
Widening Integer Arithmetic

Citation
Redwine, Kevin and Norman Ramsey. 2004. Widening Integer Arithmetic. Harvard Computer 
Science Group Technical Report TR-01-04.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017123

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017123
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Widening%20Integer%20Arithmetic&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=121c872248010da594b4e788027e23f4&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


Widening integer arithmetic

Kevin Redwine

and
Norman Ramsey

TR-01-04

Computer Science Group

Harvard University
Cambridge, Massachusetts



Widening Integer Arithmetic

Kevin Redwine and Norman Ramsey

Abstract

Some codes require computations to use fewer bits of
precision than are normal for the target machine. For
example, Java requires 32-bit arithmetic even on a 64-
bit target. To run narrow codes on a wide target ma-
chine, we present a widening transformation. Almost
every narrow operation can be widened by sign- or zero-
extending the operands and using a target-machine
instruction at its natural width. But extensions can
sometimes be avoided, and our transformation avoids
as many as possible. The key idea is knowing what
each operation can accept in the high bits of its argu-
ments and what it can guarantee about the high bits of
its result. This knowledge is formalized using fill types,
which drive the widening transformation.

1 Introduction

Machines can perform arithmetic

original target

x ↪→ ? x

+32 +64

y ↪→ ? y

q q
v︸︷︷︸
32

? v︸ ︷︷ ︸
64

Figure 1:
Widening 32-bit
addition: x +32 y

and logical operations only on val-
ues of a particular width, often
32 or 64 bits. A compiler that
knows the width of its target ma-
chine can generate code contain-
ing only operations of the correct
width. But sometimes a differ-
ent width is required by the source
code. For example, Java requires
32-bit operations, but a compiler
for IA-64 must generate 64-bit op-
erations. Or if the source is bi-
nary code, as in a binary transla-
tor, then the width of operations is

determined by the source machine. In general, if the
source code requires widths not available on the target
machine, a translator must change the widths without
changing the meaning of the program. For example,
a translated program might simulate 32-bit operations
using 64-bit hardware. We call the relevant translation
widening.

Take, for example, a program that adds two 32-bit
values and produces a 32-bit result. A simple way to
simulate 32-bit addition on a 64-bit machine is to widen
the operand values to 64 bits and perform a 64-bit ad-
dition. The result of the original 32-bit addition is in
the least significant, or low, 32 bits of the 64-bit result.
This example is illustrated in Fig. 1. The heart of the
widening problem is to determine how to fill in the high
bits, which are shown as question marks in Fig. 1.

A simple solution is to explicitly sign extend (or zero
extend) every variable and every intermediate result,
ensuring that the wide and narrow representations have
exactly the same denotation as a two’s-complement (re-
spectively unsigned) integer. But for many expressions,
this would be overkill; for example, in the addition
above, the correct value v appears in the low 32 bits of
the result regardless of what is in the high bits of the
operands. A good solution, therefore, minimizes the
number of explicit sign extensions or zero extensions
in the widened expression. This paper presents such a
solution, which is based on the following contributions:
• To express the set of operations that can be im-

plemented on a particular target machine, we use
bitwidth types borrowed from λ-RTL (Ramsey and
Davidson, 1998).

• To express mathematical truths about how different
operations use and produce high bits, we present fill
types. An operator has a fill type only if it is widen-
able, i.e., if applying the operator to wide values can
simulate the same operator applied to narrow val-
ues. In this case, the operator’s fill type formalizes
what it requires in the high bits of its arguments
and what it guarantees about the high bits of its
result.

• To widen an expression while minimizing the num-
ber of explicit extensions, we present a translation
expressed as a set of inference rules. The rules spec-
ify a translation of an input expression, which op-
erates on narrow values, into an output expression,
which operates on values that are supported by the

1



target machine. Each rule is assigned a cost; a trans-
lation with minimal cost is computed by dynamic
programming.

2 Machine-level computation at
multiple widths

Our semantic model, which is based on the machine-
description language λ-RTL (Ramsey and Davidson,
1998), is that a machine operates on bit vectors. It
takes bit vectors from memory, registers, or immediate
fields; it applies low-level operators to compute new bit
vectors; and finally it stores the results in registers or
memory. Bit vectors are untyped; type distinctions,
such as the distinction between signed and unsigned
integers, are entirely in the operators.

In λ-RTL, most operators are polymorphic in width.
For example, xor accepts two n-bit values and produces
an n-bit result, for any n. Polymorphism is essential
for a metalanguage that must describe machines not
yet built, but for widening, we need to reason only
about particular instances of polymorphic operators:
those that appear in the source code or that can be
used on a particular target machine. Even one target
machine may support multiple instances of an operator;
for example, the Pentium provides three instances of
integer addition, which operate on 8-bit, 16-bit, and
32-bit values.

As in λ-RTL, the type of an operator is determined
by the width (number of bits) of its arguments and
result. These widths can be used to classify operators.

• A typical operator takes two n-bit arguments and
produces a result of the same width, or possibly a
Boolean result, which in this paper we represent as
a result of width 1.1 We call such an operator an
ordinary value operator.

• A less typical operator might produce take n-bit ar-
guments and produce a result of a different width;
for example, multiplying two n-bit arguments may
produce a 2n-bit result. Such an operator may
change widths, but its primary purpose is to com-
pute values, so we call it an unusual value operator.

• Three operators—sign extension, zero extension,
and truncation—exist only to change widths. We
call them width-changing operators.

The width-changing operators play a central role in
widening. To make a narrow value wider, we can sign
extend or zero extend.

