate in cases like the one
described above. For example, if the prediction rule applied to [i, A → α • B′β, j]
yields [i, σ(B → • γ), i] where σ = mgu(B,B′), a relaxed prediction rule might
yield [i, σ′(B → • γ), i], where σ′ is a less specific substitution than σ chosen so
that only a finite number of instances of [i, B → •γ, i] are ever generated. A similar
notion for general constraint grammars is called restriction [34, 35], and a related
technique has been used in partial evaluation of logic programs [28].

The problem with the DCG above can be seen as following from the computation
of derivation-specific information in the arguments to the nonterminals. However,
applications frequently require construction of the derivation for a string (or similar
information), perhaps for the purpose of further processing. It is simple enough
to augment the inference rules to include with each item a derivation. For the
Earley deduction system, the items would include a fourth component representing
a sequence of derivation trees, one for each element of the right-hand side of the
item before the dot. Each derivation tree has nodes labeled by productions of the
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Item form: [i, Aα • β, j,D]

Axioms: [0, S′ → • S, 0, 〈〉]

Goals: [0, S′ → S • , n,D]

Inference rules:

Scanning
[i, A→ α • wj+1β, j,D]

[i, A→ αwj+1 • β, j + 1, D]

Prediction
[i, A→ α •Bβ, j,D]

[j, B → • γ, j, 〈〉] B → γ

Completion
[i, A→ α •Bβ, k,D1] [k,B → γ • , j,D2]

[i, A→ αB • β, j,D1 · tree(B → γ,D2)]

Figure 6. The Earley deductive parsing system modified to generate derivation trees.

grammar. The inference rules would be modified as shown in Figure 6. In the
completion rule, we use the following notations: tree(l,D) denotes the tree whose
root is labeled by the node label (grammar production) l and whose children are
the trees in the sequence D in order; and S ·s denotes the appending of the element
s at the end of the sequence S.

Of course, use of such rules makes the caching of lemmas essentially useless,
as lemmas derived in different ways are never identical. Appropriate methods of
implementation that circumvent this problem are discussed in Section 5.4.

4.2. Combinatory Categorial Grammars

A combinatory categorial grammar [1] consists of two parts: (1) a lexicon that maps
words to sets of categories; (2) rules for combining categories into other categories.

Categories are built from atomic categories and two binary operators: forward
slash (/) and backward slash (\). Informally speaking, words having categories of
the form X/Y , X\Y , (W/X)/Y etc. are to be thought of as functions over Y ’s.
Thus the category S\NP of intransitive verbs should be interpreted as a function
from noun phrases (NP) to sentences (S). In addition, the direction of the slash
(forward as in X/Y or backward as in X\Y ) specifies where the argument must be
found, immediately to the right for / or immediately to the left for \.

For example, a CCG lexicon may assign the category S\NP to an intransitive
verb (as the word sleeps). S\NP identifies the word (sleeps) as combining with a
(subject) noun phrase (NP) to yield a sentence (S). The back slash (\) indicates
that the subject must be found immediately to the left of the verb. The forward
slash / would have indicated that the argument must be found immediately to the
right of the verb.

More formally, categories are defined inductively as follows:2 Given a set of basic

2The notation for backward slash used in this paper is consistent with one defined by Ades
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Word Category
Trip NP
merengue NP
likes (S\NP)/NP
certainly (S\NP)/(S\NP)

Figure 7. An example CCG lexicon.

categories,

• Basic categories are categories.

• If c1 and c2 are categories, then (c1/c2) and (c1\c2) are categories.

The lexicon is defined as a mapping f from words to finite sets of categories.
Figure 7 is an example of a CCG lexicon. In this lexicon, likes is encoded as
a transitive verb (S\NP)/NP, yielding a sentence (S) when a noun phrase (NP)
object is found to its right and when a noun phrase subject (NP) is then found to
its left.

Categories can be combined by a finite set of rules that fall in two classes:
application and composition.

Application allows the simple combination of a function with an argument to its
right (forward application) or to its left (backward application). For example, the
sequence (S\NP)/NP NP can be reduced to S\NP by applying the forward ap-
plication rule. Similarly, the sequence NP S\NP can be reduced to S by applying
the backward application rule.

Composition allows to combine two categories in a similar fashion as functional
composition. For example, forward composition combines two categories of the form
X/Y Y /Z to another category X/Z. The rule gives the appearance of “canceling”
Y , as if the two categories were numerical fractions undergoing multiplication. This
rule corresponds to the fundamental operation of “composing” the two functions,
the function X/Y from Y to X and the function Y /Z from Z to Y .

The rules of composition can be specified formally as productions, but unlike the
productions of a CFG, these productions are universal over all CCGs. In order to
reduce the number of cases, we will use a vertical bar | as an instance of a forward
or backward slash, / or \. Instances of | in left- and right-hand sides of a single
production should be interpreted as representing slashes of the same direction. The
symbols X, Y and Z are to be read as variables which match any category.

Forward application: X → X/Y Y
Backward application: X → Y X\Y
Forward composition: X|Z → X/Y Y |Z
Backward composition: X|Z → Y |Z X\Y

and Steedman [1]: X\Y is interpreted as a function from Y s to Xs. Although this notation has
been adopted by the majority of combinatory categorial grammarians, other frameworks [15] have
adopted the opposite interpretation for X\Y : a function from Xs to Y s.
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Item form: [X, i, j]

Axioms: [X, i, i+ 1] where X ∈ f(wi+1)

Goals: [S, 0, n]

Inference rules:

Forward Application
[X/Y, i, j] [Y, j, k]

[X, i, k]

Backward Application
[Y, i, j] [X\Y, j, k]

[X, i, k]

Forward Composition 1
[X/Y, i, j] [Y /Z, j, k]

[X/Z, i, k]

Forward Composition 2
[X/Y, i, j] [Y \Z, j, k]

[X\Z, i, k]

Backward Composition 1
[Y /Z, i, j] [X\Y, j, k]

[X/Z, i, k]

Backward Composition 2
[Y \Z, i, j] [X\Y, j, k]

[X\Z, i, k]

Figure 8. The CCG deductive parsing system.

