
Cryptographic Enforcement of Language-Based
Information Erasure

Citation
Askarov, Aslan, Scott Moore, Christos Dimoulas, and Stephen Chong. 2015. Cryptographic
Enforcement of Language-Based Information Erasure. Harvard Computer Science Group
Technical Report TR-01-15.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:22898343

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:22898343
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Cryptographic%20Enforcement%20of%20Language-Based%20Information%20Erasure&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=1035c03be5d40bd62310c56e0ed04c4f&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

CRYPTOGRAPHIC ENFORCEMENT OF
LANGUAGE-BASED INFORMATION ERASURE

Aslan Askarov
Scott Moore

Christos Dimoulas
and

Stephen Chong

TR-01-15

Computer Science Group
Harvard University

Cambridge, Massachusetts

CRYPTOGRAPHIC ENFORCEMENT OF LANGUAGE-BASED INFORMATION ERASURE

ASLAN ASKAROV, SCOTT MOORE, CHRISTOS DIMOULAS, AND STEPHEN CHONG

Abstract. Information erasure is a formal security requirement that stipulates when sensitive data must be
removed from computer systems. In a system that correctly enforces erasure requirements, an attacker who observes
the system after sensitive data is required to have been erased cannot deduce anything about the data. Practical
obstacles to enforcing information erasure include: (1) correctly determining which data requires erasure; and (2)
reliably deleting potentially large volumes of data, despite untrustworthy storage services.

In this paper, we present a novel formalization of language-based information erasure that supports cryptographic
enforcement of erasure requirements: sensitive data is encrypted before storage, and upon erasure, only a relatively
small set of decryption keys needs to be deleted. This cryptographic technique has been used by a number of systems
that implement data deletion to allow the use of untrustworthy storage services. However, these systems provide
no support to correctly determine which data requires erasure, nor have the formal semantic properties of these
systems been explained or proven to hold. We address these shortcomings. Specifically, we study a programming
language extended with primitives for public-key cryptography, and demonstrate how information-flow control
mechanisms can automatically track data that requires erasure and provably enforce erasure requirements even
when programs employ cryptographic techniques for erasure.

1. Introduction

The security requirements of modern software often impose restrictions on the lifetime of sensitive information. For
instance, to protect its users, electronic payment software should erase credit-card information after the transaction.
Similarly, browsers running in “private mode” promise (but often fail) to not leak or permanently store any information
after the end of a private session [3, 34, 42].

These examples reveal two significant challenges for programs whose security depends on erasing sensitive information
when a dynamic condition is met. The first challenge is to track sensitive data in a program in order to erase it at
the appropriate time. This is complicated by the need to track data derived from sensitive data, and erase that too.
For example, a browser in private mode must delete cookies from visited websites but also delete history, passwords,
text box input and other cached information that may reveal user activity from a private session. Hence, to correctly
erase sensitive information, it is necessary to track and control information dependencies; a difficult task for complex
programs.

The second challenge is that applications that handle sensitive information often receive, generate, and store large
amounts of data: so much data that the application must use large but untrustworthy storage services (such as the
cloud, or hard drives, depending on the trust model). For example, the back-end of a high-traffic credit-card processing
service handles millions of requests and generates terabytes of logs every day. Untrustworthy storage services may not
be able to delete data reliably or quickly.

In this paper, we address these two challenges by providing language-level support to track sensitive information that
requires erasure and use cryptographic mechanisms to efficiently and reliably delete data when dynamic conditions are
met. Previous work considers these challenges in isolation; we bridge the gap between these separate lines of work and
address both challenges. We improve on previous language-based techniques for information erasure by making it
more practical, while clarifying and extending the guarantees offered by existing systems that use cryptography for
data erasure.

Motivating example. Snapchat is a photo messaging smartphone app that allows senders to specify a time limit after
which a message should be erased from the recipient’s device. Snapchat did not correctly erase messages, allowing
recipients to access supposedly erased messages via the file system [24] and resulting in a complaint filed with the
FTC [22].

Consider a Snapchat-like application that receives sensitive data that should be erased under certain conditions
(e.g., after a fixed period of time, at the user’s command, or when a certain event happens, such as 10 consecutive
incorrect password attempts). The data is stored in an untrustworthy file system (which is untrustworthy because its
contents may be viewed by untrusted parties) and deletion of data from the file system may not be immediate or

1

permanent [9, 10, 19, 20, 21].1 When the application computes on sensitive data, for example by allowing a user to
manipulate sensitive documents, it produces additional sensitive data that should also be erased when required.

Note that this simple application has the two challenges described above: there is sensitive information that needs to
be erased, and the application relies on an untrustworthy storage service to store data that may need to be erased.
Consider how this application could be implemented using existing approaches: language-based information-flow
control and cryptographic data deletion.

Language-based information-flow control provides formal foundations for information erasure [11] and its provably
correct enforcement through language techniques, such as security-type systems [12, 26] that track sensitive data. If
our Snapchat-like application is written in a language that tracks and controls information flow to enforce information
erasure, then the programmer can express the application’s erasure requirements as security policies, and language
mechanisms can ensure that the application correctly tracks all data that needs to be erased. However, the application’s
storage service is untrustworthy, and this approach is unable to ensure that the storage service correctly deletes data,
even though the data that should be deleted is accurately identified.

Alternatively, our application could be written in a language or system that supports cryptographic data deletion.
These systems allow sensitive information to be stored encrypted in untrusted storage services and erase information
by erasing the encryption keys [9, 41, 44]. Following this approach, our Snapchat-like application would encrypt
the sensitive data before storing it, and would “delete” the stored data by deleting the encryption keys. Thus, the
application avoids trusting the untrustworthy storage service. The application does still require a trusted store for
storing and reliably deleting cryptographic keys, but the requirements and scale of this trusted store are simpler than
the (file system or cloud) storage service.

However, this approach provides no support for ensuring that information derived from sensitive data is correctly erased.
The developer must track information dependencies to ensure all derived information is deleted appropriately. This is
an error-prone manual process, leading to security vulnerabilities. Moreover, such systems lack formal foundations for
the security guarantees they are attempting to provide, and so it is unclear whether they handle sensitive information
correctly.

In this work, we combine the two approaches while avoiding the shortcomings of each. Since our goal is a practical,
yet provably correct, cryptographic enforcement mechanism for information erasure, it is important to provide both
expressive erasure policies and a clear semantics for their correct cryptographic enforcement. This requires the
development of a formal framework that can be extended with cryptographic primitives without obscuring the
semantics of information erasure. At its core is a novel, simple and intuitive semantic definition for information erasure
that supports the cryptographic enforcement of erasure. Previous work has either achieved the same level of semantic
simplicity by sacrificing the expressiveness of erasure policies [26] or sacrificed simplicity and thus easy extensibility of
the semantics of erasure [11]. Our framework manages to meet both requirements: expressive dynamic erasure policies
and a simple extensible semantic definition of erasure.

In our approach, security policies describe the current confidentiality level of data, when to erase it, and the security
level to enforce on the data after erasure. Often the security level to enforce after erasure will indicate that the data
should be removed from the system, but our framework can handle more general requirements where the data is made
more restricted, but does not need to be removed.

For example, a suitable policy in our SnapChat-like application for a document that needs to be erased upon multiple
incorrect password guesses would be L 10BadGuesses↗>. Here, L is a low-confidentiality security level, > is the top security
level and 10BadGuesses is a program variable that the application sets upon ten consecutive incorrect password guesses.
Intuitively, if this policy is associated with data, it requires that the data may initially be treated in accordance with
security level L, but if and when variable 10BadGuesses is set, then the data (and any data derived from it) must have
security level > enforced on it, requiring the removal of the data from the system.

We enforce erasure policies with a flow-sensitive type and effect system. To gain insight into how our enforcement
mechanism works, consider our Snapchat-like application. The untrusted store (i.e., the file system or cloud storage
service) is permitted to store only information at level L or lower (enforced by the type system restricting calls to the
store’s API). Since the sensitive document has policy L 10BadGuesses↗>, which is not lower than L in our security policy
ordering, the document could not be stored in the untrusted store. However, given an appropriate cryptographic key,
the document could be encrypted, and the resulting ciphertext (which has level L) could be stored in the untrusted
store. An appropriate cryptographic key is a key that will be erased when variable 10BadGuesses is set. Our type
system ensures that only appropriate keys are used and that the keys themselves are handled appropriately. Using

1This reflects the Snapchat scenario, where a smartphone user could access Snapchat messages via the device’s file system, which does
not reliably delete data. It also applies to applications that use cloud storage services.

2

c ::= skip | x := e | c0; c1| if e then c1 else c2 | while e do c

| set(x)| init y to e| read y into x| output(`, e)
e ::= v | x | e1 op e2 | (e1, e2) | proji(e)
v ::= n | (v, v)

x ∈ Var, y ∈ Var, ` ∈ L

Figure 1. Simple imperative language

standard information-flow control techniques, the type system also ensures that appropriate policies are enforced on
data derived from sensitive data.

We have developed a tool, Keyrase, which extends our enforcement mechanism to the Java programming language,
and used it to implement a chat client that supports information erasure of received messages stored in an encrypted
log. This demonstrates the practicality and usefulness of our approach to express and enforce realistic information
erasure requirements.

This paper makes the following three contributions:

(1) A novel semantic security condition for information erasure. The security condition is easily extended with
cryptographic primitives, providing an intuitive foundation for cryptographic information erasure and its correct
enforcement. Moreover, it formalizes and justifies existing mechanisms for cryptographic data deletion.

(2) A flow-sensitive type and effect system that provably enforces information erasure for an imperative language with
cryptographic primitives. This is the first such cryptographic enforcement mechanism for dynamic erasure policies.
Proving correctness requires showing the type and effect system is a sound and accurate static approximation of the
dynamic erasure policies, a task significantly more complex than standard noninterference-like proofs. However, the
complexity of the proof does not pollute the simplicity of the semantic definition or the type system.

(3) An implementation of the enforcement mechanism for Java (including an extension for erasing information from
the heap). The implementation, together with a chat client that supports erasing information from previously received
messages, provides evidence for the pragmatic value of our approach and its applicability to real languages.

Note that in this work we are concerned with “logical erasure” [15], not physical erasure [20, 21]. We do not address
the problem of reliably erasing data from physical media. Also, we focus on confidentiality guarantees, and assume
the attacker can observe but not modify data in untrustworthy storage.

2. Language, attacker model, and security

This section presents a novel security definition for information erasure. We first describe a language model and use it
to express an appropriate attacker model.

In our model, deletion of data corresponds to an assignment to the variable containing the data. For locations the
program cannot reliably delete, we use write-once variables, which can be initialized but not overwritten. For example,
the untrustworthy storage of our Snapchat-like example corresponds to one or more write-once variables. The identifier
of a write-once variable is underlined (e.g., y, z).

We assume a set of security levels L, and use meta-variable ` to range over security levels. Security levels describe
confidentiality requirements, and we assume a partial order v that describes the relative restrictiveness of security
levels. If ` v `′ then security level `′ is at least as restrictive as security level `, i.e., `′ requires at least as much
confidentiality as `. We assume the partial order has a greatest element, denoted >. In our examples, we use the
two-point security lattice with elements L and H, where L v H, but H 6v L (i.e., H = >).

Programs interact with the external environment via communication channels. For simplicity, we assume there is
exactly one communication channel per security level.

2.1. Language and attacker model. Figure 1 depicts the syntax of our language. The commands of the language
are standard with the exception of set, init, read, and output. Command set sets variables that are used as erasure
conditions; we discuss it further in Section 2.2. Command init y to e creates a write-once variable y and initializes it
to the result of e; attempts to re-initialize a write-once variable block program execution. Command read y into x

assigns the value stored in y to x. Command output(`, e) outputs the value of e on channel `. Outputs correspond to
attacker observations.

3

For evaluation of commands, we use a small-step semantics. A configuration is a tuple 〈c,m,U, t〉, where c is a
command, m is a standard memory that maps standard variables to values, U is a write-once memory that maps
write-once variables to values, and t is an output trace. Output traces have the form (`1, v1) · . . . · (`n, vn), where
(`i, vi) records that the ith output was of value vi on channel `i. We write t · t′ for concatenation of traces t and t′,
and ε for the empty trace. The initial configuration for program c with initial memory m is 〈c,m,Uinit, ε〉, where
Uinit is the initial write-once memory (i.e., the one where no write-once variable has been written to). The reduction
relation → for configurations is straightforward and we omit it. Note that the semantics enforces that write-once
variables are written to at most once, and that set(x) is semantically equivalent to assigning 1 to x. We use a large
step evaluation relation for expressions; 〈m, e〉 ⇓ v.

The following program models the interaction of our Snapchat-like example with the phone display and an untrusted
store. We use a write-once variable to model the untrusted store, since it is not trusted to reliably delete data. A
standard variable represents the display, since the program can erase it by displaying new data. Observations of the
display by the user are modeled by output statements. In this program msg contains sensitive information that should
be erased by the time condition variable delete is set.
1 display := msg; output(L, display); // Display message

2 compressed := gzip(msg); // Compress message

3 init store to compressed; // Store message

4 display := 0; msg := 0; compressed := 0; set(delete);

5 output(L, display);

6 read store into tmp; output(L, tmp); //Observe store

The program displays the message on the screen (line 1), and compresses it using gzip (line 2), and then writes
the compressed message to the storage device (line 3).2 Importantly, even though the compressed message differs
from msg, it carries information that depends on msg. That is, there is information flow from msg to the result of
gzip(msg).

Finally, the program attempts to delete the message by overwriting display , msg , and compressed (line 4) just before
delete is set. However, it cannot overwrite the write-once variable store. Later, an attacker may be able to observe
its contents (line 6), and thus learn the sensitive message after it should have been deleted. This program does not
correctly erase all information about the sensitive message.

Attacker observations and knowledge. The previous example appeals to an intuitive notion of secure information
erasure. To turn this notion into a formal definition, we develop a formal attacker model.

An attacker is an entity that observes the outputs performed on some set of communication channels during some
contiguous period of program execution. Based on these observations, the attacker infers facts about sensitive data
contained in the initial memory.3 We assume an attacker observes only some of a program’s execution because we are
interested in whether an attacker that starts observing after sensitive information should be erased learns anything
about the sensitive information.

We associate each attacker with a security level `, and assume that an attacker with security level ` can observe
outputs on all channels `′ such that `′ v `. Given a subtrace t, which represents the output of a program during
some contiguous part of its execution, the projection of t to level `, btc`, describes the observations of an attacker
with security level `; it is the list of outputs in t on any channel `′ such that `′ v `. Suppose execution of a program
produces trace t · tobs and the attacker observes tobs. The knowledge of the attacker is the set of initial standard
memories that are consistent with these observations. An initial memory is consistent with an attacker’s observation
if execution of the program under that memory could produce trace t′ · t′′ such that bt′′c` = btobsc`.

Definition 1 (Attacker knowledge). Given a program c, security level `, and subtrace tobs observed by the attacker,
define attacker knowledge at level ` for subtrace tobs as follows

k`(c, tobs) = {m | 〈c,m,Uinit, ε〉 −→∗ 〈c′,m′,U′, t1〉 −→∗ 〈c′′,m′′,U′′, t1 · t′〉 ∧ btobsc` = bt′c`}

The smaller the attacker knowledge set, the more the attacker knows. For example, an attacker that makes no
observations (i.e., btobsc` = ε) has all initial memories in its attacker knowledge, meaning that the attacker has no
information about the initial memory of the execution.

2Our model does not include functions but we write gzip(msg) to abstract the process of compressing msg.
3We assume sensitive information comes from the initial memory; orthogonal generalizations to input streams [4, 6] or user strategies [38]
are possible.

4

As an example of attacker knowledge, assume that the initial standard memory contains two variables x and y, and we
execute the program output(L, x); output(L, y). Now assume that the attacker’s observation is btobscL = (L, 1). Either
of the two commands may have produced this output. So the attacker knows that either the initial value of x is 1 or
the initial value of y is 1. Therefore, the knowledge of this attacker is {m | m(x) = 1 ∨m(y) = 1}.

A similar scenario occurs in the Snapchat-like example from this section. Assume we execute the program with an
initial memory m where m(msg) = 42, and an attacker at level L observes only the output on line 5. The attacker
observes only the trace (L, 0). All initial memories are consistent with this observation, so the attacker learns nothing;
the attacker’s knowledge is the set of all memories. However, if the attacker also observes the output on line 6 then
the attacker’s observations are (L, 0), (L, gzip(42)), and the attacker’s knowledge is {m | m(msg) = 42}.

2.2. Erasure policies and erasure environments. So far, we have defined erasure policies informally. In order to
express these security requirements formally, we specify the syntax of erasure policies:

p, q ::= ` | p cnd↗q

An erasure policy is either a security level ` or a policy of the form p cnd↗q, where cnd is the erasure condition for this
policy. Intuitively, information with erasure policy p cnd↗q is treated according to policy p until condition cnd is set,
and thereafter must be treated according to policy q. Conditions cnd are program variables. We assume that initially
all condition variables are set to 0. In Section 4, we give these variables the type cond, which prevents assignments
to condition variables. Condition variables can be set only by the command set, which updates their value to 1. A
simple security level ` means that no erasure is required, and the information has security level ` for the duration of
program execution. Condition variables provides a simple but expressive way for a programmer to connect erasure
conditions to program semantics. We conjecture that more general erasure conditions, such as arbitrary program
expressions or semantic conditions [11, 12], do not significantly improve the practicality of the model.

We attach erasure policies to sensitive data through an erasure environment. An erasure environment γ : Var→ Pol
maps variables to erasure policies. Given erasure environment γ and variable x, γ(x) is the erasure policy that
should currently be enforced for information derived from the initial contents of x, i.e., the value of x in the initial
memory.

The initial erasure environment of a program serves as the specification of its erasure requirements. For instance, in
the Snapchat-like example the initial erasure environment maps msg to policy L delete↗H. The erasure environment
may change during program execution when the program sets condition variables. For example, after delete is set
during the execution of our example program, the erasure environment changes to map msg to policy H: the initial
value of msg and data derived from it should now be protected at level H. To capture the dynamic nature of erasure
requirements, we augment configurations with erasure environments, 〈c,m,U, t〉γ . We lift the reduction relation using
the following rule.4

POL-ENV-UPDATE

〈c,m,U, t〉 → 〈c′,m′,U′, t′〉 γ′ = update(m′, γ)

〈c,m,U, t〉γ → 〈c′,m′,U′, t′〉γ′

The rule uses update to recursively update each policy in γ when a condition cnd is set. Function update takes
two arguments: the memory after setting cnd and the erasure environment, and returns the updated erasure
environment.

update(m, γ) = λx . upd(m, γ(x))

upd(m, p) =

` if p = `

upd(m, q) if p = p′ cnd↗q

and m(cnd) 6= 0

upd(m, p′) cnd↗upd(m, q) if p = p′ cnd↗q

and m(cnd) = 0

2.3. Security for erasure. Using attacker knowledge and erasure environments, we can define what it means for a
program to erase information securely. Intuitively, a program is secure iff at any point in its execution, it produces
only observable effects that are consistent with the security requirements of the program at the moment of the effect.
This accounts for changes of erasure policies during execution. In more concrete terms, a program is secure iff it

4Notice that γ-lifting does not change the behavior of programs.