1Full λ-RTL includes a Boolean type, but in this paper we
simplify by representing a Boolean value as a bit vector of
width 1.

sign extend sxw←n v fills the (w−n) high bits of the
result with copies of v’s high (sign) bit. The sub-
script w←n is pronounced “w from n.”

v′ = sx8←4 v
v3 v2 v1 v0 = v

v3 v3 v3 v3 v3 v2 v1 v0 = v′

zero extend zxw←n v fills the (w−n) high bits of the
result with zeroes.

v′ = zx8←4 v
v3 v2 v1 v0 = v

0 0 0 0 v3 v2 v1 v0 = v′

Each extension preserves the n least significant bits of
its operand.

To make a wide value narrower, we can only truncate.

truncate lon←w v extracts the n low bits of v. The
high bits are lost.

v′ = lo4←8 v
v7 v6 v5 v4 v3 v2 v1 v0 = v

v3 v2 v1 v0 = v′

Value operators at multiple widths If we are
given a program that uses an operator at a narrow
width n, but the target machine provides that opera-
tor only at a wider width w, what can we do? In almost
all cases we can use the wide version of the operator.
For example, 32-bit add can be implemented by 64-bit
add, and 32-bit xor can be implemented by 64-bit xor,
regardless of what is in the high bits of the operands.
As another example, 32-bit unsigned divide can be im-
plemented by 64-bit unsigned divide, but only if the
high bits of the operands are zero. In general, different
operators put different constraints on the high bits of
their operands, so we have to know what is in those
high bits. When operators are nested, results become
operands, so we also have to know about high bits of re-
sults. For example, if xor is given operands with zeroes
in the high bits, it produces a result with zeroes in the
high bits, and similarly for unsigned divide. But two’s-
complement addition produces a value whose high bits
can’t be relied on: In a typical case, the high bits may
be sign bits, but if the add overflows, the high bits are
garbage.

These properties of operators, operands, and results
are truths of mathematics; they are independent of any
program or machine. We express these truths using a
type system. The type of a value tells us whether its
high bits are filled with sign bits, zeroes, or garbage,
so call the types fill types. The fill type of an operator
tells us what it needs in the high bits of its operands
and what it provides in the high bits of its result.

In translating an expression, we can force an operand
to have the right fill type by inserting an explicit sign

2



or zero extension. But if the operand already has the
right fill type, we can do without an explicit extension.
For example, the following two expressions produce the
same result.

divu(zx64←16(lo16←64(divu(zx64←16 x16, zx64←16 y16))), k64)

divu( divu(zx64←16 x16, zx64←16 y16) , k64)

The second expression avoids a superfluous zero exten-
sion.

Sometimes we can choose where to put an extension.
Both xor and divu preserve zeroes in the high bits, so
these expressions produce the same result.

divu(zx64←32(xor(x32, y32)), k64)
divu( xor(zx64←32 x32, zx64←32 y32), k64)

Finally, many operators can be used at more than
one fill type. If we choose fill types cleverly, we can
avoid some extensions entirely. For example, in the
somewhat fanciful expression

popcnt(and(neg(x32),divu(y32, k32))),

popcnt counts the number of one bits in the value of a
complex expression. To zero-extend each intermediate
result would be valid but näıve. The constant k can
be extended statically, so we need to extend at most
variables x and y.

These examples show that different choices lead to
different numbers of extensions in widened code. The
number of extensions is the cost of widening, and we
want to minimize it. Cost could equally well be mea-
sured by the number of CPU cycles estimated for each
operator or even by the number of bits in a typical
machine instruction; we aren’t limited to counting op-
erations. Whatever the cost, our implementation min-
imizes it by dynamic programming (Sec. 7)

Which operators can be widened? Building on
earlier work by Ramsey and Davidson (1998), we have
identified 72 machine-level operators. These operators
suffice to describe the instruction sets of a variety of
machines, so chances are they include the operators one
would find in any low-level intermediate code. Almost
all operators are widenable, which means that a wide
instance can do the job of a narrow instance (a formal
definition appears in Sec. 5). There are 8 exceptions.

• Bit-rotate left and bit-rotate right cannot be
widened. A bit-rotate operator must be translated
into a combination of shift left, shift right, and
bitwise or operators, each of which can be widened
individually.

• The 6 operators that detect overflow of integer addi-
tion, subtraction, multiplication, and division can-
not be widened. Instead, they must be translated
to detect “narrow overflow.” Sec. 9 gives a sample
translation.

• All 31 of the remaining integer-arithmetic, compari-
son, and logical operators can be widened, including
the carry and borrow operators needed to imple-
ment multi-precision arithmetic.

• Of the 72 operators, 33 involve floating-point num-
bers. Floating-point operators can be widened (e.g.,
from 32 bits to 64 bits or from 64 bits to 80 bits), but
the results produced by widened code only approx-
imate the results from the original code, because
intermediate results have more precision than origi-
nally specified. The details are beyond the scope of
this paper.

Widening a program In practice, we widen not just
a single operation but an entire program. A widened
program uses only operators instantiated at widths
that are actually supported by the hardware, but it
has almost the same effect as the original program: In
particular, the low bits of all variables are the same
as in the original program. If the high bits of some
variables are garbage, the widened program may leave
different garbage in those high bits.

3 WL: A language to model
widening

Because widening is a local transformation, widening
a program is equivalent to widening every assignment
in that program. We therefore model widening using
a small language named WL, which has only assign-
ments. An assignment has the form x := e, where the
width of x is fixed by the program text, and operators
in expression e may be nested arbitrarily deeply. Our
translation handles assignments in which integer, log-
ical, and comparison operators are used at any width
up to the width of the target machine.

