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Recent experimental advances enabled the realization of mobile impurities immersed in a Bose-Einstein
condensate (BEC) of ultracold atoms. Here, we consider impurities with two or more internal hyperfine states,
and study their radio-frequency (rf) absorption spectra, which correspond to transitions between two different
hyperfine states. We calculate rf spectra for the case when one of the hyperfine states involved interacts with the
BEC, while the other state is noninteracting, by performing a nonperturbative resummation of the probabilities
of exciting different numbers of phonon modes. In the presence of interactions, the impurity gets dressed by
Bogoliubov excitations of the BEC, and forms a polaron. The rf signal contains a δ-function peak centered
at the energy of the polaron measured relative to the bare impurity transition frequency with a weight equal
to the amount of bare impurity character in the polaron state. The rf spectrum also has a broad incoherent
part arising from the background excitations of the BEC, with a characteristic power-law tail that appears as a
consequence of the universal physics of contact interactions. We discuss both the direct rf measurement, in which
the impurity is initially in an interacting state, and the inverse rf measurement, in which the impurity is initially
in a noninteracting state. In the latter case, in order to calculate the rf spectrum, we solve the problem of polaron
formation: a mobile impurity is suddenly introduced in a BEC, and dynamically gets dressed by Bogoliubov
phonons. Our solution is based on a time-dependent variational ansatz of coherent states of Bogoliubov phonons,
which becomes exact when the impurity is localized. Moreover, we show that such an ansatz compares well with
a semiclassical estimate of the propagation amplitude of a mobile impurity in the BEC. Our technique can be
extended to cases when both initial and final impurity states are interacting with the BEC.
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I. INTRODUCTION

The polaron problem [1–5] concerns the modification of the
physical properties of an impurity by the quantum fluctuations
of its environment. This ubiquitous problem naturally arises
in a wide variety of physical situations including electron-
phonon interactions [3], the propagation of muons in a solid
[6], transport in organic transistors [7], the physics of giant
magnetoresistance materials [8], and high-T C cuprates [9].
Recently, in Refs. [10–35] the polaron problem was considered
in the context of quantum impurities in ultracold atomic gases.

The unprecedented control over interatomic interactions,
external trapping potentials, and internal states of ultracold
atoms allows the realization of systems previously unattainable
in condensed matter. Examples relevant to our study include
Bose-Bose and Bose-Fermi mixtures with varying mass ratios.
Moreover, specialized experimental probes such as radio-
frequency (rf) spectroscopy [36] and Ramsey interference [37]
enable detailed characterizations of these systems, including
their coherent real-time dynamics. Furthermore, these systems
are very well characterized and can be theoretically described
using simple models with just a few parameters. Such univer-
sality arises in cold atoms because they are well isolated
from their environment, have simple dispersion relations,
and the two-particle scattering amplitudes have a universal
form fully characterized by the scattering length (except in
cases of narrow Feshbach resonances [38], which we will
not discuss here), while higher-order scattering processes

can be neglected due to diluteness. This is in contrast to
generic condensed-matter systems where universal physics is
manifested only at very low energies, while coherent dynamics
is usually difficult to probe [39].

In this article, we consider dynamic impurities in a
Bose-Einstein condensate (BEC), and demonstrate how the
spectral and dynamical properties of the Fröhlich polaron [3]
can be probed using rf spectroscopy in dilute mixtures of
ultracold atoms. For these systems, we predict the essential
spectroscopic features of a rf measurement, some of which are
constrained by exact relations, and discuss the corresponding
impurity dynamics.

Radio-frequency spectroscopy [36,40–44], along with its
momentum-resolved variant [45,46], has emerged as an
important experimental tool to study many-body physics in
cold atoms. Pertinently, rf spectroscopy can directly probe the
spectral properties of quantum impurities [12,15,16,47,48],
and has prompted theoretical investigations of impurity spec-
tral functions [34,35,49,50].

The subject of impurities in BECs has received some
attention recently, but the focus has mainly been on the
near-equilibrium properties of these systems. The effect of
impurities on BECs was studied using the Gross-Pitaevskii
[51] quantum hydrodynamic description of the coherent con-
densate wave function in Refs. [20–24,33]. Such an approach
is restricted to weak impurity-boson couplings, and downplays
the effects of quantum dynamics of the impurity, which appears
only as a classical potential acting on the collective field of the
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FIG. 1. (Color online) (a) Schematic representation of the system
comprising a BEC (blue) with a small concentration of free impurities
(red) that have two internal levels |↓〉,|↑〉, in which the impurity-
boson interaction characterized by the s-wave scattering length aIB,σ

is different. A rf pulse transfers impurities from |↓〉 to |↑〉, and
probes the emergent polaronic state of the impurity, and the dynamics
of its formation. (b) Typical rf signal shown when impurity-Bose
scattering length aIB,↑ > 0 (right), aIB,↑ < 0 (left). The rf signal
contains a coherent peak centered at the energy of the polaron
measured relative to the bare impurity transition frequency, and
with weight corresponding to the impurity quasiparticle residue Z

(see Sec. III E). There is an additional incoherent part capturing
background excitations of the BEC, with a characteristic power-
law tail (see Sec. IV A). (Inset) Attractive (repulsive) polarons
corresponding to a↑,σ < 0 (> 0), with negative (positive) energy
relative to the atomic transition frequency ω = 0.

bosons. The authors of Refs. [29–32] took quantum impurities
into account within a many-body treatment of the Bogoliubov
excitations of the BEC, but considered equilibrium properties
in the regime of weak impurity-boson interactions.

In contrast to these earlier works, we calculate the full
spectral response of dilute quantum impurities in a BEC,
and study their nonequilibrium dynamics which arise when
applying a rf signal to the system. As shown in Fig. 1(a), we
consider a BEC with a small concentration of free impurities
with two internal states. The impurities are taken to initially
be in the |↓〉 internal state, and we consider the effect of
a rf pulse which transfers them to the final |↑〉 state. In
Fig. 1(a), we present the so-called “inverse” rf protocol [16],
in which impurities in the |↓〉 state are noninteracting with
the bosons, while in the |↑〉 state they interact. Then, the
initially free impurities propagate as emergent quasiparticles,
called polarons, that are dressed by a cloud of background
BEC excitations. Correspondingly, the resulting rf absorption
signal, shown in Fig. 1(b), contains a coherent peak centered
at a frequency corresponding to the energy of the polaron
measured from the transition frequency between the states ↓
and ↑ of the bare impurity. The peak has an exponentially
suppressed weight that quantifies the amount of bare impurity
character in the polaron state. Additionally, the rf signal
contains an incoherent part corresponding to the excitations
of the background BEC, which displays a characteristic high-

frequency power-law tail. The latter is a manifestation of the
universal two-body “contact” physics studied by Tan [52,53],
and is a recurring feature of rf studies in ultracold atoms
[54–58]. We also discuss the “direct” rf protocol [15], in which
impurities initially in the |↓〉 state interact with the bosons, and
are transferred to a noninteracting |↑〉 state. Our discussion
can also be extended to the case where both internal states
of the impurity are interacting, but with different interaction
strengths.

We calculate impurity rf spectra by resumming an infinite
number of emitted Bogoliubov excitations, and thus capture
the nonequilibrium dynamics of polaron formation. Moreover,
our treatment is mathematically exact for completely localized
impurities.

The article is organized as follows: In Sec. II, we introduce
an effective model describing the impurity-BEC system and
discuss the time-dependent overlap required to calculate
impurity rf spectra. In Sec. III, we analyze the ground-state
properties of the system, and define the quantities we use to
analyze the more complicated dynamical problem of rf spectra.
In Sec. IV, we present the main results concerning impurity rf
spectra in three parts: first we demonstrate that the coherent
and incoherent parts of the rf signal are both constrained by
exact relations. Next, we present the microscopic calculation of
two types of rf measurements, so-called “direct” and “inverse”
rf spectroscopy, and lastly discuss nonequilibrium dynamics
of the impurity which arise in the course of the inverse rf
measurement. Finally, in Sec. V we summarize our results,
point out connections to existing experiments, and highlight
future directions of study.

II. MICROSCOPIC MODEL

We assume that the concentration of impurity atoms is
low, so we can neglect interactions between them, and discuss
individual impurity atoms. Thus, we consider a single impurity
of mass M , which has two internal (e.g., hyperfine) states
|↑〉,|↓〉, immersed in a BEC of a different type of atom of
mass m. The Hamiltonian of the system is given by

H = Hb + HI + |↑〉 ⊗ 〈↑|Hint↑ + |↓〉 ⊗ 〈↓|Hint↓, (1)

where Hb is the BEC Hamiltonian, HI = p̂2

2M
is the Hamil-

tonian of the impurity atom with momentum p̂, and Hintσ

describes a density-density interaction of the bosons with
impurity in state σ at position x̂:

Hintσ = gIB,σ ρBEC(x̂), (2)

where gIB,σ models the microscopic short-range interaction
between the atoms. Since we treat systems of ultracold atoms
for which the effective range of interactions between atoms (on
the order of the van der Waals length) is the smallest length
scale, interatomic interactions can be modeled as having zero
range [39,59], and the microscopic host-impurity interaction
can be described using the s-wave scattering length aIB,σ of
the impurity in state σ with the surrounding BEC (see also
Appendix A).