A string of words is accepted by a CCG, if a specified category (usually S) derives
a string of categories that is an image of the string of words under the mapping f .

A bottom-up algorithm — essentially the CYK algorithm instantiated for these
productions — can be easily specified for CCGs. Given a CCG, and a string
w = w1 · · ·wn to be parsed, we will consider a logic with items of the form [X, i, j]
where X is a category and i and j are integers ranging from 0 to n. Such an item,
asserts that the substring of the string w from the i+ 1-th element up to the j-th
element can be reduced to the category X. The required proof rules for this logic
are given in Figure 8.

With the lexicon in Figure 7, the string

Trip certainly likes merengue (2)

can be recognized as follows:
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S

NP VP

VTrip

rumbas

VP

VP* Adv

nimbly

VP

Adv

nimbly

NP

Trip VP

V

rumbas

S

(a) (b) (c)

Figure 9. An example tree-adjoining grammar consisting of one initial tree (a), and one

auxiliary tree (b). These trees can be used to form the derived tree (c) for the sentence

“Trip rumbas nimbly.” (In an actual English grammar, the tree depicted in (a) would not

be an elementary tree, but itself derived from two trees, one for each lexical item, by a

substitution operation.)

1 [NP, 0, 1] axiom
2 [(S\NP)/(S\NP), 1, 2] axiom
3 [(S\NP)/NP, 2, 3] axiom
4 [(S\NP)/NP, 1, 3] forward composition from 2 and 3
5 [NP, 3, 4] axiom
6 [(S\NP), 1, 4] forward application from 4 and 5
7 [S, 0, 4] backward application from 1 and 6

Other extensions of CCG (such as generalized composition and coordination)
can be easily implemented using such deduction parsing methods.

4.3. Tree-Adjoining Grammars and Related Formalisms

The formalism of tree-adjoining grammars (TAG) [11, 10] is a tree-generating sys-
tem in which trees are combined by an operation of adjunction rather than the
substitution operation of context-free grammars.3 The increased expressive power
of adjunction allows important natural-language phenomena such as long-distance
dependencies to be expressed locally in the grammar, that is, within the relevant
lexical entries, rather than by many specialized context-free rules [14].

3Most practical variants of TAG include both adjunction and substitution, but for purposes of

exposition we restrict our attention to adjunction alone, since substitution is formally dispensable

and its implementation in parsing systems such as we describe is very much like the context-free
operation. Similarly, we do not address other issues such as adjoining constraints and extended

derivations. Discussion of those can be found elsewhere [29, 30].
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X

X

i

j k

l

X

X

initial tree auxiliary tree derived tree

X*

Figure 10. The operation of adjunction. The auxiliary tree is spliced into the initial tree

to yield the derived tree at right.

A tree-adjoining grammar consists of a set of elementary trees of two types:
initial trees and auxiliary trees. An initial tree is complete in the sense that its
frontier includes only terminal symbols. An example is given in Figure 9(a). An
auxiliary tree is incomplete; it has a single node on the frontier, the foot node,
labeled by the same nonterminal as the root. Figure 9(b) provides an example.
(By convention, foot nodes are redundantly marked by a diacritic asterisk (∗) as in
the figure.)

Although auxiliary trees do not themselves constitute complete grammatical
structures, they participate in the construction of complete trees through the ad-
junction operation. Adjunction of an auxiliary tree into an initial tree is depicted
in Figure 10. The operation inserts a copy of an auxiliary tree into another tree
in place of an interior node that has the same label as the root and foot nodes of
the auxiliary tree. The subtree that was previously connected to the interior node
is reconnected to the foot node of the copy of the auxiliary tree. For example, the
auxiliary tree in Figure 9(b) can be adjoined at the VP node of the initial tree in
Figure 9(a) to form the derived tree in Figure 9(c). Adjunction in effect supports
a form of string wrapping and is therefore more powerful than the substitution
operation of context-free grammars.

A tree-adjoining grammar can be specified as a quintuple G = 〈N,Σ, I, A, S〉,
where N is the set of nonterminals including the start symbol S, Σ is the disjoint
set of terminal symbols, I is the set of initial trees, and A is the set of auxiliary
trees.

To describe adjunction and TAG derivations, we need notation to refer to tree
nodes, their labels, and the subtrees they define. Every node in a tree α can be
specified by its address, a sequence of positive integers defined inductively as follows:
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the empty sequence ε is the address of the root node, and p · k is the address of the
k-th child of the node at address p. Foot(α) is defined as the address of the foot
node of the tree α if there is one; otherwise Foot(α) is undefined.

We denote by α@p the node of α at address p, and by α/p the subtree of α
rooted at α@p. The grammar symbol that labels node ν is denoted by Label(ν).
Given an elementary tree node ν, Adj(ν) is defined as the set of auxiliary trees that
can be adjoined at node ν.4

Finally, we denote by α[β1 7→ p1, . . . , βk 7→ pk] the result of adjoining the trees
β1, . . . , βk at distinct addresses p1, . . . , pk in the tree α.

The set of trees D(G) derived by a TAG G can be defined inductively. D(G) is
the smallest set of trees such that

1. I ∪A ⊆ D(G), that is, all elementary trees are derivable, and

2. Define D(α,G) to be the set of all trees derivable as α[β1 7→ p1, . . . , βk 7→ pk]
where β1, . . . , βk ∈ D(G) and p1, . . . , pk are distinct addresses in α. Then,
for all elementary trees α ∈ I ∪ A, D(α,G) ⊆ D(G). Obviously, if α is
an initial tree, the tree thus derived will have no foot node, and if α is an
auxiliary tree, the derived tree will have a foot node.

The valid derivations in a TAG are the trees in D(αS , G) where αS is an initial tree
whose root is labeled with the start symbol S.

