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Abstract 

      Measurements of stress evolution during low energy argon ion bombardment of Si have been 

made using a real-time wafer curvature technique. During irradiation, the stress reaches a steady state 

compressive value that depends on the flux and energy.  Once irradiation is terminated, the measured 

stress relaxes slightly in a short period of time to a final value. To understand the ion-induced stress 

evolution and relaxation mechanisms, we account for the measured behavior with a model for viscous 

relaxation that includes the ion-induced generation and annihilation of flow defects in an amorphous Si 

surface layer.  The analysis indicates that bimolecular annihilation (i.e., defect recombination)  is the 

dominant mechanism controlling the defect concentration both during irradiation and after the cessation 

of irradiation. From the analysis we determine a value for the fluidity per flow defect.   
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I. INTRODUCTION 

 

      Low energy ion beams are used widely in thin film processing [1] and stress induced by the beam 

may affect the film properties [2].  To understand the processes controlling stress generation and 

relaxation, we have used a wafer curvature technique to measure stress evolution under different 

irradiation conditions. We find that the ion-induced stress depends on the flux, suggesting that defect-

dependent relaxation processes are playing a role in controlling it.  This is in contrast with previous 

studies of stress evolution in amorphous Si during high energy (MeV) ion irradiation [3-5] in which the 

stress depended primarily on the total number of ions (fluence) but not the rate of impingement (flux).   

There has been previous experimental work on stress in the low-energy regime performed on 

crystalline metals [6-10].  Dahmen et al. [6] studied stress in Cu due to noble gas ion bombardment and 

explained the steady state stress as a balance between stress induced by implantation and the sputter 

removal of the bombarded layer. Chan et al. [7] also found a compressive steady-state stress in Cu, but 

found that the stress relaxes to a tensile state after stopping the ion bombardment. They explained this [10] 

with a model that includes volumetric relaxation around mobile defects in addition to ion implantation 

and sputtering.  Work on Pt [8] showed that heavier or higher-energy ions tend to create tensile stress, 

while lighter ions induce compressive stress. The results were explained by a competition between local 

melting and the creation of ion-induced interstitial defects.  

      Kalyanasundaram et al. [11] calculated the stress generated by low-energy bombardment of Si by 

molecular dynamics (MD) simulation and showed that the ion implantation process and subsequent 

damage production could produce large compressive stresses that were proportional to the number of 

implanted ions.  However, because of the short time scales studied by MD, any effects of relaxation after 

implantation could not be observed.   

Covalent materials can behave very differently than elemental metals because they typically 

become amorphous during bombardment, allowing relaxation mechanisms (e.g., viscous flow) that don’t 
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occur in crystalline systems. Volkert suggested a model for stress evolution during irradiation based on a 

fluidity (reciprocal of the viscosity, η) that is directly proportional to the ion flux [3,4],  i.e., 1/η=f/ηrad, 

where f is the flux and ηrad  is a flux-independent parameter that may depend on the material, temperature, 

and ion beam [12].  Proportionality between fluidity and flux is consistent with the observation that the 

stress relaxation depends on the fluence but not on the flux; in other words the amount of viscous flow per 

ion does not depend on the rate at which the ions impinge on the surface.   This approach has been 

successful in describing irradiated materials in the high ion energy regime where electronic stopping is 

the dominant mechanism of ion energy loss [3, 5, 12]. The similar values of  ηrad  found for many 

materials and conditions further suggests it doesn’t depend strongly on the particular material.    Mayr et 

al. [13] used MD to calculate the  radiation-induced fluidity over a range of energies and found good 

agreement with measurements on Si and SiO2 as well as some amorphous metals.  Viscous relaxation in 

amorphous Si in the absence of irradiation was successfully modeled by Witvrouw and Spaepen [14] as 

being governed by the concentrations and mobilities of flow defects.  During thermal annealing, these 

defects could annihilate by various mechanisms so that the viscosity could evolve as well as the stress.   