We will restrict our discussion to weakly interacting Bose
gases, well described by the Bogoliubov approximation [51],
in which the condensed ground state of the Bose gas is treated
as a static “mean field,” and excitations are modeled as a bath
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of free phonons

Hb =
∑
k �=0

ωkb
†
kbk, ωk = ck

√
1 + (kξ )2

2
, (3)

where ξ = 1/(
√

2mc) is the healing length, c the speed of
sound in the BEC, k = |k|, and where we took � = 1. In this
framework, the interaction (2) between impurity and bosons
can be rewritten as a sum of two terms. The first captures
the “mean-field” interaction of the BEC ground state with
the impurity, and the second encodes the impurity interactions
with the Bogoliubov excitations. The density of the excitations
can be expressed as a linear combination of phonon creation
and annihilation operators, and leads to the following explicit
form of the interaction Hamiltonian:

Hintσ = 2πaIB,σ

μ
n0 +

∑
k

Vkσ eik·x̂(b̂k + b̂
†
−k), (4)

with [32]

Vkσ = 2πaIBσ

√
N0

μ

(
ξk√

2 + (ξk)2

)1/2

. (5)

Here, N0 is the number of atoms in the condensate, with
the corresponding density n0, and μ = (m−1 + M−1)−1 is the
reduced mass of the impurity.

The above approximations hold so long as the impurity-
boson interaction does not significantly deplete the condensate,
leading to the condition [20,24]

|aIB,σ |ξ−1 	 1. (6)

Our treatment of the impurity-BEC system ignores the phe-
nomenology of strong-coupling physics, e.g., near a Feshbach
resonance [34], which lies beyond the parameter range (6).
The model (3), (4), with parameters (5), in its regime of
validity, constitutes a generalized Fröhlich model of polarons
in ultracold BECs [29–32].

A. rf spectroscopy as dynamical problem

A rf pulse changes the internal state of the impurity atom
without modifying its momentum. Thus, for a ↓-impurity-BEC
initial state with momentum p, energy Ei↓, denoted |i↓p〉, the
rf absorption cross section can be computed within Fermi’s
golden rule from

I (p,ω) =
∑

n

|〈n↑p|V̂rf|i↓p〉|2δ(ω − (En↑ − Ei↓)), (7)

where all states |n↑p〉 of ↑-impurity-BEC system with total
momentum p are summed over. The rf transition operator
V̂rf ∼ |↑〉〈↓| instantaneously changes the internal state of the
impurity, but the quantum mechanical state of the impurity-
BEC system is otherwise unmodified by it, i.e., the initial state
of the system |i↓p〉 is quenched. Using standard manipulations
(see e.g. [50,60]) the last expression can be rewritten as

I (p,ω) = Re
1

π

∫ ∞

0
dt eiωtAp(t), (8)

Ap(t) = eiEi↓t 〈i↑p|e−i(Hb+HI +Hint↑)t |i↑p〉, (9)

where frequency ω is measured relative to the atomic transition
frequency between states |↓〉 and |↑〉 of the bare impurity, and
where we denoted |i↑p〉 = V̂rf|i↓p〉.

Let us emphasize again: due to the instantaneous nature of
the rf spin flip, the state |i↑p〉 is identical to the initial state of
the ↓-impurity BEC system in all respects, except the internal
state of the impurity. Consequently, |i↑p〉 is different from, and
therefore higher in energy than, the ↑-impurity-BEC ground
state at momentum p,|0↑p〉. Thus, it is more convenient to
formulate the physical problem underlying the rf response
as a dynamical one rather than a traditional calculation of a
ground-state observable. Indeed, expression (9) has the form of
the quantum propagation amplitude, related to the Loschmidt
echo [61]), where an eigenstate of the HamiltonianHb + HI +
Hint↓ needs to be time evolved with Hb + HI + Hint↑. Ap(t)
can also be measured directly in the time domain using the
Ramsey sequence discussed in Ref. [50]. Analysis of (9) serves
the central goal of this paper: the calculation of impurity rf
spectra.

B. Direct and inverse rf: Momentum-resolved spectra

Two varieties of rf spectroscopy are commonly used to
probe impurity physics in cold atoms: direct and inverse
rf. In the present context, direct rf involves preparing the
system with the impurity initially in an interacting state,
i.e., in Eq. (7), the state |i↓p〉 = |0↓p〉 will correspond to the
interacting impurity-BEC state: a polaron with momentum
p. The rf pulse then flips the impurities to a final state in
which they are noninteracting, i.e., aIB,↑ ≈ 0. For the inverse rf
measurement, the scenario above is reversed, and the impurity
is initially in a noninteracting state, i.e., |i↓p〉 = |p〉↓ ⊗ |0〉 will
correspond to the decoupled momentum p bare impurity-BEC
ground state, with |0〉 the vacuum of Bogoliubov phonons, and
the rf pulse flips the impurities to an interacting final state, i.e.,
aIB,↑ �= 0.

Typically, one is interested in performing a momentum-
resolved rf measurement. In the case of direct rf, a time-of-
flight measurement following the rf pulse will directly yield
the polaron momentum distribution since, after the impurity
atoms are transferred to the ↑ state, they propagate ballistically
without being scattered by the host BEC atoms. The combined
time-of-flight and rf absorption measurements can be inter-
preted as momentum-resolved rf spectroscopy [15,45,46]. Off-
setting this advantage, the finite lifetime of the polaron [34]1

may pose a challenge to the initial adiabatic preparation of the
system required for this measurement. On the other hand, for
the inverse rf measurement, in which interactions are absent
for the initial state of the impurity, the problem of finite polaron
lifetime can be circumvented [16], but momentum resolution
is more challenging to obtain.

1For positive scattering length, the pairwise impurity-boson inter-
action potential admits a bound state, leading to an impurity-BEC
ground state formed out of bound bosons, that is much lower in
energy than the repulsive polaron which is formed out of scattered
bosons. Consequently, the repulsive polaron is a metastable state with
a finite lifetime after which it will decay into the molecular state.
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We propose the following momentum-resolved inverse
rf measurement. An external force that acts selectively on
impurity atoms (e.g., through a magnetic field gradient) can
be used to impart a finite initial momentum

p0 = −∇Vext,↓�T, (10)

where p0, the center of the momentum distribution of ↓ impuri-
ties, is the momentum transferred by applying a state-selective
external potential gradient ∇Vext,↓ for a time �T to the
impurities. A rf pulse would then transfer the initially weakly
interacting impurities to an interacting final state. The known
transferred momentum p0, combined with the absorption of
rf, would yield a momentum-resolved rf spectrum. Since the
experiment is done at a finite concentration of impurity atoms
to obtain the total absorption cross section I (p,ω) would need
to be averaged over the impurity momentum distribution (see,
e.g., the Supplemental Materials of Ref. [12]), with width
given by the thermal de Broglie wavelength, or by the inverse
of the distance between impurity atoms (if they are fermionic
and obey the Pauli exclusion principle). Typically, the width is
expected to be small due to the low temperature and diluteness
of the impurities. The advantage of such a measurement is its
insensitivity to the polaron lifetime as it requires no adiabatic
preparation [16], while also allowing a momentum-resolved
measurement, but at the cost of repeated measurements to
resolve a finite-momentum range.

III. POLARON GROUND STATE IN BEC

In order to characterize polaronic phenomena manifested
in rf spectra, it is useful to review the ground-state properties
of polarons in BECs. It is possible to tune interactions between
ultracold atoms to be effectively attractive or repulsive using
Feshbach resonances [38]. Correspondingly, the Bose polaron
comes in two varieties associated with effective attraction
(aIB,σ < 0) and repulsion (aIB,σ > 0) between the impurity and
the BEC. Moreover, at strong coupling there is an additional
transition of the attractive polaron into a bound molecular
state [34]. We will only discuss the regime of weak impurity-
Bose interactions which satisfy the condition (6) and are
captured by our Fröhlich model (3), (4), with parameters (5).

We note that the authors of Ref. [34] also considered the
spectral properties of impurities in a BEC, but considered the
regime of strong impurity-Bose coupling which occurs in the
vicinity of the Feshbach resonance. Their approach, inspired
in part by Chevy’s variational wave-function description of
fermionic polarons [62,63], separates the spectral contribu-
tions of the bound molecules and the repulsive polarons on the
repulsive side of the Feshbach resonance (aIB,σ > 0). How-
ever, their selective resummation scheme does not reduce to the
exact solution in the case of a heavy impurity, and consequently
misses the physics of the orthogonality catastrophe [64] in low
dimensions. Thus, it does not accurately describe the precise
lineshape of the incoherent part of rf spectra.

Although the analysis of the ground state of the polaron
model has been carried out previously in Refs. [65,66], we
present it here to motivate our later study of dynamics as a
generalization of the approach to the ground state.

