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Abstract

Cancer is a disease potentiated by mutations in somatic cells. Cancer mutations are not distributed 

uniformly along the genome. Instead, different genomic regions vary by up to 5-fold in the local 

density of somatic mutations1, posing a fundamental problem for statistical methods of cancer 

genomics. Epigenomic organization has been proposed as a major determinant of the cancer 

mutational landscape1-5. However, both somatic mutagenesis and epigenomic features are highly 

cell-type-specific6,7. We investigated the distribution of mutations in multiple samples of diverse 

cancer types and compared them to cell-type-specific epigenomic features. Here, we show that 

chromatin accessibility and modification, together with replication timing, explain up to 86% of 

the variance in mutation rates along cancer genomes. Overwhelmingly, the best predictors of local 

somatic mutation density are epigenomic features derived from the most likely cell type of origin 

of the corresponding malignancy. Moreover, we find that cell-of-origin chromatin features are 

much stronger determinants of cancer mutation profiles than chromatin features of cognate cancer 

cell lines. We show further that the cell type of origin of a cancer can be accurately determined 

based on the distribution of mutations along its genome. Thus, DNA sequence of a cancer genome 

encompasses a wealth of information about the identity and epigenomic features of its cell of 

origin.
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Recent studies have begun to address the underlying causes of cancer mutational 

heterogeneity by comparing mutation rate variation to the distribution of sequence features, 

gene expression and epigenetic marks along the genome 2-5. A major limitation of previous 

studies was their uniform treatment of mutations from different cancers, and their 

consideration of epigenetic marks from a single cell type, usually a cell type different from 

the cancer tissue of origin. However, cancer is far from being a disease of uniform origin, 

progression and cell biology. Instead, different cancer types differ in their overall mutation 

rates, their predominant mutation types, and the distribution of mutations along their 

genomes1. Substantial variation also exists in the epigenomic landscape of different tissues, 

specifically in patterns of chromatin accessibility, histone modifications8 [EC00], gene 

expression and DNA replication timing9. The full understanding of the factors contributing 

to mutational heterogeneity in cancer genomes thus requires the evaluation of the 

relationship between multiple epigenetic marks and mutation patterns in a cell-type-specific 

manner.

We analyzed a total of 173 cancer genomes from eight different cancer types that represent a 

wide range of tissues of origin, carcinogenic mechanisms, and mutational signatures: 

melanoma10, multiple myeloma11, lung adenocarcinoma12, liver cancer13, colorectal 

cancer14, glioblastoma15, esophageal adenocarcinoma16, and lung squamous cell 

carcinoma17. Regional variations in mutation density appeared similar although not identical 

among the different cancer types (Extended Data Fig. 1).

We compared the genomic distribution of mutations in these cancer genomes to 424 

epigenetic features that were measured by the Epigenome Roadmap consortium [EC00]. 

These features were derived from 106 different cell types from 45 different tissue types, 

including the cell types of origin of most of the cancer types that we investigated (Methods 

and Extended Data Fig. 2). Importantly, the data represent primary human cells rather than 

cell lines. These epigenetic features comprised eight different types of variables, including 

DNaseI hypersensitive sites (DHS) (a global measure of chromatin accessibility)7 and 

various histone modifications. An example of the variation in mutation density along 

chromosomes at 1Mb scale together with a representative epigenetic mark (DHS) is shown 

in Figure 1. In this case, as in most other cases (see below), epigenetic marks indicative of 

open chromatin and high gene activity were associated with low mutation density, while 

repressive, closed chromatin marks were associated with regions of high mutation density. 

Notably, these statistical associations do not necessarily imply causal effects of individual 

chromatin features, nor point to specific biological mechanisms.

