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OPEN

ARTICLE

The PRC2-associated factor C17orf96 is a novel CpG island
regulator in mouse ES cells

Robert Liefke1,2, Yang Shi1,2

1Division of Newborn Medicine and Program in Epigenetics, Department of Medicine, Boston Children’s Hospital, Boston, MA,
USA; 2Department of Cell Biology, Harvard Medical School, Boston, MA, USA

CpG islands (CGIs) are key DNA regulatory elements in the vertebrate genome and are often found at gene promoters. In
mammalian embryonic stem (ES) cells, CGIs are decorated by either the active or repressive histone marks, H3K4me3 and
H3K27me3, respectively, or by both modifications (‘bivalent domains’), but their precise regulation is incompletely understood.
Remarkably, we find that the polycomb repressive complex 2 (PRC2)-associated protein C17orf96 (a.k.a. esPRC2p48 and
E130012A19Rik) is present at most CGIs in mouse ES cells. At PRC2-rich CGIs, loss of C17orf96 results in an increased
chromatin binding of Suz12 and elevated H3K27me3 levels concomitant with gene repression. In contrast, at PRC2-poor CGIs,
located at actively transcribed genes, C17orf96 colocalizes with RNA polymerase II and its depletion leads to a focusing of
H3K4me3 in the core of CGIs. Our findings thus identify C17orf96 as a novel context-dependent CGI regulator.
Keywords: Chromatin; ES cells; Histone Modifications; PRC2; CpG Islands
Cell Discovery (2015) 1, 15008; doi:10.1038/celldisc.2015.8; published online 28 April 2015

Introduction

A large proportion of mammalian promoters are
characterized by a cluster of CpG dinucleotides, com-
monly known as CpG islands (CGIs). Work in the past
decades has revealed that CGIs have fundamental roles
in gene regulation, and their misregulation is associated
with cancer [1]. Most CpG dinucleotides in the genome
are cytosine-5 methylated, but at CGIs, CpGs sites
typically remain unmethylated, but acquire methyla-
tion during disease processes such as cancer, resulting
in gene silencing [1–3]. Proteins that specifically
recognize either methylated or unmethylated CpG
have been identified to participate in the regulation
of CGI activities. For example, Cfp1 and Kdm2b
recognize unmethylated CGIs and are involved in the
establishment of the active histone H3 lysine 4
trimethylation mark (H3K4me3) [4] or H2A ubiquiti-
nation [5], respectively, while MBP proteins bind to
methylated CpGs [6, 7]. In mammalian embryonic
stem (ES) cells, the polycomb repressive complex 2

(PRC2) is typically found at CGIs, but the underlying
link between CGIs and PRC2 remains elusive. It has
been proposed that potentially an unknown factor or
H2A ubiquitination has a role in the recruitment of
PRC2 to CGIs [3, 5, 8, 9]. Further, it has been
demonstrated that PRC2 is recruited to artificially
introduced CGIs in the genome, but not when those
CGIs are associated with transcription [10, 11], sug-
gesting that active transcription prevents PRC2
recruitment. Consistently, inhibition of transcription is
sufficient to rapidly increase the PRC2 occupancy at
CGIs and for de novo recruitment of PRC2 to CGI sites
[12], but the underlying mechanism is unclear.

Recent biochemical purifications of PRC2 followed
by mass spectrometry analysis identified novel inter-
action partners of PRC2 (our unpublished data,
and Zhang et al. [13], Smits et al. [14] and Hunkapiller
et al. [15]). One of these factors, C17orf96 (a.k.a.
esPRC2p48 and E130012A19Rik), has been found to
be a main interacting partner of the mammalian PRC2
(our unpublished data and Smits et al. [14]). C17orf96
has evolved in mammals and is highly expressed in ES
cells, brain and during embryogenesis (Supplementary
Figure S1) [16–18], and has been described to be a
downstream target of the pluripotency factor Klf5 [19].
C17orf96 has been suggested to have a critical role
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during somatic cell reprogramming and neuronal dif-
ferentiation processes [13, 16], but its mechanism of
action remains elusive. In contrast to other PRC2
interaction partners, C17orf96 is intrinsically unstruc-
tured and it does not possess any domain or structure
of known function [20].