A. Lee-Low-Pines transformation

There exists a canonical transformation introduced by Lee,
Low, and Pines [67] (LLP) that singles out the conserved total
momentum of the system:

H̃ = eiSHe−iS, with S = x̂ ·
∑

k

kb̂
†
kb̂k, (11)

eiS b̂ke
−iS = b̂ke

−ik·x, eiS p̂e−iS = p̂ −
∑

k

kb̂
†
kb̂k. (12)

We may write the transformed Hamiltonian as

H̃ = 1

2M

(
p −

∑
k

kb̂
†
kb̂k

)2

+
∑

k

Vk(b̂†k + b̂−k)

+
∑

k

ωkb̂
†
kb̂k, (13)

where without loss of generality we projected the full Hamil-
tonian onto the sector σ = ↑; the same can be done in the other
sector.

The LLP transformation eliminates the impurity degree
of freedom by isolating the conserved total momentum p
of the system which becomes a parameter of the effective
Hamiltonian (13). The simplification comes at the cost of
an induced interaction between the Bogoliubov excitations,
which enocodes the quantum dynamics of the impurity, and
vanishes in the M → ∞ limit of a static localized impurity.

It was argued in Refs. [68,69] that the existence of a finite-
momentum ground state implies symmetry breaking and,
consequently, a phase transition corresponding to the “self-
localization” transition of Landau and Pekar [2]. Although we
will discuss states of the Hamiltonian (13) with arbitrary total
momentum p, it was established rigorously in Ref. [70] that
a large class of Fröhlich-type models with gapless phonons,
including the present one, can only admit a ground state with
p = 0.

We will consider eigenstates of Hamiltonian (13) with finite
total momentum p, which are not “true” global ground states
in the above sense, but are nonetheless required to calculate
momentum-resolved rf spectra using the time-dependent
overlap (9). The symmetry breaking in the present context is
not spontaneous, but rather due to the injection of an impurity
with finite momentum into the BEC. We will use the term
“polaron ground state” to refer to the lowest-energy eigenstate
of Hamiltonian (13) with a given total momentum p. We
approximate such states using a mean-field treatment.

B. Mean-field polaron solution

For a localized impurity M → ∞, Hamiltonian (13)
decouples into a sum of independent harmonic oscillators,
each of which has a coherent state as its ground state [71].
Consequently, the many-body ground state in this limit is a
decoupled product of coherent states:

|0M→∞〉 =
∏

k

eβkb̂
†
k−β∗

k b̂k |0〉, βk = −Vk

ωk
. (14)
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Moreover, we expect by continuity2 that for an impurity
with a large, finite mass M , we can approximate the true ground
state by an optimally chosen product of coherent states:

|0↓p〉 =
∏

k

eαMF
k b̂

†
k−(αMF

k )∗b̂k |0〉, (15)

with αMF
k determined by minimizing the total energy of the

system E({αk}) = 〈0↓p|H̃|0↓p〉, which can be cast as a mean-
field self-consistency condition

αMF
k = − Vk

ωk + k2

2M
− k‖

M

(
p − �

[
αMF

k

]) ,

(16)
�[αk] ≡

∑
k

k‖|αk|2,

where we denote the total phonon momentum projected
in the direction k‖ ≡ p

|p| by the parameter �. The set of
self-consistency conditions (17) can then be reformulated as a
single scalar equation for �:

� =
∑

k

k‖V 2
k(

ωk + k2

2M
− k‖

M
(p − �)

)2 . (17)

Having approximated the polaron ground-state wave function
using Eq. (17), we can calculate the polaron binding energy,
effective mass, and the overlap with the bare impurity.

C. Binding energy of the polaron

The binding energy is defined as the difference between the
ground-state energy of the polaron at zero momentum and the
energy of a BEC with a noninteracting impurity atom:

EB = 〈0↑p=0|H|0↑p=0〉 − 〈0| ⊗ 〈p = 0|Hb + HI |0〉
× ⊗ |p = 0〉

= 〈0↑p=0|H|0↑p=0〉 − 0

=
∑

k

{[
1 + k‖

M
�

(
ωk + k2

2M

)−1]−1 − 2
}

(
ωk + k2

2M
+ k‖

M
�

) V 2
k + �2

2M
, (18)

where we took an expectation value using the state (15)
optimized according to Eq. (17). Note that we did not include
the mean-field energy of the interactions between condensed
bosons and the impurity EMF = 2πaIB,σ n0

μ
in the binding energy.

The binding energy is a well-defined physical observable,
which must moreover be expressible in terms of the s-wave
scattering length, by virtue of the universality of interactions
in cold atoms (see Appendix A). However, a naive evaluation
of the sum in Eq. (18) leads to an ultraviolet (UV) divergence.
The appearance of UV divergences in physical observables is a
direct consequence of poorly approximating the fundamentally
different physics at atomic length scales. Indeed, our zero-
range model (2) pathologically couples microscopic degrees

2Note that unlike for a fermionic bath, for which the infinitely
massive impurity is a singular limit displaying the orthogonality
catastrophe, for bosons the infinite-mass limit is smoothly connected
to a system with a heavy impurity; this can be verified by examining
the effect of recoil on the density of states [72].

of freedom to the physically relevant long-distance degrees of
freedom. However, in order to describe universal properties
which are insensitive to microscopic physics, we require a
means of safely and justifiably decoupling microscopic and
macroscopic scales.

To this end, we found it most convenient to evaluate Eq. (18)
using dimensional regularization [73], which is equivalent to
the regularization scheme based on a momentum cutoff used in
Refs. [20,32,34]. The regularization amounts to the subtraction
of the leading divergence in the binding energy which takes
the form

Ediv
B → −

(
2πaIB,σ

μ

)2

n0

∑
k

2μ

k2
. (19)

Physically such a subtraction can be justified by considering
the total interaction energy of the BEC and impurity:

Eint = EB + EMF (20)

and expressing the mean-field interaction energy of the
condensate in terms of the “bare” coupling to the impurity
gIB,σ from Eq. (2):

EMF = gIB,σ n0. (21)

The bare coupling can be related to the physical impurity-
boson s-wave scattering length using the Lippman-Schwinger
equation

1

gIB,σ

= μ

2πaIB,σ

−
∑

k

2μ

k2
, (22)

which yields the following expression for the mean-field
energy, accurate to second order in aIB,σ :

EMF = 2πaIB,σ n0

μ
+

(
2πaIB,σ

μ

)2

n0

∑
k

2μ

k2
. (23)

Indeed, the second term on the right-hand side is precisely the
“subtracted infinity” required to eliminate the divergence (19).
Thus, we obtain a well-behaved binding energy which can
be expressed in closed form for a localized impurity with
M → ∞,

EM→∞
B,reg. = −2

√
2πa2

IB,σ n0

μξ
< 0, (24)

and must be evaluated numerically for finite-mass impurities.
The details of the regularization procedure used to obtain
Eq. (24) are presented in Appendix A.

We will later need the generalized binding energy for a
finite-momentum polaron, i.e., Eq. (18) with p �= 0. As shown
in Sec. IV B, the latter quantity will contribute a shift of the rf
signal relative to the atomic transition rate between ↑ and ↓ of
the bare impurity.

D. Effective mass of the polaron

In the absence of interactions, the bare impurity propagates
as a free particle with a quadratic dispersion εI = p2

2M
. It is

useful to conceptualize the polaron also as a propagating
object, a wave packet, composed of an impurity dragging a
cloud of bosonic excitations. Such a dressing of the impurity
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will naturally imply propagation with an effectively heavier
mass. We can identify the effective mass of the polaron from its
group velocity by requiring the polaron dispersion to take the
form εpolaron = p2

2M∗ . Then, from the definition of the polaron
group velocity we find

vpolaron ≡ ∂

∂p
εpolaron = p

M∗

= ∂p(〈0↑p|H̃|0↑p〉 − 〈0↑p=0|H̃|0↑p=0〉),
p

M∗ = p

M
− 〈0↑p|

∑
k

kb̂
†
kb̂k|0↑p〉, (25)

where in the second line we expressed the polaron dispersion as
the energy difference between the system at finite momentum
p and zero momentum. We can express Eq. (25) in terms of
the mean-field solution to find

M

M∗ = 1 − �

p
, (26)

with the parameter �, the total momentum of the bosons,
obtained by solving Eq. (17).

Here, we note an interesting feature of the mean-field
treatment above. One finds that for a certain parameter regime,
no mean-field solution can be found due to a singularity
in the self-consistency (17). The singularity arises when the
denominator of the right-hand side of Eq. (17) admits a zero
for small k:

0 = ωk + k2

2M
− k‖

M

(
p − �

[
αMF

k

]) k	1/ξ−−−→ ck − pk‖
M∗ ,

where we used Eq. (26) to obtain the right-hand side.
Thus, we find that the mean-field treatment breaks down

when

v∗ = p

M∗ > c. (27)

The criterion (27) is reminiscent of Landau’s criterion for
dissipationless transport through a superfluid [20], with one
important difference. The usual criterion is a purely kinematic
bound obtained by weighing the relative advantage for an
impurity to emit excitations, and does not include the effects
of interactions. The remarkable feature of Eq. (27) is the role
of interactions: it is not the bare impurity velocity that is
compared to the sound speed, but rather the effective polaron
velocity. Due to the strong dependence of the effective mass on
interactions, one finds that for a large enough interaction the
polaron is subsonic, although the corresponding bare impurity
in the absence of interactions would be supersonic.

