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Abstract

Linear mixed models are a powerful statistical tool for identifying genetic associations and 

avoiding confounding. However, existing methods are computationally intractable in large 

cohorts, and may not optimize power. All existing methods require time cost O(MN2) (where N = 

#samples and M = #SNPs) and implicitly assume an infinitesimal genetic architecture in which 

effect sizes are normally distributed, which can limit power. Here, we present a far more efficient 

mixed model association method, BOLT-LMM, which requires only a small number of O(MN)-

time iterations and increases power by modeling more realistic, non-infinitesimal genetic 

architectures via a Bayesian mixture prior on marker effect sizes. We applied BOLT-LMM to nine 

quantitative traits in 23,294 samples from the Women’s Genome Health Study (WGHS) and 

observed significant increases in power, consistent with simulations. Theory and simulations show 
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that the boost in power increases with cohort size, making BOLT-LMM appealing for GWAS in 

large cohorts.

Linear mixed models are emerging as the method of choice for association testing in 

genome-wide association studies (GWAS) because they account for both population 

stratification and cryptic relatedness and achieve increased statistical power by jointly 

modeling all genotyped markers1–12. However, existing mixed model methods still have 

limitations. First, mixed model analysis is computationally expensive. Despite a series of 

recent algorithmic advances, current algorithms require either O(MN2) or O(M2N) total 

running time, where M is the number of markers and N is the sample size. This cost is 

becoming prohibitive for large cohorts, forcing existing methods to subsample the markers 

so that M<N (ref.5). Second, current mixed model methods fall short of achieving maximal 

statistical power owing to suboptimal modeling assumptions regarding the genetic 

architectures underlying phenotypes. The standard linear mixed model implicitly assumes 

that all variants are causal with small effect sizes drawn from independent Gaussian 

distributions—the “infinitesimal model”—whereas in reality, complex traits are estimated to 

have roughly a few thousand causal loci13,14.

Methodologically, efforts to more accurately model non-infinitesimal genetic architectures 

have followed two general thrusts. One approach is to apply the standard infinitesimal 

mixed model but adapt the input data. For example, large-effect loci can be explicitly 

identified and conditioned out as fixed effects7, or the mixed model can be applied to only a 

selected subset of markers9,11,15,16. A more flexible alternative approach is to adapt the 

mixed model itself by taking a Bayesian perspective and modeling SNP effects with non-

Gaussian prior distributions that better accommodate both small- and large-effect loci. Such 

methods were pioneered in livestock genetics to improve prediction of genetic values17 and 

have been extensively developed in the plant and animal breeding literature for the purpose 

of genomic selection18. These techniques are of interest in the association testing setting 

because models that improve prediction should in theory enable corresponding 

improvements in association power (via conditioning on other associated loci when testing a 

candidate marker9,12). Here, we present an algorithm that performs mixed model analysis in 

a small number of O(MN)-time iterations and increases power by modeling non-

infinitesimal genetic architectures. Our algorithm fits a Gaussian mixture model of SNP 

effects19, using a fast variational approximation20–22 to compute approximate phenotypic 

residuals, and tests the residuals for association with candidate markers via a retrospective 

score statistic23 that provides a bridge between Bayesian modeling for phenotype prediction 

and the frequentist association testing framework. We calibrate our statistic using an 

approach based on the recently developed LD Score regression technique24. The entire 

procedure operates directly on raw genotypes stored compactly in memory and does not 

require computing or storing a genetic relationship matrix. In the special case of the 

infinitesimal model, we achieve results equivalent to existing methods at dramatically 

reduced time and memory cost.

We provide an efficient software implementation of our algorithm, BOLT-LMM, and 

demonstrate its computational efficiency on simulated data sets of up to 480,000 individuals. 
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Our simulations also show that BOLT-LMM achieves increased association power over 

standard infinitesimal mixed model analysis of traits driven by a few thousand causal SNPs. 

We applied BOLT-LMM to perform mixed model analysis of nine quantitative traits in 

23,294 samples from the Women’s Genome Health Study (WGHS)25 and observed 

increased association power equivalent to up to 10% increase in effective sample size. We 

demonstrate through theory and simulations that the power boost increases with cohort size, 

making BOLT-LMM a promising approach for large-scale GWAS.

Results

Overview of Methods

The BOLT-LMM algorithm consists of four main steps, each of which require a small 

number of O(MN)-time iterations. These steps are: (1a) Estimate variance parameters; (1b) 

Compute infinitesimal mixed model association statistics (denoted BOLT-LMM-inf); (2a) 

Estimate Gaussian mixture parameters; (2b) Compute Gaussian mixture model association 

statistics (BOLT-LMM). Step 1a computes results nearly identical to standard variance 

components analysis but applies a stochastic approximation algorithm26,27 that reduces time 

and memory cost by circumventing spectral decomposition, which is expensive for large 

sample sizes. Instead, the approximation algorithm only requires solving linear systems of 

mixed model equations, which can be accomplished efficiently using conjugate gradient 

iteration28,29. Step 1b likewise circumvents spectral decomposition by introducing a new 

retrospective mixed model association statistic similar to GRAMMAR-Gamma10 and 

MASTOR23, which we compute—up to a calibration constant—using only solutions to 

linear systems of equations. We estimate the calibration constant by computing and 

comparing the new statistic and the standard prospective mixed model statistic at a random 

subset of SNPs, which can likewise be accomplished efficiently using conjugate gradient 

iteration. This procedure is similar in spirit to GRAMMAR-Gamma calibration but requires 

only O(MN)-time iterations.