5

outputs information on channel ` only when the currently enforced security level for that information permits it to
flow to channel `. Function cur(p) returns the current security level of p.

cur(p) =

{
` if p = `

cur(p′) if p = p′ c↗q

We use this function to describe what information an attacker at level ` can learn given an erasure environment γ.
Specifically, for any variable x and initial memory m, the attacker is permitted to learn about the initial value of x
only if the currently enforced security policy for m(x) (i.e., cur(γ(x)))) is allowed to flow to `. The following definition
expresses this idea as a set of memories that agree on the contents of x:

Definition 2 (Indistinguishable memories). Given memory m, erasure environment γ, and security level `, define
indistinguishable memories according to γ at ` to be the set

ind`(m, γ) , {m′ | m ≈cur
`,γ m

′}

We can use indistinguishable memories to define what information an attacker at level ` who observes a subtrace
tobs of the execution is permitted to learn: the intersection of all the initial memories that are consistent with the
erasure policies that were current during the production of tobs. This means that if the erasure environment changes
while an attacker observes the program, the information the attacker is permitted to learn includes information both
before and after the change. For instance, if the execution of the program with initial memory m involves at least n
configurations and the attacker observes a subtrace that corresponds to configurations i to n, the attacker is allowed
to learn

⋂
i≤j≤n ind`(m, γj). Since (i) a program is secure iff the information an attacker learns is bound by the

information the attacker is allowed to learn, and (ii) attacker knowledge (Definition 1) captures the information an
attacker learns, we define security as follows:

Definition 3 (Security). Program c is secure for initial erasure environment γ if for all memories m and executions

〈c,m,Uinit, ε〉γ −→∗ 〈ci,mi,Ui, ti〉γi −→
∗ 〈cn,mn,Un, ti · tobs〉γn

where i ≤ n, it holds that, for all levels `, we have

k`(c, tobs) ⊇
⋂

i≤j≤n

ind`(m, γj)

Note that an attacker who observes a subtrace of a program’s execution is allowed to learn less than an attacker
who observes a larger subtrace. Conversely, attackers observing a larger part of the computation may obtain more
precise knowledge. Also note that this definition of security is progress sensitive: it rejects programs that leak sensitive
information via their termination behavior [8]. Finally, when erasure environments do not change during execution,
i.e., γ = γi, for all i ≤ n, the definition coincides with non-interference.

We conclude this section with an example. Consider a two-point security lattice with elements L and H, an era-
sure condition variable t, variable x, erasure environment γ such that γ(t) = L and γ(x) = L t↗H and program
output(L, x); set(t); output(L, x). This program outputs the value of x after condition variable t is set. It is insecure
and is rightfully rejected by Definition 3. If m(x) = 42 and m(t) = 0 in the initial memory, the program execution is
as follows:

〈output(L, x); set(t); output(L, x),m,Uinit, ε〉γ −→
〈set(t); output(L, x),m,Uinit, (L, 42)〉γ −→
〈output(L, x),m′,Uinit, (L, 42)〉γ′ −→

〈stop,m′,Uinit, (L, 42) : (L, 42)〉γ′

Here m′ = m[t 7→ 1] and γ′ = update(m′, γ) = γ[x 7→ H]. For an attacker that observes the subtrace tobs = (L, 42)
attacker knowledge is kL(c, (L, 42)) = {m | m(x) = 42 ∧m(t) = 0}.5 In order to determine whether the attacker’s
knowledge is bounded by the information the attacker is permitted to learn, we must consider the sets of indistinguishable
memories permitted by the configurations that produced tobs. Our example program is secure (Definition 3) if
indL(m, γ

′) ⊆ kL(c, (L, 42)). Since cur(γ′(t)) = L and cur(γ′(x)) = H 6v L, we have indL(m, γ
′) = {m | m(t) = 0}. Thus,

the program is insecure, since {m | m(t) = 0} 6⊆ {m | m(x) = 42 ∧m(t) = 0}.

Similarly, our security definition rejects our Snapchat-like example. Recall that initially m(msg) = 42 and γ(msg) =
L delete↗H. Assume that γ′ is the erasure environment for the configuration that is about to perform the output on
line 6. For this configuration, we obtain that γ′(msg) = H and indL(m, γ

′) = {m | m(delete) = 0}. However, for an

5The initial value of all condition variables is known to be 0.

6

v ::= . . . | pk〈i〉 | sk〈i〉 | v r〈j〉
pk〈i〉 | NaV

c ::= . . . | x := encrypt(e1, e2) | x := decrypt(e1, e2)

| newkeypair(x1, x2, p)

Figure 2. Language with cryptographic primitives

S-PUB-ENCRYPT

〈m, e1〉 ⇓ pk〈i〉 〈m, e2〉 ⇓ v Y(enc) = j

〈x := encrypt(e1, e2),m,U,Y, t〉 −→ 〈stop,m[x 7→ v
r〈j〉
pk〈i〉],U,Y[enc 7→ j + 1], t〉

S-PUB-DECRYPT

〈m, e1〉 ⇓ sk〈i〉 〈m, e2〉 ⇓ v
r〈j〉
pk〈i〉

〈x := decrypt(e1, e2),m,U,Y, t〉 −→ 〈stop,m[x 7→ v],U,Y, t〉

S-PUB-DECRYPT-FAIL

〈m, e1〉 ⇓ sk〈i′〉 〈m, e2〉 ⇓ v
r〈j〉
pk〈i〉 i 6= i′

〈x := decrypt(e1, e2),m,U,Y, t〉 −→ 〈stop,m[x 7→ NaV],U,Y, t〉

S-PUB-NEWKEY

Y(pubkey) = i

〈newkeypair(x1, x2, p),m,U,Y, t〉 −→ 〈stop,m[x1 7→ pk〈i〉, x2 7→ sk〈i〉],U,Y[pubkey 7→ i+ 1], t〉

Figure 3. Semantic of cryptographic commands

attacker at level L who observes the output on line 6, attacker knowledge is {m | m(msg) = 42∧m(delete) = 0} which
is not a subset of indL(m, γ′), and so the program is insecure.

3. Language with cryptographic primitives

In this section we extend our semantic security condition for erasure to a setting with cryptographic primitives. Our
notion of symbolic cryptographic attacker is inspired by the one of Askarov and Sabelfeld [5]. but is different in that
our extension is based on Laud’s model for cryptographically-masked flows [30].

We use Laud’s symbolic approach to cryptography because it has been proven sound for the computational cryptographic
model. We do not directly prove computational soundness for this work, but such a proof would follow Laud’s proof
closely.

Section 3.1 extends our language with cryptographic primitives; technical development in that subsection is a direct
adaptation of Laud’s work [30, §8], and is not a contribution of this work. Section 3.2 extends our model of attacker
knowledge to account for cryptographic operations, and correspondingly extends our semantic definition of security. We
use a public key cryptographic model, although our development can be straightforwardly adapted for symmetric key
cryptography. Specifically, in this setting, symmetric key cryptography is less challenging than public key cryptography.
With public key cryptography, our security definitions and enforcement mechanism must ensure that both public and
private keys are used correctly, while with symmetric cryptography we would only have to consider symmetric keys.
An adapted enforcement mechanism would impose similar restrictions on symmetric keys as it does on private keys.
The model for encryption and decryption operations and ciphertexts would be similar as well.

3.1. Syntax and semantics. Figure 2 presents the extensions to our language syntax. We extend values with
an indexed collection of key pairs, and refer to the individual keys as pk〈i〉 and sk〈i〉 for the public and private
keys, respectively. We also use an indexed collection of random strings r〈j〉. These strings are not first-class values,
but appear as components of encrypted values. Encrypted values have form v

r〈j〉
pk〈i〉, and consist of a plaintext v,

the indexed public key pk〈i〉 and the indexed random string r〈j〉 that was used for the encryption of v. We model
randomized encryption, and r〈j〉 encapsulates the randomness used in the encryption. Including it in the symbolic
model of ciphertexts allows us to model the fact that an attacker can distinguish between distinct ciphertexts even if
the attacker cannot decrypt them.

7

pat(NaV,S) = NaV pat(n,S) = n pat(sk〈i〉,S) = sk〈i〉 pat(pk〈i〉,S) = pk〈i〉 pat(· r〈j〉,S) = · r〈j〉

pat((v1, v2),S) = (pat(v1,S), pat(v2,S)) pat(v
r〈j〉
pk〈i〉,S) =

{
pat(v,S)

r〈j〉
pk〈i〉 if sk〈i〉 ∈ S

· r〈j〉 if sk〈i〉 6∈ S

Figure 4. Value pattern pat(v,S)

Semantics. We extend configurations to have form 〈c,m,U,Y, t〉, where Y is the symbolic cryptographic environment
that counts the number of key pairs and random strings generated in an execution. Y maps {pubkey, enc} to N.
Y(pubkey) is the number of key pairs that have been generated during the execution so far, and Y(enc) is the number
of encryptions that have been performed so far (and thus is equal to the number of random strings generated). The
initial symbolic cryptographic environment, written Yinit, maps both counters Y(pubkey) and Y(enc) to 0. The counters
are incremented by commands for key generation and encryption respectively.

Figure 3 presents operational semantics for the new commands. Inference rules for other commands are modified for
the new configurations in the obvious way. Encryption command x := encrypt(e1, e2) evaluates e1 to a public key,
evaluates e2 to a value v, encrypts v using the public key (generating a new random string to do so) and assigns the
result to variable x. Decryption x := decrypt(e1, e2) evaluates e1 to a private key and evaluates e2 to a ciphertext. If
the ciphertext was encrypted using the corresponding public key, the decryption succeeds, assigning to x the encrypted
value. Otherwise, the decryption fails assigning to x the value NaV. Finally, newkeypair(x1, x2, p) generates a new key
pair and assigns the public key to x1 and the private key to x2. Policy p is an annotation used by our enforcement
mechanism, and is described in more detail in the following section. It is an upper bound on the information that the
public key may be used to encrypt, and also restricts how the private key is handled.

Symbolic equivalence of encrypted values. In order to define what values an attacker can and cannot distinguish, we
define an equivalence relation over ciphertexts. For this, we define a few auxiliary concepts based on a Dolev-Yao-style
attacker model [16].

First, given a set of values V, the Dolev-Yao observables of V, written DY-obs(V), are the values that an observer
can obtain by splitting pairs into constituent values and using any private keys it possesses to decrypt ciphertexts it
possesses. Formally, for a set of values V, DY-obs(V) is the least superset of V, such that

• if (v1, v2) ∈ DY-obs(V) then v1 ∈ DY-obs(V) and v2 ∈ DY-obs(V).
• if sk〈i〉 ∈ DY-obs(V) and v

r〈j〉
pk〈i〉 ∈ DY-obs(V) then v ∈ DY-obs(V)

Second, given a value v, and a set of private keys S, the value pattern of v with respect to S, denoted pat(v,S), is
a template that describes which values an attacker that possesses S cannot distinguish from v. In particular, any
ciphertext v

r〈j〉
pk〈i〉 that appears in v for which the attacker does not possess the corresponding private key sk〈i〉 is

replaced by · r〈j〉, indexed by the randomness used to generate the ciphertext. As mentioned before, we use this index
to allow the attacker to distinguish identical ciphertexts from distinct ciphertexts, even when the attacker cannot
decrypt the ciphertexts. The definition of pat(v,S) is given in Figure 4.

We lift value patterns to lists of values: given a list of values ~v = v1, . . . , vn, define the list pattern, denoted as
pattern(~v), to be the list of values pat(v1,S), . . . , pat(vn,S), where S is the set of observable private keys within ~v,
and is defined as S , DY-obs({vi | 1 ≤ i ≤ n}) ∩ {sk〈i〉 | i ∈ N}.

Using the above concepts, we can define equivalence up to formal randomness: two lists of values are equivalent up to
formal randomness iff the list patterns of the two lists are identical, up to permutations on the indices of key pairs
and random strings. Intuitively, two lists of values are equivalent up to formal randomness if a Dolev-Yao attacker is
unable to distinguish the two lists.

Definition 4 (Equivalence up to formal randomness). Given two lists of values ~v = v1, v2, . . . , vn and ~v′ =

v′1, v
′
2, . . . , v

′
n, say that these lists are equivalent up to formal randomness, written ~v

rnd
= ~v′, when there exist two

permutations φ, ψ : N → N such that pattern(~v) is identical to pattern(~v′) when public and private key indices are
permuted according to φ and random string indices are permuted according to ψ, i.e.,

pattern(~v) = pattern(~v′)[pk〈φ(1)〉/pk〈1〉, pk〈φ(2)〉/pk〈2〉, ...,

sk〈φ(1)〉/sk〈1〉, sk〈φ(2)〉/sk〈2〉, ...,

r〈ψ(1)〉/r〈1〉, r〈ψ(2)〉/r〈2〉, ...]

8

Note that the definition uses permutations φ and ψ on keys and random strings respectively, implying that the specific
keys and ciphertexts are not significant, but rather how these keys and ciphertexts are used.

Example 1. The following program generates two key pairs and then depending on whether x > 0 encrypts the integer
0 using one of the two keys before outputting the resulting ciphertext.
1 newkeypair(pk , sk , H); newkeypair(pk ′, sk ′, H);

2 if x > 0 then v := encrypt(pk , 0) else v := encrypt(pk ′, 0)

3 output(L, v);

Consider two executions of this program: one where x = 5 and the other where x = 0. The first execution results in the
output u1 = 0

r〈0〉
pk〈0〉; the second results in the output u2 = 0

r〈1〉
pk〈1〉. The corresponding list patterns of u1 and u2 are

both · r〈0〉 and · r〈1〉. Using the permutation that maps 0 to 1 for both keys and random strings, we can derive that
u1

rnd
= u2. This matches our intuition: in both executions the attacker observes a single ciphertext that is unable to

decrypt.

Example 2. The following program generates a key pair, encrypts the integer 0 and outputs the ciphertext, and then
either outputs the same ciphertext, or another encryption of 0, depending on expression x > 0.
1 newkeypair(pk , sk , H);u := encrypt(pk , 0); output(L, u);

2 if x > 0 then v := u else v := encrypt(pk , 0);

3 output(L, v)

Consider two executions of this program that differ in the expression x > 0. The execution where x > 0 outputs values
u1 = 0

r〈0〉
pk〈0〉, v1 = 0

r〈0〉
pk〈0〉. The other execution, where x ≤ 0, outputs values u2 = 0

r〈0〉
pk〈0〉, v2 = 0

r〈1〉
pk〈0〉. The list

pattern of these outputs are · r〈0〉, · r〈0〉 and · r〈0〉, · r〈1〉 respectively. There are no permutations for which these two
lists of values can satisfy Definition 4. Again, this matches our intuition: an attacker can distinguish an execution
where the same ciphertext is output twice from an execution where two different ciphertexts are output, even though
the attacker is unable to decrypt the ciphertexts.

Example 3. The following program is similar to the first example, but outputs the two secret keys before doing any
encryptions.
1 newkeypair(pk , sk , `); newkeypair(pk ′, sk ′, `);

2 output(`, (sk, sk′));

3 if x > 0 then u := encrypt(pk , 0) else u := encrypt(pk ′, 0)

4 output(`, u);

Again, consider two executions that differ in the value of x > 0. One of these executions results in output sequence
(sk〈0〉, sk〈1〉), 0

r〈0〉
pk〈0〉, while the other one results in (sk〈0〉, sk〈1〉), 0

r〈0〉
pk〈1〉. The list patterns for these executions are

not equivalent, because the attacker is able to use the private keys to decrypt the ciphertext, and thus distinguish them.

3.2. Cryptographic erasure. Using the notion of equivalence up to formal randomness, we can now extend our
definitions of attacker knowledge and security to the extended language.

Definition 5 (Cryptographic attacker knowledge). Given program c, security level `, and a subtrace tobs observed by
the attacker, define cryptographic attacker knowledge for subtrace tobs at level ` as

krnd
` (c, tobs) , {m | 〈c,m,Uinit,Yinit, ε〉 −→∗ 〈c1,m1,U1,Y1, t1〉 −→∗ 〈c2,m2,U2,Y2, t1 · t′〉 ∧ bt′c`

rnd
= btobsc`}

The structure and intuition of this definition is similar to Definition 1. The only difference is the use of equivalence up
to formal randomness between trace projections.

Definition 6 (Security with cryptography). Program c is secure for initial erasure environment γ if for all memories
m and executions

〈c,m,Uinit,Yinit, ε〉γ −→∗ 〈ci,mi,Ui,Yi, ti〉γi −→
∗ 〈cn,mn,Un,Yn, ti · tobs〉γn

where i ≤ n, it holds that for all levels `, we have

krnd
` (c, tobs) ⊇

⋂
i≤j≤n

ind`(m, γj)

Again, the structure and intuition of this definition is similar to Definition 3 from Section 2.3, differing only in the use
of cryptographic attacker knowledge.

9

Example 4. The following variant of our Snapchat-like example demonstrates how encrypting the compressed message
before writing it to store makes the example secure.
1 newkeypair(pk, sk, L delete↗H);

2 display := msg; output(L, display);

3 compressed := encrypt(pk, gzip(msg));

4 init store to compressed;

5 display := 0; msg := 0; sk := 0; set(delete);

6 output(L, display); output(L, sk);

7 read store into tmp; output(L, tmp);

This program first generates a key pair that can be used to encrypt information up to policy L delete↗H, and encrypts
the compressed content of msg, storing the ciphertext in compressed. At line 5, variables display, msg and sk are
overwritten and the condition delete is set (requiring erasure of the initial value of variable msg and any information
derived from that value). This program is secure: an attacker that starts observing program execution after delete
is set will learn nothing about the initial value of msg, even if the program subsequently outputs the contents of all
memory locations, including the ciphertext value of store (line 7). Intuitively, this program is secure because both the
initial value of msg and the private key used to encrypt the information derived from that value were erased prior to
delete being set, even though an encryption of the compressed message is still accessible. If the assignment to sk in
line 5 was omitted (i.e., the private key was not overwritten), the program would be insecure: after delete is set, an
observer could learn the private key and thus decrypt the ciphertext and learn the initial value of msg.

4. Enforcement

In this section, we develop an enforcement mechanism for secure erasure based on a flow-sensitive security type system.
A straightforward extension of our mechanism combines our type system with a run-time enforcement mechanism
for a language with a heap. This extension is inspired by the work of Chong and Myers [12] and is described in the
Appendix.

In flow sensitive type systems, the type of a variable may change during program execution if the variable is updated.
For example, in program x := y, where, initially, variable x is typed as H and variable y is typed as L, the type of x
may be updated to L after the assignment.

The intuition behind our mechanism is the following:

1) The type system prevents information flows through variables or locations that enforce a weaker policy than the
information requires. For example, the type system allows information with erasure policy p cnd↗q to flow to variables
with policy p cnd↗>, but prevents flows to variables with policy p, since those variables would not be erased to q
when the condition cnd is set. We formalize this relationship between security policies using a relabeling judgment
(Section 4.1).

2) A command set(cnd) can only be typed when the typing environment contains no variables with security policies
that contain erasure conditions cnd . In combination with (1), this requirement ensures that a condition cnd can be set
only when no program variable contains information that needs to be erased by the time cnd is set (Section 4.2).

3) Encryption of sensitive information transfers the burden of preventing information flows from the data to the
cryptographic keys used to encrypt it. As long as the keys are protected in accordance with the original policy on the
information, the policy on the ciphertext can be relaxed (Section 4.3).

4.1. Relabeling judgment. Our first step for constructing an enforcement mechanism, is to define a relabeling
judgment that we can use to compare erasure policies. We say that policy p can be relabeled to q, written p ≤ q, when
enforcement of policy q on some information implies enforcement of policy p on the same information.