The comparison of individual epigenomic features with local mutation density revealed that 

chromatin marks corresponding to the tumor's cell type of origin are more strongly 

associated with local mutation density than marks corresponding to unrelated cell types. For 

example, DHS marks from melanocytes explained a substantially larger fraction of the 

variance in melanoma mutation density than DHS marks from other cell types, even from 

the same tissue (skin) (Figure 1b). As another example, even though H3K4me1 marks in 

melanocytes and hepatocytes are highly correlated (r=0.8), the distribution of mutations in 

liver cancer followed the levels of H3K4me1 in hepatocytes, but not in melanocytes, while 
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melanoma mutations correlated with the levels of H3K4me1 in melanocytes but not in 

hepatocytes (Figure 1c).

This initial observation suggested that the impact of chromatin on local mutation density is 

highly cell-type-specific. The comprehensive representation of different cell types in the 

Epigenome Roadmap could thus enable an improved prediction accuracy of mutations 

compared to previous studies. To rigorously quantify the contribution of different chromatin 

marks and gene expression to regional mutation density, and the extent of cell type 

specificity, we used Random Forest regression (Methods).

Remarkably epigenetic marks, together with replication timing measured in ENCODE cell 

lines 18, collectively explained 74-86% of the variance in mutation density in seven cancer 

types (Figure 2a). In glioblastoma, for which fewer mutations were available for the 

analysis, 55% of the variance in mutation density could be explained. This is substantially 

higher than in earlier studies4 and indicates that, at least for these cancer types, we have 

identified a set of epigenetic variables and cell types that almost fully predict the mutational 

variability along the genome. This enhanced prediction accuracy was not simply due to the 

larger size of the training data relative to previous studies, as the predictive ability dropped 

by only~2-6% when only 10% of the data was used (Extended Data Fig. 3).

Prediction accuracy in individual samples is expected to be lower than in samples pooled by 

cancer type due to tumor heterogeneity, sampling variance, and a lower number of mutations 

available for the analysis (Extended Data Fig. 4). To evaluate the influences of these 

variables on the prediction ability of the Random Forest model, we simulated mutation 

datasets of variable sizes generated by the model itself, and compared the prediction 

accuracy of simulated and real data as a function of the number of mutations. For most 

samples, epigenomic features explained most (on average 70%) of the maximally predicted 

variance (Extended Data Fig. 5), and more than was explained by earlier studies2,4 when 

matching dataset sizes. As a point of direct comparison with an earlier study2 that did not 

use cell type specific chromatin marks, our model explained 50% of the variance in mutation 

density in the melanoma cell line COLO82919, for which the earlier study explained 29% of 

the variance.

The prediction accuracy was similar whether testing for all mutations or only the mutations 

of the predominant type (Extended Data Fig. 6) in each cancer type 1,20 (Figure 2b). A 

notable exception was lung adenocarcinoma, where a larger fraction of the variance could be 

explained for G>T mutations associated with smoking 1,12,21 than for C>T mutations. This 

difference was observed for both samples with G>T transversions12 and C>T transitions as 

the leading mutational sources (Figure 2c).

Interestingly, prediction accuracy was fully explained by chromatin features, with gene 

expression and nucleotide content not providing any further improvement to the accuracy of 

the model. Even though gene expression has been unequivocally demonstrated to influence 

mutation density, chromatin features appear to be statistically stronger predictors (Extended 

Data Fig. 7).

Polak et al. Page 3

Nature. Author manuscript; available in PMC 2015 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When considering individual contributions to mutation rate prediction, between six and 

nineteen variables passed the significance threshold in any individual cancer type. There was 

a sweeping association between cancer mutations and chromatin marks measured in the cell 

type of origin of each cancer (Figures 3a). For instance, six out of the top ten features 

explaining variation in melanoma mutation density were derived from melanocytes (Figure 

1 and Figure 3b). Similarly, seven out of the nine top features explaining mutational profiles 

in liver cancer were measured in liver cells. Comparable results were obtained for multiple 

myeloma, colorectal adenocarcinoma and glioblastoma, where most of the significant 

features were measured in hematopoietic, intestine mucosa and brain tissues, respectively. 