Here, we demonstrate that C17orf96 is localized gen-
omewide at CGIs inmouse ES (mES) cells, irrespective of
their transcriptional status. At PRC2-rich CGIs, C17orf96
negatively regulates PRC2 and H3K27me3 levels. At
PRC2-poor CGIs, C17orf96 depletion leads to a redis-
tribution of H3K4me3. These findings identify C17orf96
as a novel CGI-associated protein, which modulates his-
tone modifications at CGIs through regulating histone
modifying enzyme complexes such as PRC2.

Results

PRC2-rich and PRC2-poor CGIs are equally bound by
C17orf96 in mES cells

Previously, while purifying PHF19, we identified
C17orf96 as a major interacting component, which co-
migrates with the PRC2 complex in glycerol gradient
fractionation experiments. Importantly, our bio-
chemical purification of C17orf96 also led to the co-
purification of the entire PRC2 complex (data not
shown), implicating C17orf96 as a component of the
PRC2 complex, which is consistent with the published
findings reported recently [13–15, 21]. To investigate
the molecular function of C17orf96 in mES cells,
we determined the genomic locations of both the
endogenous (Supplementary Figure S2) as well
as an N-terminal Flag-tagged, overexpressed C17orf96
by chromatin immunoprecipitation followed by
sequencing (ChIP-seq). We found a significant over-
lap between the two data sets (Supplementary Figure
S3A), that is, both antibodies identified a total of 8411
overlapping peaks (Figure 1a), which we consider as

high confidence sites. These sites are strongly enriched
at promoter regions, but depleted from intergenic
regions (Figure 1b). Interestingly, C17orf96 peaks only
partially overlap with regions bound by the PRC2 core
member Suz12. Instead, they strongly overlap with
CGIs, independent of whether they are decorated by
repressive or active histone marks. (Figures 1c and d).
Notably, one of the strongest peaks of the endogenous
C17orf96 can be found at a large CGI at its own gene
(E130012A19Rik; Supplementary Figure S3B).

To determine the relationship between C17orf96,
PRC2 and CGIs in more depth, we bioinformatically
defined two categories of CGIs: CGIs that are rich in
PRC2 (n =2917) and CGIs that are weakly bound by
PRC2 (n =13 064). Remarkably, while all other PRC2
components are only strongly enriched at PRC2-rich
CGIs, C17orf96, although an interacting protein of
PRC2 [13, 14, 21], is almost equally distributed between
these two groups (Figures 1e and f). In line with this
observation, at CGIs, C17orf96 correlates better with the
active histone mark H3K4me3 than with PRC2 and
H3K27me3 (Figure 1g). Further analysis showed that
C17orf96 binds to locations that are depleted for
nucleosomes and are sensitive to DNase I digestion,
suggesting that C17orf96 preferentially binds to
nucleosome-free regions at CGIs (Figure 1h). To confirm
the ChIP-seq results, we performed ChIP experiments
followed by quantitative PCR at several CGI-containing
genes. Consistently, we found C17orf96, as well as Suz12,
H3K27me3 and H3K4me3, more strongly enriched at
locations with CGIs than at nearby locations without
CGI (Supplementary Figure S4). In sum, our ChIP-seq
results inmES cells revealed an unanticipated localization
of C17orf96 not only at CGIs occupied by PRC2 but also
at CGIs that are associated with actively transcribed
genes. This finding supports a potentially global role of
C17orf96 at CGIs, as well as a function of C17orf96 that
is independent of PRC2.