Steps 2a and 2b are Gaussian mixture parallels of steps 1a and 1b. BOLT-LMM’s non-

infinitesimal model amounts to a generalization of the standard mixed model, which from a 

Bayesian perspective imposes a Gaussian prior distribution on SNP effect sizes. BOLT-

LMM relaxes this assumption by using a mixture of two Gaussians as the prior, giving the 

model greater flexibility to accommodate large-effect SNPs while maintaining effective 

modeling of genome-wide effects (e.g., ancestry). Exact posterior inference is no longer 

tractable under the generalized model, so BOLT-LMM instead computes a variational 

approximation20–22 that converges after a small number of O(MN)-time iterations. Step 2a 

applies this method within 5-fold cross-validation to estimate best-fit parameters for the 

prior distribution (taking into account variance parameters estimated in Step 1a) based on 

out-of-sample prediction accuracy. If the prediction accuracy of the best-fit Gaussian 

mixture model exceeds that of the infinitesimal model by at least a specified amount, Step 

2b is then run to compute association statistics by testing each SNP against the residual 

phenotype obtained from the Gaussian mixture model and calibrating the test statistics 

against the results of Step 1b using LD Score regression24. Otherwise, the BOLT-LMM 

association statistic is the same as BOLT-LMM-inf. Both Step 1b and Step 2b are performed 
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using a leave-one-chromosome-out (LOCO) scheme to avoid proximal contamination5,9,12. 

(The software also supports subdividing chromosomes into more segments; see Online 

Methods.) The key properties of BOLT-LMM regarding speed and modeling assumptions 

are compared to existing methods in Table 1.

Computational cost of BOLT-LMM versus existing methods

To analyze the computational performance of BOLT-LMM, we simulated data sets of sizes 

ranging from N=3,750 to 480,000 individuals and M=300,000 SNPs. We used genotypes 

from the WTCCC2 data set30 analyzed in ref.12, which contains 15,633 individuals of 

European ancestry, to form mosaic chromosomes, and we used a phenotype model in which 

5,000 SNPs explained 20% of phenotypic variance (Supplementary Note).

We benchmarked BOLT-LMM against existing mixed model association methods, running 

each method for up to 10 days on machines with 96GB of memory. BOLT-LMM completed 

all analyses through N=480,000 individuals within these constraints, whereas previous 

methods could only analyze a maximum of N=7,500–30,000 individuals (Fig. 1 and 

Supplementary Table 1). All previous methods require O(MN2) running time (for M>N), 

whereas the running time of BOLT-LMM scales roughly with MN1.5 (Fig. 1a and 

Supplementary Fig. 1a). We also observed substantial savings in memory use with BOLT-

LMM (Fig. 1b and Supplementary Fig. 1b), which requires little more than the MN/4 bytes 

of memory needed to store raw genotypes (as in GenABEL software31).

The running time of BOLT-LMM depends not only on the cost of matrix arithmetic, which 

scales linearly with M and N, but also the number of O(MN)-time iterations required for 

convergence, which empirically scales roughly as N0.5 (Supplementary Fig. 1) and also 

varies with heritability, relatedness, and population structure (Supplementary Note and 

Supplementary Fig. 2). These observations apply both to the full Gaussian mixture modeling 

performed by BOLT-LMM and to the subset of the computation (Steps 1a and 1b) needed to 

compute BOLT-LMM-inf infinitesimal mixed model association statistics, which in our 

benchmarks required ≈40% of the full BOLT-LMM run time (Fig. 1a and Supplementary 

Fig. 1a). Our results show that even on very large data sets, BOLT-LMM is efficient enough 

to enable mixed model analysis using a Gaussian mixture prior, which we recommend 

because of its potential to increase power.

Power and false positive control of BOLT-LMM in simulations

To assess the power of BOLT-LMM to detect associated loci, we performed additional 

simulations using real genotypes from the WTCCC2 data set, which is an ancestry-stratified 

sample containing both Northern and Southern European samples. We simulated phenotypes 

with 1,250–10,000 causal SNPs13,14 explaining 50% of phenotypic variance and an 

additional 60 standardized effect SNPs explaining 2% of variance. We included the latter 

category of SNPs to allow direct power comparisons across different simulation setups, as 

the 60 standardized effect SNPs always explain the same total amount of variance regardless 

of other simulation parameters. We further introduced environmental differences in ancestry 

by including a phenotypic component aligned with the top principal component that 

explained an additional 1% of variance. (We note that principal component analysis is not 
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part of BOLT-LMM; it is unnecessary to perform PCA when running mixed model 

association methods12.) We chose causal SNPs randomly from the first halves of 

chromosomes, leaving the second halves of chromosomes to contain only non-causal SNPs 

(Supplementary Note).

We computed χ2 association statistics using linear regression with 10 principal components 

(PCA)32, GCTA-LOCO12, BOLT-LMM-inf, and BOLT-LMM. We were unable to test 

FaST-LMM-Select15 on this data set because of its memory requirements (Fig. 1). For each 

method, we computed means of its χ2 statistics over standardized effect SNPs and compared 

these means across simulations involving different numbers of causal SNPs (Fig. 2a and 

Supplementary Table 2). We observed that BOLT-LMM achieved power gains by modeling 

non-infinitesimal architectures. For the sparsest genetic architecture (1,250 causal SNPs plus 

60 standardized effect SNPs), we observed a 25% increase in mean BOLT-LMM χ2 

statistics at standardized effect SNPs compared to GCTA-LOCO and BOLT-LMM-inf 

infinitesimal mixed model χ2 statistics. This metric is readily interpretable as corresponding 

to a 25% increase in effective sample size; for completeness, we also computed traditional 

power curves at two significance thresholds (Supplementary Fig. 3). The power gain of the 

Gaussian mixture model decreased with increasing numbers of causal SNPs (Fig. 2a). This 

behavior is expected because the advantage of the Gaussian mixture lies in its ability to 

more accurately model a small fraction of SNPs with larger effects amid a majority of SNPs 

with near-zero effects. Larger numbers of causal SNPs explaining a fixed proportion of 

variance result in smaller effect sizes per causal SNP, giving BOLT-LMM less opportunity 

for power gain. In contrast, all methods other than BOLT-LMM had performance 

independent of the number of causal SNPs, consistent with the fact that none of these 

methods model non-infinitesimal genetic architectures. GCTA-LOCO and BOLT-LMM-inf 

mean χ2 statistics at standardized effect SNPs were essentially identical and slightly 

exceeded PCA, consistent with theory12. We also tested EMMAX3 and GEMMA6, which 

are vulnerable to proximal contamination5,9,12; these methods suffered loss of power relative 

to PCA (Supplementary Fig. 4a), consistent with theory12.