Fig. 2 shows the syntax of WL. An expression is a
variable, bit-vector literal, sign or zero extension, trun-
cation, or binary-arithmetic operation.

• A variable xn stands for a mutable location that is
n bits wide. On a typical machine, such a location
is in a register or in memory.

• A literal kn is a constant vector of n bits. We
use decimal notation, but it stands for a two’s-
complement representation.

• A bit vector may be interpreted as a natural number
(unsigned integer); we use the denotation function
Un, where Un(v) =

∑n−1
i=0 2ivi.

• Operation sxw←n e sign extends the n-bit expres-
sion e to w bits. Operation zxw←n e similarly zero
extends e. Operation lon←w e extracts the least sig-
nificant n bits of the w-bit expression e. All three

3



Expression e, b ::= xn

| kn

| sxw←n e

| zxw←n e

| lon←w e

| sxlow←n(b, e)
| zxlow←n(b, e)
| ⊕n←n1×n2(e, e)

Assignment a ::= xw :=w e

Metavariable Stands for Domain
e, b expression syntax
k bit vector syntax
v bit vector semantics

n, w natural number semantics
⊕ binary operator both

Metavariables n (narrow) and
w (wide) give the widths of bit
vectors. By convention,
n ≤ n′ ≤ w ≤ w′.

Figure 2: Abstract syntax and metavariable conventions of WL

operations are explained in Sec. 2 above, with di-
agrams. On a typical machine, operations sx and
zx are included in special-purpose load instructions
such as “load signed byte” or “load halfword.”

In these width-changing operations, the left
arrow is pronounced “from;” the right-to-left
notation simplifies our proofs by making it
easier to recognize and apply axioms such as
sxw′←w(sxw←n e) = sxw′←n e.

• Operations sxlo(b, e) and zxlo(b, e) extend the least
significant b bits of expression e; to take an example,
sxlo32←32(332, 732) = −132. These operations can
be thought of as composing extension with trunca-
tion, but they are not equivalent because b, the num-
ber of bits to be extended, may be computed dynam-
ically. On a typical machine, the sxlo and zxlo oper-
ations do not change the widths of their operands,
i.e., the only instances available are sxlow←w and
zxlow←w. Usually sxlo is implemented as left shift
followed by arithmetic right shift, and zxlo is imple-
mented as left shift followed by logical right shift.

When the properties of the target machine are taken
into account, sxlo may be more expressive than a
combination of sx and lo. For example, the SPARC
provides sx32←8, sx32←16, lo8←32 and lo16←32, and
with these operators alone it is not possible to sign
extend the least significant 13 bits of a 32-bit regis-
ter. But the SPARC also provides sxlo32←32, so we
can perform this extension using sxlo32←32(1332, e).

• To state properties that apply equally to both sx
and zx or to sxlo and zxlo, we use the shorthands
σx and σxlo.

• Operation ⊕(e1, e2) applies the binary operator ⊕
to expressions e1 and e2. Operator ⊕ may stand
for add, subtract, multiply, divide, xor, bitwise and,
bitwise or, or other operators—a complete list ap-
pears in Fig. 7.

We limit ourselves to binary operators only to keep
notation simple. Our results apply to operators of
any arity, and Fig. 7 presents our findings on all
operators, not only binary ones.

Operational semantics of WL We give WL a sim-
ple, big-step operational semantics, which is shown in
Fig. 3. Evaluation takes place in an environment ρ,
which binds each variable to a bit vector. Environ-
ment ρ may be thought of as the store of the target
machine. Judgment ρ ` e ⇓ v says that in environ-
ment ρ, evaluating expression e produces bit vector v.
Judgment ρ ` a ⇓ ρ′ says that in environment ρ, evalu-
ating assignment a produces new environment ρ′. The
enviroment ρ{xw 7→ v} is the environment that is like ρ
except that it maps xw to v.

Some of the rules in Fig. 3 include side conditions
in parentheses. These conditions are semantic proper-
ties that must be satisfied to apply the inference rule.
A symbol like σxlo or ⊕ in a side condition is under-
stood to refer to that symbol’s denotation as a math-
ematical function. The same symbol in a premise or
conclusion refers to syntax.

The rules for evaluation are straightforward and de-
terministic. They satisfy the usual inversion lemma, in
which the rule to be applied is completely determined
by the syntax of e. The only slightly interesting point is
that Ev-Extlo requires that vb, which specifies the bit
above which to fill, be no greater than n, the number
of bits in the second argument. Otherwise the opera-
tional semantics gets stuck. It may also get stuck in
such obvious situations as division by zero. Getting
stuck corresponds to a run-time error or fault on the
target machine.

