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We theoretically study transport in two-dimensional semimetals. Typically, electron and hole puddles
emerge in the transport layer of these systems due to smooth fluctuations in the potential. We calculate the
electric response of the electron-hole liquid subject to zero and finite perpendicular magnetic fields using an
effective medium approximation and a complementary mapping on resistor networks. In the presence of
smooth disorder and in the limit of a weak electron-hole recombination rate, we find for small but finite
overlap of the electron and hole bands an abrupt upturn in resistivity when lowering the temperature but
no divergence at zero temperature. We discuss how this behavior is relevant for several experimental
realizations and introduce a simple physical explanation for this effect.
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In semimetals both electrons and holes contribute to
transport. Typical examples are indirect bulk semiconduc-
tors with a small band overlap. More recently also
two-dimensional systems, including HgTe quantum wells
close to the topological insulator to metal transition [1–5],
BiSe thin films [6], and bilayer graphene [7,8], have been
identified to exhibit semimetallic properties. Electron and
hole puddles typically emerge in the transport layer of these
systems due to disorder that varies smoothly in space on a
scale that is large compared to the mean free path of the
charge carriers.
In this Letter, we introduce a two-fluid model to explore

the effects of smooth disorder on the transport properties of
two-dimensional electron-hole mixtures, Fig. 1. The model
assumes that as a result of long-range correlated disorder,
and a small intrinsic overlap between the electron and hole
band, the sample at low temperatures can be divided into
three types of regions: areas where only electron states or
only hole states are occupied, and intermediate areas where
both types of carriers are occupied, Fig. 1(c). We assume
that carriers are scattered easily within a band, due to
phonons or residual impurities, but that recombination
between electrons and holes is suppressed. Then, if neither
the pure electron regions nor the pure hole regions percolate
across the sample, charge transport at low temperatures
may be effectively limited by the relatively narrow perco-
lating portion where both electrons and holes are occupied
and each carrier type has a low density. As we shall see,
this can lead to an anomalously high resistivity at low
temperatures.
To make our picture quantitative, we introduce a model

with smooth disorder, and obtain the local densities of
electrons and holes using a Thomas-Fermi-like approxi-
mation. We assume that the electron and hole mobilities

differ from each other, but are independent of the respective
carrier densities. We solve the resulting inhomogeneous,
two-component conductance problem using an effective
medium approximation (EMA) [9–14]. The EMA has
already been used successfully to characterize transport
in GaAs quantum wells, where smooth disorder has been
identified as the main mechanism for the transition from
metallic to insulating behavior as a function of electron

FIG. 1 (color online). (a) A two-dimensional electron and hole
mixture, red region, is driven by a bias voltage imprinted from the
potential difference in the left and the right lead (side view).
(b) Definitions of the energy scales: Δ is the distance between
the conduction and the valance band edge, which is taken to be
negative when they overlap. μec is the electrochemical potential,
which at equilibrium is identical for electrons and holes. The
electrical potential UðrÞ and thus also the chemical potentials of
the electrons ~μnðrÞ and holes ~μpðrÞ vary smoothly in space due to
the disorder. (c) The long-range fluctuations in the potential
create regions where only electrons (red) or only holes (blue)
are occupied, and regions where both carriers coexist (purple)
(top view).
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density [15–22]. We investigate dependences of the
transport on band overlap, temperature, gate voltage,
electron-hole recombination rate, and magnetic field, using
parameters we believe appropriate to the HgTe quantum
wells in Ref. [5]. In the case of zero magnetic field, we
checked the validity of the EMA by introducing a model of
resistors on a discrete lattice, which we solve numerically.
Quantum well at equilibrium.—We consider a two-

dimensional electron and hole mixture with densities
nnðrÞ and npðrÞ, respectively. The characteristic correlation
length scale of the disorder is set by the distance to charged
impurities, which can typically be on the order of hundred
nanometers. We expect this scale to be much larger than
both the microscopic mean-free path of the charge carriers
and the Coulomb screening length. Therefore, we will take
a model in which we treat Coulomb interactions to be of
the local form

ϕnðrÞ ¼
Z

dr0Kcðr − r0Þnnðr0Þ ¼ KnnðrÞ; ð1aÞ

ϕpðrÞ ¼ −
Z

dr0Kcðr − r0Þnpðr0Þ ¼ −KnpðrÞ; ð1bÞ

where Kcðr − r0Þ is the Coulomb kernel and K is the
effective Coulomb interaction parameter. The precise
length scales of the screened Coulomb interaction and
disorder potential do not enter into our analysis.
We define the energies in our description according to

the level scheme illustrated in Fig. 1(b):