 

II. EXPERIMENT AND RESULTS 

 

      In the work described here, stress evolution was monitored in situ during ion bombardment using 

a Multibeam Optical Stress Sensor (MOSS) wafer curvature-measurement technique [15].  Details of the 

configuration of the sputtering system and stress measurement technique have been described previously 

[7].  Measurements were made on polished Si(100) wafers (100 µm thickness x 1.25 cm (width) x 1.25 

cm (length)) with Ar
+
 ions at normal incidence angle and room temperature from a 1 cm Kaufmann 

source (base pressure 1.0×10
-7

 Torr) using energies of 600 and 900 eV. To investigate whether there was 

contamination from the surroundings onto the sample surface during irradiation, test samples were 
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measured by energy dispersive X-ray spectrometry and found to have no measurable contamination from 

the chamber. 

   The measured curvature (κ) is interpreted using the Stoney equation [16, 17] 

 

          (1) 

 

where Ms and hs are the biaxial modulus and thickness of the unmodified substrate, respectively.  σ  refers 

to the in-plane stress in the implanted layer averaged over the thickness of the implanted region, d .  This 

thickness is small compared to hs and corresponds to the range over which stress is produced by the ion 

beam.  Values of d for the different ion energies are given in table 1, estimated from SRIM calculations 

[18] for the ion range plus twice the longitudinal straggle.  This has been confirmed by cross-sectional 

transmission electron microscopy as a good estimate for the thickness of the amorphous layer for 250 eV 

argon ion bombardment of  Si at normal incidence [19].   

      A representative measurement of the time-dependence of the stress is shown in figure 1.  The 

magnitude of the compressive stress initially increases very rapidly (in the first 15 s) but then reaches a 

plateau for fluences between approximately 6 x 10
15

 - 3 x 10
16 

ions/cm
2
 (indicated by arrow and expanded 

in inset).   We attribute this to the amorphization of the layer; data obtained at other fluxes also showed 

plateaus or peaks that occur at approximately the same fluence.  As the fluence increases further, the 

stress becomes increasingly compressive and eventually reaches a steady state that does not change with 

continued bombardment. 

      When the beam is turned off (at approximately 1000 s), the stress relaxes to a slightly less 

compressive value, by about 50 MPa out of 800.   The stress change occurs over a very short period after 

the beam is turned off, reaching a final value in less than 10 s.  Because the relaxation was fast relative to 

our acquisition rate, the measurement of the relaxation rate (discussed below) has large error bars. To 

confirm that the stress relaxation is not due to thermal transients when the beam is turned off, a sample 

that had been previously ion bombarded was heated to 45 deg C, which is larger than any temperature 

6

2κ
σ ss hM

d =
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change measured during ion bombardment using thermocouples.  The stress changed by less than 10 MPa 

due to heating, which indicates that the stress relaxation cannot be attributed to thermal expansion effects 

but instead corresponds to changes in the intrinsic stress of the layer.  Stress due to ion-induced 

temperature gradients was also ruled out by calculation of their contribution [20].  

      Curvature measurements were made during bombardment and relaxation at ion energies of 600 

and 900 eV over the flux range 1.25 – 6.25 x 10
14

 ions/cm
2
s. For all the fluxes and energies measured, a 

sequence of stress evolution behavior similar to that shown in figure 1 was observed, i.e., saturation at a 

steady-state and rapid relaxation when the beam was terminated.  The value of the steady-state 

compressive stress as a function of ion flux is shown in figure 2 for different values of the ion energy.   

Note that for both ion energies, the steady-state stress is observed to become more compressive at higher 

flux.   

 

III. ANALYSIS AND STRESS MODEL 

 

To model the data, we assume that the stress we measure comes from the amorphous surface 

layer (and not, for instance, from an implanted crystalline layer below it).  To confirm this, we measured 

the change in curvature after selectively removing the amorphous layer using a Wright etch [21].  This 

reduced the stress-induced curvature by 70%, indicating that most of the measured stress is in the 

amorphous Si. In addition, molecular dynamics (MD) simulations of stress from low energy ion 

bombardment of Si  [11] show that the stress is confined primarily to the amorphous layer.  We also 

assume that the stress is uniform throughout the layer so that we can model the average stress for 

comparison with the results obtained from the curvature measurements.   