4 Bitwidth types

Every expression in WL evaluates to a bit vector. On
a particular target machine, bit vectors are restricted
to certain widths. The width of the vector computed

4



Ev-Var (ρ(xn) is n bits wide)

xn ∈ dom ρ

ρ ` xn ⇓ ρ(xn)

Ev-Lit

ρ ` kn ⇓ kn

Ev-Lo (n ≤ w, v′ = lon←w v)

ρ ` e ⇓ v

ρ ` lon←w e ⇓ v′

Ev-Extlo (Un(vb) ≤ w ≤ w′, v = σxlow′←w(vb, ve))

ρ ` b ⇓ vb ρ ` e ⇓ ve

ρ ` σxlow′←w(b, e) ⇓ v

Ev-Ext (n ≤ w, v′ = σxw←n v)

ρ ` e ⇓ v

ρ ` σxw←n e ⇓ v′

Ev-Binop (v = ⊕n←n1×n2(v1, v2))

ρ ` e1 ⇓ v1 ρ ` e2 ⇓ v2

ρ ` ⊕n←n1×n2(e1, e2) ⇓ v

Ev-Assign (v is n bits wide)

ρ ` e ⇓ v

ρ ` xn :=n e ⇓ ρ{xn 7→ v}

Figure 3: Operational semantics

by an expression is given by that expression’s bitwidth
type. Our system of bitwidth types, which is a simpli-
fication of λ-RTL’s type system (Ramsey and David-
son, 1998), involves two formal judgments. Judgment
M ` e : w says that in machine environment M , ex-
pression e is well typed with width w. Judgment
M ` xw :=w e says that assignment xw :=w e is well
typed in machine environment M .

The machine environment tells us at what widths
each operator is available on a particular machine. Be-
cause an operator may be available at more than one
type, we represent a machine environment M as a set
of bindings of the form ⊕ : width × width → width.
For example, today’s typical desktop machine might
include these bindings:

add : 32× 32 → 32
lt : 32× 32 → 1.

The rules for bitwidth-type judgments appear in
Fig. 4. As with the operational semantics, there are no
surprises. The type of a variable or literal is manifest,
and the type of an application depends on the type of
the operator and the type of the arguments. There is

Width-Var

M ` xw : w

Width-Lit

M ` kw : w

Width-Ext (n ≤ w)

M ` e : n
σxw←n ∈ M

M ` σxw←n e : w

Width-Extlo (w ≤ w′)

M ` b : w M ` e : w
σxlow′←w ∈ M

M ` σxlow′←w(b, e) : w′

Width-Lo (n ≤ w)

M ` e : w
lon←w ∈ M

M ` lon←w e : n

Width-Binop
M ` e1 : w1 M ` e2 : w2

⊕ : w1 × w2 → w ∈ M

M ` ⊕w←w1×w2(e1, e2) : w

Width-Assign
M ` e : w

M ` xw :=w e

Figure 4: Rules for bitwidth types

one slight annoyance: In a σxlo operation, the expres-
sion b, which gives the number of bits to extend, must
have the same width as the expression e, which gives
the value to be extended. This restriction is imposed
purely to reduce bookkeeping, and it is not represen-
tative of real machines. For example, on the Pentium,
expression e may be 8, 16, or 32 bits, but expression b
is always 8 bits.

The machine environment M contains bindings only
for instances available on a particular machine. We
also define M∞, the complete machine environment,
which contains all possible instances of each polymor-
phic λ-RTL operator. M∞ enables us to type-check an
expression independent of the target machine; it is the
price we pay for eliminating polymorphism from our
formal system. For all target machine environments
M , M ⊂ M∞.

If the bindings in a machine environment tell the
truth about the operators, we call that environment
sound.

Definition M is sound iff whenever

⊕ : w1 × w2 → w ∈ M,

v1 is w1 bits wide, v2 is w2 bits wide, and
⊕w←w1×w2(v1, v2) = v, then value v is w bits
wide.

An environment is well formed if for each operator,
the widths of operands determine the width of the re-
sult. In a well-formed environment every expression
has at most one bitwidth type.

5



Definition M is well formed when, for any opera-
tor ⊕,

⊕ : w1 × w2 → w3 ∈ M∧
⊕ : w1 × w2 → w4 ∈ M

then w3 = w4.

All environments in this paper, including M∞, are
sound and well formed. Theorem 4.1 says that in such
an environment, the bitwidth type of an expression cor-
rectly predicts the width of its result. Proof is by struc-
tural induction.

Theorem 4.1 (Bitwidth Soundness) Whenever
M ` e : w and M is sound, if ρ ` e ⇓ v, then v is
w bits wide.

5 Fill types for high bits

A fill type of an expression tells us about the high bits
of the bit vector it evaluates to. If we know that the
result of evaluating an expression will have sign bits,
zeroes, or garbage in the high bits, we can give that
expression a fill type of s, z, or g. Formally, to say that
all but the least significant n bits of e are copies of the
nth (sign) bit, we write e :: s[n]. If all but the least
significant n bits of e are zero, we write e :: z[n]. If
we know nothing about the high bits of e’s value, we
can write e :: g[n] for any e. These types can be shown
pictorially as follows:

High bits Type nth bit
↓

sign bits s[n] b . . . b b · · ·
zeroes z[n] 0 . . . 0 · · · ·

anything g[n] ? . . . ? · · · ·︸ ︷︷ ︸
w

Each fill type corresponds to a semantic predicate.
Given a bit vector v of width w, fitss[n],w v is true iff the
high w−n bits of v are copies of the sign bit. Similarly,
fitsz[n],w v is true iff the high w − n bits of v are zero.
Finally, fitsg[n],w v is always true. Formally,

Definition

fitss[n],w v iff v = sxw←n(lon←w v)
fitsz[n],w v iff v = zxw←n(lon←w v)
fitsg[n],w v is always true

To abbreviate any fill type, we write τ instead of s,
z, or g. To abbreviate only a non-garbage fill type, we
write σ instead of s or z. The formal rules for fill types
appear in Fig. 5. The formal judgment of the system
is Γ ` e :: τ [n], where Γ is an environment that gives
the fill type of each variable.

g[n+1]

z[n+1]

ooo
s[n+1]

OOO

g[n]

z[n]

oooo
s[n]

OOOO

g[1]

z[1]

oooo
s[1]

OOOO

Figure 6: Lattice of fill types

• A variable has the fill type assigned to it by Γ. We
explain where Γ comes from in Sec. 6.1.