Figure 1 C17orf96 is present at PRC2-rich and PRC2-poor CGIs. (a) Overlap of significant peaks (MACS, Po10− 5) of ChIP-seq
experiments performed in mES cells against Flag-mC17orf96 (using M2 beads) or the endogenous protein using a home-made antibody
(Supplementary Figure S2). Overlapping peaks are considered has high-confident C17orf96-bound location. (b) C17orf96 is enriched at
promoter regions, but depleted from intergenic regions. (c) C17orf96 peaks overlaps strongly with CGIs, but less with the PRC2 core
component Suz12. (d) Example UCSC genome browser view, demonstrating that C17orf96-bound CGIs can be occupied by the
repressive H3K27me3 [40] and active H3K4me3 histone marks. (F-C17orf96 =Flag-C17orf96). (e) CGIs were categorized into PRC2-
rich and PRC2-poor CGIs, based on the Suz12 data set [41]. Heatmaps of known PRC2 members [33,42–44] at CGIs show a
predominant presence at PRC2-rich CGIs, which correlates with presence of H3K27me3 [40] and reduced level of H3K4me3. C17orf96
is almost equally distributed between both groups. (f) Based on the average profiles that ratio of the factors between PRC2-rich /PRC2-
poor CGIs has been calculated. The Flag-tagged C17orf96 protein is more dominantly bound at PRC2-rich CGIs than the endogenous
protein. (g) Calculation of correlation coefficients between endogenous C17orf96, PRC2 members, H3K27me3 and H3K4me3 at CGIs
demonstrates that C17orf96 correlates strongest with H3K4me3. (h) C17orf96 occupied locations are depleted for nucleosomes [45] and
possess enhanced DNase I hypersensitivity [46].
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C17orf96 depletion elevates H3K27me3 at PRC2-rich
CGIs

To further elucidate the role of C17orf96 at CGIs,
we created stable mES cells lines expressing either a
C17orf96 short hairpin RNA (shRNA; shRNA #2,
‘knockdown’) or a scrambled shRNA (‘control’),
respectively. As expected, upon knockdown of
C17orf96 expression, ChIP-seq revealed ~ 50% average
reduction in occupancy at CGIs (Figures 2a and b, and
Supplementary Figure S5A). However, a small portion
of C17orf96 peaks at highly expressed genes with low
nucleosome and high RNA polymerase II occupancy
remained relatively constant (Supplementary Figures
S5B and C), possibly because a fraction of C17orf96
remained bound to chromatin even in the presence of
C17orf96 shRNA (Supplementary Figure S5D).
Importantly, upon C17orf96 knockdown, H3K27me3
was increased at CGIs that are occupied by PRC2, but
showed no overt changes at PRC2-poor CGIs (Figures
2a and b). These results suggest that reduction of
C17orf96 enhances the action of PRC2 at PRC2-rich
CGIs, which leads to an increased deposition of
H3K27me3. To confirm, we performed additional
ChIP experiments in stable mES cells where C17orf96
was knocked down by two independent shRNAs
(shRNA #1 and 2) or cells overexpressing an untagged
mouse C17orf96 (‘overexpression’; Figure 2c and
Supplementary Figure S2). Consistent with our ChIP-
seq results, knockdown of C17orf96 leads to an
increase of H3K27me3 as well as an increase of Suz12,
a core component of PRC2. In contrast, over-
expression of C17orf96 results in a reduction of Suz12,
but interestingly no significant change of H3K27me3
(Figure 2d). Given that the overall protein level of
Suz12 was unaltered in response to C17orf96 knock-
down (Figure 2c), these results suggest that C17orf96
might interfere with the binding of PRC2 to chromatin.
Consistently, biochemical fractionation experiments
showed that the level of chromatin-bound Suz12
exhibits a negative correlation with the level of
C17orf96 (Figure 2e). Published microarray data [16]
demonstrated that knockdown of C17orf96 has only
mild effects on gene expression, which is consistent
with the observation that removal of PRC2 has only
subtle impacts on the transcriptional program in ES
cells [12]. However, upon performing gene set enrich-
ment analysis [22] we found that genes that possess a
PRC2-rich CGI are significantly more often down-
regulated in the C17orf96 knockdown cells (n = 1368,
normalized enrichment score: − 1.77, P-value = 0;
Figure 2f), compared with genes with a PRC2-poor
CGI (n = 7553, normalized enrichment score: − 0.85,

P-value = 0.99) or genes with no CGI (n = 5235, nor-
malized enrichment score: 1.51, P-value = 0).