To further explore the relationship between the magnitude of Gaussian mixture model power 

gain and other parameters of the data set, we also varied the proportion of variance 

explained by causal SNPs (Fig. 2b) and the number of individuals (Fig. 2c). We observed 

that the power boost of BOLT-LMM over infinitesimal mixed model analysis (GCTA-

LOCO, BOLT-LMM-inf) increased with each of these parameters. In further simulations 

using data sets of size N=30,000 and N=60,000 (Supplementary Note) and simulated 

phenotypes with Mcausal=250–15,000 causal SNPs explaining 15–35% of the variance, we 

observed that the effectiveness of the Gaussian mixture model is closely tied to hg
2N/Mcausal 

(where hg
2 is the heritability parameter estimated by BOLT-LMM; see Online Methods for 

interpretation); intuitively, this quantity measures the effective number of samples per causal 

SNP (Supplementary Fig. 5). These results are consistent with theory (Supplementary Note 

and Supplementary Table 2 of ref.12), which explains that even in the absence of 

confounding, mixed model analysis provides a power gain over marginal regression by 

conditioning on the estimated effects of other SNPs when testing a candidate SNP9,12. As 

sample size increases, the power gain of both methods approaches an asymptote 

Loh et al. Page 5

Nat Genet. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



corresponding to an increase in effective sample size of 1/(1−hg
2), but for sparse genetic 

architectures, the Gaussian mixture model approaches this asymptote much faster.

To verify that BOLT-LMM is correctly calibrated and robust to confounding, we also 

computed mean χ2 statistics across SNPs on the second halves of chromosomes, simulated 

to all have zero effect (“null SNPs”). Because our simulated phenotypes included an 

ancestry effect, linear regression without correcting for population stratification suffered 

35% inflation. In contrast, the BOLT-LMM and BOLT-LMM-inf statistics were both well-

calibrated (Supplementary Fig. 4b, Supplementary Table 3, and Supplementary Table 4). 

We further verified that Type I error was properly controlled (Online Methods and 

Supplementary Table 5) and that the distribution of statistics at null SNPs did not deviate 

noticeably from a 1 d.o.f. chi-squared distribution (Supplementary Fig. 6a,b). Genomic 

inflation factors33 for BOLT-LMM and BOLT-LMM-inf exceeded 1 in these simulations 

(Supplementary Fig. 6c,d), consistent with polygenicity of the simulated phenotype and use 

of a mixed model statistic that successfully avoids proximal contamination12,13. In contrast, 

EMMAX and GEMMA had deflated test statistics (Supplementary Fig. 4b).

To examine the tightness of the variational approximation used by BOLT-LMM for 

Bayesian model fitting and to enable comparison with FaST-LMM-Select, we ran a small-

scale simulation using the same setup as above but only one-third of the samples (N=5,211). 

We simulated genetic architectures with 1,250 causal SNPs explaining 70% of phenotypic 

variance (and 60 additional standardized effect SNPs explaining 2% of variance and 

ancestry explaining 1%, as before). We ran PCA, BOLT-LMM-inf, BOLT-LMM, FaST-

LMM-Select, and a modified version of BOLT-LMM in which we replaced the variational 

iteration of Step 2b with a Markov chain Monte Carlo (MCMC) Gibbs sampler. In the limit 

of infinite sampling iterations, MCMC would produce exact versions of the posterior 

approximations computed by BOLT-LMM. In these simulations, the variational iteration 

(i.e., standard BOLT-LMM) achieved statistically identical results to MCMC 

(Supplementary Table 6a), supporting the choice of variational Bayes for BOLT-LMM. We 

also observed that while BOLT-LMM-inf achieved a power gain over PCA and BOLT-

LMM achieved a further power gain over BOLT-LMM-inf (consistent with previous 

simulations), FaST-LMM-Select achieved lower power than BOLT-LMM-inf and BOLT-

LMM (Supplementary Table 6a). Upon repeating this experiment with the number of causal 

SNPs reduced to 500, we observed that FaST-LMM-Select achieved a power gain in 

between BOLT-LMM-inf and BOLT-LMM (Supplementary Table 6b). Finally, we 

observed that the LD Score calibration approach used by BOLT-LMM also worked well 

when applied to FaST-LMM-Select, validating this calibration approach (Supplementary 

Table 6).

Lastly, we investigated the similarity between the BOLT-LMM-inf mixed model statistic 

and existing methods at the individual SNP level. Despite its use of an infinitesimal model, 

the BOLT-LMM-inf statistic is not identical to any existing mixed model statistic because it 

is an approximate test statistic and avoids proximal contamination (Online Methods and 

Table 1). Nonetheless, we observed that BOLT-LMM-inf statistics very nearly match 

GCTA-LOCO statistics (which use the standard prospective model), with R2>0.999 

(Supplementary Table 7 and Supplementary Fig. 7).
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Application of BOLT-LMM to WGHS phenotypes

To assess the efficacy of Gaussian mixture model analysis for increasing power on real 

phenotypes, we analyzed nine phenotypes in the Women’s Genome Health Study (N=23,294 

samples, M=324,488 SNPs after QC) (Online Methods). These phenotypes consisted of five 

lipid phenotypes, height, body mass index, and two blood pressure phenotypes; we chose to 

analyze these phenotypes because of the availability of large-scale GWAS results.