• A constant may have any fill type consistent with
its value.

• An extension may preserve an existing fill type or
establish a new fill type.

• Truncation preserves fill type, provided not too
many bits are truncated.

• Just like σxw←n′ , σxlow←n′ may preserve an ex-
isting fill type or establish a new one. If the first
argument is a literal constant, σxlow←n′ may also
establish a stronger fill type.

• The rule for binary operators is the most complex
and also the most important rule; it is discussed
below.

• The rules below the black bar express subtyping re-
lations on fill types, which are depicted in Fig. 6.
The subtyping relations are a consequence of the fits
predicate defined above. Garbage subsumes other
types since it is always true. The meaning of the
extension operations implies that if fitsσ[n],w then
fitsσ[n+1],w for n < w, which explains the index sub-
types.

Fill types of operators If a binary operator has a
fill type, it takes the form τ1 × τ2 → τ . The fill type is
meaningful in conjunction with the operator’s bitwidth
type: If the operator is instantiated at bitwidth type
n1 × n2 → n, then provided the arguments have fill
types τ1[n1] and τ2[n2], the result has fill type τ [n].
We give an operator a fill type only if that operator
is widenable. Widenability promises not only that the
result has the right fill type, but also that the least sig-
nificant n bits of the result are the bits that would have
been produced by applying the narrow instance of the
operator to the least significant bits of the operands.

Definition Recall our convention that n1 ≤ w1, n2 ≤
w2, and n ≤ w. An operator ⊕ is widenable at fill type

6



Fill-Var (n ≤ w)

Γ(xw) = τ [n]
Γ ` xw :: τ [n]

Fill-Lit (n ≤ w, fitsτ [n],w kw)

Γ ` kw :: τ [n]

Fill-Ext-Preserve (n ≤ n′ ≤ w)

Γ ` e :: σ[n]
Γ ` σxw←n′ e :: σ[n]

Fill-Ext (n′ ≤ w)

Γ ` σxw←n′ e :: σ[n′]

Fill-Lo-Preserve (n ≤ n′ ≤ w)

Γ ` e :: τ [n]
Γ ` lon′←w e :: τ [n]

Fill-Extlo-Preserve (n ≤ n′ ≤ w)

Γ ` e :: σ[n]
Γ ` σxlow←n′(b, e) :: σ[n]

Fill-Extlo (n′ ≤ w)

Γ ` σxlow←n′(b, e) :: σ[n′]

Fill-Extlo-Lit
(n ≤ n′ ≤ w, n = Un′(kn′))
Γ ` σxlow←n′(kn′ , e) :: σ[n]

Fill-Binop
Γ ` e1 :: τ1[n1] Γ ` e2 :: τ2[n2]

⊕ :: τ1 × τ2 → τ
⊕ : n1 × n2 → n ∈ M∞

Γ ` ⊕m←m1×m2(e1, e2) :: τ [n]

Fill-Garbage

Γ ` e :: g[n]

Fill-Subsume-Index (n ≤ n′)

Γ ` e :: σ[n]
Γ ` e :: σ[n′]

Figure 5: Fill typing rules

τ1 × τ2 → τ , written ⊕ :: τ1 × τ2 → τ , if whenever

⊕ : n1 × n2 → n ∈ M∞ and
⊕ : w1 × w2 → w ∈ M∞

then for all v1, v2 such that fitsτ1[n1],w1 v1 and
fitsτ2[n2],w2 v2, both fitsτ [n],w(⊕w←w1×w2(v1, v2)) and

lon←w(⊕w←w1×w2(v1, v2))
= ⊕n←n1×n2 (lon1←w1 v1, lon2←w2 v2) .

The second condition should also be taken to mean
that ⊕w←w1×w2(v1, v2) is well defined whenever
⊕n←n1×n2(lon1←w1 v1, lon2←w2 v2) is: If a narrow
computation completes successfully, so does a wide
one.

Widenability is needed to show that the rules in
Fig. 5 correctly predict the high bits of results—a prop-
erty we call fill-type soundness. Soundness also re-
quires a dynamic environment that is consistent with
the fill-type environment: each variable must have the
fill type claimed. Formally, ρ is consistent with Γ iff
∀xw ∈ dom Γ, xw ∈ dom ρ ∧ fitsΓ(xw),w(ρ(xw)).

Theorem 5.1 (Fill-Type Soundness) If Γ ` e :: τ [n],
ρ ` e ⇓ v, M∞ ` e : w, and ρ is consistent with Γ,
then fitsτ [n],w v.

The proof uses only the first consequence of widen-
ability (that the result has the correct fill type). The
second consquence is used in proving the soundness of
the translation in Sec. 6.2.

Widenability is a key idea: If an operator is widen-
able at a suitable fill type, a wide instance of the oper-
ator can do the job of a narrow instance. The examples
in Sec. 2 are possible only because operators popcnt,
neg, divu, bitwise and, and xor are widenable. The
fill types of a widenable operator express all the math-
ematical facts we need to know to widen expressions
involving that operator. Fig. 7 lists the fill types and
widenability of all non-floating-point operators. The
fill type used for the results of comparisons is arbitrary,
because a 1-bit value is always at its natural width. We
have chosen the z type.