For esophageal adenocarcinoma, the top predictors where chromatin features derived from 

stomach mucosa rather than from esophageal tissues; this is expected given that the analyzed 

esophageal adenocarcinomas were triggered by Barrett's esophagus cells that resemble 

stomach epithelial cells 22. Lung adenocarcinoma and lung squamous cell carcinoma were 

the only exceptions in that the top predictors were scattered among different tissue groups; 

the lack of tissue specificity in these cases likely results from the absence of epigenetic 

marks from normal lung epithelial cells in our dataset.

The results of the Random Forest regression were confirmed using backward feature 

selection to identify the minimal set of epigenetic predictors of mutations in each cancer 

type (Methods). As few as three to five features were sufficient to capture the variance 

explained by the full set of 424 different features (Extended Data Fig. 8), and in all cancers 

besides lung (as above), most of these features were derived from the corresponding cell 

types of origin. As a more direct test, we grouped all epigenomic data by cell or tissue type 

and compared the collective explanatory power of chromatin features derived from the cell 

types of origin vs. unmatched cell types. The results of this analysis confirmed the cell type 

specificity of the association between chromatin features and mutation density (Figure 3c).

The above results pose a key question on whether epigenomic features derived from the cell 

type of origin are the strongest determinants of cancer mutations, or whether they simply 

serve as the best available proxies to the chromatin organization of the corresponding 

malignant cells. The availability of epigenomic data for the liver cancer cell line HepG28 

and for melanoma cell lines made it possible to directly address this question. Surprisingly, 

in both cases, epigenomic features from the cell type of origin resulted in a higher prediction 

accuracy than those from the cancer cell lines. The Random Forest predictor trained on 

chromatin features of HepG2 was less accurate in predicting the liver cancer mutation 

density than the analogous predictor trained on features of hepatocytes (Figure 3d). 

Similarly, chromatin accessibility in melanocytes was a much better predictor of mutation 

density in the COLO829 melanoma cell line (Figure 3e and Extended Data Fig. 9). Thus, 

chromatin features associated with carcinogenesis do not determine cancer mutations to the 

same extent as chromatin features of the cells of origin. We envision two potential 

explanations for this observation. First, most of the mutations observed in cancers may arise 

prior to the epigenetic changes linked to neoplastic progression. In addition, advanced 

tumors may undergo specific epigenetic changes that distinguish them from other tumors of 

the same type.
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Taken together, the above results strongly suggest that the cell of origin of an individual 

tumor sample could be predicted from its mutation pattern alone. Mutation profiles of 

individual samples cluster according to cancer type, and, consequently cell of origin (Figure 

4a). We developed a straightforward predictor based on enrichment of epigenomic variables 

from a single cell type among the top 20 variables selected by the Random Forest analysis. 

This approach classified 88% of melanoma, colorectal, liver, multiple myeloma, esophageal 

and glioblastoma cancer genomes to melanocytes, colonic mucosa, liver, hematopoietic, 

stomach mucosa and brain tissues, respectively (Figure 4b). Thus, mutational patterns 

contain sufficient information for identifying the cell type of origin of a tumor. We propose 

that sequencing the DNA of a tumor of unknown primary origin can allow the precise 

pinpointing of the cell type of origin of that tumor.

Traditionally, statistical prediction in cancer has made use of gene expression data We 

therefore constructed an analogous predictor of cell of origin using RNA sequencing data 

from 167 glioblastoma multiforme and 370 skin cutaneous melanoma samples 23. This 

predictor achieved accuracies of 78% and 57% on these cancer types, slightly lower than the 

mutation-based predictor. Although these two classifiers are not directly comparable, it is 

clear that genome sequence carries at least the same amount of information about the cell of 

origin as gene expression data does.

In conclusion, our observations suggest that cancer mutation density is linked to the 

epigenomic profile in a highly cell-type-specific manner. Thus, DNA sequence is 

informative about the origin of an individual tumor. The accumulating epigenomic data on 

human cell types opens the perspective for accurate prediction of the cell of origin of a 

cancer from its genome sequence.