We compared the power of three association tests: linear regression with 10 principal 

components (PCA)32, infinitesimal mixed model analysis with BOLT-LMM-inf, and 

Gaussian mixture modeling with BOLT-LMM. Because of memory constraints (Fig. 1), we 

were unable to run GCTA-LOCO12, FaST-LMM5, or FaST-LMM-Select15, which are the 

only previous methods that avoid proximal contamination (Table 1); however, GCTA-

LOCO and BOLT-LMM-inf statistics are near-identical (Supplementary Table 7 and 

Supplementary Fig. 7). To compare power among these methods, we computed two roughly 

equivalent metrics: mean χ2 statistics at known associated loci, a direct but somewhat noisy 

approach due to having only 19–180 loci for each trait (Supplementary Table 8), and out-of-

sample prediction R2 (measured in cross-validation) using all SNPs for the mixed model 

methods and using only PCs for linear regression. For mixed model analysis, the latter 

metric estimates the ability of the mixed model to condition on effects of other SNPs when 

testing a candidate SNP, which drives its power (Online Methods)12,34.

BOLT-LMM achieved higher power than PCA for all traits studied (Fig. 3 and 

Supplementary Table 9). Most of the increase was due to gains over infinitesimal mixed 

model analysis, with the magnitude of this power gain increasing with inferred concentration 

of genetic effects at few loci (Supplementary Table 10). Standard errors of the direct method 

of assessing improvement (mean χ2 at known loci) were somewhat high (0.6–2.2%; Fig. 3a 

and Supplementary Table 9), so the improvement was statistically significant (p<0.05) for 

only 6 of 9 traits. According to the prediction R2 metric, improvements were statistically 

significant for all traits (p<0.0002) (Fig. 3b and Supplementary Table 9). The largest gains 

were achieved for lipid traits; for ApoB, a lipoprotein closely related to LDL cholesterol, 

BOLT-LMM analysis achieved a 10% increase in mean χ2 statistics versus PCA and a 9% 

increase versus infinitesimal mixed model analysis at known loci. To verify that these 

increases were not merely driven by a few loci with the largest effects, we also computed 

flat averages across loci of improvements in χ2 statistics (restricting to loci replicating in 

WGHS with at least nominal p<0.05 significance to reduce statistical noise) and obtained 

consistent results (Supplementary Table 8). Simulations show that these improvements will 

increase with sample size (Fig. 2c and Supplementary Fig. 5).

We also observed that infinitesimal mixed model analysis achieved statistically significant 

power gains over PCA, with the magnitude of the power gains increasing with the 

heritability parameter hg
2 (Fig. 3 and Supplementary Table 9). For height (hg

2=0.47 in 

WGHS), the moderately large sample size of WGHS (N=23,294) was enough to obtain a 6% 

increase in BOLT-LMM-inf χ2 statistics versus PCA, consistent with theory12,34. Again, 

larger sample sizes will enable further gains12,34.
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To verify that BOLT-LMM successfully corrected for confounding from population 

structure, we computed mean χ2 statistics across all typed SNPs and genomic inflation 

factors for the three methods compared above as well as uncorrected marginal linear 

regression. We observed that PCA, BOLT-LMM-inf, and BOLT-LMM statistics were 

consistently calibrated, while uncorrected linear regression statistics were inflated, 

especially for height (Supplementary Table 11). We further verified that genetic variation at 

the lactase gene had a false-positive genome-wide significant association with height using 

uncorrected marginal regression35 which disappeared when using PCA, BOLT-LMM-inf, 

and BOLT-LMM (Supplementary Table 12).

Discussion

We have described a new algorithm for fast Bayesian mixed model association, BOLT-

LMM, and demonstrated that its running time scales only with ≈MN1.5 and its memory 

usage is only ≈MN/4 bytes, resulting in orders-of-magnitude improvements in 

computational efficiency over existing methods for large data sets. We have further shown 

in simulations and analyses of WGHS phenotypes that the Gaussian mixture modeling 

capability of BOLT-LMM enables increased association power over standard mixed model 

analysis while controlling false positives. Among WGHS lipid traits, we observed power 

increases equivalent to increases in effective sample size of up to 10% over PCA and 9% 

over standard mixed model analysis.

BOLT-LMM is an advance for two main reasons. First, as sample sizes continue to increase, 

mixed model analysis is simultaneously becoming more important—in order to correct for 

population structure and cryptic relatedness in very large data sets—yet less practical with 

existing methods, all of which have ≥O(MN2) time complexity (for M>N) and high memory 

requirements. The algorithmic innovations of BOLT-LMM overcome this computational 

barrier (Fig. 1). (Our implementation uses ≈MN/4 bytes of memory, which is already much 

less in practice than existing methods. In theory, existing algorithms have a memory 

complexity of O(N2), while BOLT-LMM’s memory complexity could be reduced to O(M

+N) by iteration on data.) Second, the ability of BOLT-LMM to better model non-

infinitesimal genetic architectures enables a power gain relative to standard mixed model 

analysis. Recent methodological progress in this direction includes the multi-locus mixed 

model (MLMM)7, which identifies and conditions out large-effect loci as fixed effects, and 

FaST-LMM-Select and related methods9,11,15,16,36, which adopt a sparse regression 

framework that restricts the mixed model to a subset of markers. However, these methods all 

face the same O(MN2) computational hurdle as standard mixed model analysis.