Figure 5 defines the relabeling judgment. Erasure policies consisting of labels are compared using the ordering of
the underlying security lattice, as per rule R-LAB. For compound policies, the rule R-LHS specifies that a policy
p cnd↗q may be relabeled to policy p′ if both p and q can be relabeled to p′. The condition variable cnd can be ignored
because policy p′ is restrictive enough to satisfy the requirements of both policies p and q, regardless of the condition
variable. Rule R-RHS is similar. Finally, rule R-SAMECOND defines relabeling between two policies with the
same condition variable; p1

c↗q1 can be relabeled to p2
c↗q2 provided p1 ≤ p2 and q1 ≤ q2).

10

R-LHS

p ≤ p′ q ≤ p′

p c↗q ≤ p′

R-RHS

p′ ≤ p p′ ≤ q
p′ ≤ p c↗q

R-LAB

` v `′

` ≤ `′

R-SAMECOND

p1 ≤ p2 q1 ≤ q2
p1

c↗q1 ≤ p2
c↗q2

Figure 5. Relabeling judgment on policies

Γ ` ` okpol

p1 ≤ p2 Γ(cnd) = cond q q ≤ pi Γ ` pi okpol (i = 1, 2)

Γ ` p1
cnd↗p2 okpol

Figure 6. Well-formed erasure policies

T-ASSIGN

Γ ` e : b p cond-free(b) {p, pc} ≤ q
Γ, pc ` x := e : Γ[x 7→ b q]

T-INIT

Γ ` e : b p Γ(x) = b q {pc, p} ≤ q
Γ, pc ` init x to e : Γ

T-READ

Γ(x) = b q {pc, q} ≤ p
Γ, pc ` read x into y : Γ[y 7→ b p]

T-SET

x 6∈ erasureconds(Γ) ∪ erasureconds(pc) Γ(x) = cond p pc ≤ p
Γ, pc ` set(x) : Γ

T-OUTPUT

Γ ` e : b p {p, pc} ≤ q cur(q) v `
Γ, pc ` output(`, e) : Γ

Figure 7. Selected typing rules for basic commands

The relabeling judgment is sound with respect to the semantic interpretation of erasure policies. That is, strengthening
the policy required on information in accordance with the relabeling order strictly decreases the number of initial
memories an attacker can distinguish(cf. Appendix).

4.2. Flow-sensitive enforcement of erasure. Using the relabeling judgment, we introduce a security type system
that enforces information erasure. Our type system has the following types:

b ::= int | cond | pubkeyp | privkeyp | encp b | (b, b)
τ ::= b p

Base types, denoted by b, range over integers, erasure conditions, public and private keys, encrypted values, and
tuples (b, b). Types for public and private keys and encryptions are annotated with a key policy p. For keys the policy
bounds the level of information that may be encrypted with the key pair. For encrypted values, the policy is same as
the policy of the key that was used to produce the ciphertext. General types are denoted by τ and consist of a base
type b and an associated policy p.

Typing environments and well-formed policies. Let Γ be a typing environment that maps standard variables and
write-once variables to general types: Γ : Vars ∪Vars→ τ. We use ẋ to range over the domain of Γ, while we use x
and x when we refer specifically to write-once and standard variables respectively. We require that typing environments
are well-formed. Defining well-formed typing environments requires first defining well-formed policies.

Figure 6 defines when a policy p is well-formed in Γ, denoted Γ ` p okpol. Erasure policies that are simple security
levels ` are always well formed. There are two key restrictions for a well-formed policy p1

cnd↗p2. First, the policy of
the condition variable Γ(cnd) must be no more restrictive than either p1 or p2. That is, information about whether
cnd has been set is allowed to flow to both p1 and p2. This prevents covert information flows via condition variables.
Second, policy p2 must be as restrictive as p1. Thus the policy is indeed an erasure policy rather than a declassification
or an arbitrary relabeling.

We lift well-formedness from policies to typing environments. An environment Γ is well-formed, written ` Γ okenv, if
and only if all policies it contains are well-formed (cf. Definition 7 in Appendix).

11

Flow-sensitive type system. The typing judgment for expressions has the form Γ ` e : b p. The intuition and inference
rules for this judgment are the standard ones for security type systems, and we omit them for brevity.

The typing judgment for commands is flow sensitive, and has the form Γ, pc ` c : Γ′, where Γ is the typing environment
immediately before the execution of command c, program counter policy pc is an erasure policy that is an upper
bound on the information that may have influenced the decision to execute command c, and Γ′ is the updated typing
environment that holds immediately after command c terminates. Figure 7 presents selected typing rules for the
non-cryptographic commands. In these rules, we use a straightforward extension of relabeling to types and typing
environments. We require that all typing environments are well-formed, but omit the corresponding premises ` Γ okenv

from Figure 7 for brevity. The structure of the rules follows the flow-sensitive security type system of Hunt and Sands
[25]. The interested reader can find the remaining rules of the type system in the Appendix.

Rule T-ASSIGN updates the erasure policy for variable x with policy q, where q is an upper bound of both the
policy of expression e and the current program counter policy pc. This accounts for both explicit information flows
from the computed expression and implicit information flows due to control flow Premise cond-free(b) ensures that the
type of the assigned variable is not cond or a tuple that contains a cond. Thus only a set(x) command can mutate a
condition variable.

The typing rules for write-once variables, T-INIT and T-READ, are similar to the typing rule for assignment and
expressions. Crucially, however, the types of write-once variables are flow-insensitive since information stored in them
cannot be erased. The type system does not enforce that write-once variables are written to at most once (and thus
the type system does not enforce progress). However, this property is not required to prove that the type system
enforces security.

Rule T-SET requires that when typing command set(x) neither variables in the current typing environment nor the
program counter policy pc contain erasure policies with x as the erasure condition variable. This effectively ensures
that any information that needs to be erased when the condition is set has already been erased by the program.
Furthermore, it implies that information with an erasure policy that is eventually set cannot be stored in a write-once
variable, since the type of write-once variables is fixed, and so the environment will always contain that condition
variable. These restrictions are imposed by the requirement that x 6∈ erasureconds(Γ) ∪ erasureconds(pc). The type
system also requires that pc ≤ p where Γ(x) = cond p, which ensures that the decision to set the condition variable
does not reveal sensitive information.

Operator erasureconds(arg1 , arg2 , . . .) returns all condition variables that appear in the erasure policies of its arguments
(cf. Appendix). The erasure conditions of a variable with type b p include condition variables within private key types
appearing in b, ensuring that keys which could be used to decrypt sensitive information are also erased. Condition
variables in public keys are not included because they do not protect sensitive information and do not need to be
erased.

Rule T-OUTPUT emphasizes the temporal nature of erasure policies: outputting a value on channel ` is permitted
if the currently enforced security level of the value’s policy is allowed to flow to `. For example, if the policy L cnd↗H is
enforced on a value, then the currently enforced security level of the policy is L, and thus the value is allowed to be
output to a channel with level L.

Example 5. Under initial typing environment Γ such that Γ(cnd) = cond L and Γ(x) = int L cnd↗H, and initial
program counter policy pc = L, the program

output(L, x);x := 0; set(cnd); output(L, x)

is well-typed. While x initially contains information that requires erasure, it has been overwritten with public information
before the command set(cnd). Thus the program type checks. Both output statements are secure since the first occurs
while information with policy L cnd↗H is allowed to be observed on channel L and the second outputs only public
information.

Example 6. Under the same initial typing environment, the following program

if x > 0 then set(cnd) else skip

is rejected by the type system because information in x is not erased by the time cnd is set.

Example 7. Consider the program
output(L, x); init file to x;x := 0;

set(cnd); read file into y; output(L, y)

under an initial program counter level pc = L and initial typing environment Γ where Γ(cnd) = cond L, Γ(x) =
int L cnd↗H, and Γ(file) = int L cnd↗H. This program is similar to the first example, but stores the sensitive information

12

T-PUB-NEWKEY

pc ≤ p pc ≤ pk pk ≤ q Γ′ = Γ[x 7→ pubkeypk p, y 7→ privkeypk q]

Γ, pc ` newkeypair(x, y, pk) : Γ′

T-PUB-ENC

Γ ` e1 : pubkeypk p Γ ` e2 : b p′′ p′′ ≤ pk {pc, p} ≤ p′ Γ′ = Γ[x 7→ encpk b p
′]

Γ, pc ` x := encrypt(e1, e2) : Γ′

T-PUB-DEC

Γ ` e1 : privkeypk p Γ ` e2 : encpk b q {q, pk, p, pc} ≤ q′ Γ′ = Γ[x 7→ b q′]

Γ, pc ` x := decrypt(e1, e2) : Γ′

Figure 8. Typing for cryptography

in x to file that cannot be erased. Right before set(cnd) maps file to L cnd↗H. Thus set(cnd) does not type check.
Alternatively, if the initial environment mapped file to H, set(cnd) would type check, but output(L, y) would not.

4.3. Typing cryptography. Figure 8 introduces the additional typing rules for cryptographic operations. These
rules control the flow of information in the program and ensure that encrypted values and keys can be safely used to
enforce information erasure.

Values of type pubkeypk p and privkeypk q are public and private keys, respectively, where pk is an upper bound
on the information that those keys can encrypt and decrypt. Thus in the rule for encryption (T-PUB-ENC), the
information to be encrypted must be bounded above by pk, and in the rule for decryption (T-PUB-DEC), the result
of decryption must be bounded below by pk.

In rule T-PUB-NEWKEY, the policy q enforced on a private key must be at least as restrictive as pk and the
decision to generate a new key pair (pc) must be bounded below by pk . Intuitively, if secret information is encrypted,
the private key that can decrypt it should also be treated as secret information; if the private key were public
information, then anyone could use the private key to decrypt the ciphertext and obtain secret information. Crucially,
this restriction also ensures that if encrypted information needs to be erased, it suffices to erase the private key. That
is, if a keypair can be used to encrypt information that must be erased, then the policy enforced on the private key
must be at least as restrictive as the erasure policy, and the private key must be erased if needed. A single key-pair
may be used to protect multiple data items, so long as the bound of the key pair is at least as restrictive as the erasure
policy to enforce on each sensitive datum.

In rule T-PUB-ENC, the ciphertext that results from encrypting a value with policy p′′ using a public key with
type pubkeypk p has policy p′, and p′ does not need to be bounded below by either p′′ or pk. That is, the result of
encrypting a secret value is a non-secret ciphertext. Note, however, that both the decision to encrypt and the choice
of which public key to use may reveal information, and so p′ must be bounded below by both p and pc. Similarly, in
rule T-PUB-DEC the result of decrypting a ciphertext must be bound below by the decision to decrypt, the choice
of which private key to use, and the choice of which ciphertext to decrypt.

Example 8. Recall the secure variant of the Snapchat-like example from Section 3. Consider an initial typing
environment Γ(delete) = cond L, Γ(msg) = int L delete↗H, and pc = L. Also assume that the type of gzip(msg) is
the same as the type of msg, i.e, the type captures the implicit flow from msg to the result of the expression. This
program is well typed, since the ciphertext compressed may have policy L and thus store does not need to be erased
before the condition is set. Moreover, as we discuss in Section 3, the secret key sk is erased. Thus this program is also
semantically secure.

Example 9. Consider the same program but with the command sk := 0 removed. This program is no longer secure
because an observer can use the secret key to decrypt the second output, learning information about msg after the
condition is set. This program is rejected by the type system because sk is not treated in accordance with the key policy
L delete↗H, which would require it to be erased before the command set(delete).

4.4. Assurance. We now formulate our main soundness result. First, observe that our type system is termination
insensitive [8] and thus cannot enforce Definition 6. Instead, we state soundness with respect to a weaker, termination-
insensitive variant of Definition 6. Existing techniques that either combine type-based enforcement with termination
analysis [35] or further restrict the expressiveness of programs to eliminate termination channels [38, 43, 47] can
mitigate this limitation.

13

As a technical device in our definition of termination-insensitive security, we introduce Conv(c), the set of converging
memories.

Conv(c) , {m | 〈c,m,Uinit, ε〉 −→∗ 〈stop,m′,U′, t′〉}

In the statement of our security theorem below, we use the set of converging memories to exclude memories that
would cause the program to diverge or get stuck.

Theorem 1 (Termination-insensitive security). Consider program c such that Γ, pc ` c : Γ′, Then for all m ∈ Conv(c)
and all runs such that

〈c,m,Uinit,Yinit, ε〉γ −→∗ 〈ci,mi,Ui,Yi, ti〉γi −→
∗ 〈cn,mn,Un,Yn, ti · tobs〉γn

where i ≤ n, it holds that for all levels `

krnd
` (c, tobs) ⊇ Conv(c) ∩

⋂
i≤j≤n

ind`(m, γj)

Standard proof techniques to show that a security type system enforces a noninterference-like property do not
immediately work. There are two complicating factors. First, we need to prove a noninterference-like property
for security policies ordered by the relabeling relation. However, channel outputs violate this ordering (since, e.g.,
information labeled L cnd↗H can be output to channel L, even though L cnd↗H 6≤ L). This requires proving a property
stronger than noninterference, where, for example, even though two L-equivalent executions may start with different
values at policy L cnd↗H, once condition cnd is set, the two executions are thereafter L cnd↗H-equivalent. Second,
our erasure policies are dynamic policies [4], and we must show that the type system is a sound and accurate static
approximation of these policies. This requires powerful invariants, including that branches and loops modify the
type of a variable only if the branch or loop might modify the variable’s value. The appendix includes the proof of
Theorem 1 for our model extended with a heap enforcement mechanism. Theorem 1 as stated in this section is a
corollary.

5. Implementation

We have implemented an extended version of the enforcement mechanism from Section 4 in the tool Keyrase.
Keyrase combines static analysis and source-to-source translation to enforce erasure policies in Java programs. To
effectively support erasure in the presence of objects, the tool combines a flow-sensitive analysis to ensure erasure of
information in local variables with a run-time mechanism to erase data in the heap. The run-time mechanism allows
information with erasure policies to flow into the heap without requiring precise static reasoning. The extension of the
language to model a heap and run-time erasure mechanism is presented in the appendix.

Keyrase uses the Accrue Interprocedural Java Analysis Framework [13] (or, simply, “Accrue”). Accrue is itself built
as a compiler extension to Polyglot [37], an extensible compiler framework for Java. Keyrase is implemented in
approximately 3,000 lines of Java code, but is built of on top of an interprocedural constraint-based information-flow
analysis, which consists of approximately 11,000 lines of Java code. Keyrase uses contraint-based type inference to
require fewer type annotations.

Language extensions. Keyrase extends Java with a distinguished type Condition. Conditions may appear only as
static fields or local variables, must be declared final, and cannot be used in expressions or passed as arguments.
This ensures that conditions used in erasure policies can always be statically identified. A program sets a condition
with its set method.

Programmers may annotate field declarations and expressions with a security policy for the contents of the field or
the result of the expression. Erasure policies that appear in annotations can refer to any condition variable in scope.
Keyrase also has annotations for declassification. While our formal model does not include declassification, we
conjecture that it can be accounted for by weakening the indistinguishability relation in the style of Askarov and
Sabelfeld [5].

Security analysis. When invoked, Keyrase attempts to infer security policies for every field, local variable, and
expression in a program and reports whether those policies are consistent with information flow constraints and
annotations. The constraints track explicit and implicit information flows through Java language features such as
objects, fields, static and dynamic method dispatch, and exceptions. The constraints do not track information flow
via termination, timing, or other covert channels. Like the enforcement mechanism described in Section 4, our
analysis is flow sensitive for local variables and expressions but flow insensitive for heap locations. We do not support
concurrency.

14

In addition to constraints that ensure standard information-flow restrictions, Keyrase uses several constraints to
enforce the novel requirements of our type system: (1) Whenever a condition may be set (either by calling set directly,
or by calling a method or constructor that may set a condition), we require that the condition does not appear in the
security policies inferred for either the program counter or local variables in scope at that program point. This is
analogous to the requirements of typing rule T-SET. (2) At calls to encryption and decryption functions, we constrain
the policies associated with public and private keys according to typing rules T-PUB-ENC and T-PUB-DEC. (3)
By default, fields are constrained to simple security level policies unless they are explicitly annotated with an erasure
policy. Furthermore, to make sure that fields with erasure policies can be erased by reassignment, they may not be
marked final.

We rely on programmer-provided signatures to identify methods for key generation, encryption and decryption. The
programmer may also provide signatures describing the information-flow behavior of library code. When neither
code nor a signature is available, Keyrase (unsoundly) assumes that information may flow from the receiver and
arguments of a method call to the return value of the method and to all fields of the receiver.

Translation. Keyrase implements a source-to-source translation to enforce erasure in the heap. The translation
injects code into the constructors or static initializers of classes that contain fields that may require erasure. This
code registers a listener with the condition specified in the erasure policy. When the condition is set, it notifies the
listeners, which overwrite the fields with default values.

6. Case study

We used Keyrase to check the security of examples in this paper. We also implemented a simple Internet Relay Chat
(IRC) client that keeps a compressed and encrypted log of messages on disk. The client comprises 316 non-comment
lines of code (excluding libraries) and can connect to a server, join a chat channel, send and receive messages, and
view previous messages from the log.

The client also has a \clear command that erases all information about previous chat messages from the system. This
security requirement is expressed as an erasure policy on received messages: L clear↗>. This policy requires information
to be erased when the condition clear is set, which happens when the \clear command is issued. Afterwards, the
client can resume logging new messages.

To reflect that data on disk cannot be reliably deleted, the signatures for methods that write to the file system accept
only information with policy L. Thus, the client cannot log messages to the file system directly. Instead, it compresses
and encrypts the log in screen-sized blocks before writing it to disk. Keyrase ensures that the keys used are also
protected with policy L clear↗> and thus cannot be written to the file system. Information about received messages
also flows to the component that maintains a short buffer of messages used to redraw the screen. This buffer must
also be erased when the clear condition is set. Of course, the terminal window itself may contain sensitive information.
The client erases this trusted channel by sending a clear screen command.

Other information flows in the program reveal sensitive information indirectly: for example, writing even encrypted
information to the file system reveals information about the existence of messages, if not their contents. Keyrase
detects this leak because the client attempts to write to the file system while the program counter is tainted. Since the
information revealed is minimal, we added a declassification annotation to allow it rather than modify the program to
always write a fixed-size log entry.

Keyrase also detected leaks caused by insecure programming. For example, in Java, many methods that operate on
sensitive data can throw exceptions that leak information by preventing subsequent outputs that would otherwise be
secure. Avoiding these leaks requires careful handling of exceptions, which is difficult without tool support.

In total, the IRC client required eight annotations: two to declare the types of cryptographic keys, two to declare the
erasure policies of object fields, and four declassification annotations. One is the declassification of whether a new log
entry has been added, described above. The remaining three declassify (1) the number of previous log entries, (2)
output to the terminal window, and (3) whether a message was a “ping” (which generates multiple log entries).

Our experience with Keyrase confirms that correctly identifying sensitive data that should be erased is challenging—
most of the information flows we found were not immediately obvious. This reinforces the importance of cryptographic
information erasure rather than data deletion in applications that use untrusted storage.

15

7. Related work

Information erasure. Chong and Myers introduce language-based information erasure [11] and define erasure policies
via a denotational semantics with an attacker that has direct access to memory. Our semantics for erasure policies is
operational. In addition we use a precise and extensible knowledge-based attacker model, which allows for an extension
to cryptographically-masked values [7].

Additional work has furthered the semantic definition of information erasure. Del Tedesco et al. [15] provide a semantic
framework for expressive erasure policies. Their semantic condition, like ours, is based on attacker knowledge. Their
policies can describe richer erasure policies than ours, including erasure policies that depend on the data to be erased.
In contrast to our work, though, they do not provide an enforcement mechanism. Beyond the sequential programs
that our work focuses on, Jiang et al. [27] consider information erasure and release in multi-threaded programs, using
a bisimulation-based semantic condition.