Methods

Data

We divided the human genome into 1 MB regions, excluding regions overlapping 

centromeres and telomeres, as well as regions where the fraction of uniquely mappable base 

pairs was lower than 0.92. We calculated the mean signal for different histone 

modifications, DNAse I hypersensitivity and replication timing in different cell types, and 

used these 424 features to predict mutation density along the genome in eight different 

cancer types (see below).

We calculated mutation density by obtaining data for 173 individual cancer genomes, 

belonging to eight cancer types: melanoma (25 genomes)10, lung adenocarcinoma (24 

genomes)12, lung squamous cell carcinoma (12 genomes)17, esophageal adenocarcinoma (9 

genomes)16, liver (64 genomes)13, multiple myeloma (23 genomes)11, colorectal cancer14 

(CRC, 9 genomes) and glioblastoma (7 genomes)15. The whole genome of the COLO-829 

cell line has been sequenced by the Sanger Institute. The COLO-829 cell line was derived 

from metastatic tissue. The liver cancers were sequenced by the National Cancer Center 

Research Institute in Japan. The mutation lists for the COLO829 cell line and liver cancer 

that we used in this study can be found at http://dcc.icgc.org/download/

legacy_data_releases/version_07/ under the folders Malignant_Melanoma-WTSI-UK 
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(COLO-829) and Liver_Cancer-NCC-JP. The rest of the genomes were sequenced and 

analyzed by the Broad Institute and called using MuTect24 (http://www.broadinstitute.org/

cancer/cga/mutect).

For each cancer type we counted the overall number of mutations in all individual cancer 

genomes belonging to that cancer type. We also determined the mutation densities for all 

possible types of mutations in each cancer types by counting different types of mutations in 

1 Mb windows and normalizing for the sequence composition of each window.

We downloaded data for 7 different histone modifications and DNAse I hypersensitivity 

from Epigenomics Roadmap [EC00] and ENCODE8 (Extended data Fig. 1). Epigenomic 

data is available from the NCBI via the GEO series GSE18927 for University of 

Washington Human Reference Epigenome Mapping Project at http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE18927. Data used in this study can also 

be viewed via multiple browsers outlined at the http://roadmapepigenomics.org/ website.

Fetal tissues were obtained from morphologically normal fetuses by the Birth Defects 

Research Laboratory in the Department of Pediatrics at the University of Washington, 

collected under an IRB-approved protocol. Blood cell subsets were collected from fully 

consented, normal donors at the Cellular Therapy Laboratory and cGMP Cell Processing 

Facility under the direction of Shelly Heimfeld at the Fred Hutchinson Cancer Research 

Center with IRB-approval.

For histone modifications we combined reads for all samples belonging to one cell type and 

calculated RPKM values for 1 Mb windows along the genome. We also calculated the 

average number of DNAse I hypersensitivity peaks overlapping 1 Mb windows across all 

samples belonging to a certain cell type. We used BEDOPS25 to map reads and DHS peaks 

to intervals.

We obtained data for four different Repli-seq experiments from the ENCODE project 

(Extended Data Fig. 1) and determined replication timing as the average value of wavelet-

smoothed signal in each 1 Mb window. Lymphoblastoid cell line replication time was 

obtained from Koren et al., 201226 and averaged over 1Mb windows along the genome.

To control for the effect of sequence features on mutation density, for each 1 Mb window 

we also calculated GC content, the number of CpG, GpC, and ApT dinucleotides, and 

fraction of the window overlapping coding regions, known genes and CpG islands.