Bayesian methods have previously been developed that apply non-infinitesimal models to 

improve the accuracy of genetic risk prediction. These methods extend in principle to 

association testing, although the Bayes factors and posterior inclusion probabilities that are 

naturally produced by Bayesian analysis do not directly translate to customary GWAS 

frequentist test statistics37. The variational Bayes spike regression (vBsr) method38 is a 

recent step toward addressing this issue, proposing a z-statistic heuristically calibrated by 

assuming that the vast majority of variants are unassociated (as in genomic control33), but 

such a technique is prone to deflation when large sample sizes cause inflation due to 
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polygenicity13,24. BOLT-LMM sidesteps this difficulty via its hybrid approach of leaving 

each chromosome out in turn, fitting a Bayesian model on the remaining SNPs, and then 

applying a retrospective hypothesis test for association of left-out SNPs with the residual 

phenotype. In contrast to modeling all SNPs simultaneously and assessing evidence for 

association using Bayesian posterior inference37, our approach generalizes existing mixed 

model methods that are widely used, and we believe its ability to harness the power of 

Bayesian analysis while still computing frequentist statistics will be useful to GWAS 

practitioners. Additionally, such a hybrid approach lends itself readily to efficiently testing 

millions of imputed SNP dosages for association while including only typed SNPs in the 

mixed model, which we recommend to limit computational costs.

While BOLT-LMM improves upon existing mixed model association methods in both speed 

and power, BOLT-LMM still has limitations. First, the power gain that BOLT-LMM offers 

over existing methods via its more flexible prior on SNP effect sizes is contingent on the 

true genetic architecture being sufficiently non-infinitesimal and the sample size being 

sufficiently large (Supplementary Fig. 5). Second, BOLT-LMM, like existing mixed model 

methods, is susceptible to loss of power when used to analyze large ascertained case-control 

data sets in diseases of low prevalence12. We recommend BOLT-LMM for randomly 

ascertained quantitative traits, ascertained case-control studies of diseases with prevalence 

≥5% (Supplementary Table 13)—e.g., type 2 diabetes, heart disease, common cancers, 

hypertension, asthma—and studies of rarer diseases in large, non-ascertained population 

cohorts39,40. For large ascertained case-control studies of rarer diseases, we are developing a 

method of modeling ascertainment using posterior mean liabilities (LTMLM); applying the 

techniques of BOLT-LMM to these posterior mean liabilities is an avenue for future 

research. Third, while mixed model analysis is effective in correcting for many forms of 

confounding, performing careful data quality control remains critical to avoiding false 

positives. Fourth, our work does not attempt to estimate the extent to which the heritability 

parameter estimated by BOLT-LMM (denoted hg
2) may be influenced by population 

structure or relatedness, nor does it conduct or evaluate genetic prediction in external 

validation samples from an independent cohort34. Fifth, we have not studied the 

performance of mixed model methods in data sets dominated by family structure23. Sixth, 

the running time of BOLT-LMM scales with the number of phenotypes analyzed; for data 

sets with a very large number of phenotypes (P), the GRAMMAR-Gamma method10, which 

has running time O(MN2+MNP) (reviewed in ref.12) may be faster. Seventh, we have only 

tested BOLT-LMM in human data sets, which have very different patterns of linkage 

disequilibrium and genetic architectures from plant and animal data. In particular, given that 

some approximations we make may be violated in non-human data sets (e.g., treating the 

denominator of the prospective test statistic as near-constant10), we are unsure whether the 

BOLT-LMM statistic is valid in these scenarios. Similarly, these assumptions should be 

viewed with caution when testing very rare variants. Finally, we have developed fast mixed 

model analysis for a mixed model with one random genetic effect; extending the algorithm 

to model multiple variance components41 is a direction for future work.
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Online Methods

Standard mixed model association methods

Standard methods employ a model

(1)

where y is the phenotype, xtest is the candidate SNP being tested, g is the genetic effect, and 

e is the environmental effect. We assume for now that all have been mean-centered and 

there are no covariates; we treat covariates by projecting them out from both genotypes and 

phenotypes, which is equivalent to including them as fixed effects (Supplementary Note). 

The genetic and environmental effects are modeled as random effects, while the candidate 

SNP is modeled as a fixed effect with coefficient βtest, and the goal is to test the null 

hypothesis βtest=0. Under the standard infinitesimal model, the genetic effect is modeled as

(2)

where XGRM is an N×MGRM matrix, each column of which contains normalized genotypes 

corresponding to a SNP included in the model, and βGRM is an MGRM-vector of random 

SNP effect sizes all drawn from the same normal distribution, so that g has a multivariate 

normal distribution with covariance Cov(g) ∝ XGRMXGRM'. Note that in order to avoid 

proximal contamination5,9,12, the MGRM SNPs used in XGRM should vary depending on 

which SNP xtest is being tested: the candidate SNP xtest (and SNPs in linkage disequilibrium 

with it) should be excluded from XGRM to avoid modeling its effect twice. BOLT-LMM 

adopts a leave-one-chromosome-out (LOCO) scheme5,12 in which XGRM leaves out SNPs 

on the same chromosome as xtest.

The matrix XGRMXGRM'/MGRM is conventionally called the genetic relationship matrix 

(GRM) or empirical kinship matrix K, and we write

(3)

where σg
2 is a variance parameter. Environmental effects are assumed i.i.d. normal, so e is 

also multivariate normal with

(4)

where I denotes the N×N identity matrix and σe
2 is another variance parameter.

In practice, the variance parameters σg
2 and σe

2 are unknown. Several existing 

methods3,10,12 therefore take a two-step approach to computing association statistics: first 

estimate the variance parameters (with the SNP xtest removed from the model) using 

restricted maximum likelihood (REML), and then compute the prospective chi-squared (1 

d.o.f.) test statistic (as previously proposed in family-based tests42)
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(5)

where

(6)

setting the variance parameters σg
2 and σe

2 to their estimates under the null hypothesis 

βtest=0. Within a LOCO scheme, the test statistic becomes

(7)

where we have written VLOCO for V to explicitly indicate that the chromosome containing 

xtest is left out of the GRM.