In Fig. 2, we plot the critical strength of interactions for
which we find polaronic solutions. We interpret the lack of
solutions in the unshaded region of the figure as a breakdown
of our ansatz. Our ansatz implicitly assumes a well-defined
polaronic quasiparticle, which fails to describe the impurity at
supersonic velocities; indeed, the authors of Ref. [34] reported
a decay of the Bose polaron into the continuum, above the
critical velocity given by Landau’s criterion.

E. Quasiparticle residue

The quasiparticle residue directly quantifies the component
of the bare impurity that remains in the interacting ground

FIG. 2. Mean-field solutions are obtained in the shaded region,
while in the upper unshaded region no solutions can be found
within our ansatz. The line separating the regions corresponds to the
condition (27) reminiscent of the Landau criterion. In the absence of
interactions, the separation occurs at the usual subsonic to supersonic
transition point p/M = c.

state. Although it is usually extracted from the residue of the
pole of the impurity Green’s function [74], it may also be
obtained as the overlap between the free and dressed impurity
wave function. Since the impurity degrees of freedom drop out
of the problem due to the Lee-Low-Pines transformation, we
obtain the quasiparticle weight from the overlap of the phonon
vacuum |0〉 and the interacting phonon ground state |0↓,p〉:

Z = |〈0|0↑p〉|2

= exp

[
−

∑
k

V 2
k[

ωk + k2

2M
− k‖

M

(
p − �

[
αMF

k

])]2

]

= exp

[
−

∑
k

V 2
k(

ωk + k2

2M
− pk‖

M∗
)2

]
, (28)

where we used Eq. (26) in the last line to relate the quasiparticle
weight and the effective mass.

In Fig. 3, we plotted the quasiparticle residue on a
logarithmic scale, in the three-dimensional (3D) case as a
function of the impurity-BEC mass ratio, and interaction
strength; strong interactions as well as small mass ratio
quickly suppresses Z. One finds that in spatial dimensions
D = 2,3, a quantum impurity in a weakly interacting BEC
always forms a quasiparticle, although with exponentially
suppressed weight for growing interaction strength. Moreover,
at a given impurity-BEC interaction strength, quasiparticle
residue is larger for heavier impurities, and retains a finite
value even in the M → ∞ limit. This should be contrasted to
impurities in a Fermi gas with quasiparticle residue that has the
opposite dependence on mass. In particular, due to Anderson’s
orthogonality catastrophe (OC) [64], the quasiparticle residue
Z = 0 for localized impurities with M → ∞ in a Fermi sea in
one, two, and three dimensions. Interestingly, for D = 1, the
expression (28) contains an infrared divergence which again
leads to Z = 0, and signals OC even for localized impurities in
one-dimensional (1D) Bose gases. The mechanism of the OC,
namely, the catastrophic emission of excitations in response to
an impurity, occurs independently of the exchange statistics of
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FIG. 3. (Color online) (a) Log plot of the quasiparticle weight
(which is exponentially small) as a function of interaction strength,
represented by the dimensionless quantity aIB,σ

√
n0ξ , i.e., ratio

between the mean-free path of the impurity and the length scale
over which bosons are localized, and mass ratio between impurity
and bosons mr = M/m. For any moderate interaction strength,
the quasiparticle weight is almost negligible, corresponding to an
extremely strong renormalization of the impurity. (b) Quasiparticle
weight Z plotted as a function of interaction strength aIB,σ

√
n0ξ for

a fixed mass ratio of mr = 2.5.

the many-body environment and is mainly due to the kinematic
confinement of 1D systems [75].

We will in Sec. IV show that the quasiparticle residue Z is
directly measurable via rf spectroscopy, and manifests as the
weight of the coherent part of the signal.

IV. ANALYSIS OF RF SPECTRA

In Sec. II A, we showed that in order to obtain rf spectra,
the relevant quantity is the time-dependent overlap (9), i.e., the
propagation amplitude of the initial ↓-impurity-BEC state by
the Hamiltonian associated with the ↑-impurity-BEC system:

Ap(t) = eiEi↓t 〈i↑p|e−iH̃t |i↑p〉, (29)

where we used |i↑p〉 = V̂rf|i↓p〉, with |i↓p〉 the initial state of
the ↓-impurity-BEC system at momentum p energy Ei↓, and
V̂rf = |↑〉〈↓|. Note that in order to use the LLP transformed
↑-impurity-BEC Hamiltonian, we must consider the effect of
the transformation on |i↑p〉, however, in the cases of interest to
us |i↑p〉 involves the phonon vacuum, which is invariant under
LLP.

The rf spectral response of the impurity is simply obtained
as the Fourier transform of Eq. (29). First, in Sec. IV A, we

discuss general features of the time-dependent overlap (29). In
Secs. IV B and IV C, we explicitly calculate the overlap and
corresponding rf spectra for direct and inverse rf protocols.

A. Generic features of the rf response

Starting from a straightforward Lehmann expansion [74]
of the rf response, and resolving the identity in terms of
eigenstates |m↑p〉 of the time-evolving Hamiltonian, with
energy Em↑, we obtain

I (p,ω) = Re
1

π

∫ ∞

0
dt ei(ω+Ei↓)t 〈i↑p|e−iH̃↑t |i↑p〉

=
∑
m

Re
1

π

∫ ∞

0
dt ei(ω+Ei↓−Em↑)t |〈m↑p|i↑p〉|2

= Re
1

π

∫ ∞

0
dt ei(ω−�0)tZ↑↓

×
⎛
⎝1 +

∑
m�=0

ei�mt |〈m↑p|i↑p〉|2
Z↑↓

⎞
⎠ , (30)

with

Z↑↓ = |〈0↑p|i↑p〉|2, �m = Em↑ − Ei↓, (31)

where |0↑p〉 is the ground state of the ↑-impurity-BEC
Hamiltonian (13).

We expect the low-energy contribution to I (p,ω) to be
dominated by the long-time limit of the integrand for which,
due to dephasing, we find

I

(
p,ω 	 c

ξ

)
= lim

t→∞ Z↑↓

⎛
⎝1 +

∑
m�=0

ei�mt |〈m↑p|i↑p〉|2
Z↑↓

⎞
⎠

→ Z↑↓. (32)

This dephasing mechanism separates a coherent and incoher-
ent contribution which constitute the total rf signal:

I (p,ω) = Icoh(p,ω) + Iincoh(p,ω), (33)

with the coherent part given by

Icoh(p,ω − �0) = Z↑↓δ(ω − �0). (34)

From Eq. (31), we find that the weight of the coherent
peak of the impurity rf response is determined by the overlap
between the initial state of the ↓-impurity-BEC system, and
the ground state of the final ↑-impurity-BEC system (the
rf operator V̂rf abruptly changes the impurity internal state,
but otherwise leaves the impurity-BEC state unmodified, i.e.,
|ip↓〉 → |ip↑〉 must be thought of as a sudden quench). The
center of the peak occurs at the energy difference between the
initial and final states E0,↑ − Ei↓ measured with respect to the
bare atomic transition rate of the impurity between its internal
states.

In the case of the direct and inverse rf protocols considered
here, the weight of the coherent peak is in fact the quasiparticle
weight Z defined in Eq. (28). Indeed, for the direct rf protocol,
the impurity is initially in the polaronic ground state |i↓p〉 =
|0↓p〉, while the ground state of the noninteracting ↑-impurity-
BEC system is decoupled, i.e., in this case |0↑p〉 = |p〉↑ ⊗ |0〉,
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thus

Zdirect rf
↑↓ = |〈0|0↑p〉|2. (35)

For the inverse rf protocol, the ↓ impurity is initially
noninteracting with the bosons, and after the rf spin flip,
|i↑p〉 = |p〉↑ ⊗ |0〉, while the ground state of the interacting
↑-impurity-BEC system is the polaronic ground state |0↑p〉,
leading to

Zinverse rf
↑↓ = |〈0↑p|0〉|2. (36)

Since the impurity degrees of freedom drop out of the problem
due to the LLP transformation, in both Eqs. (35) and (36), the
overlap between initial state and final ground state defined in
Eq. (31) reduces to the overlap of the phonon vacuum |0〉 and
the interacting phonon ground state |0↑p〉 (see also Sec. III E).

Although the Lehmann analysis (30) demonstrates the
existence of an incoherent contribution to the rf signal, it does
not specify its structure without additional knowledge about
the many-body eigenstates of the system. Interestingly, again
for the particular case where one of the two internal states of
the impurity is noninteracting with the BEC, the asymptotic
behavior of the incoherent part of the rf is also constrained by
exact relations.