Parsers for TAG can be described just as those for CFG, as deduction systems.
The parser we present here is a variant of the CYK algorithm extended for TAGs,
similar, though not identical, to that of Vijay-Shanker [36]. We chose it for expos-
itory reasons: it is by far the simplest TAG parsing algorithm, in part because it
is restricted to TAGs in which elementary trees are at most binary branching, but
primarily because it is purely a bottom-up system; no prediction is performed. De-
spite its simplicity, the algorithm must handle the increased generative capacity of
TAGs over that of context-free grammars. Consequently, the worst case complexity
for the parser we present is worse than for CFGs — O(n6) time for a sentence of
length n.

The present algorithm uses a dotted tree to track the progress of parsing. A
dotted tree is an elementary tree of the grammar with a dot adjacent to one of
the nodes in the tree. The dot itself may be in one of two positions relative to the
specified node: above or below. A dotted tree is thus specified as an elementary
tree α, an address p in that tree, and a marker to specify the position of the dot
relative to the node. We will use the notation ν• and ν• for dotted trees with the
dot above and below node ν, respectively.5

4For TAGs with no constraints on adjunction (for instance, as defined here), Adj(ν) is just the

set of elementary auxiliary trees whose root node is labeled by Label(ν). When other adjoining
constraints are allowed, as is standard, they can be incorporated through a revised definition of

Adj.
5Although both this algorithm and Earley’s use a dot in items to distinguish the progress of a

parse, they are used in quite distinct ways. The dot of Earley’s algorithm tracks the left-to-right
progress of the parse among siblings. The dot of the CYK TAG parser tracks the pre-/post-

adjunction status of a single node. For this reason, when generalizing Earley’s algorithm to
TAG parsing [29], four dot positions are used to simultaneously track pre-/post-adjunction and
before/after node left-to-right progress.
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In order to track the portion of the string covered by the production up to the dot
position, the CYK algorithm makes use of two indices. In a dotted tree, however,
there is a further complication in that the elementary tree may contain a foot node
so that the string covered by the elementary tree proper has a gap where the foot
node occurs. Thus, in general, four indices must be maintained: two (i and l in
Figure 10) to specify the left edge of the auxiliary tree and the right edge of the
parsed portion (up to the dot position) of the auxiliary tree, and two more (j and
k) to specify the substring dominated by the foot node.

The parser therefore consists of inference rules over items of the following forms:
[ν•, i, j, k, l] and [ν•, i, j, k, l], where

• ν is a node in an elementary tree,

• i, j, k, l are indices of positions in the input string w1 · · ·wn ranging over
{0, · · · , n} ∪ { }, where indicates that the corresponding index is not used
in that particular item.

An item of the form [α@p•, i, , , l] specifies that there is a tree T ∈ D(α/p,G),
with no foot node, such that the fringe of T is the string wi+1 · · ·wl. An item of
the form [α@p•, i, j, k, l] specifies that there is a tree T ∈ D(α/p,G), with a foot
node, such that the fringe of T is the string wi+1 · · ·wj Label(Foot(T )) wk+1 · · ·wl.
The invariants for [α@p•, i, , , l] and [α@p•, i, j, k, l] are similar, except that the
derivation of T must not involve adjunction at node α@p.

The algorithm preserves this invariant while traversing the derived tree from
bottom to top, starting with items corresponding to the string symbols themselves,
which follow from the axioms

[ν•, i, , , i+ 1] Label(ν) = wi+1

combining completed subtrees into larger ones, and combining subtrees before ad-
junction (with dot below) and derived auxiliary trees to form subtrees after ad-
junction (with dot above). Figure 11 depicts the movement of the dot from bottom
to top as parsing proceeds. In Figure 11(a), the basic rules of dot movement not
involving adjunction are shown, including the axiom for terminal symbols, the com-
bination of two subchildren of a binary tree and one child of a unary subtree, and
the movement corresponding to the absence of an adjunction at a node. These are
exactly the rules that would be used in parsing within a single elementary tree.
Figure 11(b) displays the rules involved in parsing an adjunction of one tree into
another.

These dot movement rules are exactly the inference rules of the TAG CYK
deductive parsing system, presented in full in Figure 12. In order to reduce the
number of cases, we define the notation i ∪ j for two indices i and j as follows:

i ∪ j =


i j =
j i =
i i = j
undefined otherwise

Although this parser works in time O(n6) — the Adjoin rule with its six inde-
pendent indices is the step that accounts for this complexity — and its average
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Figure 11. Examples of dot movement in the CYK tree traversal implicit in the TAG

parsing algorithm.
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Item form: [ν•, i, j, k, l]
[ν•, i, j, k, l]

Axioms:
Terminal Axiom [ν•, i, , , i+ 1] Label(ν) = wi+1

Empty String Axiom [ν•, i, , , i] Label(ν) = ε

Foot Axiom [β@Foot(β)•, p, p, q, q] β ∈ A

Goals: [α@ε•, 0, , , n] α ∈ I and Label(α@ε) = S

Inference Rules:

Complete Unary
[α@(p · 1)•, i, j, k, l]

[α@p•, i, j, k, l]
α@(p · 2) undefined

Complete Binary
[α@(p · 1)•, i, j, k, l] [α@(p · 2)•, l, j′, k′,m]

[α@p•, i, j ∪ j′, k ∪ k′,m]

No Adjoin
[ν•, i, j, k, l]
[ν•, i, j, k, l]

Adjoin
[β@ε•, i, p, q, l] [ν•, p, j, k, q]

[ν•, i, j, k, l]
β ∈ Adj(ν)

Figure 12. The CYK deductive parsing system for tree-adjoining grammars.
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behavior may be better, it is in practice too inefficient for practical use for two
reasons. First, an attempt is made to parse all auxiliary trees starting bottom-up
from the foot node, regardless of whether the substring between the foot indices
actually can be parsed in an appropriate manner. This problem can be alleviated,
as suggested by Vijay-Shanker and Weir [37], by replacing the Foot Axiom with a
Complete Foot rule that generates the item [β@Foot(β)•, p, p, q, q] only if there is
an item [ν•, p, j, k, q] where β ∈ Adj(ν), i.e.,