To control for the effect of expression on mutation density we downloaded mRNA-seq data 

from the Epigenomics Roadmap [EC00], for 38 different cell types for which expression 

data was available (Extended Data Table 1). We combined reads for all samples belonging 

to one cell type and calculated RPKM values for the set of all protein coding exons in 1 Mb 

windows, the set of all protein coding and lncRNA exons in 1 Mb windows, the maximally 

expressed gene in a 1 Mb window or non-genic regions in 1 Mb windows.
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Random Forest regression

Random Forest is a non-parametric machine learning method that combines the output of an 

ensemble of regression trees to predict the value of a continuous response variable27. The 

use of multiple regression trees reduces the risk of over-fitting and makes the method robust 

to outliers and noise in the input data. For each regression tree, a training set of N samples 

are drawn, with replacement, from the dataset. The remaining data (out-of-bag data) 

constitutes the test set for this tree, and is used to compute the mean squared prediction error 

of the tree. The prediction for each sample is made by taking the average of predictions over 

all trees for which the sample was part of the out-of-bag data.

Random Forest provides an internal measure of the importance of different predictor 

variables, based on out-of-bag data. The mean squared error calculated on the out-of-bag 

data is recorded in every tree grown in the forest. The values of all the predictor variables 

are then randomly permuted in all the out-of-bag samples and the mean squared error is 

computed again. The difference between the two errors is averaged over all the trees, and 

normalized by the standard error, representing the raw importance score for each variable.

We used Random Forest with 1000 trees to predict mutation densities in 1Mb non-

overlapping windows in the eight different cancer types using 424 predictor variables 

(epigenetic features and replication timing; Extended Data Fig. 1). We divided the data into 

ten non-overlapping sets and predicted the number of mutations in each cancer type using 

10-fold cross-validation. For each sample, the predicted value corresponded to the predicted 

mutation density when this sample was part of the test set. We used Pearson product-

moment correlation to interpret the prediction accuracy. The fraction of variance explained 

by each model was calculated as the Pearson correlation coefficient squared.

Controlling for the effect of sequence features and expression on prediction accuracy

We created different subsets of features corresponding to chromatin (histone modifications 

and DNase hypersensitivity, 419 features), replication timing (5 features), sequence (7 

features) and expression (38 features). We then used Random Forest regression with 10-fold 

cross-validation to predict mutation density in different cancers, where for each cancer type 

we trained different models: on each subset of features separately and on combinations of 

different subsets of features.

Variable importance analysis

Variable importance was calculated for each predictor variable in each cancer type by 

permuting the variable, i.e. randomly shuffling the data values so that the relationship 

between the response and predictor variables was destroyed. The percent of increase in 

mean squared error of prediction was then calculated. Since the variable importance can be 

influenced by both the correlation and the scale of the variables, we calculated the empirical 

p-value of variable importance measures by repeatedly permuting the response variable in 

Random Forest models, in order to determine the distribution of measured importance 

values for each predictor variable28. This procedure was repeated 1000 times, and the 

number of times in which the importance measure in the original data set was lower or equal 
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to the permuted importance measure was counted; this count represented the p-value, with a 

count of one corresponding to a significance level of P<0.001.

Feature selection

We applied backward elimination to identify a minimal set of predictors for each cancer 

type. Backward elimination is a “greedy” algorithm which finds the locally optimal subset 

of features, but does not guarantee finding the global optimum. However, it is less 

computationally intensive than searching all possible feature subsets when the number of 

features (N) is large (in our case N=424). Initially, we trained a Random Forest with 10-fold 

cross-validation on the complete set of variables and determined the importance of all the 

variables in the model (the importance was calculated as the mean importance of the 

variable across 10 rounds of cross-validation). We then ranked the variables according to 

their importance and determined the top 20 variables. We then sequentially trained 20 

models, removing the least important variable at each step, until only one predictor variable 

was left for training.

Principal coordinate analysis

We used principal coordinate analysis to visualize the dissimilarities in mutation density 

distributions between individual cancer genomes. Dissimilarity was calculated as 1 – 

Pearson correlation coefficient, for all possible combinations of individual cancer genomes.

Prediction of tissue of origin for individual cancer genomes

For each individual cancer genome we predicted the density of mutations using Random 

Forest regression with 10-fold cross-validation. We used the full set of features and 

determined the top 20 features according to the variable importance measure. We then 

calculated the enrichment of each tissue type among the top 20 features using the 

hypergeometric test and chose the tissue showing the most significant enrichment as the 

most likely tissue of origin for the individual cancer genome. We then calculated the 

percentage of individual cancers where the assigned tissue of origin matched the predicted 

tissue of origin.