A few operators can illustrate the interpretation of
fill types. Unsigned division (divu) has a fill type typ-
ical of unsigned operators. It requires both arguments
to have zeroes in the high bits and guarantees a result
with zeroes in the high bits. Addition (add) requires
nothing of the high bits of its operands but guaran-
tees nothing about the high bits of its result. Exclu-
sive or (xor) is overloaded. It can accept any input,
but guarantees to produce zeroes in the high bits of
its result only if the high bits of each operand are zero
and sign bits only if each operand has sign bits. Un-
signed greater-than (gtu), perhaps surprisingly, is also
overloaded: it can be used to compare sign-extended
numbers as well as zero-extended numbers. It is an
accident of two’s-complement representation that ex-
tending the sign bit does not change the results of this
comparison.

7



6 Translating a narrow program
for a wide machine

To translate a narrow program to run on a wide ma-
chine takes two steps:

Variable placement: Decide in what location on the
target machine each source variable will be stored.

Widening: Rewrite the program to use wide opera-
tors in place of narrow operators.

Although variable placement and widening can be com-
bined, it is simpler to place variables before widening,
as we have done in our implementation.

6.1 Placing variables

A variable placer chooses a location for each variable
in the source program. Given a variable xn of width n,
there are two choices: place it in a target location of
width n, which we also call xn, or place it in the low
n bits of a target location of width w, which we call xw.
(A location of width w may be used only if the variable
stands for a location in a machine register; a variable
placer should not change the layout of data structures
in memory.) If we choose the low n bits of xw, we have
to decide what to do with the high bits. We express
this decision by giving xw a fill type, which we store in
type environment Γ. For example, a Java signed 32-bit
integer variable x might be placed in a 64-bit location,
in which case Γ(x64) = s[32].

The best choice of Γ(xw) depends on how xw is used
in the program. For example, if xw is frequently passed
to operators that require sign bits in the high bits, it
may be best if Γ(xw) = s[n]. If xw is frequently passed
to operators that place no requirements on high bits,
Γ(xw) = g[n] may be best. Finding the best placement
requires global knowledge about how each variable is
used in each assignment and how frequently each as-
signment is executed.

Another interesting way to choose Γ(xw) is to use
bitwidth inference (Razdan and Smith, 1994; Stephen-
son et al., 2000; Budiu et al., 2000). Bitwidth inference
finds the range of values each variable can have. If the
range is nonnegative, we use the z type; otherwise we
use the s type. In either case, the range is used to de-
termine the minimum bitwidth necessary to represent
the variable. This bitwidth becomes the index of the
variable’s fill type Γ(xw).

Kawahito et al. (2002) describe a clever variation on
placement that can be used to improve performance.
At a definition of xw, they assume Γ(xw) = s[n], but
at a use, they assume Γ(xw) = g[n]. These assump-
tions can yield a program with extension operations
at both definitions and uses, which would be redun-
dant. The advantage is that the redundancy can be re-

moved from either the uses or the definition, whichever
is more frequently executed. Our method can support
this technique, but to keep things clear we suppress the
details.

6.2 Widening

After a location has been chosen for each variable, the
widener replaces each narrow operation with a wide
operation or combination of operators. An operator
that is widenable can simply be used at the new width,
provided its operands are given suitable fill types. An
operator that is not widenable must be rewritten as
a combination of widenable operators. As discussed
in Sec. 2, there are only a handful of non-widenable
operators, and each can easily be rewritten.

Widening is defined by a formal system that yields
judgments of the form

Γ,M ` e ↪→c e′ :: τ [n] : w.

This judgment says that given variable placement Γ
and target machine M , expression e can be widened to
expression e′ at cost c, and that e′ has fill type τ [n] and
width w. A similar judgment, Γ,M ` a ↪→

c
a′, applies

to assignments.
Given Γ, M , e, τ , n, and w, the rules in Fig. 8 find

every e′ that can be found by inserting sign or zero ex-
tensions. Our implementation uses dynamic program-
ming to find an e′ of minimum cost.

The rules in Fig. 8 are divided into four groups.

• The upper-left rules translate those parts of the ab-
stract syntax that relate to value computation with-
out widening or narrowing. The assignment rule, in
particular, shows that the left-hand side’s width w
and fill type τ [n] provide the information needed to
translate the right-hand side. The Lit rule shows
that we can extend a literal constant at translation
time. The Binop rule is the primary source of non-
determinism in the system. Nondeterminism arises
for those operators that have multiple fill types, such
as exclusive or. Nondeterminism may also arise for
an operator that the target machine supports at
multiple widths. For example, if the source code
contains a 12-bit add and the target machine is the
Pentium, the widener can do the add at either 16 or
32 bits.

The Binop rule shows where our two type systems
come together. The fill types of an operator are
universal truths of mathematics, but the bitwidth
types of that operator are accidental facts about the
machine.

The Binop rule combines both kinds of information.

• The lower-left rules provide the means of changing
an expression’s width. Each such rule requires an

8



add :: g× g → g

add overflows Not widenable

and :: s × s → s
and :: z× g → z
and :: g× z → z
and :: g× g → g

borrow :: s × s × g → z
borrow :: z× z× g → z

carry :: s × s × g → z

com :: s → s
com :: g → g

div :: s × s → s

div overflows Not widenable

divu :: z× z → z

eq :: s × s → z
eq :: z× z → z

ge :: s × s → z

geu :: s × s → z
geu :: z× z → z

gt :: s × s → z

gtu :: s × s → z
gtu :: z× z → z

le :: s × s → z

leu :: s × s → z
leu :: z× z → z

lt :: s × s → z

ltu :: s × s → z
ltu :: z× z → z

mod :: s × s → s

modu :: z× z → z

mul :: s × s → s

mulu :: z× z → z

mul overflows Not widenable

mulu overflows Not widenable

ne :: s × s → z
ne :: z× z → z

neg :: g → g

or :: s × s → s
or :: z× z → z
or :: g× g → g

popcnt :: z → z

quot :: s × s → s

quot overflows Not widenable

rem :: s × s → s

rotl Not widenable

rotr Not widenable

shl :: g× z → g

shra :: s × z → s

shrl :: z× z → z

sub :: g× g → g

sub overflows Not widenable

xor :: s × s → s
xor :: z× z → z
xor :: g× g → g

Figure 7: Widenability and fill types of integer and logical operators

9



Assign (n ≤ w)