We consider the evolution of the average stress (σ) as a balance between competing generation 

and relaxation mechanisms, using an approach similar to the one used previously for higher energy 

bombardment [3, 12, 13]; this has also been shown to be reasonable for ion energies as low as 3 keV [22].   
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We use the following ordinary differential equation to describe processes of stress generation and 

relaxation: 

 

 

          (2) 

 

 

The first term on the right hand side corresponds to the generation of stress by the incoming ions, where f 

is the ion flux and Σo is the stress generated per unit fluence (flux × time).  The second term is due to the 

effect of sputter removal of the stressed layer (where Ω is the atomic volume and Y is the sputtering yield, 

i.e., atoms sputtered away per incident ion).  Physically, this corresponds to a moving boundary condition 

as the top surface is eroded and new regions of film are implanted at the bottom of the layer. For high 

energy ions this term is generally not important because the sputter yield is relatively low and the range is 

large.    For low energies, however, this term cannot be neglected.  In this case, sputter removal can lead 

to the stress saturating at a steady-state value even in the absence of any stress relaxation mechanisms [6]. 

The third term corresponds to relaxation of the stress in the layer by Newtonian viscous flow, as 

previously discussed by others [3-5, 12, 13, 23]. The rate of relaxation is dependent on the inverse of the 

viscosity (i.e., fluidity) and the stress.   The dependence of the fluidity on ion irradiation is discussed 

further below. Mf is the biaxial modulus of the stressed layer.   

In the steady-state (dσ/dt=0), the stress is predicted to have the value   

 

 

       .   (3) 

 

 

σ
η

σ
σ 1

6
0

fM

d

fY
f

dt

d
−

Ω
−Σ=

η

σ

6

f

o

ss M

d

fY

f

+
Ω

Σ
=
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In the absence of relaxation in the layer (i.e., 1/η=0), the steady-state stress would be independent of flux 

with a value of σss= Σod/YΩ.  In the presence of fluidity, however, the steady-state stress is predicted to 

depend on the rate of relaxation.  

Previous work at higher energies [3, 5, 13] was explained with a radiation-induced fluidity that 

was proportional to the ion flux, i.e., 1/η=f/ηrad.  Using this form for the fluidity, however, leads to a 

predicted steady-state stress from eq. 3 that is independent of the flux.  This is not consistent with our 

measurements, and indicates that there must be other relaxation mechanisms involved.  These other 

relaxation mechanisms must be radiation dependent because the stress in the film does not continue to 

relax significantly after the beam is turned off. 

To explain this behavior, we invoke a model of viscous relaxation in amorphous Si proposed by 

Witvrouw and Spaepen [14].  The fluidity during thermal relaxation is taken to be proportional to the 

concentration of “flow defects” -- such as broken bonds -- that enable rearrangement of the covalent 

network: 

 

       ,   (4) 

 

where C is the concentration of flow defects in units of cm
-3

 and α is a constant specifying the fluidity per 

unit concentration.  Witvrouw and Spaepen used this to explain the relaxation of stress induced by 

thermal expansion mismatch when a layer of amorphous Si on a crystalline Si substrate was heated (i.e., 

with no ion irradiation).   They were able to interpret the time-evolution of the viscosity in terms of the 

changing concentration of defects in the material, which were annihilated either by unimolecular 

processes (at sinks) or bimolecular processes (by recombination of defects with each other).   

In the current work, we add the consideration of two ion beam-induced effects that were not 

present in the thermal relaxation studies: flow defects are created by the ion beam, and layers containing 

Cα
η
=

1

Cα
η
=

1
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defects can be removed by sputter erosion.  Combining these mechanisms gives the following ordinary 

differential equation for the defect concentration in the implanted layer: 

 

2

21

0 CDCDC
d

fY

d

fC

dt

dC
−−

Ω
−= .  (5) 

 

The first term on the right hand side corresponds to the creation of Co flow defects per ion.  The second 

term corresponds to removing defects by sputtering away the layers containing them.  The third and 

fourth terms correspond, respectively, to unimolecular and bimolecular annihilation with the respective 

coefficients D1 and D2.   

These ion-induced defect kinetics can explain why the stress reaches a steady-state when the 

beam is on but does not relax completely when the beam is turned off.  During ion bombardment, the 

defects reach a steady-state concentration due to a balance between beam-induced defect creation and 

defect annihilation.  When the beam is turned off, the concentration of flow defects decreases and 

therefore the fluidity decreases, turning off the stress relaxation process.   This also tells us that the defect 

recombination must be relatively fast compared to the stress relaxation or else the stress would continue 

to decay even after the beam is turned off.  