Complete Foot
[ν•, p, j, k, q]

[β@Foot(β)•, p, p, q, q]
β ∈ Adj(ν)

This complicates the invariant considerably, but makes auxiliary tree parsing much
more goal-directed. Second, because of the lack of top-down prediction, attempts
are made to parse elementary trees that are not consistent with the left context.
Predictive parsers for TAG can be, and have been, described as deductive systems.
For instance, Schabes [29] provides a detailed explanation for a predictive left-to-
right parser for TAG inspired by the techniques of Earley’s algorithm. Its worst-
case complexity is O(n6) as well, but its average complexity on English grammar
is well superior to its worst case, and also to the CYK TAG parser. A parsing
system based on this algorithm is currently being used in the development of a
large English tree-adjoining grammar at the University of Pennsylvania [21].

Many other formalisms related to tree-adjoining grammars have been proposed,
and the deductive parsing approach is applicable to these as well. For instance,
as part of an investigation of the precise definition of TAG derivation, Schabes
and Shieber describe a compilation of tree-adjoining grammars to linear indexed
grammars, together with an efficient algorithm, stated as deduction system for
recognition and parsing according to the compiled grammar [30]. A prototype of
this parser has been implemented using the deduction engine described here. (In
fact, it was as an aid to testing this algorithm, with its eight inference rules each
with as many as three antecedent items, that the deductive parsing meta-interpreter
was first built.)

Schabes and Waters [31, 32] suggest the use of a restricted form of TAG in
which the foot node of an auxiliary tree can occur only at the left or right edge of
the tree. Since the portion of string dominated by an auxiliary tree is contiguous
under this constraint, only two indices are required to track the parsing of an
auxiliary tree adjunction. Consequently, the formalism can generate only context-
free languages and can be parsed in cubic time. The resulting system, called tree
insertion grammar (TIG), is a compromise between the parsing efficiency of context-
free grammar and the elegance and lexical sensitivity of tree-adjoining grammar.
TIG has also been used to parse CFGs more quickly by using a construction that
converts a context-free grammar into a lexicalized tree insertion grammar (LTIG)
that preserves the trees produced. The deductive parsing meta-interpreter has also
been used for rapid prototyping of an Earley-style parser for TIG [32].

4.4. Inadequacy for Sequent Calculi

All the parsing logics discussed here have been presented in a natural-deduction
format that can be implemented directly by bottom-up execution. However, im-
portant parsing logics, in particular the Lambek calculus [15, 18], are better pre-
sented in a sequent-calculus format. The main reason for this is that those systems
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use nonatomic formulas that represent concurrent or hypothetical analyses. For
instance, if for arbitrary u with category B we conclude that vu has category A,
then in the Lambek calculus we can conclude that v has category A/B.

The main difficulty with applying our techniques to sequent systems is that
computationally such systems are designed to be used in a top-down direction. For
instance, the rule used for the hypothetical analysis above has the form:

ΓB ` A
Γ ` A/B

(3)

It is reasonable to use this rule in a goal-directed fashion (consequent to antecedent)
to show Γ ` A/B, but using it in a forward direction is impractical, because B must
be arbitrarily assumed before knowing whether the rule is applicable.

More generally, in sequent formulations of syntactic calculi the goal sequent for
showing the grammaticality of a string wi has the form

W1 · · ·Wn ` S

where Wi gives the grammatical category of wi and S is the category of a sentence.
Proof search proceeds by matching current sequents to the consequents of rules
and trying to prove the corresponding antecedents, or by recognizing a sequent
as an axiom instance A ` A. The corresponding natural deduction proof would
start from the assumptions W1, . . . ,Wn and try to prove S, which is just the proof
format that we have used here. However, sequent rules like (3) above correspond
to the introduction of an additional assumption (not one of the Wi) at some point
in the proof and its later discharge, as in the natural-deduction detachment rule
for propositional logic. But such undirected introduction of assumptions just in
case they may yield consequences that will be needed later is computationally very
costly.6 Systems that make full use of the sequent formulation therefore seem to
require top-down proof search. It is of course possible to encode top-down search
in a bottom-up system by using more complex encodings of search state, as is done
in Earley’s algorithm or in the magic sets/magic templates compilation method for
deductive databases [3, 25]. Pentus [22], for instance, presents a compilation of
Lambek calculus to a CFG, which can then be processed by any of the standard
methods. However, it is not clear yet that such techniques can be applied effectively
to grammatical sequent calculi so that they can be implemented by the method
described here.

5. CONTROL AND IMPLEMENTATION

The specification of inference rules, as carried out in the previous two sections, only
partially characterizes a parsing algorithm, in that it provides for what items are to
be computed, but not in what order. This further control information is provided by
choosing a deduction procedure to operate over the inference rules. If the deduction
procedure is complete, it actually makes little difference in what order the items

6There is more than a passing similarity between this problem and the problem of pure
bottom-up parsing with grammars with gaps. In fact, a natural logical formulation of gaps is as
assumptions discharged by the wh-phrase they stand for [20, 9].
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are enumerated, with one crucial exception: We do not want to enumerate an item
more than once. To prevent this possibility, it is standard to maintain a cache
of lemmas, adding to the cache only those items that have not been seen so far.
The cache plays the same role as the chart in chart-parsing algorithms [13], the
well-formed substring table in CYK parsing [12, 38], and the state sets in Earley’s
algorithm [8]. In this section, we develop a forward-chaining deduction procedure
that achieves this elimination of redundancy by keeping a chart.

Items should be added to the chart as they are proved. However, each new item
may itself generate new consequences. The issue as to when to compute the conse-
quences of a new item is subtle. A standard solution is to keep a separate agenda
of items that have been proved but whose consequences have not been computed.
When an item is removed from the agenda and added to the chart, its consequences
are computed and themselves added to the agenda for later consideration.