Recent computational advances have also enabled computation of exact likelihood ratio test 

statistics that model the variance parameters while testing the candidate SNP5,6. While exact 

statistics are more accurate in situations with very large-effect SNPs, approximate methods 

produce near-identical results in typical human genetics scenarios3,10,12.

BOLT-LMM-inf mixed model statistic

The BOLT-LMM-inf infinitesimal mixed model statistic is slightly different:

(8)

where cinf is a constant calibration factor estimated as

(9)

so that

(10)

In practice, for computational efficiency, we take means over 30 pseudorandom SNPs not 

significantly associated with the phenotype (χ2<5 estimated with the GRAMMAR 

statistic43). We have observed empirically that 30 random SNPs are enough to estimate the 

calibration factor to within 1% (Supplementary Table 14).

We can view the BOLT-LMM-inf statistic either as an approximation of the standard 

prospective statistic (which treats phenotypes as random) or as a retrospective statistic 

(which treats genotypes as random and builds a null model on SNPs). The first perspective 

is motivated by the observation that in human genetics applications, the denominator of the 

prospective statistic in equation (5), xtest'V−1xtest, is nearly independent of the SNP xtest 
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being tested10. From this perspective, BOLT-LMM-inf is similar to GRAMMAR-Gamma10, 

with two key differences: (1) BOLT-LMM-inf is computed via much faster algorithms 

(described below) for performing initial variance parameter estimation and estimating the 

calibration constant, and (2) BOLT-LMM-inf avoids proximal contamination via LOCO 

analysis. Alternatively, we can also view BOLT-LMM-inf as a retrospective quasi-

likelihood score test similar to TSCORE–R (ref.44) and MASTOR23 (Supplementary Note).

BOLT-LMM Gaussian mixture model association statistic

We now generalize BOLT-LMM-inf by observing that the vector VLOCO
−1y appearing in 

equation (8) is a scalar multiple of the residual phenotype vector σe
2VLOCO

−1y from best 

linear unbiased prediction (BLUP). Thus, the χ2
BOLT-LMM-inf statistic is equivalent to 

computing (and then calibrating) squared correlations between SNPs xtest and BLUP 

residuals. The power of mixed model association is driven by the fact that SNPs xtest are 

tested against these “de-noised” residual phenotypes from which other SNP effects 

estimated by the mixed model have been conditioned out9,12.

We may generalize this approach by defining

(11)

where yresid-LOCO denotes a generalized residual phenotype vector obtained after fitting a 

Gaussian mixture extension of the standard LMM (using SNPs not on the same chromosome 

as xtest) and c denotes a calibration factor, estimated so that the LD Score regression 

intercept24 of χ2
BOLT-LMM matches that of the (properly calibrated) χ2

BOLT-LMM-inf statistic. 

Under the infinitesimal model, yresid-LOCO is proportional to VLOCO
−1y, so χ2

BOLT-LMM 

reduces to χ2
BOLT-LMM-inf. The general χ2

BOLT-LMM statistic can still be interpreted as a 

retrospective quasi-likelihood score test and is thus asymptotically chi-squared distributed.

To define the Gaussian mixture LMM extension, it is helpful to first frame the standard 

LMM in a Bayesian formulation. The null model of BOLT-LMM-inf is

(12)

where SNP effects βm (m indexing SNPs not on the left-out chromosome) are independently 

drawn from the Gaussian prior distribution

(13)

and environmental effects en (n indexing samples) are independently drawn from en ~ N(0, 

σe
2). Performing best linear unbiased prediction amounts to computing the posterior mean of 

the genetic effect XLOCOβLOCO.

To generalize this model to non-infinitesimal genetic architectures, we replace the Gaussian 

prior on SNP effect sizes with a more general distribution; this approach has been 

extensively applied by the “Bayesian alphabet” of genomic prediction methods in the animal 
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breeding literature17–19. In BOLT-LMM, we use a spike-and-slab mixture of two 

Gaussians19 as the prior:

(14)

This mixture more flexibly models the heavier-tailed distributions of genetic effects of 

typical (non-infinitesimal) phenotypes. Explicitly, if p≪1 and σβ,12 ≫ σβ,22, the first 

component of the mixture is a “slab” that models the existence of a small number of 

relatively large-effect loci, while the second component is a “spike” that models the 

assumption that most SNPs have near-zero—but not exactly zero—effect on the phenotype. 

(Note, however, that all SNPs are assigned the same mixture prior; i.e., SNPs are not 

individually allocated to one or the other component.) It is important that the spike 

component have nonzero variance so as to capture genome-wide effects on phenotype such 

as ancestry or relatedness; then, when testing SNPs for association, these genome-wide 

effects are conditioned out from residual phenotypes, protecting against confounding. The 

prior could in principle be further generalized; we chose to use a mixture of two Gaussians 

to keep the model fairly simple and because Gaussian distributions produce convenient 

analytical formulas during model-fitting.

Under this generalized model, posterior means no longer correspond to BLUP, but we can 

still approximately fit the Bayesian model (once per left-out chromosome) and obtain 

residuals

(15)

where βLOCO are estimated posterior mean effect sizes. Plugging these residuals into 

equation (11) gives the BOLT-LMM Gaussian mixture model association test statistic.

Fast iterative algorithm

The BOLT-LMM software performs a four-step computation for mixed model association 

analysis, stopping after the first two steps when specialized to the infinitesimal model. We 

outline the algorithm here and provide full details and pseudocode in the Supplementary 

Note.