There are several language-based mechanisms for information erasure. However, unlike our work, none support
cryptographic enforcement. Hunt and Sands [26] give the first such non-cryptographic mechanism, but support only
lexically delimited erasure conditions. This restriction enables simple and elegant enforcement via a flow-sensitive
security-type system. Hansen and Probst [23] enforce erasure policies in Java Card bytecode, with a single erasure
condition set at the end of execution. Nanevski et al. [36] specify and enforce erasure policies using Relational Hoare
Type Theory. Del Tedesco et al. [14] design a Python library for erasure but ignore implicit flows. Chong and Myers
[12] enforce dynamic erasure conditions using an expensive run-time mechanism that requires local variables that may
need erasure to be lifted to the heap. Our tool, Keyrase combines static enforcement of erasure for local variables
with a run-time enforcement mechanism similar to that of Chong and Myers [12] for the heap. Thus Keyrase
mitigates the scalability issues of an exclusively run-time mechanism.

Van Delft et al. [45] describe a general framework for enforcing dynamic policies like information erasure. Similar
to our approach, they separate the enforcement of the policy into a flow-sensitive dependency analysis and a static
approximation of the policy. In fact, proving the correctness of the static approximation is the most challenging aspect
of our proofs.

Deletion without guaranteed erasure. Perlman proposes a file system that provides “assured deletion” [39], where data
is stored encrypted and trusted stores (called ephemerizers) are responsible for managing cryptographic keys, including
erasing them when needed. Tang et al. [44] implement a service on Amazon S3 that realizes these ideas. Dunn et al.
[17] use similar techniques to implement ephemeral channels that enable assured deletion of communication between a
process and peripheral devices, and Bauer and Priyantha [9] propose similar techniques to securely delete files and
backups. Several encrypted file systems use this approach to securely delete files (e.g., [32, 33, 40, 49]). Our work
extends this line of work. It (i) provides firm foundations for assured deletion and (ii) extends it to information
erasure.

Cryptography and information-flow control. We build on prior work on information-flow security for languages with
cryptographic primitives. Volpano and Smith [46, 48] consider the secure use of one-way functions in programs. Abadi
[1] introduces information-flow control type systems for a language with symmetric cryptographic operators. Abadi
and Blanchet [2] consider asymmetric cryptography operators, and Fournet et al. [18] consider operators homomorphic
encryption. Laud [28] considers encryption operators, but assumes that keys can be statically distinguished [29].
Askarov et al. [7] introduce (and enforce) a semantic security condition that can reason about keys that can be
dynamically (but not statically) distinguished. These prior works use a symbolic model of cryptography [16], which
Laud proves sound for a computational model of cryptography [30]. Laud and Vene [31] present a type system that is
sound for a computational model of cryptography. Our work is inspired by these results. In particular, Askarov et al.
[7] and Laud [30] provide the starting point for our exploration of the use of cryptography for information erasure —
a direction beyond the goals of previous work on cryptography-based information security.

8. Conclusion

This work combines cryptographic data deletion with information-flow control. The result is a novel semantic
security condition for cryptographic information erasure, a flow-sensitive security type system that enforces it, and
an implementation (and case study) that demonstrates the practicality of the approach. This work improves the
practicality of language-based information erasure and provides stronger guarantees than existing cryptographic data
deletion.

16

Acknowledgments

This work is supported by the National Science Foundation under Grant No. 1054172 and by the Air Force Research
Laboratory. We would like to thank Anitha Gollamudi for her helpful feedback.

17

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–786, Sept. 1999.

[2] M. Abadi and B. Blanchet. Secrecy types for asymmetric communication. Theoretical Computer Science, 298(3):
387–415, 2003.

[3] G. Aggarwal, E. Bursztein, C. Jackson, and D. Boneh. An analysis of private browsing modes in modern browsers.
In USENIX Security Symposium, pages 79–94, 2010.

[4] A. Askarov and S. Chong. Learning is change in knowledge: Knowledge-based security for dynamic policies. In
Proceedings of the 25th IEEE Computer Security Foundations Symposium, pages 308–322, 2012.

[5] A. Askarov and A. Sabelfeld. Gradual release: Unifying declassification, encryption and key release policies. In
Proceedings of the IEEE Symposium on Security and Privacy, pages 207–221, 2007.

[6] A. Askarov and A. Sabelfeld. Tight enforcement of information-release policies for dynamic languages. In
Proceedings of the IEEE Computer Security Foundations Symposium, July 2009.

[7] A. Askarov, D. Hedin, and A. Sabelfeld. Cryptographically-masked flows. In Proceedings of the 13th International
Static Analysis Symposium, Lecture Notes in Computer Science, Aug. 2006.

[8] A. Askarov, S. Hunt, A. Sabelfeld, and D. Sands. Termination-insensitive noninterference leaks more than just a
bit. In Proceedings of the 13th European Symposium on Research in Computer Security, pages 333–348, 2008.

[9] S. Bauer and N. B. Priyantha. Secure data deletion for Linux file systems. In Proceedings of the 10th Conference
on USENIX Security Symposium, Berkeley, CA, USA, 2001. USENIX Association.

[10] D. Boneh and R. J. Lipton. A revocable backup system. In Proceedings of the 6th Conference on USENIX
Security Symposium, Focusing on Applications of Cryptography, page 9, Berkeley, CA, USA, 1996. USENIX
Association.

[11] S. Chong and A. C. Myers. Language-based information erasure. In Proceedings of the 18th IEEE Computer
Security Foundations Workshop, pages 241–254, June 2005.

[12] S. Chong and A. C. Myers. End-to-end enforcement of erasure and declassification. In Proceedings of the 21st
IEEE Computer Security Foundations Symposium, pages 98–111, June 2008.

[13] S. Chong, A. Johnson, S. Moore, and O. Arden. Accrue Interprocedural Java Analysis Framework, 2013.
http://people.seas.harvard.edu/~chong/accrue.html.

[14] F. Del Tedesco, A. Russo, and D. Sands. Implementing erasure policies using taint analysis. In Proceedings of the
Nordic Conference in Secure IT Systems, 2010.

[15] F. Del Tedesco, S. Hunt, and D. Sands. A semantic hierarchy for erasure policies. In Seventh International
Conference on Information Systems Security, 2011.

[16] D. Dolev and A. Yao. On the security of public-key protocols. IEEE Transactions on Information Theory, 2(29):
198–208, 1983.

[17] A. M. Dunn, M. Z. Lee, S. Jana, S. Kim, M. Silberstein, Y. Xu, V. Shmatikov, and E. Witchel. Eternal sunshine
of the spotless machine: Protecting privacy with ephemeral channels. In 10th USENIX Symposium on Operating
Systems Design and Implementation, pages 61–75. USENIX, 2012.

[18] C. Fournet, J. Planul, and T. Rezk. Information-flow types for homomorphic encryptions. In Proceedings of the
18th ACM conference on Computer and communications security, CCS ’11, pages 351–360, 2011.

[19] S. L. Garfinkel and A. Shelat. Remembrance of data passed: A study of disk sanitization practices. IEEE Security
and Privacy, 1(1):17–27, Jan. 2003.

[20] P. Gutmann. Secure deletion of data from magnetic and solid-state memory. In The Sixth USENIX Security
Symposium Proceedings, pages 77–90, 1996.

[21] P. Gutmann. Data remanence in semiconductor devices. In The Tenth USENIX Security Symposium Proceedings,
pages 39–54, 2001.

[22] J. Guynn. Privacy watchdog EPIC files complaint against Snapchat with FTC. Los Angeles Times, May 17 2013.

[23] R. R. Hansen and C. W. Probst. Non-interference and erasure policies for Java Card bytecode. In Proceedings of
the 6th International Workshop on Issues in the Theory of Security, Mar. 2006.

18

http://people.seas.harvard.edu/~chong/accrue.html

[24] K. Hill. Snapchats don’t disappear: Forensics firm has pulled dozens of supposedly-deleted photos from Android
phones. Forbes, May 9 2013.

[25] S. Hunt and D. Sands. On flow-sensitive security types. In Proceedings of the 33rd ACM Symposium on Principles
of Programming Languages (POPL), pages 79–90, Jan. 2006.

[26] S. Hunt and D. Sands. Just forget it—the semantics and enforcement of information erasure. In Proceedings of
the 17th European Symposium on Programming, pages 239–253, 2008.

[27] L. Jiang, L. Ping, and X. Pan. Handling information release and erasure in multi-threaded programs. In
Computational Intelligence and Security: International Conference, pages 824–828, Dec. 2007.

[28] P. Laud. Semantics and program analysis of computationally secure information flow. In Proceedings of the 10th
European Symposium on Programming Languages and Systems, pages 77–91, 2001.

[29] P. Laud. Handling encryption in analyses for secure information flow. In Proceedings of the 12th European
Symposium on Programming, pages 159–173, 2001.

[30] P. Laud. On the computational soundness of cryptographically masked flows. In Proceedings of the 35th ACM
Symposium on Principles of Programming Languages (POPL), Jan. 2008.

[31] P. Laud and V. Vene. A type system for computationally secure information flow. In Proceedings of the 15th
international conference on Fundamentals of Computation Theory, pages 365–377, 2005.

[32] B. Lee, K. Son, D. Won, and S. Kim. Secure data deletion for usb flash memory. Journal of Information Science
and Engineering, 27:933–952, 2011.

[33] J. Lee, S. Yi, J. Heo, H. Park, S. Y. Shin, and Y. Cho. An efficient secure deletion scheme for flash file systems.
Journal of Information Science and Engineering, 26:27–38, 2010.

[34] B. S. Lerner, L. Elberty, N. Poole, and S. Krishnamurthi. Verifying web browser extensions’ compliance with
private-browsing mode. In Computer Security–ESORICS 2013, pages 57–74. 2013.

[35] S. Moore, A. Askarov, and S. Chong. Precise enforcement of progress-sensitive security. In Proceedings of the
19th ACM Conference on Computer and Communications Security, pages 881–893, Oct. 2012.

[36] A. Nanevski, A. Banerjee, and D. Garg. Dependent type theory for verification of information flow and access
control policies. ACM Transactions on Programming Languages and Systems, 35(2), 2013.

[37] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler framework for java. In 12th
International Conference on Compiler Construction, pages 138–152, 2003.

[38] K. R. O’Neill, M. R. Clarkson, and S. Chong. Information-flow security for interactive programs. In Proceedings
of the 19th IEEE Computer Security Foundations Workshop, pages 190–201, June 2006.

[39] R. Perlman. File system design with assured delete. In Proceedings of the Network and Distributed System
Security Symposium, 2007.

[40] Z. N. J. Peterson, R. Burns, J. Herring, A. Stubblefield, and A. D. Rubin. Secure deletion for a versioning file
system. In Proceedings of the 4th Conference on USENIX Conference on File and Storage Technologies, page 11,
Berkeley, CA, USA, 2005. USENIX Association.

[41] J. Reardon, D. Basin, and S. Capkun. Sok: Secure data deletion. 2013 IEEE Symposium on Security and Privacy,
pages 301–315, 2013.

[42] K. Satvat, M. Forshaw, F. Hao, and E. Toreini. On the privacy of private browsing - a forensic approach. Journal
of Information Security and Applications, 19(1):88–100, 2014.

[43] G. Smith and D. Volpano. Secure information flow in a multi-threaded imperative language. In Proceedings of
the ACM Symposium on Principles of Programming Languages, pages 355–364, Jan. 1998.

[44] Y. Tang, P. Lee, J. Lui, and R. Perlman. Secure overlay cloud storage with access control and assured deletion.
Dependable and Secure Computing, IEEE Transactions on, 9(6):903–916, Nov. 2012.

[45] B. van Delft, S. Hunt, and D. Sands. Very static enforcement of dynamic policies. In R. Focardi and A. Myers,
editors, Principles of Security and Trust, volume 9036 of Lecture Notes in Computer Science, pages 32–52.
Springer Berlin Heidelberg, 2015.

[46] D. Volpano. Secure introduction of one-way functions. In Proceedings of the 13th IEEE Workshop on Computer
Security Foundations, pages 246–254, 2000.

19

[47] D. Volpano and G. Smith. Eliminating covert flows with minimum typings. In Proceedings of the 10th IEEE
Computer Security Foundations Workshop, pages 156–168, 1997.

[48] D. Volpano and G. Smith. Verifying secrets and relative secrecy. In Conference Record of the Twenty-Seventh
Annual ACM Symposium on Principles of Programming Languages, pages 268–276, Jan. 2000.

[49] E. Zadok, I. Badulescu, and A. Shender. Cryptfs: A stackable vnode level encryption file system. Cucs-021-98,
Columbia University, 1998.

Appendix A. Enforcement and extensions

A.1. Enforcement of information erasure. This section presents the complete set of rules of the type system
of Section 4 for the basic commands of the language of Section 2, i.e., our language model without cryptographic
primitives. Before delving into the rules, we introduce a few auxiliary definitions that for brevity we describe only
informally in Section 4.

A.1.1. Well-formedness of environments. We lift well-formedness from policies to typing environments. An environment
Γ is well-formed if and only if all erasure policies in Γ are well-formed. To formalize this definition, we introduce an
auxiliary function nestedpols(κ, b) that returns the set of erasure policies appearing within a base type b.

The argument κ is a key type selector, and is a subset of the set of strings {privkey, pubkey}. Operator nestedpols is
defined as follows:

nestedpols(κ, privkeyp) = p if privkey ∈ κ
nestedpols(κ, pubkeyp) = p if pubkey ∈ κ
nestedpols(κ, (b1, b2)) = nestedpols(κ, b1) ∪ nestedpols(κ, b2)

nestedpols(κ, b) = ∅ otherwise

For a base type b we refer to nestedpols({privkey}, b) as the set of the critical policies within b—this set includes all
nested policies except those appearing in public keys, and is used in a few places within the type system. With this
operator, we can now define well-formedness of a typing environment.

Definition 7 (Well-formedness of typing environments). A typing environment Γ is well formed, written ` Γ okenv,
if and only if for all ẋ such that Γ(ẋ) = b p and all policies q such that q ∈ {p} ∪ nestedpols({privkey, pubkey}, b),
Γ ` q okpol.

A.1.2. The predicate cond-free(b). The predicate cond-free(b) succeeds when b is not cond or a tuple that contains a
cond. The predicate is defined recursively as follows:

cond-free(int).

cond-free(pubkeyp).

cond-free(privkeyp).

cond-free(encp b′) if cond-free(b′).

cond-free((b′, b′′)) if cond-free(b′) and cond-free(b′′).

A.1.3. The operator erasureconds(p). The operator erasureconds(arg1 , arg2 , . . .) returns all condition variables that
appear in the erasure policies of its arguments:

erasureconds(`) = ∅
erasureconds(p1

x↗p2) = {x} ∪ erasureconds(p1)

erasureconds(p1, p2, . . .) = erasureconds(p1)

∪ erasureconds(p2) ∪ . . .

erasureconds(Γ) =
⋃

Γ(x)=b p

erasureconds(p)

∪ {erasureconds(q) | q ∈ nestedpols({privkey}, b)
∧ ¬(q ≤ p)}

20

A.1.4. The operator]. The constrained merge operator Γ1] Γ2 returns an environment that combines Γ1 and
Γ2:

Γ1] Γ2 = λẋ.

Γ1(ẋ) if Γ1(ẋ) = Γ2(ẋ)

τ if Γ1(ẋ) 6= Γ2(ẋ)

where Γi(ẋ) ≤ τ, i = 1, 2

A.1.5. The type system rules. With the above definitions in hand, we can now provide the inference rules of the
flow-sensitive type system of Section 4 for the basic commands of the language model of Section 2:

T-SKIP

Γ, pc ` skip : Γ

T-ASSIGN

Γ ` e : b p cond-free(b) {p, pc} ≤ q
Γ, pc ` x := e : Γ[x 7→ b q]

T-INIT

Γ ` e : b p Γ(x) = b q {pc, p} ≤ q
Γ, pc ` init x to e : Γ

T-READ

Γ(x) = b q {pc, q} ≤ p
Γ, pc ` read x into y : Γ[y 7→ b p]

T-SET

x 6∈ erasureconds(Γ) ∪ erasureconds(pc) Γ(x) = cond p pc ≤ p
Γ, pc ` set(x) : Γ

T-OUTPUT

Γ ` e : b p {p, pc} ≤ q cur(q) v `
Γ, pc ` output(`, e) : Γ

T-SEQ

Γ0, pc ` c1 : Γ1 Γ1, pc ` c2 : Γ2

Γ0, pc ` c1; c2 : Γ2

T-IF

Γ ` e : int p {p, pc} ≤ pc′ Γ, pc′ ` c1 : Γ1 Γ, pc′ ` c2 : Γ2

Γ, pc ` if e then c1 else c2 : Γ1] Γ2

T-WHILE

Γi ` e : int pi
{pi, pc} ≤ pci Γi, pci ` c : Γ′i (0 ≤ i ≤ n) (where Γi+1 = Γ′i] Γ0, pci ≤ pci+1, Γn+1 = Γn, pcn+1 = pcn)

Γ0, pc ` while e do c : Γn

Γ1] Γ2 = λẋ.

Γ1(ẋ) if Γ1(ẋ) = Γ2(ẋ)

τ if Γ1(ẋ) 6= Γ2(ẋ)

where Γi(ẋ) ≤ τ, i = 1, 2

21

A.2. Language extension: erasable heap. This section presents an extension to our language in the form of an
erasable heap. To enforce information erasure in the heap, we use a runtime mechanism that enforces coarse-grained
policies that entirely delete values when an erasure condition is set. Locations in an erasable heap are associated with
erasure policies of form ` cnd↗>. When the condition cnd is set, the run-time mechanism overwrites the value with a
default, erasing any sensitive information.

A.2.1. Syntax and semantics of the extension. We extend values with heap locations a, and introduce syntax for heap
dereference, update, and allocation:

v ::= . . . | a

c ::= . . . | x :=!e | x ^ e | x ^ new(e, ` c↗p)

Note that the command for heap allocation takes an erasure policy as one of its arguments—this allows extra precision
in the typing, as we explain later in this section.

Let erasable heap environment H map locations to a pair of values and conditional variables: H : Loc → Val ×
CondVar. We extend semantic configurations to include heap environments. Most of the semantic rules simply
propagate the heap environment unchanged, with the exception of rules for the new syntactic forms and an updated
rule for set(cnd).

Figure 9 presents the new rules. The two interesting cases are S-HEAP-NEW and S-SET-HEAP, where S-HEAP-
NEW records the erasure condition in the heap, and rule S-SET-HEAP deletes all values in the heap that are
associated with the condition that is being set.

S-HEAP-DEREF

〈e,m〉 ⇓ a H(a) = (v,_)

〈x :=!e,m,U,H,Y, t〉 −→ 〈stop,m[x 7→ v],U,H,Y, t〉

S-HEAP-UPDATE

m(x) = a H(a) = (_, cnd) 〈e,m〉 ⇓ v
〈x ^ e,m,U,H,Y, t〉 −→ 〈stop,m,U,H[a 7→ (v, cnd)],Y, t〉

S-HEAP-NEW

〈e,m〉 ⇓ v a 6∈ dom(H)

〈x ^ new(e, ` cnd↗p),m,U,H,Y, t〉 −→ 〈stop,m[x 7→ a],U,H[a 7→ (v, cnd)],Y, t〉

S-SET-HEAP

{a1, . . . , an} = {a | H(a) = (_, cnd)} H′ = H[a1 7→ NaV, . . . , an 7→ NaV]

〈set(cnd),m,U,H,Y, t〉 −→ 〈stop,m[cnd 7→ 1],U,H′,Y, t〉

Figure 9. Semantics for erasable heap

A.2.2. Typing erasable heap. To enforce secure usage of the erasable heap, we extend our base types to reference types,
refp b where p is the policy on the heap content. Note that this policy may be more precise than the policy enforced
by the runtime mechanism, which has form ` cnd↗>.

b ::= . . . | refp b

We also extend the definition of nested policies to references.

nestedpols(κ, refp b) = {p} ∪ nestedpols(κ, b)

Figure 10 presents typing rules for the new commands. Rule T-DEREF constrains the resulting policy p′ on the
dereferenced value by requiring that p′ is an upper bound of pc, p, and the heap content policy q. Rule T-UPDATE-
VAR, which typechecks an in-place reference update, requires that the type of the expression that is used to update
the reference coincides with the type of the reference. Note that similar to the typing rules for write-once variables,
this rule is not flow-sensitive for the heap location. Rule T-NEW requires that policy ` cnd↗p is sufficiently restrictive
so that it bounds the pc and all sensitive policies associated with expression e.