Thus, the general form of an agenda-driven, chart-based deduction procedure is
as follows:

1. Initialize the chart to the empty set of items and the agenda to the axioms
of the deduction system.

2. Repeat the following steps until the agenda is exhausted:

(a) Select an item from the agenda, called the trigger item, and remove it.
(b) Add the trigger item to the chart, if necessary.
(c) If the trigger item was added to the chart, generate all items that are

new immediate consequences of the trigger item together with all items
in the chart, and add these generated items to the agenda.

3. If a goal item is in the chart, the goal is proved (and the string recognized);
otherwise it is not.

There are several issues that must be determined in making this general proce-
dure concrete, which we describe under the general topics of eliminating redundancy
and providing efficient access. At this point, however, we will show that, under rea-
sonable assumptions, the general procedure is sound and complete.

In the arguments that follow, we will assume that items are always ground and
thus derivations are as defined in Section 2. A proof for the more general case, in
which items denote sets of possible grammaticality judgments, would require more
intricate definitions for items and inference rules, without changing the essence of
the argument.

Soundness We need to show that if the above procedure places item I in the
chart when the agenda has been initialized in step (1) with items A1, . . . , Ak, then
A1, . . . , Ak ` I. Since any item in the chart must have been in the agenda, and
been placed in the chart by step (2b), it is sufficient to show that A1, . . . , Ak ` I for
any I in the agenda. We show this by induction on the stage ](I) of I, the number
of the iteration of step (2) at which I has been added to the agenda, or 0 if I has
been placed in the agenda at step (1). Note that since several items may be added
to the agenda in any given iteration, many items may have the same stage number.

If ](I) = 0, I must be an axiom, and thus the trivial derivation consisting of I
alone is a derivation of I from A1, . . . , Ak.
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Assume that A1, . . . , Ak ` J for ](J) < n and that ](I) = n. Then I must have
been added to the agenda by step (2c), and thus there are items J1, . . . , Jm in the
chart and a rule instance such that

J1 · · · Jm

I
〈side conditions on J1, . . . , Jm, I〉

where the side conditions are satisfied. Since J1, . . . , Jm are in the chart, they
must have been added to the agenda at the latest at the beginning of iteration n
of step (2), that is, ](Ji) < n. By the induction hypothesis, each Ji must have
a derivation ∆i from A1, . . . , Ak. But then, by definition of derivation, the con-
catenation of the derivations ∆1, . . . ,∆m followed by I is a derivation of I from
A1, . . . , Ak.

Completeness We want to show that if A1, . . . , Ak ` I, then I is in the chart at
step (3). Actually, we can prove something stronger, namely that I is eventually
added to the chart, if we assume some form of fairness for the agenda. Then we
will have covered cases in which the full iteration of step (2) does not terminate
but step (3) can be interleaved with step (2) to recognize the goal as soon as it is
generated. The form of fairness we will assume is that if ](I) < ](J) then item I
is removed from the agenda by step (2a) before item J . The agenda mechanism
described in Section 5.3 below satisfies this fairness assumption.

We show completeness by induction on the length of any derivation D1, . . . , Dn

of I from A1, . . . , Ak. (Thus we show implicitly that the procedure generates every
derivation, although in general it may share steps among derivations.)

For n = 1, I = D1 = Ai for some i. It will thus be placed in the agenda at
step (1), that is ](I) = 0. Thus by the fairness assumption I will be removed from
the agenda in at most k iterations of step (2). When it is, it is either added to the
chart as required, or the chart already contains the same item. (See discussion of
the “if necessary” proviso of step (2b) in Section 5.1 below.)

Assume now that the result holds for derivations of length less than n. Consider
a derivation D1, . . . , Dn = I. Either I is an axiom, in which case we have just shown
it will have been placed in the chart by iteration k, or, by definition of derivation,
there are i1, . . . , im < n such that there is a rule instance

Di1 · · · Dim

I
〈side conditions on Di1 , . . . Dim , I〉 (4)

with side conditions satisfied. By definition of derivation, each prefix D1, . . . , Dij
of

D1, . . . , Dn is a derivation of Dij from A1, . . . , Ak. Then each Dij is in the chart, by
the induction hypothesis. Therefore, for each Dij there must have been an identical
item Ij in the agenda that was added to the chart at step (2b). Let Ip be the item
in question that was the last to be added to the chart. Immediately after that
addition, all of the Ij (that is, all of the Dij

) are in the chart, and Ip = Dip
is the

trigger item for rule application (4). Thus I is placed in the agenda. Since step (2c)
can only add a finite number of items to the agenda, by the fairness assumption
item I will eventually be considered at steps (2a) and (2b), and added to the chart
if not already there.



29

5.1. Eliminating Redundancy

Redundancy in the chart. The deduction procedure requires the ability to generate
new consequences of the trigger item and the items in the chart. The key word
in this requirement is “new”. Indeed, the entire point of a chart-based system is
to allow caching of proved lemmas so that previously proved (old) lemmas are not
further pursued. It is therefore crucial that no item be added to the chart that
already exists in the chart, and it is for this reason that step (2b) above specifies
addition to the chart only “if necessary”.

Definition of “redundant item”. The point of the chart is to serve as a cache of
previously proved items, so that an item already proved is not pursued. What does
it mean for an item to be redundant, that is, occurring already in the agenda or
chart? In the case of ground items, the appropriate notion of occurrence in the
chart is the existence of an identical chart item. If items can be non-ground (for
instance, when parsing relative to definite-clause grammars rather than context-
free grammars) a more subtle notion of occurrence in the chart is necessary. As
mentioned above, a non-ground item stands for all of its ground instances, so that a
non-ground item occurs in the chart if all its ground instances are covered by chart
items, that is, if it is a specialization of some chart item. (This test suffices because
of the strong compactness of sets of terms defined by equations: if the instances of
a term A are a subset of the union of the instances of B and C, then the instances
of A must be a subset of the instances of either B or C [17].) Thus, the appropriate
test is whether an item in the chart subsumes the item to be added.7

Redundancy in the agenda. We pointed out that redundancy checking in the chart
is necessary. The issue of redundancy in the agenda is, however, a distinct one.
Should an item be added to the agenda that already exists there?