To gain insight into the potential mechanism by
which C17orf96 interferes with PRC2 function, we
mapped the interaction of C17orf96 with PRC2. Via
semi-endogenous co-immunoprecipitation, we identi-
fied the C-terminal region of C17orf96 as being
necessary and sufficient for the interaction with PRC2
in vivo (Figures 3a–c), and found that this region
associates with the VEFS-box of the PRC2 core
member SUZ12 in vitro (Figures 3d and e), suggesting
that C17orf96 may directly affect PRC2 chromatin
binding by altering the functionality of Suz12 [23–25].
Notably, the C-terminal region has evolved in early
vertebrates and is also present in the paralog SKIDA1
(C10orf140; Figure 3f), another novel PRC2-
interacting protein [14], supporting that proteins pos-
sessing this sequence are PRC2 regulators in the entire
vertebrate branch.

Taken together, these results suggest that C17orf96
inhibits PRC2 chromatin binding at PRC2-rich CGIs
as evidenced by the observation that C17orf96
knockdown results in an elevated Suz12 occupancy,
increased H3K27me3 levels and significantly, albeit
moderately, reduced transcription of PRC2 target
genes.

C17orf96 depletion redistributes the H3K4me3 signal at
PRC2-poor CGIs

Next, we investigated the impact of C17orf96
knockdown on the active histone mark H3K4me3
(Figure 4). Surprisingly, our data revealed a major
redistribution of the H3K4me3 mark upon C17orf96
knockdown, that is, an increase of H3K4me3 in the
core of CGIs but a reduction outside of CGIs (Figures
4a and b). This change of H3K4me3 is mainly found at
genes with PRC2-poor CGIs and is most apparent
downstream of the transcription start site, where RNA
polymerase II and C17orf96 show colocalization, sug-
gesting a potential link to the transcription machinery
(Figures 4a–d). Remarkably, an opposite phenomenon
has been described for the knockdown of the histone
H3K4me3 demethylase Kdm5b [26], a homolog of the
trithorax group protein Lid (little imaginal disc) [27]. A
comparison of the H3K4me3 changes after C17orf96
and Kdm5b knockdown, respectively, shows that
C17orf96 and Kdm5b influences H3K4me3 in mES
cells in an opposite manner (Figures 4e and f). This
suggests that Kdm5b and C17orf96 may interfere with
the same pathway that regulates H3K4me3 installation
and/or spreading. Furthermore, the effect of knock-
down of either Kdm5b or C17orf96 is most evident at
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the recently described, broad H3K4me3 domains [28],
such as the Tet1 gene locus (Figure 4e, gray box). These
domains are occupied by C17orf96 (Supplementary
Figure S6) and have been proposed to have a critical
role to maintain transcriptional consistency of genes
that define the cellular identity [28], suggesting that
C17orf96 may be relevant to establishing the cellular

identity during embryogenesis. Interestingly, the
redistribution of H3K4me3 does not appear to have a
major impact on gene expression of the associated
genes (see above), which is in agreement with the pre-
vious observations that changes in H3K4me3 have low
impact on transcription [29]. Taken together, these
data further support that C17orf96 has a PRC2-
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Figure 2 C17orf96 depletion affects Suz12 chromatin binding and H3K27me3 deposition. (a) Heatmap at CGIs (as in Figure 1e)
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reduced expression of those genes.
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independent role at CGIs, which affects the distribu-
tion of H3K4me3, directly or indirectly.