 We can obtain the model’s prediction for the steady-state stress vs. flux from eq. 3 using the 

value for the fluidity when the defect concentration has reached its steady-state value (1/η =αCss).  The 

dependence of Css  on flux depends on which removal mechanism in eq. 5 is dominant; we determine this 

by setting dC/dt equal to zero and considering the effect of each term . If defect removal is dominated by 

the sputter removal rate, then Css is independent of the flux and equal to Co/YΩ. If bimolecular 

annihilation dominates, then Css depends on the square root of flux  ((fCo/D2d)
1/2

). Finally, if unimolecular 

annihilation dominates,  then Css is proportional to the flux (fCo/D1d).  Note that if Css were proportional to 

the flux then the steady-state stress (from eq. 3) would be independent of the flux (because all the terms 
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would depend linearly on the flux).  This is in contradiction to the experimental results which means that 

unimolecular annihilation cannot be the dominant defect removal mechanism during irradiation.  

There are therefore two possible defect annihilation mechanisms (either sputter removal or 

bimolecular annihilation)  that we can compare with our experimental results to determine which 

dominates annihilation during irradiation and controls the steady-state defect concentration (and hence the 

steady-state stress).  We can obtain the predictions of these two cases for the steady-state stress by 

evaluating eq. 3 with the appropriate steady-state concentration (Co/YΩ for sputter removal and 

(fCo/D2d)
1/2

 for bimolecular annihilation).   When we compare these with the measured flux-dependence 

of the steady-state stress, however, both mechanisms give reasonable agreement.  This means that the 

steady-state stress measurement alone cannot be used to determine which mechanism is dominant.  

In order to differentiate between these possible mechanisms, we can also consider the 

measurements of stress relaxation when the ion beam is turned off.  To do this, we solve eqs. 2 and 5 for 

the simultaneous evolution of the stress and defect concentration when the flux is set equal to zero.  The 

initial conditions for this solution are that the defect concentration and stress have their steady-state 

values.   

We first consider the possibility that sputter removal determines the steady-state defect 

concentration during irradiation (i.e., Css = Co/YΩ).  We then fit the relaxation data to determine the 

kinetic parameters when the ion beam is turned off (f = 0).  Assuming that unimolecular annihilation is 

dominant when irradiation is turned off,  we obtain parameters α = 9.11 x 10
-39

 cm
3
/Pa-s and D1 = 

0.00513 /s.  However, if we use these parameters to evaluate the defect removal term in eq. 5 during 

irradiation, we find that D1Css is larger than the sputter removal term (fYΩCss/d).  This contradicts our 

initial assumption that sputter removal is dominant during irradiation and indicates that it cannot be the 

mechanism that determines Css.  If we instead assume that bimolecular annihilation is dominant when 

irradiation is turned off, we obtain parameters α = 3.32 x 10
-35

 cm
3
/Pa-s and D2 = 1.52 x 10

-24 
cm

3
/s.   

Again, using these parameters to evaluate the defect removal term in eq. 5 during irradiation indicates that 
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D2Css
2
 is larger than the sputter removal term.   Since both these possibilities result in defect removal 

terms that are larger than that from sputtering, sputter removal cannot be the dominant mechanism that 

determines Css during irradiation at the fluxes studied here.   Physically, this also agrees with our 

expectation that the flow defects are short-lived and their concentration decays rapidly after the beam is 

terminated.   

Alternatively, we consider bimolecular annihilation to be the mechanism that dominates the 

defect annihilation during irradiation so that Css =  (fCo/D2d)
1/2

.  We simultaneously fit the data for 

relaxation when irradiation is turned off to three different scenarios in which the the flow defects are 

annihilated by unimolecular (D1) mechanism, a bimolecular (D2) mechanism or both (D1 and D2).  The 

parameters obtained from the fitting indicate that in all cases D2C
2 
>> D1C so that the bimolecular 

annihilation has the largest rate when the beam is turned off.  In this case there is no inconsistency 

between our assumptions regarding the dominant annihilation mechanism during irradiation and the 

deductions from the relaxation kinetics when the beam is turned off.  By considering all the possible 

combinations of mechanisms, we therefore conclude that bimolecular annihilation is the dominant 

mechanism controlling the defect concentration both when the beam is on and when it is turned off, for 

the range of fluxes studied here.   This conclusion is qualitatively consistent with the conclusions of 

studies of topographic pattern formation during sputter erosion, which find that morphology evolution is 

dominated by structural rearrangements within the irradiated material rather than by sputter erosion 

[24,25]. 