22

T-DEREF

Γ ` e : (refq b) p {pc, q, p} ≤ p′

Γ, pc ` x :=!e : Γ[x 7→ b p′]

T-UPDATE-VAR

Γ(x) = (refq b) p Γ ` e : b q′ {pc, q′, p} ≤ q {pc, p} ≤ p′

Γ, pc ` x ^ e : Γ[x 7→ (refq b) p
′]

T-NEW

Γ ` e : b p Γ ` ` c↗p okpol nestedpols(privkey, b) ∪ {p, pc} ≤ ` c↗p

Γ, pc ` x ^ new(e, ` c↗p) : Γ[x 7→ (ref
`
c↗p b) pc]

Figure 10. Typing erasable heap

Note that our choice of allowing the policy argument for command new to have form ` cnd↗p has the benefit that it
allows retaining the original erasure policy of expressions that are stored and retrieved from the heap without an
intervening set(cnd) operation.

23

With the definition of the model extended with an erasable heap in hand, we adapt Theorem 1 to the extended
language.

Theorem 1 (Termination-insensitive security, extended). Consider program c such that Γ, pc ` c : Γ′, Then for all
m ∈ Conv(c) and all runs such that Γ, pc ` c : Γfin , memory m such that m ∈ Conv(c) , and

〈c,m,Uinit,Hinit,Yinit, ε〉γ −→∗ 〈ci,mi,Ui,Hi,Yi, ti〉γi −→
∗ 〈cn,mn,Un,Hn,Yn, ti · tobs〉γn

it holds that for all levels `
k`(c, tobs) ⊇ Conv(c) ∩

⋂
i≤j≤n

ind`(m, γj).

A high-level description of the proof follows.

24

S-INT

〈m,n〉 ⇓ n

S-VAR

m(x) = v

〈m,x〉 ⇓ x

S-EXPR

〈m, ei〉 ⇓ vi (i = 1, 2)

〈m, e1 op e2〉 ⇓ u
u = v1 op v2

S-TUPLE

〈m, ei〉 ⇓ vi (i = 1, 2)

〈m, (e1, e2)〉 ⇓ (v1, v2)

S-PROJ

〈m, e〉 ⇓ (v1, v2)

〈m, proji(e)〉 ⇓ vi
(i = 1, 2)

Figure 11. Semantics of expressions

Appendix B. Soundness

Soundness of the relabeling for the full language.

Property 1 (Soundness of the relabeling judgment). Consider a run 〈c0,m0,U0,H0,Yinit, ε〉 −→ . . . −→ 〈cn,mn,Un,Hn,Yn, tn〉
and two two policy environments γ1

0 and γ2
0 such that for j = 1, 2 γj0-liftings of the above run are 〈c0,m0,U0,H0,Yinit, ε〉γj0 −→

. . . −→ 〈cn,mn,Un,Hn,Yn, tn〉γj0 . If for all x we have γ1
0(x) ≤ γ2

n(x) then for all levels ` and all i ≥ 0 it holds that

ind`(m, γ
1
i) ⊆ ind`(m, γ

2
i).

Proof. By induction on ≤ followed by induction on the number of steps. �

B.1. Auxiliary semantics.

c ::= · · · | {x := e}p | {set(x)}p | {output(`, e)}p | cond {e}pc then c1 else c2 | loop {e}pc do c | S∆{c}

| {newkeypair(x, y, pk)}p,q | {x := encrypt(pk, e)}p | {x := decrypt(sk, e)}p

| {x ^ e}p,p
′
| {x ^ new(e, ` cnd↗p)}q | {x :=!e}p

| init x to e | {read x into y}p

We extend cryptographic environment to record formal keys and formal random indices generated at different levels.
In particular, we add two environments Keys and Rnds, each of which is a function from an erasure policy to a set of
natural numbers.

For completeness, Figure 11 presents the evaluation rules for the expression semantics. Figure 12 presents the transition
rules for the auxiliary semantics.

Formally, auxiliary semantic transitions have form

〈c,m,U,H,Y, t | Γ̃〉γ −→ 〈c′,m′,U′,H′,Y′, t′ | Γ̃′〉γ′

where Γ̃ is a tuple (Γ, pc), and pc is a stack of pc-policies. We treat pc as a set of policies when used in relabel
ordering ≤.

The semantics of how the new environments are updated is given in the rules S-PUB-ENCRYPT-AUX and S-
PUB-NEWKEY-AUX in Figure 12. We use notation Y.Keys〈p〉 to be the union of all sets Keys(q) in environment
Y where p ≤ p (and similarly for Rnds). We extend the heap state to include auxiliary information about the allocation
counter, and the the erasure policy associated with the location, and these as (v, cnd | j, p). We write H.Locs〈p〉
to return the information about allocations at levels below p and return the set of the form (i, pi, ai), such that
pi ≤ p.

B.1.1. Auxiliary typing judgment. Figure 15 presents the type system for expressions. Typing for commands is given
by Figure 16.

25

S-ASSIGN-AUX

〈m, e〉 ⇓ v
〈{x := e}p,m,U,H,Y, t | Γ, pc〉γ −→ 〈stop,m[x 7→ v],U,H,Y, t | Γ[x 7→ p], pc〉γ

S-SET-AUX

{a1, . . . , an} = {a | H(a) = (_, cnd | j, qj)}
〈{set(x)}p,m,U,H,Y, t | Γ, pc〉γ −→ 〈stop,m[x 7→ 1],U,H[a1 7→ (NaV | j, qj), . . . , an 7→ (NaV | jn, qn)],Y, t | Γ[x 7→ p], pc〉γ

S-OUTPUT-AUX

m(e) ⇓ v
〈{output(`, e)}p,m,U,H,Y, t | Γ̃〉γ −→ 〈stop,m,U,H,Y, t · o(`, v) | Γ̃〉γ

S-SCOPE-COND-i

〈m, e〉 ⇓ v

〈S∆{cond {e}pc
′
then c1 else c2},m,U,H,Y, t | Γ, pc〉γ −→ 〈S∆{ci},m,U,H,Y, t | Γ, pc :pc′〉γ

i = (v 6= 0 ? 1 : 0)

S-SCOPE-LOOP-ENTER

〈m, e〉 ⇓ v v 6= 0

〈S∆{loop {e}pc
′
do c}, t,m,U,H,Y | Γ, pc〉γ −→ 〈S∆{c}; S∆{loop {e}pc

′
do c},m,U,H,Y, t | Γ, pc :pc′〉γ

S-SCOPE-LOOP-SKIP

〈m, e〉 ⇓ v v = 0

〈S∆{loop {e}pc
′
do c},m,U,H,Y, t | Γ, pc〉γ −→ 〈S∆{stop},m,U,H,Y, t | Γ, pc :pc′〉γ

S-SCOPE-LIFT

〈c,m,U,H,Y, t | Γ̃〉γ −→ 〈c′,m′,U′,H′,Y′, t′ | Γ̃′〉γ′
〈S∆{c},m,U,H,Y, t | Γ̃〉γ −→ 〈S∆{c′}, t′,m′,U′,H′,Y′ | Γ̃′〉γ′

S-SCOPE-RESET

〈S∆{stop},m,U,H,Y, t | Γ, pc :pc′〉γ −→ 〈stop,m,U,H,Y, t | ∆, pc〉γ

S-SEQ-AUX-1

〈c1,m,U,H,Y, t | Γ̃〉γ −→ 〈c′1,m′,U′,H′,Y′, t | Γ̃′〉γ c′1 6= stop

〈c1; c2,m,U,H,Y, t | Γ̃〉γ −→ 〈c′1; c2,m
′,U′,H′,Y′, t′ | Γ̃′〉γ′

S-SEQ-AUX-2

〈c1,m,U,H,Y, t | Γ̃〉γ −→ 〈stop,m′,U′,H′,Y′, t | Γ̃′〉γ′
〈c1; c2,m,U,H,Y, t | Γ̃〉γ −→ 〈c2,m′,U′,H′,Y′, t′ | Γ̃′〉γ

S-INIT-AUX

〈m, e〉 ⇓ v U(x) 6= •
〈init x to e,m,U,H,Y, t | Γ̃〉γ −→ 〈stop,m,U[x 7→ v],H,Y, t | Γ̃〉γ

S-READ-AUX

U(x) = v v 6= •
〈{read x into y}p,m,U,H,Y, t | Γ̃〉γ −→ 〈stop,m[y 7→ v],U,H,Y, t | Γ̃[y 7→ p]〉γ

Figure 12. Auxiliary semantics for commands

B.1.2. Adequacy.

Definition 8 (Translation from source to auxiliary). Given a command c, such that Γ, pc ` c : Γ′, relation
Γ, pc `trans c : Γ′ : c′ that produces a translated command c′ as part of the type-checking. The translation is
straightforward adaption of the source type system.

Theorem 2 (Adequacy of the auxiliary semantics). Given a program c such that Γ, pc ` c : Γ′, and program d such
that Γ, pc `trans c : Γ′ : d then c and d agree on outputs and on the policy environments at the times of the outputs.

Proof. By induction on the typing derivation.
26

S-PUB-ENCRYPT-AUX

〈m, e1〉 ⇓ pk〈i〉 〈m, e2〉 ⇓ v j = Y(enc) R = Y(Rnds)
R′ = R[p 7→ R(p) ∪ {j}] Y′ = Y[enc 7→ j + 1,Rnds 7→ R′]

〈{x := encrypt(e1, e2)}p,m,U,H,Y, t | Γ, pc〉γ −→ 〈stop,m[x 7→ v
r〈j〉
pk〈i〉],U,H,Y

′, t | Γ[x 7→ p], pc〉γ

S-PUB-DECRYPT-AUX

〈m, e1〉 ⇓ sk〈i〉 〈m, e2〉 ⇓ v
r〈j〉
pk〈i〉

〈{x := decrypt(e1, e2)}p,m,U,H,Y, t | Γ, pc〉γ −→ 〈stop,m[x 7→ v],U,H,Y, t | Γ[x 7→ p], pc〉γ

S-PUB-DECRYPT-FAIL-AUX

〈m, e1〉 ⇓ sk〈i′〉 〈m, e2〉 ⇓ v
r〈j〉
pk〈i〉 i 6= i′

〈{x := decrypt(e1, e2)}p,m,U,H,Y, t | Γ, pc〉γ −→ 〈stop,m[x 7→ NaV],U,H,Y, t | Γ[x 7→ p], pc〉γ

S-PUB-NEWKEY-AUX

i = Y(pubkey) K = Y(Keys)
K′ = K[q2 7→ K(q2) ∪ {i}] Γ′ = Γ[x1 7→ q1, x2 7→ q2] Y′ = Y[pubkey 7→ i+ 1,Keys 7→ K′]

〈{newkeypair(x1, x2, p)}q1,q2 ,m,U,H,Y, t | Γ, pc〉γ −→ 〈stop,m[x1 7→ pk〈i〉, x2 7→ sk〈i〉],U,H,Y′, t | Γ′, pc〉γ

Figure 13. Auxiliary semantics for cryptographic commands

S-HEAP-DEREF-AUX

〈e,m〉 ⇓ a H(a) = (v, cnd | j, q)
〈{x :=!e}p,m,U,H,Y, t | Γ, pc〉γ −→ 〈stop,m[x 7→ v],U,H,Y, t | Γ[x 7→ p], pc〉γ

S-HEAP-UPDATE-AUX

Γ(x) = (refq b) p
′ m(x) = a H(a) = (v0, cnd | j, qa) 〈e,m〉 ⇓ v

〈{x ^ e}p,q,m,U,H,Y, t | Γ, pc〉γ −→ 〈stop,m,U,H[a 7→ (v, cnd | j, qa)],Y, t | Γ[x 7→ (refq b) p], pc〉γ

S-HEAP-NEW-AUX

〈e,m〉 ⇓ v a 6∈ dom(H) z = max
(_,_|i,_)∈H

i H′ = H[a 7→ (v, cnd | z + 1, ` cnd↗p)]

〈{x ^ new(e, ` cnd↗p)}q,m,U,H,Y, t | Γ, pc〉γ −→ 〈stop,m[x 7→ a],U,H′,Y, t | Γ[x 7→ (ref
`

cnd↗p
b) q], pc〉γ

Figure 14. Auxiliary semantics for heap

T-CONST

Γ ` n : int p

T-VAR

Γ(x) = τ

Γ ` x : τ

T-EXP

Γ ` ei : int pi (i = 1, 2) {p1, p2} ≤ q
Γ ` e1 op e2 : int q

T-TUPLE

Γ ` ei : bi pi (i = 1, 2) {p1, p2} ≤ q
Γ ` (e1, e2) : (b1, b2) q

T-PROJ

Γ ` e : (b1, b2) q

Γ ` proji(e) : bi q
(i = 1, 2)

Figure 15. Typing for expressions

�

B.1.3. Preservation of the auxiliary typing. We extend the notion of well-formedness of typing environments to require
that any expression e such that Γ ` e : privkeypk p it must be that pk ≤ p.

Lemma 1 (Preservation). Consider configuration 〈c,m,U,H,Y, t | Γ, pc〉γ , such that Γ, pc `annot c : ∆, pc′′. If

〈c,m,U,H,Y, t | Γ, pc〉γ −→ 〈c′,m′,U′,H′,Y′, t′ | Γ′, pc′〉γ′

then
Γ′, pc′ `annot c

′ : ∆, pc′′

Proof. By induction on the typing derivation Γ, pc `annot c : ∆, pc′′.
27

T-STOP

Γ, pc `annot stop : Γ, pc

T-ASSIGN-AUX

Γ ` e : b p cond-free(b) {p, pc} ≤ q ` Γ[x 7→ b q] okenv

Γ, pc `annot {x := e}q : Γ[x 7→ b q], pc

T-SET-AUX

x 6∈ erasureconds(Γ) ∪ erasureconds(pc) Γ(x) = cond p pc ≤ p ` Γ okenv

Γ, pc `annot {set(x)}q : Γ, pc

T-OUTPUT-AUX

Γ ` e : b p {p, pc} ≤ q cur(q) v `
Γ, pc `annot {output(`, e)}q : Γ, pc

T-SCOPE-COND

Γ ` e : int p {p, pc} ≤ pc′ Γ, pc :pc′ `annot ci : Γi, pc :pc′ ∆ = Γ1] Γ2 ` ∆ okenv

Γ, pc `annot S
∆{cond {e}pc

′
then c1 else c2} : ∆, pc

T-SCOPE-LOOP

Γi ` e : int pi {pi, pc} ≤ pc′i Γ′i, pc :pc′i `annot c : Γ′′i , pc :pc′i 0 ≤ i ≤ n Γ′n ≤ ∆ pc′ = pc′n
(where Γ′0 = Γ,Γ′i+1 = Γ′′i] Γ,Γ′n+1 = Γ′n, pc′i ≤ pc′i+1, pc′n+1 = pc′n, ` Γ′i+1 okenv)

Γ, pc `annot S
∆{loop {e}pc

′
do c} : ∆, pc

T-SCOPE-CMD

Γ, pc :pc′ `annot c : Γ′, pc :pc′ Γ′ ≤ ∆ c 6∈ {loop, cond}
Γ, pc :pc′ `annot S

∆{c} : ∆, pc

T-SEQ-AUX

Γ, pc `annot c1 : Γ1, pc1 Γ1, pc1 `annot c2 : Γ2, pc2

Γ, pc `annot c1; c2 : Γ2, pc2

T-INIT-AUX

Γ ` e : b p Γ(x) = b q {pc, p} ≤ q
Γ, pc `annot init x to e : Γ, pc

T-READ-AUX

Γ(x) = b q {pc, q} ≤ p
Γ, pc `annot {read x into y}p : Γ[x 7→ b p], pc

Figure 16. Typing rules for the auxiliary commands

T-PUB-NEWKEY-AUX

pc ≤ q1 pc ≤ pk pk ≤ q2 Γ′ = Γ[x 7→ pubkeypk q1, y 7→ privkeypk q2]

Γ, pc `annot {newkeypair(x, y, pk)}q1,q2 : Γ′, pc

T-PUB-ENC-AUX

Γ ` e1 : pubkeypk p Γ ` e2 : b p′′ p′′ ≤ pk {pc, p} ≤ p′ Γ′ = Γ[x 7→ encpk b p
′]

Γ, pc `annot {x := encrypt(e1, e2)}p
′

: Γ′, pc

T-PUB-DEC-AUX

Γ ` e1 : privkeypk p Γ ` e2 : encpk b q {q, pk, p, pc} ≤ q′ Γ′ = Γ[x 7→ b q′]

Γ, pc `annot {x := decrypt(e1, e2)}q
′

: Γ′, pc

Figure 17. Typing rules for auxiliary cryptographic commands

T-DEREF-AUX

Γ ` e : (refq b) p {pc, q, p} ≤ p′

Γ, pc `annot {x :=!e}p
′

: Γ[x 7→ b p′], pc

T-UPDATE-VAR-AUX

Γ(x) = (refq b) p Γ ` e : b q′ {pc, q′, p} ≤ q {pc, p} ≤ p′

Γ, pc `annot {x ^ e}p
′,q : Γ[x 7→ (refq b) p

′], pc

T-NEW-AUX

Γ ` e : b p nestedpols({privkey}, b) ∪ {p, pc} ≤ ` c↗p Γ ` ` c↗p okpol pc ≤ q
Γ, pc `annot {x ^ new(e, ` c↗p)}q : Γ[x 7→ (ref

`
c↗p b) q], pc

Figure 18. Typing rules for auxiliary heap commands

28

�

B.2. Equivalence of semantic configurations up to relabel ordering.

B.2.1. Policy sets. We use notation p for a set of levels p = {p1, . . . , pn}. We write p ≤ q when for all p ∈ p there is
q ∈ q such that p ≤ q.

Definition 9 (Policy of a variable in an environment). Given a typing environment Γ, and a variable x, we define an
operator Γ〈x〉 that returns the erasure policy of the variable x in Γ, as

Γ〈x〉 , p

where Γ(x) = b p for some base type b and erasure policy p.

Definition 10 (Currently allowed policies for output). We define operator

OutPols(`,Γ) , {p | Γ〈x〉 ≤ p ∧ cur(p) v `}

B.2.2. Constructing permutations. We say that a permutation list π is a list of tuples of form

(a1, b1) . . . (an, bn)

such that

(1) values a1 . . . an are pairwise unique

(2) values b1 . . . bn are pairwise unique

Given a permutation list π, we construct the corresponding permutation function by defining π(a) to be the value b
that corresponds to a in the permutation list, and to be undefined otherwise.