Finding the rule that matches a trigger item, triggering the generation of new
immediate consequences, and checking that consequences are new are expensive
operations to perform. The existence of duplicate items in the agenda therefore
generates a spurious overhead of computation especially in pathological cases where
exponentially many duplicate items can be created in the agenda, each one creating
an avalanche of spurious overhead.

For these reasons, it is also important to check for redundancy in the agenda, that
is, the notion of “new immediate consequences” in step (2c) should be interpreted
as consequent items that do not already occur in the chart or agenda. If redundancy
checking occurs at the point items are about to be added to the agenda, it is not
required when they are about to be added to the chart; the “if necessary” condition
in step (2b) will in this case be vacuous, since always true.

Triggering the generation of new immediate consequences. With regard to step (2c),
in which we generate “all items that are new immediate consequences of the trigger
item together with all other items in the chart”, we would like, if at all possible,
to refrain from generating redundant items, rather than generating, checking for,
and disposing of the redundant ones. Clearly, any item that is an immediate con-
sequence of the other chart items only (that is, without the trigger item) is not a
new consequence of the full chart. (It would have been generated when the last of

7This subsumption check can be implemented in several ways in Prolog. The code made

available with this paper presents two of the options.
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the antecedents was itself added to the chart.) Thus, the inference rules generating
new consequences must have at least one of their antecedent items being the trigger
item, and the search for new immediate consequences can be limited to just those in
which at least one of the antecedents is the trigger item. The search can therefore
be carried out by looking at all antecedent items of all inference rules that match
the trigger item, and for each, checking that the other antecedent items are in the
chart. If so, the consequent of that rule is generated as a potential new immediate
consequence of the trigger items plus other chart items. (Of course, it must be
checked for prior existence in the agenda and chart as outlined above.)

5.2. Providing Efficient Access

Items should be stored in the agenda and chart in such a way that they can be
efficiently accessed. Stored items are accessed at two points: when checking a
new item for redundancy and when checking a (non-trigger) antecedent item for
existence in the chart. For efficient access, it is desirable to be able to directly index
into the stored items appropriately, but appropriate indexing may be different for
the two access paths. We discuss the two types of indexing separately, and then
turn to the issue of variable renaming.
Indexing for redundancy checking. Consider, for instance, the Earley deduction
system. All items that potentially subsume an item [i, A → α • β, j] have a whole
set of attributes in common with the item, for instance, the indices i and j, the
production from which the item was constructed, and the position of the dot (i.e.,
the length of α). Any or all of these might be appropriate for indexing into the set
of stored items.
Indexing for antecedent lookup. The information available for indexing when look-
ing items up as potential matches for antecedents can be quite different. In looking
up items that match the second antecedent of the completion rule [k,B → γ • , j],
as triggered by an item of the form [i, A → α • Bβ, k], the index k will be known,
but j will not be. Similarly, information about B will be available from the trigger
item, but no information about γ. Thus, an appropriate index for the second an-
tecedent of the completion rule might include its first index k and the main functor
of the left-hand-side B. For the first antecedent item, a similar argument calls for
indexing by its second index k and the main functor of the nonterminal B following
the dot. The two cases can be distinguished by the sequence after the dot: empty
in the former case, non-empty in the latter.
Variable renaming. A final consideration in access is the renaming of variables.
As non-ground items stored in the chart or agenda are matched against inference
rules, they become further instantiated. This instantiation should not affect the
items as they are stored and used in proving other consequences, so that care
must be taken to ensure that variables in agenda and chart items are renamed
consistently before they are used. Prolog provides various techniques for achieving
this renaming implicitly.

5.3. Prolog Implementation of Deductive Parsing

In light of the considerations presented above, we turn now to our method of im-
plementing an agenda-based deduction engine in Prolog. We take advantage of
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certain features that have become standard in Prolog implementations, such as
clause indexing. The code described below is consistent with Quintus Prolog.

5.3.1. Implementation of Agenda and Chart Since redundancy checking is to be
done in both agenda and chart, we need the entire set of items in both agenda
and chart to be stored together. For efficient access, we store them in the Pro-
log database under the predicate stored/2. The agenda and chart are therefore
comprised of a series of unit clauses, e.g.,

stored(1, item(...)). ←− beginning of chart
stored(2, item(...)).
stored(3, item(...)).
· · ·
stored(i− 1, item(...)). ←− end of chart
stored(i, item(...)). ←− head of agenda
stored(i+ 1, item(...)).
· · ·
stored(k − 1, item(...)).
stored(k, item(...)). ←− tail of agenda

The first argument of stored/2 is a unique identifying index that corresponds to
the position of the item in the storage sequence of chart and agenda items. (This
information is redundantly provided by the clause ordering as well, for reasons that
will become clear shortly.) The index therefore allows (through Quintus’s indexing
of the clauses for a predicate by their first head argument) direct access to any
stored item.

Since items are added to the sequence at the end, all items in the chart precede
all items in the agenda. The agenda items can therefore be characterized by two
indices, corresponding to the first (head) and last (tail) items in the agenda. A
data structure packaging these two “pointers” therefore serves as the proxy for
the agenda in the code. An item is moved from the agenda to the chart merely
by incrementing the head pointer. Items are added to the agenda by storing the
corresponding item in the database and incrementing the tail pointer.

To provide efficient access to the stored items, auxiliary indexing tables can be
maintained. Each such indexing table, is implemented as a set of unit clauses that
map access keys to the indexes of items that match them. In the present imple-
mentation, a single indexing table (under the predicate key_index/2) is maintained
that is used for accessing items both for redundancy checking and for antecedent
lookup. (This is possible because only the item attributes available in both types of
access are made use of in the keys, leading to less than optimal indexing for redun-
dancy checking, but use of multiple indexing tables leads to much more database
manipulation, which is quite costly.)