Using this conclusion that bimolecular annihilation controls the defect concentration, we analyze 

the data during both irradiation and relaxation to obtain values for the model parameters.  In this case, the 

flux-dependent steady-state stress is given by: 

 

f
D

d

CM f

ss 











 Σ
=

α
σ 20

0

6

1

  

(6) 
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Fitting this equation to the experiments requires only one composite fitting parameter, β, which is equal to 

Σo(D2)
½
 /α . The results of the fitting for this parameter are given in table 1 for each energy. Other 

parameters used for the calculations (d, Y and Co) are determined using SRIM. The atomic volume is 

taken as Ω = 2.0×10
-23

 cm
3
/atom and Mf = 135 GPa [4]. The results of the model calculation using these 

parameters are shown as the solid lines in figure 2 for each ion energy.   

 We determine the individual parameters D2, Σo and  α from the relaxation measurements. When 

the flux is set to zero (at time t = 0) then 2

2/ CDdtdC −=  under the assumption that bimolecular 

annihilation is the dominant relaxation mechanism.  The defects decay with the form  

 

tD
C

tC

ss

2

1

1
)(

+
=    (7) 

 

from their initial concentration of Css.  Using this concentration evolution with eqs. 2 and 4, the 

corresponding stress is predicted to decay with the form: 

 

         (8) 

 

 

where the stress has its steady-state value (σss) at t=0.   

Calculations of the simultaneous evolution of the stress and the defect concentration during 

relaxation are shown in figure 3 using parameters obtained from fitting the data in figure 1 (after the beam 

is turned off) to eq.  8.    When the beam is terminated, the calculated defect concentration (fig 3a) rapidly 

decays due to bimolecular annihilation. Consequently, the calculated stress (solid line in fig 3b) only 

decreases for a short time because the fluidity drops rapidly as the number of flow defects decreases.  The 

26
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measured stress relaxation data from figure 1 are shown on the same figure for comparison.  The values 

obtained from the non-linear least squares fitting are α =5.74 x 10
-30

  cm
3
/Pa-s, D2= 1.86 x 10

-17
  cm

3
/s and 

Σo = -1.07 x 10
-14

  GPa-cm
2
.  

 The results from fitting the full set of measurements of steady-state stress and stress relaxation 

under different conditions are summarized in table 1.  The values and error estimates of Σo, D2 and α  

were obtained from the results of the fitting at different fluxes for each energy.  As noted earlier, the 

relaxation data have a large degree of variability so that the average values have relatively large error bars.   

In the analysis described above, we have only compared the model with the steady-state stress 

and relaxation data and not the buildup of the compressive stress during ion bombardment.  Although the 

model equations predict the stress evolution during this period, the layer is amorphizing which means that 

there are presumably other effects involved that are not included in the model.  However, we note that if 

we consider the stress data only after the plateau (corresponding to amorphized Si), then the model does 

provide reasonable agreement with the measurements during irradiation.  

 

IV. DISCUSSION 

 

To assess the plausibility of the parameters obtained from fitting the model to the data, we 

compare their values with those from other studies.  A model for defect recombination [26] relates the 

parameter D2 to the defect diffusivity and recombination radius.  From the wide range of measured values 

for defect (interstitial and vacancy) diffusion in Si (10
-11

 – 10
-30

 cm
2
/s )[27-29], we would expect the value 

of D2 to be in the range of 10
-17

 – 10
-37

 cm
3
/s.  This is consistent with what we find from our modeling.   