Given two sets of natural numbers A and B with equal cardinality, define perm(A,B) to be a function that constructs
a permutation list from these sets:

perm(A,B) =

ε if A = B = ∅

(u, v) · perm(A′, B′) where u = min(A), v = min(B), A′ = A \ {u}, B′ = B \ {v}

Given two pairs of environments Y1,Y2 and W1,W2, and a set of policy levels q, define permutation extension from
Y1/W1 to Y2/W2, denoted permextq(Y2 − Y1,W2 −W1) to be a tuple (φ′, ψ′) where

φ′ = perm(Y2.Keys〈q〉 \ Y1.Keys〈q〉,W2.Keys〈q〉 \W1.Keys〈q〉)

ψ′ = perm(Y2.Rnds〈q〉 \ Y1.Rnds〈q〉,W2.Rnds〈q〉 \W1.Rnds〈q〉)

B.2.3. Extended memory environment. For clarity, we combine the write-once environment U and memory m into an
extended memory environment, which we denote as m. Formally, given U and m, we define

m(x) =

m(x) when m(x) is defined

U(x) otherwise

B.2.4. Memory equivalence.

Definition 11 (Projected memory). Given a typing environment Γ, define

bmcΓp ,

m(x) if Γ(x) ≤ p

undefined otherwise
29

Definition 12 (Projected heap).

bHcp ,

(v, cnd | i, p) if p ≤ p and H(a) = (v, cnd | i, p)

(NaV | i, p) if p ≤ p and H(a) = (NaV | i, p)

undefined otherwise

Definition 13 (Pattern of memory). We lift the notion of value pattern from section 3.1 (Symbolic equivalence of
encrypted values) to extended memories, and define memory pattern for a set of keys S as follows

pattern(m,S) = λx . pat(m(x),S)

Definition 14 (List representation of the heap). Given a heap H, let listify(H) be the list of heap values ordered in
the order of their allocation.

We extend pattern function to lists, by mapping it pointwise to the pattern of values in the list.

Definition 15 (Observable keys given initial key set). Given exended memory m, heap H, policy set p, typing
environment Γ, and a set of keys S, define the set of observable keys given the initial set S as follows

ObsKeysp,Γ(m,H | S) , DY-obs ({m(x) | Γ(x) ≤ p} ∪ {v | H(a) = (_, v,_, p) ∧ p ≤ p} ∪ S) ∩ {sk〈i〉 | i ∈ N}

When we want to be explicit about the permutations used in the various definitions of equivalence up to formal
randomness, we use notation φ,ψ

= to denote substitution of the corresponding permutations.

Definition 16 (Memory and heap equivalence up to randomness with extra keys). Given memories m1, m2, heaps
H1, H2, two sets of keys S1, S2, permutations φ, ψ, policy set p, and environment Γ, define memory equivalence up to
randomness with extra keys as follows

Lm1,H1,S1M
φ,ψ
≈ p,Γ Lm2,H2,S2M , pattern(bm1cΓp,S′1)

φ,ψ
= pattern(bm2cΓp,S′2) ∧ pattern(L1,S

′
1)

φ,ψ
= pattern(L2,S

′
2)

where Li = listify(bHicp), S′i = ObsKeysp,Γ(mi,Hi | Si), for i = 1, 2.

Definition 17 (Initial memory equivalence at p).

m1 ≈init
p,Γ m2 , Lm1,Hε, ∅M

ε,ε
≈p,Γ Lm2,Hε, ∅M,

where Hε is an empty heap.

B.2.5. Properties of memory equivalence.

Lemma 2 (Dropping information about related keys).

Lm1,H1,S1M
φ,ψ
≈ p,Γ Lm2,H2,S2M =⇒ Lm1,H1,S1 \ {i}M

φ,ψ
≈ p,Γ Lm2,H2,S2 \ {φ(i)}M

Proof. By Definition 16 (Memory and heap equivalence up to randomness with extra keys). �

Lemma 3 (Memory equivalence at higher levels implies memory equivalence at lower ones).

Lm1,H1,S1M
φ,ψ
≈ p∪q,Γ Lm2,H2,S2M⇔ Lm1,H1,S1M

φ,ψ
≈ p,Γ Lm2,H2,S2M ∧ Lm1,H1,S1M

φ,ψ
≈ q,Γ Lm2,H2,S2M.

Proof. By Definition 16 (Memory and heap equivalence up to randomness with extra keys). �

B.3. Noninterference for expressions.

Lemma 4 (Limited expansion of DY-obs for integers). Consider set of values V and an integer u. Then

DY-obs(V ∪ {u}) = DY-obs(V) ∪ {u}
30

Proof. By definition of DY-obs, observing that because u is an integer, it holds that u is neither a tuple nor, more
importantly, is not sk〈i〉 for any i. �

Lemma 5 (Noninterference for expressions with initial keys). Consider two extended memories m and s, heaps H

and J, two sets S and T, polity set q, and permutations φ and ψ s.t. Lm,H,SM
φ,ψ
≈ q,Γ Ls, J,TM. Consider expression e

such that Γ ` e : b p, for some base type b and policy p s.t. p ≤ q, two values u and v, s.t. 〈m, e〉 ⇓ u, and 〈s, e〉 ⇓ v.
Define

S′ = ObsKeysq,Γ(m,H | S) and T′ = ObsKeysq,Γ(s, J | T)

Then, it must hold that

(1) pat(u,S′)
φ,ψ
= pat(v,T′)

(2) DY-obs ({m(x) | Γ(x) ≤ q} ∪ {u} ∪ {v′ | H(a) = (_, v′,_, q) ∧ q ≤ q} ∪ S) ∩ {sk〈i〉 | i ∈ N} = S′

(3) DY-obs ({s(x) | Γ(x) ≤ q} ∪ {v} ∪ {v′ | J(a) = (_, v′,_, q) ∧ q ≤ q} ∪T) ∩ {sk〈i〉 | i ∈ N} = T′

Proof. By induction on the typing derivation for expressions.

• Case T-CONST Requirement (1) is straightforward from the definition of pattern function in Figure 4. To
show requirement (2), observe that u must be an integer. Then by Lemma 4 (Limited expansion of DY-obs

for integers)

DY-obs
(
{m(x) | Γ(x) ≤ q} ∪ {u} ∪ {v′ | H(a) = (_, v′,_, q) ∧ q ≤ q} ∪ S

)
=

DY-obs
(
{m(x) | Γ(x) ≤ q} ∪ {v′ | H(a) = (_, v′,_, q) ∧ q ≤ q} ∪ S

)
∪ {u}

Because u is an integer, intersecting these sets with {sk〈i〉 | i ∈ N} yields the same set as S′.

Requirement 3 is shown similarly.

• Case T-VAR Follows from the assumption of memory equivalence.

• Case T-EXP Using the induction hypothesis and Lemma 4 for the integer result of the operation.

• Case T-TUPLE By induction hypothesis and the definition of DY-obs for tuples.

• T-PROJ By induction hypothesis.

�

B.4. Coverage. Given an extended environment Γ̃ = (Γ, pc), we define

Γ̃〈x〉 ,

pci if x = pci and pc = pc0 : . . . :pcn

Γ〈x〉 otherwise

Definition 18 (ConnectedInitPols set). Given a sequence of typing environments Γ̃1, . . . , Γ̃n, and a set of policies q,

ConnectedInitPols(Γ̃1, . . . , Γ̃n | q) , {Γ̃1(x1) | ∃x2, . . . , xn : Γ̃1(x1) ≤ Γ̃2(x2) ≤ . . . ≤ Γ̃n(xn) ≤ q}

Definition 19 (Coverage of policies via typing environments). Given two sets of policies p and q and a sequence of
typing environment Γ̃1, . . . Γ̃n, where n ≥ 1, say that p covers q via Γ1, . . . , Γ̃n, written p <Γ̃1...Γ̃n

q, and defined as
follows:

p <Γ̃1...Γ̃n
q , ConnectedInitPols(Γ̃1, . . . , Γ̃n | q) ≤ p

B.4.1. Properties of coverage.

Lemma 6 (Symmetric coverage for one typing environment). p <Γ̃ q⇐⇒ {Γ̃〈x〉 | Γ̃〈x〉 ≤ q} ≤ p.

31

Proof. Immediate by Definition 19 (Coverage of policies via typing environments). �

Lemma 7 (Reflexivity under one typing environment). p <Γ̃ p.

Proof. Immediate by Definition 19 (Coverage of policies via typing environments) �

Lemma 8 (Coverage composition). For all policy sets p,q′ and all typing environments Γ̃1, . . . , Γ̃n, . . . , Γ̃m we have

∃q : p <Γ̃1...Γ̃n
q and q <Γ̃n+1...Γ̃m

q′ ⇐⇒ p <Γ̃1...Γ̃m
q′

Proof. We consider each of the directions separately.

=⇒: We define two sets X and Y by unfolding the definitions, and establishing the corresponding relations.

X = ConnectedInitPols(Γ̃1, . . . , Γ̃n | q) = {Γ̃1〈x〉1 | ∃x2 . . . xn : Γ̃1〈x1〉 ≤ . . . ≤ Γ̃n〈xn〉 ≤ q} ≤ p

and

Y = ConnectedInitPols(Γ̃n+1, . . . , Γ̃m | q′) = {Γ̃n+1〈x〉n+1 | ∃xn+2 . . . xm : Γ̃n+1〈xn+1〉 ≤ . . . ≤ Γ̃m〈xm〉 ≤ q′} ≤ q

We want to show that Z = ConnectedInitPols(Γ̃1, . . . , Γ̃m | q′) ≤ p. That is for all x such that Γ̃〈x〉 ∈
Z, it must be that Γ̃〈x〉 ≤ p. Indeed, x ∈ Z implies there is a sequence x1, . . . , xn, xn+1, . . . xm such
that Γ̃n+1〈xn+1〉 ≤ . . . ≤ Γ̃m〈xm〉 ≤ q′. This means that xn+1 ∈ Y , and consequently it must be that
Γ̃n+1〈xn+1〉 ≤ q. Then, it must be that Γ̃1〈x1〉 ∈ X, and Γ̃1〈x1〉 ≤ p. This completes our proof in this
direction.

⇐=: We define q as ConnectedInitPols(Γ̃n+1, . . . , Γ̃m | q′). By construction, this gives us that q <Γ̃n+1...Γ̃m
q′. Next,

we need to show that, p <Γ̃1...Γ̃n
q. Consider x such that x ∈ ConnectedInitPols(Γ̃1, . . . , Γ̃n | q). We need to

show that Γ̃1〈x〉 ≤ p.

From x ∈ ConnectedInitPols(Γ̃1, . . . , Γ̃n | q), there exist x2, . . . , xn such that Γ̃1〈x1〉 ≤ . . . ≤ Γ̃n〈xn〉 ≤ q.

From definition of ≤, this means that there is qn+1 ∈ q such that Γ̃n ≤ q. But, from construction of q, it must
be that qn+1 = Γ̃n+1〈xn+1〉 for some variable xn+1, and further there are variables xn+2, . . . , xm such that
Γ̃n+1〈xn+1〉 ≤ Γ̃m〈xm〉 ≤ q′. Putting all these xi together, we obtain that x ∈ ConnectedInitPols(Γ̃1, . . . , Γ̃m |
q′), and from our assumption it follows that Γ̃1〈x〉 ≤ p, as required.

�

Lemma 9 (Relation of coverage to relabeling). If p <Γ̃1...Γ̃n
q and q′ ≤ q and p ≤ p′ then p′ <Γ̃1...Γ̃n

q′.

Proof. Case for p′ is immediate from Definition 18 (ConnectedInitPols set).

We consider case when q′ ≤ q. We need to show that

ConnectedInitPols(Γ̃1, . . . , Γ̃n | q′) ≤ p

Define sets

Sq , ConnectedInitPols(Γ̃1, . . . , Γ̃n | q) = {Γ̃1〈x〉 | ∃x2, . . . , xn : Γ̃1〈x1〉 ≤ . . . ≤ Γ̃n〈xn〉 ≤ q}

Sq′ , ConnectedInitPols(Γ̃1, . . . , Γ̃n | q′) = {Γ̃1〈x〉 | ∃x2, . . . , xn : Γ̃1〈x1〉 ≤ . . . ≤ Γ̃n〈xn〉 ≤ q′}

Because q′ ≤ q, we can show that Sq′ ⊆ Sq, and consequently Sq′ ≤ Sq ≤ p.

�

Lemma 10 (Coverage of uninhabited levels). For all p, q

p <Γ̃ q and q 6≤ p =⇒ {Γ〈x〉 | Γ〈x〉 ≤ q ∧ Γ̃〈x〉 6≤ p} = ∅
32

Proof. By contradiction. Assume {Γ̃〈x〉 | Γ̃〈x〉 ≤ q ∧ Γ̃〈x〉 6≤ p} 6= ∅. That is, there is some variable x such that
Γ̃〈x〉 ≤ q ∧ Γ̃〈x〉 6≤ p. Because p <Γ̃ q, we have that {Γ̃〈x〉 | Γ̃〈x〉 ≤ q} ≤ p, and therefore it must be that Γ̃〈x〉 ≤ p,
which contradicts the original choice of x where Γ̃〈x〉 6≤ p. �

Lemma 11 (Coverage of a defined variable in a single environment). For any policy set p, extended typing environent
Γ̃ and variable x, we have that

p <Γ̃ Γ̃〈x〉 =⇒ Γ̃〈x〉 ≤ p

Proof. By Definition 19 (Coverage of policies via typing environments), we have

ConnectedInitPols(Γ̃ | Γ̃〈x〉) ≤ p,

or equivalently
{Γ̃〈x1〉 | Γ̃〈x1〉 ≤ Γ̃〈x〉} ≤ p

This implies that it must be that Γ̃〈x〉 ≤ p.

�

B.5. Relatively low and high events.

Definition 20 (J p, Γ̃0? I and /p, Γ̃0 ? . events). Given an initial configuration 〈c0,m0,U0,H0,Y0, t0 | Γ̃0〉γ0 , and a
set of policies p, we define it to be a relatively low event, written

〈ci,mi,Ui,Hi,Yi, ti | Γ̃i〉γi −→Jp,Γ̃0?I
〈ci+1,mi+1,Ui+1,Hi+1,Yi+1, ti+1 | Γ̃i+1〉γi+1

when there exists a sequence of transitions such that

〈c0,m0,U0,H0,Y0, t0 | Γ̃0〉γ0 −→
∗ 〈ci,mi,Ui,Hi,Yi, ti | Γ̃i〉γi −→ 〈ci+1,mi+1,Ui+1,Hi+1,Yi+1, ti+1 | Γ̃i+1〉γi+1

and the last transition is produced by one of the following commands

• an assignment of form {x := e}q, or

• condition set of form {set(x)}q, or

• an output {output(`, e)}q, or

• a read command {read x into y}q, or

• heap dereference of form {x :=!e}q

where in the above cases we have p <Γ̃0,...,Γ̃i+1
q, or

• initialization of a write-once variable init x to e, where p <Γ̃0,...,Γ̃i+1
Γi+1〈x〉

or

• heap update of form {x ^ e}q,q
′
, where p <Γ̃0,...,Γ̃i+1

q or p <Γ̃0,...,Γ̃i+1
q′, or

• heap allocation of form {x ^ new(e, `′ cnd↗p′)}q, where p <Γ̃0,...,Γ̃i+1
q or p <Γ̃0,...,Γ̃i+1

`′ cnd↗p′

Otherwise, we define this transition, as a relatively high event, written

〈ci,mi,Ui,Hi,Yi, ti | Γ̃i〉γi −→/p,Γ̃0?.
〈ci+1,mi+1,Ui+1,Hi+1,Yi+1, ti+1 | Γ̃i+1〉γi+1

Definition 21 (J p, Γ̃0? I /stop-event). Given an initial configuration 〈c0,m0,U0,H0,Y0, t0 | Γ̃0〉γ0 , and a set of
policies p, say that a transition produces J p, Γ̃0? I /stop-event, written

〈ci,mi,Ui,Hi,Yi, ti | Γ̃i〉γi −→Jp,Γ̃0?I/stop 〈ci+1,mi+1,Ui+1,Hi+1,Yi+1, ti+1 | Γ̃i+1〉γi+1

when one of the following holds:
33

(1) 〈ci,mi,Ui,Hi,Yi, ti | Γ̃i〉γi −→Jp,Γ̃0?I
〈ci+1,mi+1,Ui+1,Hi+1,Yi+1, ti+1 | Γ̃i+1〉γi+1 is a J p, Γ̃0? I-event

(2) ci+1 = stop

B.5.1. Bounded updates in high contexts.

Proposition 1 (Bounded updates in high contexts). Consider program c, memory m, environment Γ0, a stack pc,
and a policy set p0 such that

(1) Γ0, pc0 `annot c : ∆, pcn

(2) 〈c,m,U,H,Y, t | Γ̃0〉γ0 −→∗ 〈stop,mn,Un,Hn,Yn, tn | Γ̃n〉γn

(3) pc is the shortest pc-stack in the above sequence of transitions, i.e., for all j, 0 ≤ j ≤ n, it holds pcj = pcj :pc′j

for a possibly empty pc′j.

(4) p0 6<Γ̃0
pc

Then

(1) p0 6<Γ̃0...Γ̃n
pc

(2) if p <Γ̃0...Γ̃n
q then for all x it holds that if Γn(x) ≤ q then Γ0(x) = Γn(x) and Γn(x) ≤ p.

(3) 〈c,m,U,H,Y, t | Γ̃0〉γ0 −→∗/p,Γ̃0?.
〈stop,Un,Hn,Yn,mn, tn | Γ̃n〉γn , that is, there are no relatively low events

in the trace.

(4) for all q such that p0 <Γ̃0...Γ̃n
q it holds that

(a) ∀x . Γn(x) ≤ q . m(x) = mn(x)

(b) listify(bH1cq) = listify(bH2cq),

Proof. By induction on the typing derivation Γ0, pc0 `annot c : ∆, pcn.

T-STOP: The only applicable case is when the configuration is related to itself, and that case is immediate.

T-SKIP: Immediate from the induction hypothesis because memories and typing environment are not changed.

T-ASSIGN-AUX: We have that c is {x := e}p. By T-ASSIGN-AUX, it must be that pc0 ≤ p, and q ≤ p, where
Γ ` e : q. The only applicable semantic rule is S-ASSIGN-AUX:

〈{x := e}p,m,U,H,Y, t | Γ0, pc0〉γ0 −→ 〈stop,m1,U,H,Y, t | Γ1, pc0〉γ0

where m1 = m[x 7→ v] and Γ1 = Γ0[x 7→ p]. From pc0 = pc : pc′0, we obtain that p 6<Γ̃0Γ̃1
pc0, and from

pc0 ≤ p, we obtain that p 6<Γ̃0Γ̃1
p. Hence, this transition is indeed a /p, Γ̃0 ? .-event.

Consider q such that p <Γ̃0Γ̃1
q. Then, by Lemma 8 (Coverage composition), there is q0 such that

p <Γ̃0
q0 and q0 <Γ̃1

q

We want to show item 4 (Bounded updates in high contexts), i.e., variable x′ such that Γ0[x 7→ p](x′) =

Γn(x′) ≤ q we have that
m(x′) = m[x 7→ v](x′)

We consider the following possible cases

q ≤ q0: There are two possibilities.

Case x 6= x′: In this case, m1(x′) = m(x′). In addition Γ1(x) = Γ0(x), and by Lemma 10 (Coverage of
uninhabited levels) it must be that Γ0(x) ≤ p, so we are done.