Discussion

In the mammalian genome, ~ 50% of all promoters
possess a CGI. Work in the past has lead to the dis-
covery of several CGI-binding proteins, including
Cfp1, Kdm2a/b, Tet1/3, Kmt2a/b and the MBD pro-
teins, which are critical for the function of CGIs and for

gene regulation. All those proteins are characterized by
a CXXC zinc finger or an MBD domain that specifi-
cally recognizes either unmethylated or methylated
CpGs, and most of them have a preference for CGIs
that are either decorated with repressive or active
marks [6, 7]. Importantly, this study discovers that
C17orf96 associates with CGIs without a strong bias,
suggesting that it is a general regulator of CGIs in mES
cells (Figure 1). This idea is supported by published
ChIP-seq data of N- and C-terminal tagged C17orf96
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in human 293T cells [21], showing that also in differ-
entiated cells many C17orf96 peaks overlap with CGIs
(Supplementary Figure S7). In mES cells, C17orf96
differentially regulates histone modifications at CGIs
that are linked to active or repressed transcription. Our
findings thus identified a novel CGI regulator, which
may function to fine-tune the chromatin state at CGI
sites in mammalian ES cells.

C17orf96 does not contain a classical CpG-binding
domain, suggesting that other yet-to-be-identified
mechanisms are responsible for its recruitment to
CGIs. Of note, in a nucleosomal pulldown experiment
C17orf96 has been found to be associated with unme-
thylated but not with DNA methylated nucleosomes,
suggesting that DNA methylation may be of relevance
for C17orf96 recruitment to CGIs [30]. As C17orf96 is
an intrinsically unstructured protein (Figure 3a) [20],
insights into how C17orf96 is recruited to CGIs will
possibly reveal novel mechanisms important for
understanding CGI functions. Although C17orf96 was
initially identified as a PRC2-interacting protein, our
work revealed both a PRC2-associated and PRC2-
independent role of C17orf96 (Figure 5). At CGIs
where there is virtually no PRC2, loss of C17or96
causes redistribution of H3K4me3 (Figure 4). Given
that C17orf96 colocalizes with RNA polymerase II
(Figures 4c and d, and Supplementary Figures S5B
and C), the function of C17orf96 at those CGIs could
conceivably be linked to transcriptional activity
(Figure 5a). Notably, the PRC2 subunits Ezh1, Ezh2

and Suz12 have also been demonstrated to colocalize
with RNA polymerase II and H3K4me3 [31–33],
supporting a complex interplay between PRC2
components and the transcription machinery at
active genes.

At the PRC2-rich CGIs, C17orf96 modulates the
amplitude of gene transcription by interfering with
H3K27 trimethylation as depletion of C17orf96 not
only causes an increase in H3K27me3 level but also an
elevated recruitment of PRC2 (Figures 2 and 5b). Our
biochemical results suggest that C17orf96 directly
interacts with Suz12, a core subunit of the PRC2
complex (Figures 3d and e), which is important for
chromatin binding of PRC2 [23–25]. Further investi-
gation of the interplay between C17orf96 and PRC2
will provide additional insights into the role of
C17orf96 regarding PRC2.

In ES cells, many CGIs that are occupied by PRC2
and decorated by H3K27me3 also possess low level
of H3K4me3 and form so-called bivalent domains,
proposed to represent a poised transcriptional state
[34, 35]. During differentiation, this poised state is
resolved and the corresponding genes either become
transcriptionally active or repressed [35]. Given that
our study identified a role for C17orf96 in influencing
the active H3K4me3 and the repressive H3K27me3
mark, it will be of interest to investigate in the future
whether or not C17orf96 has a role to resolve bivalent
domains upon differentiation and the underlying the
molecular mechanism.
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depletion leads to a focusing of H3K4me3 at the core of CGIs. At those CGIs, C17orf96 also colocalizes with RNA polymerase II
suggesting a potential link to the transcription machinery. (b) At CGIs that are occupied by PRC2 (PRC2-rich), C17orf96
negatively affects the binding of PRC2 to chromatin. Consequently, upon knockdown of C17orf96, PRC2 recruitment and
H3K27me3 deposition are enhanced.