Prediction of cell of origin using gene expression

For each individual cancer we downloaded gene expression data from The Cancer Genome 

Atlas15 and calculated the expression of the same genes in the 38 cell types for which 

mRNA-seq data was available from the Epigenomics Roadmap (Extended Data Table 1). 

For each cancer we trained a Random Forest regression model in which the gene expression 

values in cancer were used as the response variable and the gene expression in normal cells 

as the predictors. We identified the predictor variable, which showed the highest value of 

variable importance in the model and assigned the corresponding cell type as cell of origin 

of the cancer.
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Extended Data

Extended Data Figure 1. 
Correlation of mutation density measured in different cancer types.

Extended Data Figure 2. 
Chromatin features and replication data used in the models.
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Extended Data Figure 3. 
Scatter plots of the measured number of somatic mutations per MB in different cancer 

genomes versus the number of mutations predicted by the Random Forest algorithm. The 

training set consisted of 10% of the data, while 90% was used to test the predictions.

Extended Data Figure 4. 
Prediction accuracy of the models trained on individual cancers as a function of the number 

of mutations. The red line represents the prediction accuracy of the model used to predict the 

mutation density of samples pooled by cancer type (sum of all mutations in individual 

cancers of a certain cancer type). N – number of individual cancers per cancer type.
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Extended Data Figure 5. 
Sampling variance. Red: The squared correlation coefficient (R2) between the observed 

mutational profile and the profiles predicted by Random Forest. Blue: the maximal 

attainable variance explained, calculated as the average correlation coefficient squared (R2) 

between the mutational profiles predicted by Random Forest and 100 simulated mutational 

profiles modeled as a Poisson distribution with the mean predicted by epigenomic features. 

N – number of individual cancers per cancer type.
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Extended Data Figure 6. 
Frequency of different types of mutations in different cancer types.
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Extended Data Figure 7. 
Prediction accuracy of models obtained using different subsets of predictor variables. (A) 

Comparison of the prediction accuracy obtained using the full set of chromatin features, 38 

chromatin features measured in cell types for which expression data was available, and 

expression data. Expression in 1MB windows was calculated using mRNA-seq reads 

mapping to either protein coding exons, protein coding and lncRNA exons, maximally 

expressed gene or non-genic regions, and normalized by the cumulative length of each of 

these regions, respectively. Bars represent the mean prediction accuracy; error bars represent 

standard errors of the mean prediction accuracy estimated using 10-fold cross-validation. 

(B) Distribution of the percent of variance explained in 10 folds of cross-validation (n=10) 

for models trained on chromatin, replication, expression (non-genic mRNA-seq) or sequence 

features, or a combination of these subsets of features. Models trained on chromatin features 

were compared to all other models for a certain cancer type (Wilcoxon rank-sum test). 

Significant differences, Benjamini–Hochberg-corrected: **P < 0.01, ***P < 0.001. Box 

plots, band inside the box, median; box, first and third quartiles; whiskers, most extreme 

values within 1.5 * inter-quartile range from the box; points, outliers.
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Extended Data Figure 8. 
Feature selection by using the backward elimination procedure. For each cancer type, 

variables are ordered from top to bottom by decreasing importance. Each bar represents the 

fraction of variance explained by the model using the corresponding bar and all bars above 

it. The red line indicates the cutoff needed to achieve the prediction accuracy of the full 

model – 1 s.e.m. For each cancer type, features measured in related cell lines are shown in 

red.
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Extended Data Figure 9. 
The number of mutations per megabase in COLO829 cell line versus DHS density in 

melanoma cell lines (DHS measured in 11 melanoma cell lines), melanocytes, DHSs 

specific to melanomas (not observed in melanocytes) and DHSs specific to melanocytes (not 

observed in melanomas). Correlation is calculated using the Spearman's rank correlation 

coefficient.