This fact was demonstrated, e.g., by the authors of
Refs. [56,58], by relating the high-frequency impurity rf
response to the momentum distribution of the many-body
system n(k). Fermi’s golden rule for the rf transition rate
of impurity atoms between noninteracting and interacting
internal states can be expressed as the convolution [58] of the
free propagator of the impurity in the noninteracting state, and
its spectral function A(k,ω) = −2 ImG(k,ω) in the interacting
state, where G is the interacting Green’s function:

I (ω) =
∑

k

∫
d�A(k,�)n(�)δ(� − ω − εk). (37)

Here, n(�) is the distribution function of the many-body
environment at energy �. To isolate the high-frequency
contribution, one can integrate the expression (37) by parts,
and use the sum rule

∫
d�A(k,�)n(�) = n(k) [74] to obtain

I (ω → ∞) ≈
∑

k

n(k → ∞)δ(ω − εk), (38)

where n(k) is the momentum distribution of the many-body
environment of the impurity. The authors of Refs. [56,58]
considered rf spectroscopy of fermions, but in the expression
above, exchange statistics only enter through n(k). Interest-
ingly, the large-momenta structure of n(k), which determines
the high-frequency rf response, is insensitive to exchange
statistics [57,76] and allows us to directly generalize the
argument for bosons. In particular, for large momenta n(k)
displays a universal power-law tail [52,53,57,77]

n(k → ∞) → C/k4. (39)

This form was discovered by Tan [52,53] who identified the
“contact” C as the density of pairs of atoms, whose binary
collisions are responsible for the emergence of this universal
feature. The asymptotic behavior (39) of the momentum
distribution in turn constrains the asymptotic behavior of the

rf response:

I (ω → ∞) ∝
{
Cω−3/2 in 3D,

Cω−2 in 2D,
(40)

leading to universal high-frequency rf tails that have been
noted in various contexts for systems of interacting bosons
and fermions [54–58].

Dimensionality of the system plays a crucial role in
determining the precise form of the rf singal. For the high-
frequency incoherent part of the rf discussed above, different
power-law tails emerged in 2D and 3D, due to the dimensional
dependence of the many-body density of states. Moreover,
as discussed in Sec. III E, the quasiparticle weight Z, which
controls the coherent part of the rf signal, attains a finite
albeit exponentially small value in 2D and 3D, while it
displays a characteristic infrared divergence in 1D. The latter
phenomenon signals the orthogonality catastrophe intrinsic
to the kinematically constrained phase space of 1D systems.
Here, the spectrum is dominated by a power-law decay (the
1D generalization of the incoherent part adds a subleading 1/ω

correction to the leading log divergence):

I (ω − �) ≈ C|ω − �|−α, (41)

where the exponent α(aIB) depends on the phase shift induced
by scattering of the impurity [50] and within our formalism is
given by the first-order Born result α ∼ n2

0a
2
IB,↑.

With this general phenomenology of the rf response in
mind, we performed a detailed microscopic calculation of
the time-dependent overlap (9) by generalizing the mean-field
approach to polaron ground states of Sec. III to the problem
of impurity dynamics.

B. Direct rf: Transition from interacting to noninteracting state

In the direct rf measurement, the system is first adiabatically
prepared in the polaronic ground state, i.e., |i↓p〉 = |0↓p〉.
Since the system is noninteracting in its final state, the
time-evolving Hamiltonian in this case is simply that of free
Bogoliubov bosons Hb = ∑

k ωkb̂
†
kb̂k.

We showed in Sec. III that the ground state can be approx-
imated as a product of coherent states [see Eq. (15)], which
moreover becomes exact in the case of an infinitely heavy
impurity. Thus, the problem of calculating the time-dependent
overlap reduces to free evolution of product coherent states:

Ap(t) = 〈0↑p|e−iHbt |0↑p〉
=

∏
k

〈0|eαMF
k b̂

†
ke−iωk t−(αMF

k )∗b̂keiωk t |0〉, (42)

with αMF
k obtained from solving Eq. (17); in the limit of a

localized impurity with M → ∞, αk → − Vk
ωk

, and there one
obtains the exact solution to the time-dependent overlap.

We find that the overlap amplitude decays quickly from
unity to an exponentially small limiting value with an
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oscillatory envelope:

Ap(t → ∞) → Ze−i�t , � = �1 + �2,

Z = exp

[
−

∑
k

V 2
k(

ωk + k2

2M
− p·k

M∗
)2

]
,

�1 =
∑

k

V 2
k(

ωk + k2

2M
− p·k

M∗
)2 + 2π

μ
n0aIB,σ ,

�2 = p2

2M

(
1 − M

M∗

)
. (43)

Here, Z is the quasiparticle residue defined in Eq. (28), and is
in agreement with the general analysis of Sec. IV A. � denotes
the energy difference between interacting and noninteracting
ground states, and consists of two contributions: �1 includes
the “mean-field” shift due to the interaction of impurity
with the static BEC ground state, and the finite-momentum
generalization of the binding energy defined in Eq. (18), and
�2 which accounts for the change in effective mass of the
impurity. As in the ground-state case, the (generalized) binding
energy was regularized as described in Appendix A.

The rf absorption spectrum can be simply obtained by
Fourier transforming Eq. (42). We present a few sample spectra
in Fig. 4. The rf absorption spectrum of the impurity contains
a coherent and incoherent contribution as expected from the

FIG. 4. (Color online) Radio-frequency spectra for different ini-
tial impurity interaction strengths. The quantity aIB,σ

√
n0ξ is a

dimensionless ratio between the mean-free path of the impurity and
the length scale over which bosons are localized (a noninteracting
BEC has completely delocalized bosons). We observe that the spectral
weight starts almost entirely in the coherent part of the spectrum,
corresponding to a nearly free impurity, and gradually shifts to
higher energies as more excitations of the BEC are generated by
increasing impurity-Bose interactions. The spectra presented above
were obtained for an experimentally relevant mass ratio M/m of 2.5;
there is a weak dependence of the spectra on mass ratio, and is not
observable on the scale shown here.

general analysis presented in Sec. IV A:

I (p,ω) = Icoh(p,ω) + Iincoh(p,ω).

The coherent peak is determined entirely by the long-time
limit of Eq. (42) which is the quasiparticle residue defined in
Eq. (28):

Icoh(p,ω − �) = Zδ(ω − �), (44)

with � defined in Eq. (43).
The spectrum contains additionally a broad incoherent

part corresponding to the short-time dynamics of polaron
destruction due to excitations generated when the impurity-
BEC interactions are removed in the course of the direct rf:

Iincoh(p,ω − �) = Re

π

∫ ∞

0
dt ′ei(ω−�)t [Ap(t)ei�t − Z]. (45)

For concreteness, we present the leading high- and low-
frequency behaviors of the rf spectrum in the exactly solvable
case of a localized impurity; it is straightforward but tedious to
obtain identical results for mobile impurities. By expanding the
exponential in Eq. (45) to leading order, we can approximate
Eq. (45) using

Iincoh(ω − �) ≈ Re
Z

π

∫ ∞

0
dt ei(ω−�)t

∑
k

∣∣∣∣Vk

ωk

∣∣∣∣
2

e−iωkt

= Z
∑

k

∣∣∣∣Vk

ωk

∣∣∣∣
2

δ(ω − � − ωk)

= Z

∫
d�

2π2

(
√

2�2 + 1 − 1)d/2

�2
√

2�2 + 1
δ(ω − � − �)

= Z

2π2

[
√

2(ω − �)2 + 1 − 1]d/2

(ω − �)2
√

2(ω − �)2 + 1
. (46)

Thus, we find the following limiting behaviors of the incoher-
ent rf response:

Iincoh

(
ω − � � c

ξ

)
∝

{
(ω − �)−3/2 in 3D,

(ω − �)−2 in 2D,
(47)

Iincoh

(
ω − � 	 c

ξ

)
∝

{
(ω − �) in 3D,

C1 + C2(ω − �)2 in 2D.
(48)

We see that the high-frequency tails of the rf spectra in
Eqs. (45)–(47) are in agreement with the general functional
form required by Eq. (40). This provides a nontrivial consis-
tency check to our microscopic approach. We now generalize
our approach to consider the more complicated dynamics
involved in the inverse rf measurement.

C. Inverse rf: Transition from noninteracting
to interacting state

In the inverse rf measurement impurities are transferred
from an initially noninteracting state to an interacting state,
with aIB,↑ finite and aIB,↓ ≈ 0. We again consider the time-
dependent overlap (9), but the associated dynamics can not
be reduced to free evolution as in the direct rf in Sec. IV B.
However, the case of the localized impurity is once again

053617-9



SHASHI, GRUSDT, ABANIN, AND DEMLER PHYSICAL REVIEW A 89, 053617 (2014)

amenable to an exact solution, and inspires an approximate
treatment of the mobile impurity.

1. Dynamics of a localized impurity

Like the ground state of the localized impurity-BEC system,
the time-evolving wave function of the system is also a product
of coherent states, but with time-dependent parameters. The
initial free Hamiltonian Hb is modified after the switch on
of interactions to Hb + Hint. Crucially, the two Hamiltonians
are related by a canonical transformation. We introduce the
displacement operators D(α) = e

∑
k(αkb̂

†
k−α∗

k b̂k) which shift the
mode operators

D−1(α)b̂kD(α) = b̂k + αk.