μecn ¼ ~μnðrÞ þ
Δ
2
þ UðrÞ; ð2aÞ

μecp ¼ −~μpðrÞ −
Δ
2
þ UðrÞ; ð2bÞ

where μecn (μecp ) is the electrochemical potential of the
electrons (holes), ~μnðrÞ ½−~μpðrÞ� is the electron [hole]
chemical potential measured from the bottom of the con-
duction band [top of the valance band], andΔ is the distance
between the edges of the respective bands. Finite band
overlap as indicated in Fig. 1(b) corresponds to Δ < 0.
The electrical potential is defined as UðrÞ ¼ ϕnðrÞþ
ϕpðrÞ þ VðrÞ, where VðrÞ describes the smooth spatial
randomness of the potential on scale W, which gives rise
to the puddle formation, Fig. 1(c).
At equilibrium the electrochemical potentials of the

electrons and holes are identical, i.e., μecn ¼ μech ¼ μec

and determined by the gate voltage. Using Eqs. (1) and (2)
we find

~μnðrÞ ¼ μec − K½nnðrÞ − npðrÞ� − VðrÞ − Δ
2
; ð3aÞ

~μpðrÞ ¼ −μec þ K½nnðrÞ − npðrÞ� þ VðrÞ − Δ
2
; ð3bÞ

which have to be solved self-consistently in the presence
of disorder as nαðrÞ itself depends on the chemical
potential ~μαðrÞ.
Nonequilibrium treatment.—When a bias voltage is

applied to the electrodes at the edges of the sample, the
local potential δUðrÞ changes in the entire sample, thus
causing a change of δϕαðrÞ and δμecα ðrÞ. Out of equilibrium
the bulk electron and hole electrochemical potentials
therefore differ from each other:

δμecn ðrÞ ¼ δ ~μnðrÞ þ δUðrÞ; ð4aÞ

δμecp ðrÞ ¼ −δ ~μpðrÞ þ δUðrÞ: ð4bÞ

At the boundary the electrochemical potentials of both
components are identical and fixed by the potential
imprinted from leads δμext.
The electron and hole currents are driven by the

electrochemical potentials

�
jn
jp

�
¼ −Σ

�∇δμecn
∇δμecp

�
; Σ ¼

�
σn 0

0 σp

�
; ð5Þ

where σαðrÞ is the microscopic conductivity whose func-
tional form we derive in the Supplemental Material from a
Boltzmann transport formalism [23]. In particular, we
consider the linear current response of the two fluids to
a small bias voltage. In that regime energy relaxation
effects have not to be considered and thus we can assume
that the system is locally at equilibrium. In our notation, jn
and jp are vectors in the x-y plane, while σα are scalars, in
the absence of an applied magnetic field.
The nonequilibrium dynamics of the electron-hole

channels is decoupled, Eq. (5). However, recombination
processes of rate γ dynamically couple the fluids, which
can be taken into account by the continuity equation

∂~n
∂t þ∇~j ¼ Γδ~μec; Γ ¼

�−γ γ

γ −γ

�
: ð6Þ

Here, we used a two-component vector notation with the
electron and hole component at the first and second entry,
respectively. The steady state is obtained from the con-
tinuity equation by setting ∂~n=∂t ¼ 0 and boundary con-
ditions that fix the electrochemical potential:

∇~j − Γδ~μec ¼ 0; δμecn jbnd ¼ δμecp jbnd ¼ δμext: ð7Þ

Solving Eq. (7) amounts to determining the conductance of
a random medium. One approach is to discretize Eq. (7)
and map it onto a resistor network, see the Supplemental
Material [23]. Alternatively, one can exploit approximate
features of such problems by a mean-field treatment, often
referred to as the EMA.
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Cheianov et al. [24] have employed a resistor network
model, similar in some respects to the one introduced here,
to derive the critical exponents and scaling behavior of
graphene near its neutrality point. They use a percolation
network analysis, which if applied to the present model,
could be used to obtain the singular behavior in the
limit where T, Δ, and γ tend to zero. In contrast, EMA
predictions for the critical behavior would be qualitatively,
but not quantitatively correct.
Effective medium approximation.—The EMA considers

inclusions, labeled with the superscript i, that are embedded
in an effective medium, labeled with the superscript m.
The embedding is determined self-consistently by requiring
that the current in the effective medium ~jm ¼ −Σmh∇δ~μeci
be identical to the average current in the sample
h~jii ¼ −hΣi∇δ~μeci, for details see the Supplemental
Material [23].
The resistivity can be evaluated from the total current

response of the system. Considering that the electrochemi-
cal potential at the boundary is fixed (7), we define the total
resistivity ρ as jn þ jp ¼ ρ−1∇δμext with