In looking up items for redundancy checking, all stored items should be consid-
ered, but for antecedent lookup, only chart items are pertinent. The distinction
between agenda and chart items is, under this implementation, implicit. The chart
items are those whose index is less than the head index of the agenda. This test
must be made whenever chart items are looked up. However, since clauses are
stored sequentially by index, as soon as an item is found that fails the test (that is,
is in the agenda) the search for other chart items can be cut off.
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5.3.2. Implementation of the Deduction Engine Given the design decisions de-
scribed above, the general agenda-driven, chart-based deduction procedure pre-
sented in Section 5 can be implemented in Prolog as follows:

parse(Value) :-
% (1) Initialize the chart and agenda
init_chart,
init_agenda(Agenda),
% (2) Remove items from the agenda and process
% until the agenda is empty
exhaust(Agenda),
% (3) Try to find a goal item in the chart
goal_item_in_chart(Goal).

To exhaust the agenda, trigger items are repeatedly processed until the agenda is
empty:

exhaust(Empty) :-
% (2) If the agenda is empty, we’re done
is_empty_agenda(Empty).

exhaust(Agenda0) :-
% (2a) Otherwise get the next item index from the agenda
pop_agenda(Agenda0, Index, Agenda1),
% (2b) Add it to the chart
add_item_to_chart(Index),
% (2c) Add its consequences to the agenda
add_consequences_to_agenda(Index, Agenda1, Agenda),
% (2) Continue processing the agenda until empty
exhaust(Agenda).

For each item, all consequences are generated and added to the agenda:

add_consequences_to_agenda(Index, Agenda0, Agenda) :-
findall(Consequence,

consequence(Index, Consequence),
Consequences),

add_items_to_agenda(Consequences, Agenda0, Agenda).

The predicate add_items_to_agenda/3 adds the items under appropriate indices
as stored items and updates the head and tail indices in Agenda0 to form the new
agenda Agenda.

A trigger item has a consequence if it matches an antecedent of some rule, per-
haps with some other antecedent items and side conditions, and the other an-
tecedent items have been previously proved (thus in the chart) and the side condi-
tions hold:

consequence(Index, Consequent) :-
index_to_item(Index, Trigger),
matching_rule(Trigger,
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RuleName, Others, Consequent, SideConds),
items_in_chart(Others, Index),
hold(SideConds).

Note that the indices of items, rather than the items themselves are stored in the
agenda, so that the index of the trigger item must first be mapped to the actual
item (with index_to_item/2) before matching it against a rule antecedent. The
items_in_chart/2 predicate needs to know both the items to look for (Others)
and the index of the current item (Index) as the latter distinguishes the items in
the chart (before this index) from those in the agenda (after this index).

We assume that the inference rules are stored as unit clauses under the predicate
inference(RuleName, Antecedents, Consequent, SideConds) where RuleName
is some mnemonic name for the rule (such as predict or scan), Antecedents is a
list of the antecedent items of the rule, Consequent is the single consequent item,
and Sideconds is a list of encoded Prolog literals to execute as side conditions. To
match a trigger item against an antecedent of an inference rule, then, we merely
select a rule encoded in this manner, and split up the antecedents into one that
matches the trigger and the remaining unmatched antecedents (to be checked for
in the chart).

matching_rule(Trigger,
RuleName, Others, Consequent, SideConds) :-

inference(RuleName, Antecedents, Consequent, SideConds),
split(Trigger, Antecedents, Others).

5.3.3. Implementation of Other Aspects A full implementation of the deduction-
parsing system — complete with encodings of several deduction systems and sample
grammars — is available from the first author and from the Computation and Lan-
guage E-Print Archive (cmp-lg@xxx.lanl.gov) as part of paper cmp-lg/9404008.
The distributed code covers the following aspects of the implementation that are
not elsewhere described.

1. Input and encoding of the string to be parsed.

2. Implementation of the deduction engine driver including generation of con-
sequences.

3. Encoding of the storage of items including the implementation of the chart
and agenda.

4. Encoding of deduction systems.

5. Implementation of subsumption checking.

All Prolog code distributed has been tested under the Quintus Prolog system.

5.4. Alternative Implementations

This implementation of agenda and chart provides a compromise in terms of effi-
ciency, simplicity, and generality. Other possibilities will occur to the reader that
may have advantages under certain conditions. Some of the alternatives are de-
scribed in this section.



34

Separate agenda and chart in database. Storage of the agenda and the chart un-
der separate predicates in the Prolog database allows for marginally more efficient
lookup of chart items; an extraneous arithmetic comparison of indices is eliminated.
However, this method requires an extra retraction and assertion when moving an
index from agenda to chart, and makes redundancy checking more complex in that
two separate searches must be engaged in.

Passing agenda as argument. Rather than storing the agenda in the database,
the list of agenda items might be passed as an argument. (The implementation
of queues in Prolog is straightforward, and would be the natural structure to use
for the agenda argument.) This method again has the marginal advantage in an-
tecedent lookup, but it becomes almost impossible to perform efficient redundancy
checking relative to items in the agenda.

Efficient bottom-up interpretation. The algorithm just presented can be thought
of as a pure bottom-up evaluator for inference rules given as definite clauses, where
the head of the clause is the consequent of the rule and the body is the antecedent.
However, given appropriate inference rules, the bottom-up procedure will simu-
late non-bottom-up parsing strategies, such as the top-down and Earley strategies
described in Section 3. Researchers in deductive databases have extensively inves-
tigated variants of that idea: how to take advantage of the tabulation of results in
the pure bottom-up procedure while keeping track of goal-directed constraints on
possible answers. As part of these investigations, efficient bottom-up evaluators for
logic programs have been designed, for instance CORAL [26]. Clearly, one could
use such a system directly as a deduction parser.

Construction of derivations. The direct use of the inference rules for building
derivations, as presented in Section 4.1, is computationally inefficient, since it elim-
inates structure-sharing in the chart. All ways of deriving the same string will
yield distinct items, so that sharing of computation of subderivations is no longer
possible.