Extended Data Table 1

Cell types for which mRNA-seq data was downloaded from Epigenomics Roadmap.

adrenal gland

bladder

brain fetal

brain germinal matrix fetal

brain hippocampus middle

breast luminal epithelial cells

breast myoepithelial cells

breast vHMEC

CD34 mobilized primary cells

esophagus

gastric

H1 BMP4 derived mesendoderm cultured cells

H1 BMP4 derived trophoblast cultured cells

H1 cell line
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H1 derived mesenchymal stem cells

H1 derived neuronal progenitor cultured cells

IMR90 cell line

iPS DF 19.11 cell line

iPS DF 6.9 cell line

liver

lung

lung left fetal

lung right fetal

muscle arm fetal

muscle back fetal

muscle leg fetal

muscle trunk fetal

ovary

ovary fetal

pancreas

penis foreskin fibroblast primary cells

penis foreskin keratinocyte primary cells

penis foreskin melanocyte primary cells

psoas muscle

sigmoid colon

small intestine

spinal cord fetal

thymus
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Figure 1. 
Mutation density in melanoma is associated with individual chromatin features specific to 

melanocytes. (a) The density of C>T mutations in melanoma alongside a 100kb window 

profile of melanocyte chromatin accessibility (“DNase I accessibility index”; shown in 

normalized, reverse scale; high values correspond to less accessible chromatin and vice 

versa). (b) The number of mutations per megabase in melanoma versus DHS density, for 

three types of skin cells. (c) The normalized density of mutations in liver cancer and 

melanoma genomes as a function of density quintiles of H3K4me1 marks in liver cells and 

in melanocytes. For both cancer genomes, mutation density depends only on H3K4me1 

marks measured in the cell of origin.
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Figure 2. 
Predicting local mutation density in cancer genomes using Random Forest regression trained 

on 424 epigenomic profiles. Pearson correlation between observed and predicted mutation 

densities along chromosomes is shown. (a) Actual versus predicted mutation densities in 

eight cancers. (b, c) Prediction accuracy represented as mean ± s.e.m (estimated using 10-

fold cross-validation). Panels show prediction accuracy for all mutations and for nucleotide 

changes predominant in the corresponding cancer (b), and prediction accuracy in lung 

adenocarcinoma genomes stratified by smoking history and predominant nucleotide changes 

(G>T or C>T) (c).
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Figure 3. 
Epigenomic features that significantly contribute to the prediction of local mutation density. 

(a) Features (blue rectangles) significantly contributed to the predictions in at least one 

cancer type (see Methods). (b) Melanoma mutation density versus the density of chromatin 

modifications in melanocytes. (c) Prediction accuracy (mean ± s.e.m estimated using 10-fold 

cross-validation) of models separately trained on features from different tissues for each 

cancer type. Red bars: tissues with the highest prediction accuracy. Red line: prediction 

accuracy when using all 424 epigenetic features. (d) Comparison of predictions accuracies 
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of liver cancer mutation density from features of normal liver cells vs. cancer cells (HepG2). 

(E) Mutation density in COLO829 melanoma cell line versus DHS density in COLO829, 

melanocytes, DHSs specific to COLO829 (not observed in melanocytes) and DHSs specific 

to melanocytes (not observed in COLO829). Spearman's rank correlation coefficient is given 

for each comparison.

Polak et al. Page 21

Nature. Author manuscript; available in PMC 2015 August 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Analysis of individual cancer genomes and prediction of cell type of origin. (a) Principal 

coordinate analysis (PCOA) of the distribution of mutations in individual cancer genomes. 

Filled circles represent cancers for which the correct cell type of origin was identified. (b) 

The accuracy of cell type of origin prediction for individual cancer genomes: the number of 

cancer samples that were assigned to the correct (solid colors) or incorrect (textures) cell 

types of origin based on their mutation profile.
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