ρ−1 ¼
X
αβ

Σm
αβ; ð8Þ

where Σm is the self-consistently determined conductivity
matrix of the medium.
Resistivity of disordered HgTe quantum wells.—We now

apply the method developed for a general disordered two-
fluid model to the HgTe quantum wells studied experi-
mentally in Refs. [1–5]. In HgTe quantum wells a transition
from a topological trivial insulator to a quantum spin Hall
insulator can be driven by enhancing the thickness of the
well [25–27]. When further increasing the width of the well
the system undergoes another transition to a semimetallic
phase in which both electron and hole carriers contribute
to transport [1–5]. In the following, we consider 20 nm
HgTe quantum wells grown in the (100) direction as
studied in Ref. [5]. In that system, the effective electron
and hole masses are very different mp=mn ∼ 6 [4], a unit
cell contains one electron and four hole pockets, and at
atmospheric pressure the conduction and valance band
overlap by about jΔj ∼ 1.2 to 1.5 meV. In the experiment of
Ref. [5] hydrostatic pressure of ∼15 kbar is applied to the
sample, which is expected to decrease the band overlap.
In accordance with these observations we choose the

following parameters for our model: we set the Coulomb
interaction parameter to K ¼ 0.5m−1

n , take into account the
large difference in the effective electron and hole masses
mp=mn ¼ 6, and set mn ¼ 0.025. We sample the local
potential VðrÞ from a uniform distribution of widthW ¼ 1,
which we use as the unit of energy. The disorder strength
W is renormalized by the effective screening parameter
~K ¼ 1þ gK, where g ¼ ðmn þ 4mpÞ=π, yielding the
effective disorder strength ~W ¼ W= ~K ∼ 0.2. Long-range
disorder will influence the transport provided the band

overlap jΔj < ~W. Based on these considerations, we
choose two extreme limits for the band overlap,
Δ ¼ −0.5 and Δ ¼ −0.025, which should model zero
and high pressure in experiment [5]. The studied HgTe
quantum well has an indirect band structure in which the
extrema of the conduction and valance bands are at
different wave vectors, see Fig. 1(b). The electron-hole
recombination would therefore require phonon scattering,
which is suppressed at low temperatures. Thus, we mostly
consider a zero carrier recombination rate γ ¼ 0.
In Fig. 2 we show the resistivity obtained from the EMA

as a function of the gate voltage Vg, which directly modifies
the electrochemical potential in Eq. (3). In accordance
with the experiment [5] we observe metallic behavior for
Δ ¼ −0.5, with a weak dependence on temperature only
[Fig. 2(a)]. The asymmetry in the curves with respect
to Vg ¼ 0 arises due to the large difference in electron
and hole masses. For comparison we show the pure case
W ¼ 0, dashed lines. For the reduced band overlap Δ ¼
−0.025 and at Vg ∼ 0, the resistivity increases strongly at
low temperatures while at high temperatures the system
remains conducting [Fig. 2(b)]. Further the maximum in
the resistivity is shifted toward lower gate voltage. These
results qualitatively explain several features of the HgTe
quantum well experiments of Ref. [5].
The enhancement of the resistivity ρ at low temperatures

T and the flattening out at high temperatures is demon-
strated in Fig. 3 for a fixed gate voltage Vg. In this plot we
compare the results obtained within the EMA to the
solution of a resistor network [23] of size L × L ¼ 400 ×
400 for a vanishing electron-hole recombination rate γ ¼ 0
and find good agreement. Finite γ > 0 decreases the sharp
low-temperature feature. We also compare the resistivity of
the disordered systems to the resistivity of the clean system
and find an enhancement at low temperatures, which is one
of the main observations of our work.