The value of Σo indicates that the amount of stress generated by implantation of the equivalent of 

a monolayer of ions (6.8 x 10
14 

ions/cm
2
) would be approximately -5.4 GPa if there were no viscous 

relaxation.    For comparison, Kalyanasundaram et al. [11] used MD to calculate the stress induced by Ar
+
 

ions with energy of 700 eV over a cubic region with an edge length of 5.43 nm.  For the same monolayer 
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ion fluence, their calculations predict that the average stress saturates at approximately -1.6 GPa. The 

depth that they averaged over is approximately the same as the thickness of the implanted region that we 

used.  Note that MD simulations only model short time periods so that they also do not include viscous 

relaxation effects.  Finally, the value of α predicts the amount of fluidity for each flow defect to have an 

average value of 2.39 x 10
-30

 
 
cm

3
/Pa-s .   The value of this parameter could not be obtained from previous 

studies of stress relaxation. 

The reasonable agreement with the data suggests that the model can adequately explain stress 

evolution in Si during ion bombardment in terms of relaxation by ion-induced flow defects.  However, as 

noted earlier, the relaxation kinetics change when the beam is turned off. In addition, if the ion beam is 

turned on again after the stress has relaxed, the stress may initially become less compressive before going 

back to its steady-state value [20] - similar effects have been seen in the high energy regime [4].   Both 

these observations suggest that there may be other relaxation mechanisms that have not been included in 

our model (e.g., structural relaxation) that require further study. 

 

V. CONCLUSION 

 

In summary, we have investigated in situ stress evolution in Si (001) during and after low energy 

ion bombardment.  The dependence of the steady-state stress on flux requires relaxation mechanisms 

beyond the radiation-induced fluidity used to explain measurements at higher energies.  We have 

therefore developed a model that includes relaxation by ion-induced flow defects and that produces a 

value for the amount of fluidity per flow defect.   In the future, more extensive MD simulations of viscous 

relaxation that include defect recombination may be able to demonstrate these relaxation processes and 

others not included in our model. 
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TABLE AND FIGURE CAPTIONS 

Table 1. Model parameters obtained from fitting the steady-state stress and stress relaxation data and from 

SRIM calculations. 

Fig 1. Stress evolution during ion irradiation (in the region labeled beam on, 3.0 x 10
14

 ions/cm
2
 s, 900 eV) 

and after beam is turned off. Negative stress values are compressive. The inset shows an expanded view 

of the stress plateau that is attributed to amorphization of the surface. 

Fig. 2. Steady-state stress vs flux for ion bombardment with energies of 600 eV and 900 eV. Lines are 

results of model calculations described in text. 

 Fig. 3.  a) Model calculation of defect concentration in steady-state (beam on) and during relaxation 

(beam off). b) Model calculation of corresponding stress (smooth red line) from defect concentration. The 

model parameters were chosen to fit the data in figure 1 (shown as the black line for comparison).   
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Tables and figures 

 

 

 

Table 1.  Model parameters obtained from fitting the steady-state stress and stress 

relaxation data and from SRIM calculations. 

Energy 

β  
(x 10-3 

GPa2(s-cm)1/2) 

Σo 

(x10-15  

GPa-cm2) 

D2 

(x 10-18 

cm3/s) 

α 

(x 10--30 

cm
3
/Pa-s). 

d 

(nm) 
Y 

C0 

vacancies/ion 

600 eV -9.52 
-8.64  ± 

10.7 

10.2 ± 

1.20 

2.40 ± 

2.37 
5 0.412 18.4 

900 eV 
-8.08 

 

-7.27 ± 

2.51 

6.89 ± 

7.23 

2.38 ± 

2.12 
6 0.547 

27.0 
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Figure 1 
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Figure 3 
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Fig 1. Stress evolution during ion irradiation (in the region labeled beam on, 3.0 x 1014 ions/cm2 s, 900 eV) 
and after beam is turned off. Negative stress values are compressive. The inset shows an expanded view of 

the stress plateau that is attributed to amorphization of the surface.  
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Steady-state stress vs flux for ion bombardment with energies of 600 eV and 900 eV. Lines are results of 
model calculations described in text.  
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Model calculation of defect concentration in steady-state (beam on) and during relaxation (beam off).  
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Model calculation of corresponding stress (smooth red line) from defect concentration. The model 
parameters were chosen to fit the data in figure 1 (shown as the black line for comparison).    
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