A preferable method is to compute the derivations offline by traversing the chart
after parsing is finished. The deduction engine can be easily modified to do so, us-
ing a technique reminiscent of that used in the Core Language Engine [2]. First, we
make use of two versions of each inference rule, an online version such as the Earley
system given in Figure 5, with no computation of derivations, and an offline version
like the one in Figure 6 that does generate derivation information. We will presume
that these two versions are stored, respectively, under the predicates inference/4
(as before) and inference_offline/4, with the names of the rules specifying the
correspondence between related rules. Similarly, the online initial_item/1 spec-
ification should have a corresponding initial_item_offline/1 version.

The deduction engine parses a string using the online version of the rules, but
also stores, along with the chart, information about the ways in which each chart
item can be constructed, with unit clauses of the form

stored_history(Consequent, Rule, Antecedents). ,

which specify that the item whose index is given by Consequent can be generated
by the inference rule whose name is Rule from the antecedent items given in the
sequence Antecedents. For each application of Rule that generates Consequent
from the antecedent items Antecedent, a clause of this form is asserted to record
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that possible derivation. Note that only in the first such derivation of Consequent
will the consequent itself be added to the agenda, but each redundant derivation
of Consequent must still be recorded to ensure that all possible derivations are
represented. (If an item is generated as an initial item, its history would mark the
fact by a unit clause using the constant initial for the Rule argument.)

When parsing has completed, a separate process is applied to each goal item,
which traverses these stored histories using the second (offline) version of the infer-
ence rules rather than the first, building derivation information in the process. The
following Prolog code serves the purpose. It defines offline_item(Index, Item),
a predicate that computes the offline item Item (presumably including derivation
information) corresponding to the online item with index given by Index, using
the second version of the inference rules, by following the derivations stored in the
chart history.

offline_item(Index, Item) :-
stored_history(Index, initial, _NoAntecedents),
initial_item_offline(Item).

offline_item(Index, Item) :-
stored_history(Index, Rule, Antecedents),
offline_items(Antecedents, AntecedentItems)
inference_offline(Rule, AntecedentItems, Item, SideConds),
hold(SideConds).

offline_items([], []).
offline_items([Index|Indexes], [Item|Items]) :-

offline_item(Index, Item),
offline_items(Indexes, Items).

The offline version of the inference rules need not merely compute a derivation. It
might perform some other computation dependent on derivation, such as semantic
interpretation. Abstractly, this technique allows for staging the parsing into two
phases, the second comprising a more fine-grained version of the first. Any staged
processing of this sort can be implemented using this technique.

Finer control of execution order For certain applications, it may be necessary
to obtain even finer control over the order in which the antecedent items and side
conditions are checked when an inference rule is triggered. Given that the predicates
items_in_chart/2 and holds/1 perform a simple left-to-right checking of the items
and side conditions, the implementation of matching_rule/5 above leads to the
remaining antecedent items and side conditions being checked in left-to-right order
as they appear in the encoded inference rules, and the side conditions being checked
after the antecedent items. However, it may be preferable to interleave the checks
for antecedents and for side conditions, perhaps in different orders depending on
which antecedent triggered the rule.

For instance, the side condition A .= A′ in the second inference rule of Section 4.1
must be handled before checking for the nontrigger antecedent of that rule, in order
to minimize nondeterminism. If the first antecedent is the trigger, we want to check
the side conditions and then look for the second antecedent, and correspondingly
for triggering the second antecedent. The implementation above disallows this
possibility, as side conditions are always handled after the antecedent items. Merely
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swapping the order of handling side conditions and antecedent items, although
perhaps sufficient for this example, does not provide a general solution to this
problem.

Various alternatives are possible to implement a finer level of control. We present
an especially brutish solution here, although more elegant solutions are possible.
Rather than encoding an inference rule as a single unit clause, we encode it with
one clause per trigger element under the predicate

inference(RuleName, Antecedents, Consequent)

where Rulename and Consequent are as before, but Antecedents is now a list of all
the antecedent items and side conditions of the rule, with the trigger item first. (To
distinguish antecedent items from side conditions, a disambiguating prefix operator
can be used, e.g., @item(...) versus ?side_condition(...).) Matching an item
against a rule then proceeds by looking for the item as the first element of this
antecedent list.

matching_rule(Trigger, RuleName, Others, Consequent) :-
inference(RuleName, [Trigger|Others], Consequent),

The consequence/2 predicate is modified to use this new matching_rule/4 pred-
icate, and to check that all of the antecedent items and side conditions hold.

consequence(Index, Consequent) :-
index_to_item(Index, Trigger),
matching_rule(Trigger, RuleName, Others, Consequent),
hold(Others, Index).

The antecedent items and side conditions are then checked in the order in which
they occur in the encoding of the inference rule.

hold([], _Index).
hold([Antecedent|Antecedents], Index) :-

holds(Antecedent, Index),
hold(Antecedents, Index).

holds(@Item, Index) :- item_in_chart(Item, Index).
holds(?SideCond, _Index) :- call(SideCond).

6. CONCLUSION

The view of parsing as deduction presented in this paper, which generalizes that of
previous work in the area, makes possible a simple method of describing a variety
of parsing algorithms — top-down, bottom-up, and mixed — in a way that high-
lights the relationships among them and abstracts away from incidental differences
of control. The method generalizes easily to parsers for augmented phrase structure
formalisms, such as definite-clause grammars and other logic grammar formalisms.
Although the deduction systems do not specify detailed control structure, the con-
trol information needed to turn them into full-fledged parsers is uniform, and can
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therefore be given by a single deduction engine that performs sound and complete
bottom-up interpretation of the rules of inference. The implemented deduction en-
gine that we described has proved useful for rapid prototyping of parsing algorithms
for a variety of formalisms including variants of tree-adjoining grammars, categorial
grammars, and lexicalized context-free grammars.
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