FIG. 2 (color online). Resistivity ρ, Eq. (8), as a function of
the gate voltage Vg for different temperatures T, characteristic
scale of the potential fluctuationsW ¼ 1, vanishing electron-hole
recombination rate γ ¼ 0, and (a) band overlap Δ ¼ −0.5 and
(b) Δ ¼ −0.025. Solid curves are evaluated for disordered
systems using the effective medium approximation, while the
dashed line is evaluated for a clean system. For a small band
overlap (b) the random local potential leads to an increase of
resistivity.
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A percolation picture provides further insights. When
the recombination rate is very small, we must compute
separately the conserved currents of electrons and holes,
and add the results in the end. Let us consider the electron
conductance as an example. If the band overlap is small,
and the system is electrically neutral, then the regions
where only electrons exist at T ¼ 0 will not percolate
across the sample. In order to get from one of these regions
to another, an electron has to cross the intermediate region,
where electrons and holes coexist, which will generally
occur at isolated junctions, where the two electron puddles
come close together, see, e.g., the dashed rectangle in
Fig. 1(c). The conductance of these junctions will be small,
since they occur at places where the electron and hole
densities are both nearly vanishing. The resistance of the
electron network will be dominated by these junctions, and
in fact it will diverge in the limit where the overlap goes
to zero and there are equal numbers of electrons and holes.
By contrast, at high temperatures, there will be a large
number of thermally excited electrons and holes even in
the regions separating the electron and hole dominated
areas, so carriers can get across the sample without crossing
a region of low conductivity. This physics is correctly
captured by the EMA.
Resistivity in the presence of magnetic field.—To under-

stand the relative electron and hole dominance we study the
magnetotransport for fields applied perpendicular to the
transport layer. The model we derived for a setting with
zero magnetic field is readily generalized to finite magnetic
fields, see the Supplemental Material [23], with the key
difference that the resistivity has a tensorial structure
consisting of a longitudinal ρxx and a transverse ρxy
contribution [28,29].
In Fig. 4 we show the (a) longitudinal ρxx and the

(b) transverse ρxy resistivity as a function of magnetic field
B for fixed gate voltage Vg ¼ −0.16. We find that the

longitudinal resistivity ρxx increases with magnetic field B
and decreases with temperature T. For the chosen gate
voltage the sign of the Hall charge (i.e., the slope of ρxy
at B ¼ 0) changes with temperature. The gate voltage
is adjusted such that at low temperatures holes are the
dominating charge carriers. With increasing temperature
percolating paths open up faster for the light electrons as
compared to the heavy holes. Thus, the electrons dominate
transport at high temperatures leading to the change of the
Hall charge.
Conclusions and outlook.—We developed a theory for

transport in long-range disordered two-fluid systems as
realized for instance in semimetallic quantum wells, thin
films, and bilayer graphene.
We applied the developed technique to study transport

in HgTe quantum wells and found that it captures several
characteristic features observed in experiment [5] including
the strong enhancement of the resistivity at low temper-
atures near charge neutrality. In Ref. [5] the authors
proposed an alternative explanation of this effect based
on the phase transition to an excitonic insulator at low
temperatures, which does not consider long-range disorder
but rather requires strong interactions. In contrast, in our
theory, which identifies long-range disorder as a crucial
mechanism, the sharp enhancement of the resistivity is not
indicative of a true phase transition. At low temperatures
the resistivity will rather saturate, albeit at a very large
value. This feature is generic for semimetals with a small
band overlap and results from (i) the relatively small
percolating portion of coexisting electron and hole states
and (ii) the vanishing electron-hole recombination rate
relevant to the indirect band structures, such as the one
of the considered HgTe quantum well.
This leads us to the conclusion that large length-scale

disorder is a central mechanism in these experiments. Of
course a complex interplay between long-range disorder
and interactions is conceivable as well. Further experimen-
tal studies are therefore needed to fully confirm the picture.
In particular, it would be interesting to explore the

FIG. 3 (color online). Resistivity ρ as a function of temperature
T for Vg ¼ −0.02, Δ ¼ −0.025, W ¼ 1, and γ ¼ 0 evaluated
with the EMA, solid line, and resistor networks, squares. These
data are compared with the resistivity ρ in the presence of a weak
electron hole recombination rate γ ¼ 0.0001, dotted line, and of
the clean system W ¼ 0, dashed line. At low temperatures ρ is
considerably enhanced by disorder.

FIG. 4 (color online). (a) Longitudinal ρxx and (b) transverse
ρxy resistivity as a function of the magnetic field B applied
perpendicular to an electron-hole mixture for the same temper-
atures T as in Fig. 2. The curves are taken at gate voltage
Vg ¼ −0.16, band overlap Δ ¼ −0.025, disorder strength
W ¼ 1, and relaxation rate γ ¼ 0.
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resistivity as a function of applied pressure, which should
tune the band overlap continuously, and thus allow us to
study the emergence of the strong enhancement of the
resistivity at low temperatures.
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