Step 1a: Estimate variance parameters

A key feature of BOLT-LMM is estimation of variance parameters σg
2 and σe

2 using only 

linear-time iterations without building or decomposing any covariance matrices. We use a 

Monte Carlo REML approach26,27 that eliminates all O(MN2) and O(N3)-time matrix 

computations, requiring only the solution of linear systems of mixed model equations. We 

solve the mixed model equations using conjugate gradient iteration, which requires only 

O(MN)-time matrix-vector products28,29 (Supplementary Note).

Step 1b: Compute and calibrate BOLT-LMM-inf statistics

Having variance parameter estimates from Step 1a, it is straightforward to compute (for each 

LOCO rep) the quantity VLOCO
−1y in the numerator of the BOLT-LMM-inf statistic, 

equation (8), using conjugate gradient iteration as above. Completing the computation of the 
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numerator of χ2
BOLT-LMM-inf then just amounts to calculating one dot product per SNP xtest, 

which requires only O(MN) additional cost across all SNPs. Moreover, this computation can 

easily be performed for additional SNPs not included in the mixed model but at which 

association statistics are desired; BOLT-LMM handles imputed “dosage” data in this way. 

To compute the calibration constant cinf in equation (9), BOLT-LMM rapidly computes the 

prospective statistic χ2
LMM-LOCO from equation (7) at 30 random SNPs by applying 

conjugate gradient iteration to compute VLOCO
−1xtest for each of the 30 selected SNPs xtest. 

Finally, in addition to computing χ2 association statistics, BOLT-LMM also computes effect 

size estimates for all SNPs tested (Supplementary Note).

There is a slight mismatch between the variance parameters estimated in Step 1a, which 

BOLT-LMM computes once using all SNPs—not leaving any chromosomes out—and the 

theoretically optimal parameter estimates that would be obtained by refitting once per left-

out chromosome. However, we have observed in simulations that slight mis-specification of 

the variance parameters has a negligible impact (<0.5%) on the calibration of the BOLT-

LMM-inf and BOLT-LMM statistics (Supplementary Table 4). Because very slight 

miscalibration is not a concern for confounding from population stratification at highly 

differentiated markers (Supplementary Table 12) and has little impact on Type I error 

(Supplementary Table 5), the BOLT-LMM software does not by default refit variance 

parameters for each LOCO rep. If extremely precise calibration is desired, we provide a 

runtime option to refit variance parameters for each LOCO rep, at the cost of a factor of 2–3 

in running time. We believe that LOCO strikes a good balance in terms of achieving ≈95% 

of the potential power gain (by jointly fitting ≈95% of markers that are not in LD with the 

candidate marker) while keeping run time down12, but we also provide a runtime option to 

partition the genome more finely (e.g., into 100 segments rather than 22), again at the cost of 

a factor of 2–3 in running time.

Step 2a: Estimate Gaussian mixture prior parameters

The first step of BOLT-LMM Gaussian mixture model association analyis is to estimate 

parameters of the generalized prior on SNP effect sizes. As written in equation (14), this 

mixture has three parameters: σβ,12 and σβ,22, the variances of the two Gaussians, and p, the 

probability of drawing from the first Gaussian. To reduce the complexity of parameter 

estimation, we constrain the total variance of the mixture to equal the variance σg
2/M 

estimated under the infinitesimal model in Step 1a:

(16)

We reparameterize the remaining two degrees of freedom using the parameters p and f2, 

where f2 denotes the proportion of the total mixture variance within the second Gaussian 

(the “spike” component that models small genome-wide effects):

(17)

Because the model fit is insensitive to the precise values of the mixture parameters, we test a 

discrete set of model parameter combinations: f2∈{0.5,0.3,0.1}, p∈
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{0.5,0.2.0.1,0.05,0.02,0.01}. Note that f2=0.5, p=0.5 corresponds to the infinitesimal model: 

when f2=1−p, the two Gaussians are identical and the mixture is degenerate. We bound f2 

from below to ensure that at least a small amount (10%) of the mixture variance is assigned 

to the spike component, protecting against confounding from genome-wide effects. We 

bound p from below to prevent the model from trying to fit too strongly to a few SNPs, 

which makes model-fitting computationally difficult and also increases susceptibility to 

confounding. BOLT-LMM performs model selection among the 18 possible parameter pairs 

(f2, p) by performing cross-validation to optimize mean-squared prediction R2.

BOLT-LMM uses a variational approximation to fit Bayesian linear regressions with 

Gaussian mixture priors. Approximation methods are necessary for Bayesian inference in 

this setting because exact posterior means involve intractable integrals. We apply a fully 

factored variational approximation21,22,38 that repeatedly loops through the SNPs, updating 

the estimated effect size of each SNP with its posterior mean conditional on current 

estimates of all other SNP effects. This iteration has also previously been termed “iterative 

conditional expectation (ICE)”20. The variational Bayes framework puts this iteration on a 

sound theoretical footing as an optimization of an approximate log likelihood function; the 

iteration monotonically increases this function and is guaranteed to converge45. In fact, we 

show that the optimization can be reformulated as cyclic coordinate descent applied to a 

penalized regression problem arising from Bayesian linear regression using a transformed 

prior (Supplementary Note). The approximate log likelihood also serves as a convenient 

convergence criterion: BOLT-LMM stops the iteration when the increase in approximate log 

likelihood over one full update cycle drops below 0.01.

While the core variational iteration that BOLT-LMM uses is identical to previous 

methods20–22,38 up to the choice of SNP effect size prior, BOLT-LMM uses cross-validation 

to estimate hyperparameters15 rather than doing so within the variational iteration22,38 or 

based on variational approximate log likelihoods21. We found this approach to be more 

robust to slackness of the variational approximation caused by linkage disequilibrium.