Then, for the appropriate choice of shift αk = Vk
ωk

, we find
D−1(Hb + Hint)D = Hb + �, with � a constant number.
Thus, we can directly solve the time evolution of the initial
state using the displacement operators as follows:

|φM→∞(t)〉 = ei(Hb+Hint)t |0〉

= e−i�tD−1

(
Vk

ωk

)
eiHbtD

(
Vk

ωk

)
|0〉

= e−i�t
∏

k

e
Vk
ωk

(b̂k−b̂
†
k)
e

Vk
ωk

(b̂†ke−iωk t−b̂keiωk t )|0〉,

leading to an expression for the wave function of the form

|φM→∞(t)〉 = e−�(t)−i�t
∏

k

e
Vk
ωk

(e−iωk t−1)b†k |0〉, (49)

with

�(t) ≡
∑

k

∣∣∣∣Vk

ωk

∣∣∣∣
2

(1 − e−iωkt ), � ≡
∑

k

V 2
k

ωk
+ 2π

μ
aIB,↓n0.

2. Dynamics of a finite-mass impurity

Inspired by the exact time-evolving wave function of the
localized impurity-BEC system, a product of time-dependent
coherent states, we make an analogous ansatz for finite-mass
impurity-BEC system:

|φ(t)〉 = e−iχ(t)e
∑

k αk(t)b̂†k− 1
2 |αk(t)|2 |0〉. (50)

The variational wave function (50) represents a mean-field ap-
proach to dynamics: the wave function factorizes for individual
phonons, so each phonon indexed by momentum k evolves
in an effective time-dependent oscillator Hamiltonian, whose
frequency ωk(t) is renormalized by the other phonon modes.

Projecting the Schrödinger equation onto the variational
state (15) (see, e.g., [78,79]) we obtain equations of motion
for the variational coherent state parameters:

χ̇(t) = p2

2M
−

∑
k,k′

k · k′

2M
|αk|2|αk′ |2 + 1

2

∑
k

Vk(αk + α∗
k),

iα̇k(t) =
(

�k − p · k
M

+ k
M

·
∑

k′
k′|αk′(t)|2

)
αk(t) + Vk,

(51)

with �k = ωk + k2

2M
.

We solved the differential Eq. (51) numerically using a
standard computational package.3 We found that the inverse
rf spectrum is qualitatively quite similar to the direct rf
spectrum calculated in the previous subsection. In light of
the general phenomenology of rf responses presented in
Sec. IV A, the similarity between the two rf spectra is not
surprising since both involve transitions between interacting
and noninteracting impurity-BEC states, which constrains the
high- and low-frequency parts of the rf response.

3. Dynamical ansatz as optimal estimate
of time-dependent overlap

Here, we demonstrate that the time-dependent mean-field
approach, which is tailored to solve the general dynamics
of the interacting Hamiltonian, gives a good semiclassical
approximation to the specific propagation amplitude in Eq. (9).
Using the LLP transformation, this amplitude can be written
as

Ap(t) = 〈i↑p|e−iHt |i↑p〉 = 〈0|e−iHt |0〉
= 〈0|e−i{ 1

2M
(p−∑

k kb̂
†
kb̂k)2+∑

k[ωkb̂
†
kb̂k+Vk(b̂†k+b̂k)]}t |0〉, (52)

where the phonon vacuum |0〉 is time evolved by the Hamil-
tonian (13) for a given time t , and the overlap of the resulting
state is measured with respect to the initial vacuum.

As an alternative approach to calculating such a propagation
amplitude, we may formulate Eq. (52) as a path integral, i.e.,
a sum over configurations of the semiclassical velocity profile
of the impurity, and compare the mean-field ansatz with the
saddle point of such a path integral (see Appendix B for more
details).

We obtain the path-integral formulation by introducing
into the time-dependent overlap (52) a classical field ϕ(t),
corresponding to the fluctuating impurity velocity. This is
justified by the Hubbard-Stratonovich (HS) identity, which
is typically used in equilibrium quantum field theory to
decouple interacting systems by using a random variable to
mimic fluctuations of the system. In a similar spirit, we use
ϕ(t) to decouple the interaction between bosons in Eq. (52)
and introduce a corresponding path integral to sum over all
configurations of ϕ(t):

Ap(t) =
∫

D[ϕ(t)]ei
∫ t

0 dt ′ M
2 ϕ(t ′)2

×〈0|e−i
∫ t

0 dt ′{ϕ(t ′)·(p−∑
k kb̂

†
kb̂k)−∑

k[ωkb̂
†
kb̂k+Vk(b̂†k+b̂k)]}|0〉.

(53)

As seen above, the HS decoupling reduces the originally inter-
acting bosonic Hamiltonian to a quadratic form, allowing us to
integrate out the bosons exactly. We may then approximate the
resulting path integral, now over ϕ(t) alone, by a saddle-point

3Solutions of Eqs. (51) are naively UV divergent. Imposing a sharp
cutoff gives rise to unphysical oscillations at the cutoff frequency.
To avoid this problem, we introduced a soft cutoff Vk → Vke

−k2/2�2
,

choosing � large enough to obtain converged results for relevant
observables.
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FIG. 5. (Color online) (a) Real part of the (rescaled) solution
of saddle-point equation (54) plotted for mr = 75.0,

√
n0ξaIB,σ =

0.25, p/Mc = 0.6; we obtained a family of trajectories parametrized
by tf , the total propagation time for which the amplitude (52) was
required. Each individual trajectory is a time-evolving function of
t < tf, and can be interpreted (after rescaling) as the time-dependent
momentum of the impurity. Note the symmetry of the saddle-point
trajectories around t = tf/2, which arises because they optimize
Eq. (52), the amplitude for a time-evolving state to return to its initial
value. This is in contrast to the time-dependent mean-field solution
which simply propagates forward to the steady state at time tf (cf.
Fig. 6). (b) Imaginary part of the saddle-point trajectories are shown
for the same parameters. The imaginary part shares the symmetry
property of the real part, but is typically smaller in magnitude. While it
does not lend itself to direct interpretation as the physical momentum
of the impurity, it is necessary to properly optimize the propagation
amplitude when expressed as a path integral equation (53).

treatment

ϕs(t
′) = p

M
+

∑
k

V 2
k k
M

∫ t

t ′
dt1

∫ t ′

0
dt2e

−i
∫ t1
t2

dt ′′[ωk−k·ϕs (t ′′)]
.

(54)

The details of our derivation of Eq. (53) and its saddle-
point equation (54) are provided in Appendix B. Our saddle-
point approximation yields an optimal ϕs(t), shown in Fig. 5,
which we can then use to evaluate the time-dependent overlap
Eq. (52). We checked that this approach is in agreement with
the results of the time-dependent mean-field analysis, but at
significantly greater numerical effort.

Thus, we conclude that the mean-field ansatz for the
dynamics of the impurity optimally estimates the rf response.
In the remainder, we present the main features of the dynamical
mean-field solution.

FIG. 6. (Color online) Impurity momentum as a function of t

after switching on interactions. Strong interactions lead to small
asymptotic impurity momentum (corresponding to heavy effective
mass). Additionally, the momentum develops decaying oscillations
associated with internal mode of the polaron.

4. Inverse rf and nonequilbrium dynamics

Although the prominent features of the rf spectrum appear
identical for the direct and inverse rf, there are differences in the
details: both measurements involve Hamiltonian evolution of a
noneigenstate [see Eq. (9)], however, the inverse measurement
involves more complicated dynamics compared to the direct
rf; the dynamics of the latter is trivially determined by a
noninteracting Hamiltonian (see Sec. IV B). However, due to
the strong impurity renormalization by BEC interactions, the
complicated nonequilibrium dynamics of the impurity does not
manifest in spectra, which are enveloped by the exponentially
small spectral weight Z [see Eq. (45)].

Fortunately, our dynamical mean-field solution (51) ap-
proximates the full time dependence of the system and can be
used to study observables beyond the rf spectrum. We studied
the time evolution of the momentum of the impurity, following
the abrupt switch on of interactions. The results plotted in
Fig. 6 show how the impurity relaxes to a steady state at
long times. For weak interactions, the impurity loses a small
portion of its momentum to the bosonic bath, corresponding to
a minimally dressed polaron with large quasiparticle weight.
The steady-state momentum of the impurity decreases rapidly
with interactions which we interpret as the onset of strong
dressing and a reduction in quasiparticle weight. We also
point out a surprising feature emerging at strong interactions:
decaying oscillations in the impurity momentum. We con-
jecture that quenching the impurity interaction to large values
excites a long-lived internal excitation of the emergent polaron;
unfortunately, no signature of this phenomenon manifests in
the rf spectrum due to exponential suppression of weight for
strong interactions, but it would be interesting to study this
behavior in an experiment directly probing the nonequilibrium
dynamics of the impurity, e.g., exciting the internal structure
of the polaron by resonantly driving it in a trap. Note that
such transient oscillations in the relaxation dynamics of
impurity-bath systems appear to be a generic phenomenon
and have been observed previously, e.g., Refs. [80,81].
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FIG. 7. (Color online) The asymptotic velocity attained by the
impurity as a function of impurity-BEC interaction aIB, for a given
initial momentum in the nonequilibrium steady state (NESS, solid
red line) and the ground state (GS, dashed black line).