Γ(xw) = τ [n] Γ,M ` e ↪→
c

e′ :: τ [n] : w

Γ,M ` xw :=w e ↪→c xw :=w e′

Var (n ≤ w)

Γ(xw) = τ [n]
Γ,M ` xw ↪→0 xw :: τ [n] : w

Lit (k′w = σxw←n kn, n ≤ w)

Γ,M ` kn ↪→0 k′w :: σ[n] : w

Binop (n1 ≤ w1, n2 ≤ w2, n ≤ w)

⊕ :: τ1 × τ2 → τ
⊕ : n1 × n2 → n ∈ M∞ ⊕ : w1 × w2 → w ∈ M

Γ,M ` e1 ↪→
c1

e′1 :: τ1[n1] : w1

Γ,M ` e2 ↪→c2 e′2 :: τ2[n2] : w2

Γ,M ` ⊕n←n1×n2(e1, e2) ↪→
c1+c2

⊕w←w1×w2(e
′
1, e
′
2) :: τ [n] : w

Fill (U(kw) = n, n ≤ w ≤ w′)

Γ,M ` e ↪→c e′ :: g[n] : w σxlow′←w ∈ M

Γ,M ` e ↪→
c+1 σxlow′←w(kw, e′) :: σ[n] : w′

Widen-σ (n ≤ w ≤ w′)

Γ,M ` e ↪→
c

e′ :: σ[n] : w σxw′←w ∈ M

Γ,M ` e ↪→
c+1 σxw′←w e′ :: σ[n] : w′

Widen-g (n ≤ w ≤ w′)

Γ,M ` e ↪→
c

e′ :: g[n] : w σxw′←w ∈ M

Γ,M ` e ↪→
c+1 σxw′←w e′ :: g[n] : w′

Narrow (n ≤ w ≤ w′)

Γ,M ` e ↪→
c

e′ :: τ [n] : w′ low←w′ ∈ M

Γ,M ` e ↪→
c+1 low←w′ e′ :: τ [n] : w

Drop-Ext (n ≤ n′ ≤ w)

Γ,M ` e ↪→
c

e′ :: σ[n] : w

Γ,M ` σxn′←n e ↪→
c

e′ :: σ[n] : w

Drop-Lo-Copy (n ≤ n′ ≤ w)

Γ,M ` e ↪→c e′ :: τ [n′] : w

Γ,M ` lon←n′ e ↪→
c

e′ :: τ [n′] : w

Drop-Lo-Ignore (n ≤ n′ ≤ w)

Γ,M ` e ↪→
c

e′ :: τ [n′] : w

Γ,M ` lon←n′ e ↪→c e′ :: g[n] : w

Extlo (n ≤ n′ ≤ w ≤ w′)

σxlow′←w ∈ M
Γ,M ` b ↪→c1 b′ :: z[n] : w Γ,M ` e ↪→c2 e′ :: g[n] : w

Γ,M ` σxlon′←n(b, e) ↪→
c1+c2+1

σxlow′←w(b′, e′) :: σ[n] : w′

Subsume-Fill (n ≤ w)

Γ,M ` e ↪→
c

e′ :: σ[n] : w

Γ,M ` e ↪→
c

e′ :: g[n] : w

Subsume-Index (n < n′ ≤ w)

Γ,M ` e ↪→c e′ :: σ[n] : w

Γ,M ` e ↪→
c

e′ :: σ[n′] : w

Natural
Γ,M ` e ↪→c e′ :: g[w] : w

Γ,M ` e ↪→
c

e′ :: σ[w] : w

Figure 8: Widening rules

10



explicit extension or truncation. We need both Fill
and Widen-σ because, as noted in Sec. 3, we may
have to use either σxlo or σx depending on what is
available on the target machine. Each of these rules
adds 1 to the cost of widening because it inserts an
extension or truncation operation.

• The upper-right rules cope with extensions and
truncations in the source program. If the number of
bits extended or truncated is known statically, we
simply drop the extension or truncation and let the
other rules insert one if needed. In rule Extlo, the
number of bits extended is computed dynamically,
so the extension must be retained. The Drop rules
maintain the same cost because they insert noth-
ing in the widened expression. Extlo, on the other
hand, has to add the extension from the source ex-
pression into the widened expression.

• The lower-right rules permit us to exploit the sub-
typing rules for fill types. They change the type
without changing the widened expression, so they
have no extra cost.

The rules are sound, which means that a translated
expression e′ produces a value with the fill type claimed
and with the right answer in the low bits. Also, all the
operators in any translated expression are available on
the target machine. Stating these properties precisely
requires a bit more formalism.

To formalize soundness of the rules for assignment,
we must also account for potential differences in high
bits when Γ(xw) = g[n].