C17orf96—a novel CpG island regulator

8

Cell Discovery | www.nature.com/celldisc



In summary, we have identified C17orf96 as a
putative, novel CGI regulatory protein in mES cells
whose roles appear to modulate histone modification
patterns at CGIs through influencing the functions of
chromatin modifying machineries such as PRC2.

Materials and Methods

Plasmids
The ORF for mouse C17orf96 (E130012A19Rik) was cloned

via PCR from mES cell cDNA. The ORF from human
C17orf96 were synthesized from GeneScript. The ORF for
human PHF19, RBBP4, RBBP7, EZH1 and EZH2 were cloned
via PCR using cDNA from HeLa-S cells. The SUZ12 construct
was a kind gift from Danny Reinbergs laboratory. Lentiviral
shRNA constructs for mouse C17orf96 were created by cloning
hairpins (shRNA #1: 5ʹ-GGAGCATCGATTCTGAAATTT-3ʹ
and shRNA #2: 5ʹ-ATGATGGAAGATGGAATAAAT-3ʹ)
into the pLKO.1 vector. SHC202 (Sigma-Aldrich, St Louis,
MO, USA) was used as shRNA control. Quantitative PCR
primers for mouse C17orf96 are presented in Supplementary
Table S3.

Antibodies
The antibody against mouse C17orf96 was generated by

immunizing rabbits (Covance, Princeton, NJ, USA)
with a peptide corresponding to the N terminus of mouse
C17orf96 (LKPRRGTPEFSPLC). Sera were obtained and the
antibodies were positively selected using a purified GST-
PLKPRRGTPEFSPLCL fusion protein and negatively selec-
ted using bacterial crude cell extract, each coupled to CNBr-
activated Sepharose beads. Other used antibodies were Suz12
(Cell Signaling, no. D39F6 (ChIP); Santa Cruz, Dallas, TX,
USA, sc-46264/sc-271325 (Western)), p300 (Santa Cruz, sc-585),
Tubulin (Sigma-Aldrich, T9026), actin (Abcam, Cambridge,
MA, USA, ab3280), histone H3 (Abcam, ab1791), H3K27me3
(EMD Millipore, Billerica, MA, USA, no. 07-449), H3K4me3
(EMDMillipore, no. 04-745), FlagM2 (Sigma-Aldrich, F1804),
Flag M2 beads (Sigma-Aldrich, A2220) and HA.11 (MMS-
-101P, Covance).

ChIP and ChIP-seq
ChIP experiments were performed via crosslinking ChIP as

described [36]. Flag ChIP was performed using Flag M2 beads
from Sigma. ChIP-seq libraries were constructed of 10 ng of
ChIP DNA following Illumina’s protocol and sequenced using
an Illumina Genome Analyzer (Ilumina, San Diego, CA, USA).
ChIP DNA were quantified using gene-specific primers
(Supplementary Table S2) with the LightCycler 480 II (Roche,
Basel, Switzerland).

Bioinformatics analysis
Own and public ChIP-seq data (Supplementary Table S1)

were mapped to mouse genome mm9 or human hg19 using
bowtie version 1.0 [37], allowing one mismatch (n = 1) and
maximal three possible alignments (m = 3). All subsequent
analyses of ChIP-seq data were performed using the Cistrome