We emphasize that although the coherent peak of the
rf spectrum is characterized by the ground state of the
interacting impurity-BEC system (see Sec. IV A), the steady
state reached by the impurity following a sudden switch on
is different from the interacting ground state. This can be
seen formally by taking the long-time limit of the expectation
value of an arbitrary observable Ô. Performing a spectral
decomposition of this quantity highlights the appropriate
ensemble description of the steady state of the system:

lim
t→∞〈i↑p|Ô(t)|i↑p〉 →

∑
n

|〈i↑p|n↑p〉|2〈n↑p|Ô|n↑p〉. (55)

The right-hand side expressed in terms of |n↑p〉, the time-
independent eigenstates of the final Hamiltonian, represents
the diagonal ensemble which characterizes the long-time
behavior of a generic closed quantum system [82]. Clearly,
the steady state of the system is different from its ground state
and is in fact an ensemble which includes the ground state, but
also contains additional excitations.

Within our formalism we approximate the dynamics of the
system using a time-dependent product of coherent states. We
expect that such an approximation can also capture the long-
time steady-state expectation value of operators, i.e., the long-
time limit of the coherent state product approaches Eq. (55).
We found strong evidence of this fact; we plotted in Fig. 7 the
steady-state (SS) and ground-state (GS) group velocity of the
impurity defined as

vSS,GS = pSS,GS

M
, (56)

where the steady-state value of the impurity velocity was
calculated using the long-time limit of our coherent state
product Eq. (50), while the ground-state value was calculated
using Eq. (15). We observe a quantitative difference between
the two quantities. The quasiparticle residue Z [see Eq. (28)]
on the other hand is approximately equal (difference typically
less than 1 part in 106 for many different parameters) when
calculated using the two states. This supports the picture of the
impurity steady state we put forward in Eq. (55), and is also

consistent with the general argument about the coherent peak
of the rf response presented in Sec. IV A.

V. CONCLUSIONS AND OUTLOOK

We studied the fate of quantum impurities in BECs, and
discussed the manifestation of polaron physics in rf spec-
troscopy. Population imbalanced dilute mixtures of degenerate
ultracold atoms, either Bose-Fermi [83–88] or Bose-Bose
[89–94] mixtures, in which the role of the majority many-body
environment is played by bosons, are the ideal settings in
which to explore this rich physics. We require sufficiently low
temperatures for which the bosonic environment will condense
and can be modeled as a weakly interacting BEC. Crucially,
the atoms playing the role of quantum impurities should have
hyperfine structure which can typically be addressed by rf
pulses, and we require control over the interactions between
impurity in different hyperfine levels and BEC. Ideally, one
of the hyperfine levels should be weakly interacting with
the BEC, which will allow the faithful realization of the
predictions in our article.

Experiments are always done at low, but finite temperature,
while our approach models the system at zero temperature.
We expect the zero-temperature approximation to be quite
reasonable for a Bose gas well below the transition temper-
ature (T 	 Tc) since in this regime the number of thermal
excitations scales as ∝T 4 [51], and corrections to equilibrium
properties of the impurity-Bose system will be vanishingly
small. Additionally, we expect impurity dynamics to only
be modified at long times on the order t � �/T , as was
seen in, e.g., Ref. [50]. Thus, for T 	 Tc all the relevant
phenomena reported in this article will be observable at shorter,
experimentally accessible time scales. The inverse of the time
scale also sets a resolution limit on the spectral properties of the
impurity, which can be interpreted as the characteristic scale
of thermal broadening of sharp features such as the polaronic
peak.

The modest requirements discussed above are attainable
using currently available experimental systems and techniques,
thus we expect that our predictions can be tested in the near
future. We consider a few particularly relevant experiments
below.

A. Relation to experimental systems

Bose-Bose mixtures of Rb87-K41 [90,92] and Rb87-
Cs133 [91,94], as well as the Bose-Fermi mixture of Na23-
K40 [88], are promising candidates in which to realize the
polaronic physics of heavy impurities in BECs. In the three
systems considered, the heavy impurities, respectively Rb87,
Cs133, K40, have intrinsic mass ratio M/m ≈ 2 with respect
to the BEC atoms, which can be further enhanced by a
state-selective optical lattice. Moreover, all of the experimental
systems satisfy the criteria outlined previously: low tempera-
tures sufficient to achieve BEC are routinely attained, atoms
can be reliably trapped, interatom interactions can be tuned
via carefully mapped out Feshbach resonances, and impurity
atoms have hyperfine levels which can be addressed using
rf. To quantify the impurity-BEC interactions which can be
attained in these systems, we define a dimensionless ratio
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geff = ξn0a
2
IB between the average correlation length of the

BEC ∼ ξ to the mean-free path of the impurity ∼1/(n0a
2
IB).

We find that for the systems considered, intermediate interac-
tions up to geff ≈ 2–3 can be attained using resonant tuning
of scattering lengths, while ensuring the condition (6) for the
validity of our theoretical approach is satisfied.

B. Related problems

Our treatment in this article missed aspects of strong cou-
pling physics near a Feshbach resonance which are experimen-
tally accessible and theoretically rich. Given the possibility
to form bound molecules for large positive impurity-boson
interactions, it is quite possible that the system admits a polaron
to molecule phase transition; this is especially pertinent, given
the impossibility of quantum phase transitions in Fröhlich-type
models, and thus will clearly involve physics beyond such a
model. Moreover, as a more nontrivial probe of the rich phase
diagram afforded by the impurity-BEC system, it would be
interesting to study the decay of the attractive polaron into the
“true” molecular ground state of the system.

The dynamics of polaron formation and internal excitation
structure of polarons are relatively unexplored areas of
research. Indeed, within our current framework, we observed
coherent oscillations in the course of the relaxation of the
impurity into a polaronic state (see Fig. 6), which we
interpreted as signatures of the internal structure of the polaron.
It would be worthwhile devising a more elaborate theoretical
description of the internal structure of the polaron, which
may be probed in an experiment by resonantly driving the
impurity-BEC system, and could shed light on the dynamics
of polaron formation. One can also consider other nontrivial
probes of polaron dynamics, such as the effect of driving
Bloch oscillations of lattice impurities [95]. Such a scenario
is particularly exciting as it is experimentally feasible using
optical lattices.
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APPENDIX A: UV REGULARIZATION OF POLARON
BINDING ENERGY

Here, we describe the regularization of UV diver-
gences which arise in our model of impurity-BEC

interactions

Hint =
∫

dx dx′gIB,σ δ(x − x′)ρBEC(x)ρI(x′), (A1)

which assumes zero interaction range. Such a model is a rea-
sonable treatment of interactions in dilute atoms [39,59], that
occur predominantly via two-particle collisions. Moreover, for
low-energy collisions, the two-particle scattering amplitude
attains a universal form given by

fIB,σ (k) = −1

1/aIB,σ + ik
, (A2)

which depends only on the s-wave scattering length aIB,σ .

Consequently, the effect of interactions enters all physical
observables only through the measurable s-wave scattering
length, which completely encodes the physics of two-particle
collisions, and leads to universality in ultracold atoms.

However, for large enough energies, the scattering am-
plitude (A2) is no longer universal, and is sensitive to the
microscopic details of the true interatomic potential. The
appearance of UV divergences in physical observables is a
direct consequence of poorly approximating this fundamen-
tally different atomic-scale physics. Indeed, the zero-range
model (A1) pathologically couples short (atomic) distance to
long-distance degrees of freedom. On the other hand, if one is
only interested in universal properties, which are insensitive to
microscopic physics, then one requires a means of safely and
justifiably decoupling microscopic and macroscopic degrees
of freedom. The renormalization group provides the formal
means of achieving such a decoupling [73], but in the present
case we require only a very trivial example of renormalization,
which amounts to “the subtraction of an infinity.” We demon-
strate this approach, called dimensional regularization, on the
binding energy defined in Eq. (18).

Consider the limit of a localized impurity M → ∞ where
the binding energy simplifies to

EM→∞
B = −

∑
k

V 2
k

ωk

k�1/ξ−−−→ −n0g
2
IB,σ

∑
k

2μ

k2
. (A3)

We wish to subtract the leading UV divergence on the
right-hand side, but this procedure is a priori unjustified. To
construct a rigorous prescription we invoke analytic continuity:
we take the continuum limit

∑
k → ∫

dDk
(2π)D letting spatial

dimension D temporarily be a complex-valued parameter. We
will restore it to integer dimension, e.g., D = 3, at the end
of the calculation. Such a procedure leads to the important
identity

∫
dDk

(2π )D
1

k2
= 0, D ∈ C. (A4)

Identity (A4) allows us to subtract the leading UV diver-
gence from all quantities which require regularization, includ-
ing the binding energy, since it amounts to the mathematically
allowed subtraction of zero by analytically continuing to
complex dimension D. Thus, we find the following regularized
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finite expression for the energy:

EM→∞
B,reg. = − lim

D→3

∫
dDk

(2π )D

(
V 2

k

ωk
− 2μn0g

2
IB,σ

k2

)

= −2
√

2πa2
IB,σ n0

μξ
< 0. (A5)

Moreover, we can use the same prescription to obtain the
binding energy of a polaron formed by a finite-mass impurity.
There, the subtracted quantity retains the form of identity (A4),
but has a different prefactor. The actual computation of the
energy (18) needs to be performed numerically in this case.