34

Case x = x′: Using T-ASSIGN-AUX, we have

pc0 ≤ p = Γ1(x) ≤ q1

But then, by Lemma 9 (Relation of coverage to relabeling), it must then be that p <Γ̃0Γ̃1
pc0,

which is a contradiction, therefore this case is impossible.

q 6≤ q0: By Lemma 10 (Coverage of uninhabited levels), we have that because q0 <Γ̃1
q and q 6≤ q0 then

{Γ̃1〈y〉 | Γ̃1〈y〉 ≤ q ∧ Γ̃1〈y〉 6≤ q0} = ∅

This means we could have not picked such an x′. This also shows item 2 (Bounded updates in high
contexts).

T-PUB-ENC-AUX, T-PUB-DECRYPT-AUX, T-PUB-NEWKEY-AUX, : Similar to T-ASSIGN-AUX.

T-DEREF-AUX, T-UPDATE-VAR-AUX, T-NEW-AUX: Similar to T-ASSIGN-AUX.

T-SET-AUX, T-INIT-AUX, T-READ-AUX : Similar to T-ASSIGN-AUX.

T-OUTPUT-AUX: This command does not change typing environments. By reasoning similar to the case for
assignment, we can show that output is indeed a /p, Γ̃0 ? .-event.

T-SEQ: We have that Γ0, pc0 ` ca; cb : ∆, pcn, and by T-SEQ-AUX, it must be that

Γ0, pc0 ` ca : ∆u, pcu and Γu, pcu ` cb : ∆n, pcn

for some u < n. Consider q such that p0 <Γ̃0...Γ̃n
q. By Lemma 8 (Coverage composition), there is qu such

that p0 <Γ̃0...Γ̃u
qu and qu <Γ̃u+1...Γ̃n

q. We can also rewrite the latter as qu <Γ̃u...Γ̃n
q, because qu <Γ̃u

qu

by Lemma 6 (Symmetric coverage for one typing environment).

We want to show that

(1) Γn(x) ≤ q =⇒ Γ0(x) = Γn(x) and Γn(x) ≤ p

(2) for any variable x it holds Γn(x) ≤ q =⇒ m(x) = mn(x).

Consider x such that Γn(x) ≤ q. By applying induction hypothesis to cb with initial policy set qu, we have

(1) Γn(x) ≤ q =⇒ Γn(x) = Γu(x) and Γn(x) ≤ qu, which gives us that Γu(x) ≤ qu

(2) Γn(x) ≤ q =⇒ mu(x) = mn(x), which gives us mn(x) = mu(x).

By applying induction hypothesis to ca we have that

(1) Γu(x) ≤ q =⇒ m(x) = mu(x), which gives us that mu(x) = m(x), and therefore m(x) = mn(x).

(2) Γu(x) ≤ qu =⇒ Γu(x) = Γ0(x) and Γu(x) ≤ q, which gives us that Γ0(x) = Γn(x) and Γ0(x) ≤ q.

T-SCOPE-CMD: By induction hypothesis, noting that it must be that the resulting environment of the scoped
command Γ̃ must be bounded by the scoped environment ∆, and observing that we are only interested in
scoped transitions where pc remains on stack.

T-SCOPE-COND: By induction hypothesis, noting that the final environment ∆ is an upper bound of the final
environments of each branch.

The remaining cases can be shown by the induction hypothesis.

�
35

B.6. Advancement for relabel ordering.

Proposition 2 (Progress-sensitive advancement for relabel ordering). Consider program c0, environment Γ0, stack
pc0, a set of policies p0, some natural number N ≥ 0, two configurations 〈c0,m0,U0,H0,Y0, t0 | Γ0, pc0〉γ0 and
〈c0, s0,X0, J0,W0, r0 | Γ0, pc0〉δ0 , and two sets S and T, such that

(1) Γ0, pc0 `annot c : ∆, pc′′.

(2) {m0, s0} ⊆ Conv(c)

(3) p0 <Γ̃0
pc0

(4) φ0 = perm(Y0.Keys〈p0〉,W0.Keys〈p0〉)

(5) ψ0 = perm(Y0.Rnds〈p0〉,W0.Rnds〈p0〉)

(6) max(S ≤ Y0(pubkey),max(T) ≤W0(pubkey)

(7) |S| = |T|

(8) Lm0,H0,SM
φ0,ψ0≈ p,Γ0 Ls0, J0,TM

(9) 〈c0,m0,U0,H0,Y0, t0 | Γ0, pc0〉γ0 −→N
/p,Γ̃0?.

〈c1,m1,U1,H1,Y1, t1 | Γ̃1〉γ1 −→Jp,Γ̃0?I/stop
〈c2,m2,U2,H2,Y2, t2 |

Γ̃2〉γ2

then there is M ≥ 0 and there are memories s1, s2, such that

(1) 〈c0, s0,X0, J0,W0, r0 | Γ0, pc0〉δ0 −→M
/p,Γ̃0?.

〈c1, s1,X1, J1,W1, r1 | ∆̃1〉δ1 −→Jp,Γ̃0?I/stop
〈c2, s2,X2, J2,W2, r2 |

Γ̃2〉δ2

(2) for any q it holds that p0 <Γ̃0[Γ̃αi]
N−1
i=1 Γ̃1Γ̃2

q⇐⇒ p0 <Γ̃0[Γ̃βj
]M−1
j=1 ∆̃1Γ̃2

q, where Γ̃2 = (Γ2, pc2)

(3) p0 <Γ̃0[Γ̃αi]
N−1
i=1 Γ̃1Γ̃2

pc2, where Γ̃2 = (Γ2, pc2)

(4) if we let

• S0 = ObsKeysp,Γ0
(m0,H0 | S)

• T0 = ObsKeysp,Γ0
(s0, J0 | T)

• φ2 = φ0 · φ′ and ψ2 = ψ0 · ψ′, where

• (φ′, ψ′) = permextQ(Y2 − Y0,W2 −W0) where Q = ∪{q | p0 <Γ̃0[Γ̃αi]
N−1
i=1 Γ̃1Γ̃2

q}.

then

(a) for any q such that p0 <Γ̃0[Γ̃αi]
N−1
i=1 Γ̃1Γ̃2

q it holds that Lm2,H2,S0M
φ2,ψ2≈ q,Γ2 Ls2, J2,T0M,

(b) Moreover, if

〈c1,m1,U1,H1,Y1, t1 | Γ̃1〉γ1 −→Jp0,Γ0?I 〈c2,m2,U2,H2,Y2, t2 | Γ̃2〉γ2

is a J p0,Γ0? I-event then

〈c1, s1,X1, J1,W1, r1 | ∆̃1〉δ1 −→Jp0,Γ0?I 〈c2, s2,X2, J2,W2, r2 | Γ̃2〉δ2

is a J p0,Γ0? I-event, and Γ̃1 = ∆̃1.

(c) In addition, if this J p0,Γ0? I-event is an output on channel ` such that

p0 <Γ̃0[Γ̃αi]
N−1
i=1 Γ̃1

OutPols(`, Γ̃1)

then there are events θ and ι such that
36

• t2 = t1 · θ and r2 = r1 · ι.

• pat(θ,S′)
φ2,ψ2= pat(ι,T′).

Proof. By strong induction on N.

Case N = 0: We proceed by an inner induction on the typing derivation Γ0, pc0 `annot c0 : ∆0, pc
′′.

T-STOP: Not applicable.

T-SKIP: This command does not modify typing environments or memories, so we are done immediately.

T-ASSIGN-AUX: In this case c0 is {x := e}p, and we have

〈{x := e}p,m0,U0,H0,Y0, t | Γ0, pc0〉γ0 −→Jp,Γ̃0?I/stop 〈stop,m0[x 7→ u],U0,H0,Y0, t | Γ0[x 7→ p], pc0〉γ0

Because the environments in both runs are updated in the same manner, the s-trace also results in a
similar assignment.

〈{x := e}p, s0,X0, J0,W0, r | Γ0, pc0〉δ0 −→Jp,Γ̃0?I/stop 〈stop, s0[x 7→ v],X0, J0,W0, r | Γ0[x 7→ p], pc0〉γ0

We set M = 0. This satisfies requirement (1) of our Lemma. Requirements (2) and (3), are straightforward.
Assume the definitions in (4). Requirement (4a) is immediate. Requirement (4c) is vaguely satisfied. We
focus on requirement (4b).

Because the semantics for the assignment does changes neither key nor random environments, the
permutation extension is empty. Hence, we have φ2 = φ0 and ψ2 = ψ0.

Let u and v be the values of expression e in memories m0 and s0, respectively. Consider q such that
p0 <Γ̃0(Γ̃0[x 7→p]) q. We need to show that

Lm0[x 7→ u],H0,S0M
φ0,ψ0≈ q,Γ0[x 7→p] Ls0[x 7→ v], J0,T0M

Unfolding Definition 16 (Memory and heap equivalence up to randomness with extra keys), this means
we need to show that

• pattern(bm0[x 7→ u]cΓq,S∗)
φ,ψ
= pattern(bs0[x 7→ v]cΓq,T∗) and

• pattern(L1,S
∗)

φ,ψ
= pattern(L2,T

∗)

where

• L1 = listify(bH0cq)

• L2 = listify(bJ0cq)

• S∗ = ObsKeysq,Γ0[x 7→p](m0[x 7→ u],H0 | S0)

• T∗ = ObsKeysq,Γ0[x 7→p](s0[x 7→ v], J0 | T0)

Consider some variable y such that (Γ̃0[x 7→ p])〈y〉 ≤ q.

We want to show that

pat((m0[x 7→ u])(y),S∗)
φ0,ψ0= pat((s0[x 7→ v])(y),T∗)

By Lemma 8 (Coverage composition),

p0 <Γ̃0Γ̃1
q =⇒ p0 <Γ̃0

p0 ∧ p0 <Γ̃1
q

37

By Lemma 9 (Relation of coverage to relabeling), we obtain that

p0 <Γ̃0[x7→p] (Γ̃0[x 7→ p])〈y〉

and By Lemma 11 (Coverage of a defined variable in a single environment) it holds that

(1) Γ̃0[x 7→ p]〈y〉 ≤ p0.

By analyzing the DY-observables, and using NI for expressions, we see that DY-observables at q are
bounded by the ones at p. Then we are done using NI for expressions.

T-SET-AUX: We establish memory equivalence, similarly to T-ASSIGN-AUX. For heap equivalence we
use the fact that S-SET erases the heap values, so the resulting heaps are low-equivalent.

T-OUTPUT-AUX, T-PUB-DEC-AUX, T-INIT-AUX, T-READ-AUX : Similar to T-ASSIGN-
AUX.

T-PUB-NEWKEY-AUX: We have that

〈{newkeypair(x1, x2, p)}q1,q2 ,m0,U0,H0,Y0, t | Γ, pc〉γ −→ 〈stop,m[x1 7→ pk〈i〉, x2 7→ sk〈i〉],U0,H0,Y1, t | Γ1, pc〉γ

where

• Y(pubkey) = i

• Y(Keys) = K

• K′ = K[q2 7→ K(q2) ∪ {i}] ,

• Γ1 = Γ[x1 7→ q1, x2 7→ q2],

• Y1 = Y[pubkey 7→ i+ 1,Keys 7→ K′]

We have two cases

(1) None of q1 or q2 are covered by p. In this case, this key generation is a stop event for both traces
and we are done.

(2) One or both of q1 and q2 are covered by p. Because both runs reach the same command, the
s-trace must also increment its pubkey counter, say i’. We define our key permutation φ2 to be the
extension of φ2 that also relates keys with indices i and i′. Moreover, in case q2 is covered by p we
define sets S′ and T′ to be extensions of S and T that include the corresponding newly generated
secret key. For all other variables, we are done by assumption.

T-PUB-ENC-AUX: We have

〈{x := encrypt(e1, e2)}p,m,H,Y, t | Γ, pc〉γ −→ 〈stop,m[x 7→ v
r〈j〉
pk〈i〉],H,Y

′, t | Γ[x 7→ p], pc〉γ

where

• 〈m, e1〉 ⇓ pk〈i〉

• 〈m, e2〉 ⇓ v

• Y(enc) = j

• Y(Rnds) = R

• R′ = R[p 7→ R(p) ∪ {j}]

• Y′ = Y[enc 7→ j + 1,Rnds 7→ R′]

It must be that s-trace reaches the same command. We have that
38

• 〈s, e1〉 ⇓ pk〈i′〉

• 〈s, e2〉 ⇓ u

• W(enc) = j′

• W(Rnds) = R′′

• R′′′ = R′′[p 7→ R′′(p) ∪ {j′}]

• W = W[enc 7→ j′ + 1,Rnds 7→ R′′′]

By reasoning similar to case T-ASSIGN-AUX, consider the case when p is covered by p, and where
we need to show that there are φ2 and ψ2 such that

pat(v
r〈j〉
pk〈i〉,S

′)
φ2,ψ2= pat(u

r〈j′〉
pk〈i′〉,T

′)

where
S′ = ObsKeysp,Γ(m | S) T′ = ObsKeysp,Γ(s | T)

Define φ2 = φ0, and ψ2 to be the extension of ψ0 that relates j and j′.

By T-PUB-ENC-AUX, it must be that encpk b p, where Γ ` e1 : pubkeypk q such that {pc, q} ≤ p. Be-
cause environment Γ is well-formed, it must be that if there is an expression e such that Γ ` ek : privkeypk p

′′

it must be that pk ≤ p′′. We consider two cases

(1) p <Γ pk. In this case, because both u and v must have matching patterns, by assumptions of our
lemma, and we are done.

(2) ¬(p <Γ pk). In this case, the corresponding private key sk〈i〉 does not belong to the set
ObsKeysp,Γ(m | ∅) (and similarly the matching key pk〈φ0(i)〉 6∈ ObsKeysp,Γ(s | ∅)). We have two
more cases

(a) pat(v
r〈j〉
pk〈i〉,S

′) = · r〈j〉

In this case, the secret key sk〈i〉 6∈ S′ and, therefore the matching key sk〈φ(i)〉 6∈ T′.

(b) pat(v
r〈j〉
pk〈i〉,S

′) = pat(v,S′)
r〈j〉
pk〈i〉

In this case, the secret key sk〈i〉 ∈ S′, and, therefore the matching key sk〈φ(i)〉 ∈ T′. But

then, because Lm0,SM
φ0,ψ0≈ p,Γ0 Ls0,TM, we obtain than pat(v,S′)

r〈j〉
pk〈i〉 = pat(u,S′)

r〈ψ(j)〉
pk〈φ(i)〉,

as desired.

T-SEQ: Assume c0 is ca; cb. We have two cases

(1) Command ca produces the J p0, Γ̃0? I-event. In this case we are done by applying the induction
hypothesis to ca.

(2) Command ca runs to completion without producing any J p0, Γ̃? I-events, and J p0, Γ̃? I-event
is produced by command cb.

Then we are done by applying the induction hypothesis to ca and cb, and using Lemma 8 (Coverage
composition).

Case (T-SCOPE-COND, T-SCOPE-LOOP): . Not applicable, because they do not step to a terminal
configuration in one step.

Inductive case: Again, we proceed by an inner induction on the typing derivation Γ0, pc0 `annot c0 : ∆0, pc
′′. Cases

where commands transition to a terminal configuration in one step are not applicable. Hence, we focus on the
inductive cases only, using the outer induction hypothesis when necessary.

39

T-SEQ: By induction hypothesis.

T-SCOPE-COND: We have

Γ0, pc0 `annot S
∆{cond {e}pc

′
then c1 else c2} : ∆, pc0

Assume Γ0 ` e : int p. We consider two possible cases

Case ∀x ∈ Vars(e) . Γ0〈x〉 ≤ p0: Using Lemma 5 (Noninterference for expressions with initial keys),
we can show that both executions take the same branch, and we are done by IH.

Case ∃x ∈ Vars(e) . Γ0〈x〉 6≤ p0: We have that for i = 1, 2 it holds that

Γ0, pc :pc′ ` ci : Γ′i, pc :pc′

where {p, pc0} ≤ pc′. In this case, it holds that pc′ 6≤ p0.

Assume the two executions pick different branches.

〈S∆̃{cond {e}pc
′
then c1 else c2},m0,U0,H0,Y0, t0 | Γ0, pc0〉γ0 −→

〈S∆̃{c1},m,U0,H0,Y0, t0 | Γ0, pc0 :pc′〉γ0 −→
∗

〈S∆̃{stop},m′,U′,H′,Y′, t′ | Γ̃αn〉γ′ −→ 〈stop,m
′,U′,H′,Y′, t′ | ∆̃〉γ′

and

〈S∆̃{cond {e}pc
′
then c1 else c2}, s,X, J,W, r | Γ, pc〉δ −→

〈S∆̃{c2}, s,X, J0,W, r | Γ, pc :pc′〉δ −→∗ 〈S∆̃{stop}, s′,X′, J′,W′, r′ | Γ̃βm〉δ′ −→

〈stop, s′,X′, J′,W′, r′ | ∆̃〉δ′

where ∆ = Γαn]∆βm . Denote Γ̃′ = (Γ0, pc0 :pc′). Consider q such that p0 <Γ̃0Γ̃′...Γ̃αn ∆̃ q. The
proof then proceeds as follows.

(1) First, we show that p0 <Γ̃0Γ̃′...Γ̃βm ∆̃ q. From p0 <Γ̃0Γ̃′...Γ̃αn ∆̃ q, we have that

{Γ̃0〈x〉 | ∃x′, x2, . . . , xn+1 : Γ̃0〈x〉 ≤ Γ̃′〈x′〉 ≤ . . . Γ̃αn〈xn〉 ≤ ∆̃〈xn+1〉 ≤ q} ≤ p0

We want to show that

{Γ̃0〈y〉 | ∃y′, y2, . . . , ym+1 : Γ̃0〈y〉 ≤ Γ̃′〈y′〉 ≤ . . . Γ̃βm〈ym〉 ≤ ∆̃〈ym+1〉 ≤ q} ≤ p0

Assume there is a sequence of variables y, y′, y2, . . . , ym+1 such that

Γ̃0〈y〉 ≤ Γ̃′〈y′〉 ≤ . . . Γ̃βm〈ym〉 ≤ ∆̃〈ym+1〉 ≤ q

and Γ̃〈y〉 6≤ p0. We consider two cases:

(a) pc′ ≤ q.

By construction, all intermediate environments Γ̃′, . . . , Γ̃αn contain pc′, and we also know
there is at least one variable x such that Γ(x) ≤ pc′ and Γ(x) 6≤ p0. Consider chain
x, pc′, . . . pc′ of length n+ 2. From Γ(x) 6≤ p0, it must be that this chain cannot be further
extended in a way that its n + 3-rd component is bound by q, because it would then
contradict p0 <Γ̃Γ̃′...Γ̃αn ∆̃ q. Hence, it must be that

{xn+1 | pc′ ≤ ∆̃〈xn+1〉 ≤ q} = ∅

Therefore, it must be that

pc′ 6≤ ∆̃〈ym+1〉 ≤ q

40

Then, this means that ym+1 is not updated in either of the branches, and therefore, we
can construct a chain consisting of one variable y and n+ 2 copies of ym+1, such that

Γ̃0〈y〉 ≤ Γ̃′〈y〉 ≤ . . . Γ̃αn〈ym+1〉 ≤ ∆̃〈ym+1〉 ≤ q

This contradicts our assumption that p0 <Γ̃0Γ̃′...Γ̃αn ∆̃ q, and hence the original sequence
of y1 . . . ym+1 cannot exist.

(b) pc′ 6≤ q

Because ∆̃〈ym+1〉 ≤ q , we have that pc′ 6≤ ∆̃〈ym+1〉. The rest of the proof of this case is
similar to the case above.

(2) From Proposition 1 (Bounded updates in high contexts) applied to c1 and c2, facts that
Γ̃αn ≤ ∆̃, Γ̃βm ≤ ∆̃, we obtain both memory equivalence at q and that there are no
/p0, Γ̃0 ? .-events within any of the branches.