Step 2b: Compute and calibrate BOLT-LMM Gaussian mixture model statistics

After inferring parameters of the mixture prior in Step 2a, BOLT-LMM uses the same 

variational iteration to estimate posterior mean residuals yresid-LOCO (independently for each 

left-out chromosome). The numerators of the BOLT-LMM Gaussian mixture model statistic 

from equation (11) are then easily obtained as dot products with test SNPs, leaving only the 

constant calibration factor c in the denominator to be calculated. Unlike the case of the 

infinitesimal model, here we do not have a prospective statistic to calibrate against, so we 

instead apply LD Score regression24 (Supplementary Note). In practice, the calibration 

factor is usually quite close to 1 (e.g., 1.00 to two decimal places for all WGHS traits; see 

Supplementary Table 15).

WGHS data set

The Women’s Genome Health Study (WGHS) is a prospective cohort of initially healthy, 

female North American health care professionals. We analyzed 23,294 individuals with self-
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reported European ancestry with genotyping at 324,488 SNPs after QC (Supplementary 

Note).

Interpretation of heritability parameter

The heritability parameter (denoted hg
2) estimated by BOLT-LMM may in general include 

some contribution from cryptic relatedness or population structure46, and thus may not 

strictly correspond to the heritability explained by genotyped SNPs47. Ref.3 refers to this 

parameter as “pseudo-heritability” for this reason. Because the WGHS samples that we 

primarily analyze here do not contain substantial relatedness or population structure, we 

have simply used the notation hg
2 to avoid complicating the discussion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Computational performance of mixed model association methods
Log-log plots of (a) run time and (b) memory as a function of sample size (N). Slopes of the 

curves correspond to exponents of power-law scaling with N. Benchmarking was performed 

on simulated data sets in which each sample was generated as a mosaic of genotype data 

from 2 random “parents” from the WTCCC2 data set (N=15,633, M=360K) and phenotypes 

were simulated with Mcausal=5,000 SNPs explaining h2
causal=0.2 of phenotypic variance. 

Reported run times are medians of five identical runs using one core of a 2.27 GHz Intel 

Xeon L5640 processor. We caution that running time comparisons may vary by a small 

constant factor as a function of computing environment. FaST-LMM-Select (resp. GCTA-

LOCO, EMMAX) memory usage exceeded the 96GB available at N=15K (resp. 30K, 60K). 
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GEMMA encountered a runtime error (segmentation fault) at N=30K. Software versions: 

FaST-LMM-Select, v2.07; GCTA-LOCO, v1.24; EMMAX, v20120210; GEMMA, v0.94. 

Numerical data are provided in Supplementary Table 1.
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Figure 2. BOLT-LMM increases power to detect associations in simulations
Mean χ2 at standardized effect SNPs as a function of (a) number of causal SNPs, (b) 

proportion of variance explained by causal SNPs, (c) number of samples. Simulations used 

real genotypes from the WTCCC2 data set (N=15,633, M=360K) and simulated phenotypes 

with the specified number of causal SNPs explaining the specified proportion of phenotypic 

variance and 60 more standardized effect SNPs explaining an additional 2% of the variance. 

Error bars, s.e.m., 100 simulations. We verified on the first 5 simulations that the BOLT-

LMM-inf and GCTA-LOCO statistics are nearly identical (Supplementary Table 7). 

Numerical data are provided in Supplementary Table 2.
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Figure 3. BOLT-LMM increases power to detect associations for WGHS phenotypes
We compare power (measured using two roughly equivalent metrics) of linear regression 

using 10 principal components, standard (infinitesimal) mixed model analysis, and BOLT-

LMM Gaussian mixture model analysis. (a) Percent increases in χ2 statistics across known 

loci using mixed model methods vs. PCA: ratios of sums of χ2 statistics over typed SNPs in 

highest LD with published associated SNPs. (b) Prediction R2 values from 5-fold cross-

validation: each fold was left out in turn and predictions were computed by fitting all SNP 

effects simultaneously (for mixed model methods) or estimating covariate effects (for PCA) 
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using the training folds. (Note that BOLT-LMM-inf is equivalent to BLUP prediction here.) 

We show PCA in (b) because the small amount of variance that the PCs explain (due to 

population stratification) provides a baseline that allows translating prediction R2 to the 

power gain of mixed model association vs. regression with PC covariates. That is, the 

correspondence between association power and prediction accuracy is such that the red bars 

in (a) roughly correspond to differences between red and black bars in (b), and analogously 

for blue bars (Online Methods). Error bars, jackknife s.e. over (a) known loci 

(Supplementary Table 8); (b) 5 cross-validation folds. Numerical data are provided in 

Supplementary Table 9.
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Table 1

Comparison of fast mixed model association methods that model all SNPs.

Methoda Requires O(MN2) time Avoids proximal
contamination

Models
non-infinitesimal

genetic architecture

EMMAX [3] X

FaST-LMM [5] Xb X

FaST-LMM-Select [9, 11, 15] Xb X Xc

GEMMA [6] X

GRAMMAR-Gamma [10] Xd

GCTA-LOCO [12] X X

BOLT-LMM X X

a
For methods that have been updated over multiple publications, we cite and list characteristics of the latest published version.

b
If M<N, FaST-LMM and FaST-LMM-Select can complete in O(M2N) time.

c
FaST-LMM-Select models non-infinitesimal genetic architectures by restricting the mixed model to a subset of SNPs; a caveat of this approach is 

that it may incur susceptibility to confounding from stratification12.

d
GRAMMAR-Gamma requires O(MN2) time for only the initial computation of the genetic relationship matrix but not for computing association 

test statistics. For a detailed breakdown of computational complexity per algorithmic step, see Table 1 of ref.12.
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