APPENDIX B: PATH-INTEGRAL FORMULATION
OF TIME-DEPENDENT OVERLAP

Here, we consider the time-dependent overlap

A(t) = 〈ψi |e−iHt |ψi〉, (B1)

which describes the return probability of a nonstationary initial
state |ψi〉, following time evolution by a Hamiltonian H. It
typically arises in the context of quantum quenches, where it
plays the same role as the partition function in equilibrium
statistical mechanics. To take this analogy further, we wish to
formulate the time-dependent overlap (B1) as a path integral,
which is a standard formulation of the usual partition function.

In addition to being of general theoretical interest, in the
present context it provides a practical means of calculating
the response of an impurity in a BEC to a rf signal. Indeed, as
described in Sec. II A of the main text, the impurity rf response
is in fact the Fourier transform of Eq. (B1).

Specifically, we consider the return amplitude of an initially
decoupled impurity-BEC state, after time evolution by an
interacting Hamiltonian, leading to the expression

Ap(t) = 〈0|e−i
∫ t

0 Hdt ′ |0〉
= 〈0|e−i{ 1

2M
(p−∑

k kb̂
†
kb̂k)2+∑

k[ωkb̂
†
kb̂k+Vk(b̂†k+b̂k)]}t |0〉. (B2)

This quantity determines the “inverse” rf response (see
Sec. IV C of the main text). Note that by using the Lee-
Low-Pines (LLP) transformation outlined in Sec. III A, we
dispensed with the impurity degree of freedom in the Hamil-
tonian, and mapped the impurity dynamics onto an interaction
between phonons. Additionally, the initial state |0〉 is simply
the phonon vacuum, and is unaffected by the LLP.

Using the Hubbard-Stratonovich (HS) identity

e− i
2M

(p−∑
k kb̂

†
kb̂k)2

=
∫ ∞
−∞ dϕ(t ′)ei[ M

2 φ(t ′)2−iϕ(t ′)·(p−∑
k kb̂

†
kb̂k)]dt ′∫ ∞

−∞ dϕ(t ′)ei M
2 ϕ(t ′)2

, (B3)

in each interval dt ′ we introduce a time-dependent classical
field ϕ(t ′). This leads to the following path-integral formula-
tion of the time-dependent overlap (B2):

Ap(t) = N
∫

D[ϕ(t)]ei
∫ t

0 dt ′ M
2 ϕ(t ′)2

×〈0|e−i
∫ t

0 dt ′{ϕ(t ′)·(p−∑
k kb̂

†
kb̂k)−∑

k[ωkb̂
†
kb̂k+Vk(b̂†k+b̂k)]}|0〉,

(B4)

normalized by N = ∫
D[ϕ(t)]ei

∫ t

0 dt ′ M
2 ϕ(t ′)2

.

The path-integral notation is a compact representation of
the measure ∫

D[ϕ(t)] = lim
N→∞

N∏
j=1

∫ ∞

−∞
dϕ(tj ),

which accounts for our discretization of the time interval t into
N → ∞ infinitesimal windows of size dt ′. Correspondingly,
we also decomposed the bosonic Hamiltonian

H [b̂†k,b̂k,ϕ] =
∑

k

[(ωk − ϕ · k)b̂†kb̂k + Vk(b̂†k + b̂k)], (B5)

into a sum of N discrete terms which we rewrote as an integral,
to precision dt ′:

ei
∫ t

0 Hdt ′ =
N∏

j=1

eiH [b̂†k,b̂k,ϕ(tj )] + O(dt ′) = ei
∫ t

0 dt ′H [b̂†k,b̂k,ϕ(t ′)].

Hamiltonian (B5) contains at most quadratic terms in
bosons, enabling us to “integrate them out.” We do so by
noting that the dynamics of bosons due to such a quadratic
Hamiltonian can be exactly described by a decoupled product
of time-dependent coherent states (cf. the discussion of
localized impurities in Sec. IV C of the main text). Thus, we
demand

e−i
∫ t

0 dt ′H [b̂†k,b̂k,ϕ(t ′)]|0〉 =
∏

k

|αk(t)〉, (B6)

with |αk(t)〉 of the coherent state form

|αk(t)〉 = eiχk(t)eαk(t)b̂†k−α∗
k(t)b̂k |0〉. (B7)

By taking the time derivative of the two sides of Eq. (B6),
and using the explicit form (B7) to differentiate the right-hand
side, we obtain differential equations for the coherent state
parameters

α̇k(t) = −i{[ωk − ϕ(t) · k]αk(t) + Vk}, (B8)

χ̇k(t) = −Vk

2
[αk(t) + α∗

k(t)], (B9)

which can be solved by recognizing that Eq. (B8) contains the
total time derivative of αk(t)exp[−ik · ∫ t

0 ϕ(t ′)dt ′ + iωkt].
Thus, we obtain

αk(t) = −iVk

∫ t

0
dt1e

−ik·∫ t

t1
dt ′[ωk−ϕ(t ′)]

, (B10)

χk(t) = V 2
k

∫ t

0
dt1

∫ t1

0
dt2 sin

[∫ t1

t2

dt ′[ωk − ϕ(t ′) · k]

]
.

(B11)

The expectation value

E[ϕ(t)] = 〈0|e−i
∫ t

0 dt ′H [b̂†k,b̂k,ϕ(t)]|0〉, (B12)

appearing in Eq. (B4), can be rewritten using Eq. (B6) and the
coherent state property

〈0|eαb†−αb|0〉 = e− 1
2 |α|2

to yield

E[ϕ(t)] = e
∑

k[iχk(t)− 1
2 |αk(t)|2], (B13)
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which allows us to rewrite the time-dependent overlap (B4) in
the form

Ap(t) = N
∫

D[ϕ(t)]ei
∫ t

0 dt ′[ M
2 ϕ(t ′)2−p·ϕ(t ′)]E[ϕ(t)]

= N
∫

D[ϕ(t)]ei
∫ t

0 dt ′[ M
2 ϕ(t ′)2−p·ϕ(t ′)]e

∑
k[iχk(t)− 1

2 |αk(t)|2].

(B14)

Equations (B10) and (B11) can be substituted in Eq. (B14),
leading to a path integral over ϕ(t) alone:

Ap(t) = N
∫

D[ϕ(t)]eiA[ϕ(t)], (B15)

with action given by

A[ϕ(t)] =
∫ t

0
dt ′

[
M

2
ϕ(t ′)2 − ϕ(t) · p

]
+ i

∑
k

V 2
k

×
∫ t

0
dt1

∫ t1

0
dt2 exp

[
−i

∫ t1

t2

dt ′[ωk − ϕ(t ′) · k]

]
.

(B16)

Thus, using the HS identity and the exact solution of the
bosonic Hamiltonian (B5) in terms of decoupled coherent
states, we showed that the path integral (B15) with the
action (B16) is an exact reformulation of the time-dependent
overlap (B2). However, further progress requires an approxi-
mation scheme to treat the non-Gaussian path integral, which
involves a retarded self-interaction of the impurity velocity
field ϕ(t). To this end, we estimate Eq. (B15) within a saddle-
point treatment by extremizing action (B16) with respect to

ϕ(t). Thus, we obtain the following saddle-point equation:

ϕs(t
′) = p

M
+

∑
k

V 2
k k
M

∫ t

t ′
dt1

∫ t ′

0
dt2e

−i
∫ t1
t2

dt ′′[ωk−k·ϕs (t ′′)]
.

(B17)

The solution of Eq. (B17) represents a single trajectory that
approximates the path-integral form of the overlap (B15) by
identifying the most dominant contribution to it. The solution is
a time-dependent velocity profile defined up to the propagation
time t at which the time-dependent overlap is evaluated.
Moreover, as can be seen from Eq. (B17), it is symmetric
around t/2 and ϕs(0) = ϕs(t) = p

M
, the bare velocity of the

impurity. This unique feature of the velocity profile is due
to the requirement of the time-evolving state to return to
its initial value, by construction of the quantum propagation
amplitude (B1).

We solved Eq. (B17) iteratively, taking a lattice of time
and momentum points. Moreover, in the numerical procedure
we dealt with the UV divergence inherent to the zero-range
model (see Appendix. A) by introducing a soft cutoff for large
momenta, into the interaction of the form e−k2/�2

, and choosing
� large enough to obtain converged results. The numerical
effort required to solve Eq. (B17) was significantly greater
than the mean-field approach outlined in the main text (see
Sec. IV C). On the other hand, the difference in value of the
time-dependent overlap was negligible when computed using
the two approaches. Thus, we evaluated rf spectra using the
time-dependent mean-field approach, confirming its validity
based on this agreement.
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[46] M. Feld, B. Fröhlich, E. Vogt, M. Koschorreck, and M. Köhl,
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