T-SCOPE-CMD: We have that Γ, pc :pc′ ` S∆{c} : ∆, pc, where Γ, pc :pc′ ` c : Γ′, pc :pc′ and Γ′ ≤ ∆ and
c is not a conditional or a loop. The two matching transitions are S-SCOPE-LIFT, in which case we
are done immediately by the induction hypothesis, and S-SCOPE-RESET, in which case we have that

〈S∆{stop},m, t | Γ, pc :pc′〉γ −→ 〈stop,m, t | ∆, pc〉γ

and we need to show that
p0 <Γ̃∆̃ pc.

We have that pc ≤ pc :pc′, and hence by Lemma 9 (Relation of coverage to relabeling) from p0 <Γ̃ pc :pc′

it must be that p0 <Γ̃ pc. Then, because pc is defined in ∆̃ by construction, it must be that pc <∆̃ pc,
and therefore, by Lemma 8 (Coverage composition), it holds that p0 <Γ̃∆̃ pc.

T-SCOPE-LOOP: Similar to T-SCOPE-COND.

�

B.7. Security for relabel ordering.

Proposition 3 (Backbone for relabel ordering). Consider program c, environment Γ, stack pc, a policy set p, and
two configurations 〈c,m,U,H,Y, t | Γ, pc〉γ and 〈c, s,X, J,W, r | Γ, pc〉δ, such that

(1) Γ, pc `annot c : ∆, pc′′.

(2) {m, s} ⊆ Conv(c)

(3) m ≈init
p,Γ s.

(4) 〈c,m,U,H,Y, t | Γ, pc〉γ −→∗ 〈c0,m0,U0,H0,Y0, t0 | Γ0, pc0〉γ0 −→∗/p,Γ̃?. 〈c1,m1,U1,H1,Y1, t1 | Γ̃1〉γ1 −→Jp,Γ̃?I/stop

〈c2,m2,U2,H2,Y2, t2 | Γ̃2〉γ2

(5) 〈c, s, J,W, r,Γ, pc | δ〉−→∗〈c0, s0,X, J0,W0, r0 | Γ0, pc0〉δ0

(6) for any q it holds that p <
Γ̃[Γ̃−αi]

N
i=1Γ̃0

q⇐⇒ p <
Γ̃[Γ̃−

βj
]Mj=1Γ̃0

q, where we denote the typing environments in

m-execution as Γ−αi , 1 ≤ i ≤ N , and the typing environments in s-execution as ∆−βj , 1 ≤ j ≤M .

(7) p <Γ̃...Γ̃0
pc0

(8) there are S0 and T0 such that for any q such that p <
Γ̃[Γ̃−αi]

N
i=1Γ̃0

q it holds that Lm0,H0,S0M
φ0,ψ0≈ q,Γ

Ls0, J0,T0M.

Then there are s1, s2, . . . such that
41

(1) 〈c0, s0,X0, J0,W0, r0 | Γ0, pc0〉δ0 −→∗/p,Γ̃?. 〈c1, s1,X1, J1,W1, r1 | ∆̃1〉δ1 −→Jp,Γ̃?I/stop
〈c2, s2,X2, J2,W2, r2 |

∆2〉δ2

(2) for any q it holds that p <
Γ̃[Γ̃−αi]

N
i=1Γ̃0...Γ̃2

q⇐⇒ p <
Γ̃[Γ̃−

βj
]Mj=1Γ̃0...Γ̃2

q.

(3) there are sets S2,T2 and permutations φ2, ψ2 such that Lm2,H2,S2M
φ2,ψ2≈ q,Γ2 Ls2, J2,T2M, for any q such that

p <Γ̃...Γ̃2
q

(4) p <Γ̃...Γ̃2
pc2

(5) Moreover, if

〈c1,m1,U1,H1,Y1, t1 | Γ̃1〉γ1 −→Jp,Γ?I 〈c2,m2,U2,H2,Y2, t2 | Γ̃2〉γ2

is a J p,Γ? I-event then

〈c1, s1,X1, J1,W1, r1 | ∆̃1〉δ1 −→Jp,Γ?I 〈c2, s2,X2, J2,W2, r2 | Γ̃2〉δ2

is a J p,Γ? I-event. In addition, if this J p,Γ? I-event is an output on channel ` such that

p <Γ̃...Γ̃1
OutPols(`, Γ̃1)

then there are events θ and ι such that

(a) t2 = t1 · θ and r2 = r1 · ι

(b) pat(θ,S2)
φ2,ψ2= pat(ι,T2)

Proof. By Lemma 1 (Preservation), we obtain that Γ0, pc0 `annot c : ∆, pc′′. Assume that the J p,Γ? I-event is
obtained by assignment/output/set of level p. By Lemma 8 (Coverage composition), we get that there is p0 such
that p <... p0 and p0 <... p, i.e., the same event can be viewed as J p0,Γ0? I-event w.r.t. c0-th configuration. By
Proposition 2 (Progress-sensitive advancement for relabel ordering), s-trace produces a configuration that matches
m trace w.r.t. J p0,Γ0? I-event. By applying Lemma 8 (Coverage composition), we can show that it must also be
J p,Γ? I-event w.r.t. the initial c-configuration. �

B.7.1. Security for the relabel ordering.

Lemma 12 (Progress-sensitive security for relabel ordering). Consider program c1, memory m1, level `, and a policy
set P̂n, such that

(1) Γ1, pc1 `annot c1 : ∆, pc′′

(2) m1 ∈ Conv(c)

(3) 〈c1,m1,U1,H1,Y1, ε | Γ1, pc1〉γ1 −→∗ 〈ci,mi,Ui,Hi,Yi, ti | Γ̃i〉γi −→∗ 〈cn,mn,Un,Hn,Yn, ti · tobs | Γ̃n〉γn

(4) P̂n ,
⋃
j=i..n ConnectedInitPols(Γ̃1, . . . , Γ̃i, . . . , Γ̃j | OutPols(`, Γ̃j))

Then
Conv(c) ∩ {m′ | m1 ≈init

P̂n,Γ
m′} ⊆ k`(c1, tobs)

Proof. Let Z be the index of the configuration that produces the last event in ti · tobs · θ, i.e.,

〈cZ ,mZ ,UZ ,HZ ,YZ , tZ | Γ̃Z〉γZ −→JP̂n,Γ?I
〈cZ+1,mZ+1,UZ+1,HZ+1,YZ+1, tZ+1 | Γ̃Z+1〉γZ+1

where btZ+1c` = bti · tobs · θc`. Similarly, let A be the index of the configuration that produces the last event in ti.

Pick s ∈ Conv(c) ∩ {m′ | m1 ≈init
P̂n,Γ

m′}. We proceed as follows.
42

• We show that there are two sets of indices idx0, idx1, . . . , idxN and alt0, alt1, . . . , idxN such that for
all j, where 1 ≤ j ≤ N , configuration 〈cidxj−1+1,midxj−1+1,Uidxj−1+1,Hidxj−1+1,Yidxj−1+1, tidxj−1+1 |
Γ̃idxj−1+1〉γidxj−1+1 is “matched” by configuration 〈caltj−1+1, saltj−1+1,Ualtj−1+1, Jaltj−1+1,Waltj−1+1, raltj−1+1 |
∆altj−1+1, pcaltj−1+1〉γaltj−1+1 :

(1) cidxj−1+1 = caltj−1+1

(2) Pn <Γ̃1...Γ̃idxj−1+1
q⇐⇒ Pn <Γ̃1...∆̃altj−1+1

q

(3) There are sets Sj−1 and Tj−1, and permutations φj−1 and ψj−1 such that

(4) Lmidxj−1+1,Hidxj−1+1,Sj−1M
φj−1,ψj−1

≈ q,Γ̃j−1
Lsaltj−1+1, Jaltj−1+1,Tj−1M for any q such thatPn <Γ̃1...Γ̃idxj−1+1

q

(5) Pn <Γ̃1...∆̃altj−1+1
pcidxj−1+1 and Pn <Γ̃1...Γ̃altj−1+1

pcaltj−1+1

(6) Γ̃idxj−1+1 = ∆̃altj−1+1

(7) For idxj−1 ≥ i, if P̂n <Γ̃1...Γ̃idxj−1
OutPols(`, Γ̃idxj−1) and cidxj−1 is an `-output command—that is, it

has a form {output(`′, e)}q or {output(`′, e)}q; cidxj−1+1, where `′ v `—then there are events θ and ι

such that

(a) tidxj−1+1 = tidxj−1 · θ and taltj−1+1 = raltj−1 · ι.

(b) pat(θ,Sj−1)
φj−1,ψj−1

= pat(ι,Tj−1)

Because in matched configurations, the commands and typing environments must agree, we denote them by
c[j−1] and Γ̃[j−1] repsectively:

c[j−1] = cidxj−1+1 = caltj−1+1

and
Γ̃[j−1] = Γ̃idxj−1+1 = ∆̃altj−1+1

We proceed to show the existence of these sets of indices by induction on j. For base case j = 1 we set idx0

and alt0 to 0. We also set t0 = t1 = ε. and set S0 and T0 to empty sets. Therefore, idx0 + 1 points to the
initial configuration 〈c1,m1,U1,H1,Y1, ε | Γ1, pc1〉γ1 , and similarly the configuration indexed by alt0 + 1 is
the initial s-configuration.

For inductive case, we assume we have two matching configurations indexed by idxj−1 and altj−1, and
proceed to constructing indices idxj and altj .

Given that

〈c[j−1],midxj−1+1,Uidxj−1+1,Hidxj−1+1,Yidxj−1+1, tidxj−1+1 | Γ̃idxj−1+1〉γidxj−1+1 −→
∗

〈cZ ,mZ ,UZ ,HZ ,YZ , tZ | Γ̃Z〉γZ −→JP̂n,Γ?I

〈cZ+1,mZ+1,UZ+1,HZ+1,YZ+1, tZ+1 | Γ̃Z+1〉γZ+1

we define idxj ≤ Z to be such that

〈c[j−1],midxj−1+1,Uidxj−1+1,Hidxj−1+1,Yidxj−1+1, tidxj−1+1 | Γ̃[j−1]〉γidxj−1+1 −→
∗
/P̂n,Γ?.

〈cidxj ,midxj ,Uidxj , tidxj ,Hidxj ,Yidxj | Γ̃idxj 〉γidxj −→JP̂n,Γ?I

〈cidxj+1,midxj+1,Uidxj+1,Hidxj+1,Yidxj+1, tidxj+1 | Γ̃idxj+1〉γidxj+1

We can apply Proposition 2 (Progress-sensitive advancement for relabel ordering) to obtain the matching altj

configuration in the s-trace. For all idxj ≤ A, we drop Sj and Tj to ∅ using Lemma 2 (Dropping information
about related keys).

43

• By construction, we have that P̂n <Γ̃1...Γ̃j
OutPols(`, Γ̃j), and therefore the s-trace agree on the patterns of

the outputs θj that are produced in tobs by producing outputs with matching patterns ιj . Moreover, because
of the way Sj and Tj are constructed starting from the first event in tobs, we can show that these sets are
“self-sufficient”, i.e., further DY observations down the trace do not change pattern-equivalence of the j

�

B.8. Security of enforcement.

Definition 22 (Policy consistency w.r.t. a memory). Say that an erasure policy p is consistent w.r.t. a memory m
when for all erasure conditions cnd such that cnd ∈ erasureconds(p), it holds that m(cnd) = 0. A policy environment γ
is consistent w.r.t. memory m when for all variables x the corresponding erasure policies γ(x) are consistent w.r.t. m.

Lemma 13 (Preservation of policy consistency by policy update). Given memory m and a erasure policy p such
that p is consistent w.r.t. m, and memory m′ such that m′ = m[cnd 7→ 1] for some condition variable cnd , and
p′ = upd(m′, p), then p′ is consistent w.r.t. m′.

Proof. By induction on the structure of p, and analysis of the definition of upd(m′, p). �

Lemma 14 (Preservation of policy environment consistency by policy update). Given memory m and a policy
environment γ such that γ is consistent w.r.t. m, and memory m′ such that m′ = m[cnd 7→ 1] for some condition
variable cnd , and γ′ = update(m′, γ), then γ′ is consistent w.r.t. m′.

Proof. Direct lifting of Lemma 13 (Preservation of policy consistency by policy update). �

Lemma 15 (Empty erasure conditions constrain relabeling). Consider memory m, condition variable cnd , policies
pα and q such that

• pα is consistent w.r.t. m

• cnd 6∈ erasureconds(q)

• pα ≤ q

Then, for pβ = upd(m[cnd 7→ 1], pα), we have pβ ≤ q.

Proof. By induction on the height of the derivation pα ≤ q.

�

Lemma 16 (Relationship between policy and type environments). Given a program c, memory m, environments γ
and Γ, such that

(1) Γ, pc `annot c : ∆, pc′,

(2) 〈c,m,U0,H,Y0, ε | Γ, pc〉γ −→∗ 〈cn,mn,Un,Hn,Yn, tn | Γn, pcn〉γn

(3) there are variables x, x1, . . . xn−1, y such that γ(x) ≤ Γ̃1〈x1〉 . . . ≤ Γ̃n−1〈xn−1〉 ≤ Γ̃n〈y〉

Then γn(x) ≤ Γ̃n〈y〉.

Proof. By induction on n. Base case n = 0 is immediate. The inductive case is that whenever

〈c,m,U0,H,Y0, ε | Γ, pc〉γ −→∗ 〈cn−1,mn−1,Un−1,Hn−1,Yn−1, tn−1 | Γ̃n−1, pcn−1〉γn−1 −→

〈cn,mn,Un,Hn,Yn, tn | Γ̃n, pcn〉γn
44

such that there are variables x1, . . . , xn−1 such that

γ(x) ≤ Γ̃1〈x1〉 . . . ≤ Γ̃n−1〈xn−1〉 ≤ Γ̃n〈y〉

and γn−1(x) ≤ Γ̃n−1〈xn−1〉 then
γn(x) ≤ Γ̃n〈y〉

We proceed by induction on structure of cn−1.

• For all base cases that are not {set(x)}p we have that γn−1 = γn, and hence

γn(x) = γn−1(x) ≤ Γ̃n−1〈xn−1〉 ≤ Γ̃n〈y〉.

• Consider case cn−1 is {set(cnd)}p. We examine the following cases

– γn−1(x) = γn(x): This is similar to the case above.

– γn−1(x) 6= γn(x): In this case, it must be that

∗ mn−1(cnd) = 0

∗ mn = mn−1[cnd 7→ 1]

∗ γn−1(x) = pn−1

∗ cnd ∈ erasureconds(pn−1)

∗ γn(x) = pn = upd(mn, pn−1)

∗ pn−1 6= pn

By T-SET-AUX, we have that environment Γ̃n−1 is free of erasure condition cnd . In particular, if
Γ̃n−1〈xn−1〉 is some level q, then cnd 6∈ erasureconds(q). We have that

pn−1 = γn−1(x) ≤ Γ̃n−1〈xn−1〉 = q

Lemma 15 (Empty erasure conditions constrain relabeling) gives us pn ≤ q. Thus, we have that

γn(x) = pn ≤ q = Γ̃n−1〈xn−1〉 ≤ Γ̃n〈y〉,

as required.

• Other cases follow by induction hypothesis.

�

Lemma 17 (Relabeling and current policy).

q ≤ p and cur(p) v ` =⇒ cur(q) v `

Proof. By induction on the height of the derivation q ≤ p. �

Lemma 18 (Relationship between current and policy equivalences). Consider program c such that

Γ, pc ` c : Γfin, pc

and a sequence of transitions

〈c,m,U0,H0,Y0, ε | Γ, pc〉γ −→∗ 〈ci,mi,Ui,Hi,Yi, ti | Γ̃i〉γi −→ 〈ci+1,mi+1,Ui,Hi,Yi, ti · θ | Γ̃i〉γi

Then it holds that for set pi = ConnectedInitPols(Γ̃, . . . , Γ̃i | OutPols(`, Γ̃i)) we have

ind`(m, γi) = {m′ | m ≈cur
`,γi m

′} ⊆ {m′ | m ≈init
pi,γ m

′}.
45

Proof. Suppose we have m′ such that m 6≈init
pi,γ m′. That is, there is some variable x such that m(x) 6= m′(x)

and γ(x) ≤ pi. That means there is some variable y such that Γ̃i〈y〉 ∈ OutPols(`, Γ̃i) and there is a chain
γ(x) ≤ Γ̃〈x〉0 ≤ Γ̃1〈x〉1 ≤ · · · ≤ Γ̃i〈y〉.

By Lemma 16 (Relationship between policy and type environments), we have γi(x) ≤ Γ̃i〈y〉. Since Γ̃i〈y〉 ∈
OutPols(`, Γ̃i), i.e., cur(Γ̃i〈y〉) v `, then by Lemma 17 (Relabeling and current policy), cur(γi(x)) v `. There-
fore, m 6≈cur

`,γi
m′.

�

B.8.1. Proof of Theorem 1. We restate our main theorem.

Theorem 1. Given a program c such that Γ, pc ` c : Γfin , memory m such that m ∈ Conv(c) , and

〈c,m,Uinit,Hinit,Yinit, ε〉γ −→∗ 〈ci,mi,Ui,Hi,Yi, ti〉γi −→
∗ 〈cn,mn,Un,Hn,Yn, ti · tobs〉γn

it holds that for all levels `
k`(c, tobs) ⊇ Conv(c) ∩

⋂
i≤j≤n

ind`(m, γj)

Proof. From the typing derivation Γ, pc ` c : Γfin we use Definition 8 (Translation from source to auxiliary) and
Theorem 2 (Adequacy of the auxiliary semantics) to obtain a decorated matching program d with the typing derivation
in the auxiliary type system

Γ, pc `annot d : Γfin, pc

and the auxiliary trace

〈d,m,Uinit,Hinit,Yinit, ε | Γ, pc〉γ −→∗ 〈di,mi,Ui,Hi,Yi, ti | Γ̃i〉γi −→
∗ 〈dn,mn,Un,Hn,Yn, ti · tobs | Γ̃n〉γn

By Lemma 18 (Relationship between current and policy equivalences), we have that for all j

ind`(m, γj) ⊆ {m′ | m ≈init
pj ,γ m

′},

where pj = ConnectedInitPols(Γ, . . . , Γ̃j | OutPols(`, Γ̃j)). From this, we have⋂
i≤j≤n

ind`(m, γj) ⊆
⋂

i≤j≤n

{m′ | m ≈init
pj ,γ m

′} = {m′ | m ≈init
∪i≤j≤npj ,γ m

′}

Then, we are done by Lemma 12 (Progress-sensitive security for relabel ordering).

�

46

	1. Introduction
	2. Language, attacker model, and security
	2.1. Language and attacker model
	2.2. Erasure policies and erasure environments
	2.3. Security for erasure

	3. Language with cryptographic primitives
	3.1. Syntax and semantics
	3.2. Cryptographic erasure

	4. Enforcement
	4.1. Relabeling judgment
	4.2. Flow-sensitive enforcement of erasure
	4.3. Typing cryptography
	4.4. Assurance

	5. Implementation
	6. Case study
	7. Related work
	8. Conclusion
	Acknowledgments
	References
	Appendix A. Enforcement and extensions
	A.1. Enforcement of information erasure
	A.2. Language extension: erasable heap

	Appendix B. Soundness
	B.1. Auxiliary semantics
	B.2. Equivalence of semantic configurations up to relabel ordering
	B.3. Noninterference for expressions
	B.4. Coverage
	B.5. Relatively low and high events
	B.6. Advancement for relabel ordering
	B.7. Security for relabel ordering
	B.8. Security of enforcement