pipeline [36, 38]. PRC2-rich and PRC2-poor CGIs were defined
using the k-means clustering function of the heatmap tool in
Cistrome. For heatmaps, wiggles obtained from Model-based
Analysis for ChIP-Seq (MACS) (standard settings) were used.
The subtraction wiggles (Figures 2 and 4) were obtained using a
custom workflow in Cistrome. For normalization, the data set
with more ChIP-seq tags were downsized to the smaller data set
before MACS. For promoter definition, RefSeq genes were
downloaded from the UCSC Table Browser. After removal of
duplicates with identical transcription start site, 26 840 pro-
moters, including genes with alternative transcription start sites,
were used for analysis. CGIs were downloaded from the UCSC
Table Browser. For the correlation analysis, ChIP-seq tags were
counted at each individual CGI using a custom R script for
Bioconductor [39]. Peaks for C17orf96, RNA polymerase II and
Suz12 were called via MACS with a cutoff P-value of 1e− 05.
Microarrays [16] were normalized via Robust Multi-array
Average (RMA) using Bioconductor. Gene set enrichment
analysis [22] were performed with standard settings.

Cell culture
E14 mES cells (ES-E14TG2a) were cultured in dulbecco’s

modified eagle medium (DMEM), 15% fetal calf serum (FCS),
1× L-glutamine (Gibco, Life Technologies, Grand Island, NY,
USA), 1× non-essential amino acids (Gibco), 1 × sodium pyr-
uvate, 1 × penicillin/streptavidin (Gibco), 0.15% β-mercap-
toethanol and leukemia inhibitory factor (LIF) (EMD
Millipore, no. ESG1107) on gelatin-coated plates. Stable cell
lines were created via infection with lentiviral vectors harboring
the appropriate construct and selected via puromycine
(1 μg ml− 1). HeLa-S and 293T cells were cultured with DMEM,
10% FCS and 1×penicillin/streptavidin (Gibco).

Cellular fractionation
Cellular fractionation was perfomed using ‘Subcellular

Protein Fractionation Kit for Cultured Cells’ (Pierce, no. 78840)
according to manufacturer’s instructions, followed by western
blotting.

Co-immunoprecipitation
Stable HeLa-S cells expressing Flag-HA-tagged pieces of

human C17orf96 were obtained via lentiviral infection and
puromycine selection. Whole-cell extracts were made using
CHAPS buffer (Tris 50 mM, pH 7.8, 350 mM NaCl, 1 mM

dithiothreitol (DTT) and 10mM CHAPS). For immunopreci-
pitation, samples were incubated with anti-Flag M2 beads
(Sigma-Aldrich) for 3 h at 4 °C. After washing the beads with
CHAPS buffer, the precipitated proteins were visualized by
western blotting.

Co-expression-coupled GST pulldown
BL21 Gold cells were transfected with two constructs, a bait

construct expressing a glutathion-S-transferase (GST) fusion
protein of the C-terminal region (aminoacids 285–379) of
C17orf96 or GST only and a prey construct expressing a His-
Flag-tagged protein from a PRC2 member or from a SUZ12
fragment. The cells were selected with Kanamycin and Ampi-
cillin. The proteins were co-expressed at 16 °C and 100mM

Robert Liefke and Yang Shi

9

Cell Discovery | www.nature.com/celldisc



Isopropyl-β-D-thiogalactopyranosid (IPTG) and after cell lysis
the GST fusion protein was coupled to glutathione beads for 2 h.
After three times washing using CHAPS buffer (see above), the
binding of the His-Flag-tagged protein was visualized by wes-
tern blotting using a Flag antibody.

Immunofluorescence
mES cells were plated on gelatin-treated coverslips for 1 day.

Cells were fixed with 3.2% paraformaldehyde for 10min,
washed with wash buffer (1 × PBS containing 0.5% NP-40),
then incubated with blocking buffer (wash buffer with 10% fetal
bovine serum), and stained with rabbit mC17orf96 antibody for
2 h diluted in blocking buffer. Secondary antibody (goat anti-
rabbit Alexa Fluor 594) was obtained from EMD Millipore.

Statistical analyses
The significance of the data was either calculated by

Cistrome, the gene set enrichment analysis software or via
unpaired Student’s t-tests.

Data deposition
ChIP-seq data are available under the GEO accession

number GSE63491.
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