Definition Environments ρ and ρ′ agree up to widths
in Γ, written ρ ∼Γ ρ′, when both ρ and ρ′ are consistent
with Γ and when for each variable xw, ρ(xw) and ρ′(xw)
are equal in their n low bits, where n is determined
by Γ(xw). Formally, ∀xw ∈ dom Γ, lon←w(ρ(xw)) =
lon←w(ρ′(xw)), where Γ(xw) = τ [n].

N.B. If Γ(xw) = s[n], then the high bits are equal to
the nth bit, and because ρ and ρ′ agree on the low n
bits, ρ(xw) and ρ′(xw) must be identical. Similarly, if
Γ(xw) = z[n], then the high bits are zero, and again
ρ(xw) and ρ′(xw) must be identical. But if Γ(xw) =
g[n], the high bits can differ before and after widening.

Soundness of translation says that a translated as-
signment produces almost the same results as the orig-
inal, the only differences being those permitted to two
environments that agree up to widths in Γ. The as-
signment soundness theorem is shown here pictorially
as a commutative diagram.

ρpre ∼Γ ρ′pre

xw:=e

ww� ww�xw:=e′

ρpost ∼Γ ρ′post

To prove soundness, we have a lemma for expres-
sions. Whenever the original expression has a value,
the translated expression does too, and the value of
the translated expression agrees with the original on
the low bits and respects the semantic predicate re-
quired by its fill type.

Theorem 6.1 (Assignment Soundness) If
Γ,M ` xw :=w e ↪→ xw :=w e′, and we are
given any ρ1 and ρ2 such that ρ1 ∼Γ ρ2, and if
ρ1 ` xw :=w e ⇓ ρ′1, then ρ2 ` xw :=w e′ ⇓ ρ′2 and
ρ′1 ∼Γ ρ′2.

Lemma 6.2 (Expression Soundness) For any sound
and well-formed M and ρ consistent with Γ, if Γ,M `
e ↪→ e′ :: τ [n] : w, ρ ` e ⇓ v, and M∞ ` e : m,
then ρ ` e′ ⇓ v′, fitsτ [n],w(v′), and n ≤ m implies
lon←w v′ = lon←m v.

Proof is by induction on the structure of derivations.
The most interesting case is the Binop rule. This
rule requires that fill indices ni match the bitwidth of
the original expression. The requirement is needed to
prove that the low bits match—that n ≤ m implies
lon←w v′ = lon←m v.

Soundness relies on the claims made about widen-
ability of operators (Fig. 7). We make these claims
based on careful thought, confirmed by exhaustive ma-
chine checking on a subset of the operators at widths
8 and 16. A formal proof would be better, but such a
proof would require a bit-level semantics for each op-
erator, such as is provided by Bacon (2001), as well
as substantial theorem-proving expertise. This sort of
treatment is well beyond the scope of this paper or of a
typical compiler; in our opinion, the game is not worth
the candle.

The translation is not only sound but also has other
useful properties: e′ has the types claimed for it, and
e′ can be implemented on the target machine.

Theorem 6.3 (Types) If Γ,M ` e ↪→
c

e′ :: τ [n] : w,
then M ` e′ : w and Γ ` e′ :: τ [n].

Corollary 6.4 If Γ,M ` e ↪→
c

e′ :: τ [n] : w, then e′

contains only operators at widths in M .

These theorems are proved by induction on derivations.

7 Implementation and experi-
mental results

We have implemented widening by using dynamic pro-
gramming to compute the minimum-cost translation
for a given expression at a given width and fill type.
The dynamic-programming algorithm works bottom-
up, constructing minimum-cost solutions for larger and

11



larger expressions according to our formal rules. The
critical implementation decisions were how to represent
a solution and how to eliminate redundant solutions.

A solution includes the information from a judgment
Γ,M ` e ↪→

c
e′ :: τ [n] : w, on the right hand of the turn-

stile, as we have described in the widening rules. The
Subsume-Index rule is a little tricky: The rule lets us
increase the index to any value between n and w, and
if we were to represent each such index as a distinct
state, the number of states could grow quite large. We
therefore implement the Subsume-Index rule implic-
itly by considering the index n in each solution to stand
for all indices from n to w.

Dynamic programming applies a transformation of
AST nodes bottom-up on the narrow expression tree.
The transformation takes an AST node and the set of
minimum-cost solutions for its subexpressions, and it
produces the set of minimum-cost solutions for that
node. To get all the solutions, the transformation first
applies all widening rules that match the specific kind
of AST node, generating an initial set of solutions.
From there the algorithm repeatedly tries to generate
new solution states from known solutions by applying
other widening rules. The exploration continues until
it reaches a fixed point. We add a new solution to the
set only if it is not redundant given the elements in the
set.

A solution is redundant if any state represented by
that solution is also represented by another solution of
equal or better cost. If each solution represents exactly
one state, then a solution is redundant if and only if
it costs more than the best known solution for that
state. But our solutions represent more than one state:
Each solution represents all the states from n to w.
Two solutions that share expression e, fill type τ , and
width w may or may not be redundant depending on
their costs and their values of n. We therefore define
solution a = Γ,M ` e ↪→

c1
e′1 :: τ [n1] : w to be redundant

given solution b = Γ,M ` e ↪→
c2

e′2 :: τ [n2] : w if and
only if

if n1 > n2 ∧ c1 < c2 → false
else n1 < n2 ∧ c1 > c2 → false
else n1 >= n2 → c1 >= c2

else n1 < n2 → false

Dynamic programming has these advantages:

• If there is a solution we are certain to find it.

• We always choose the best solution available.

• The implementation was easy to build by following
the structure of our rules.

We compare the dynamic-programming implementa-
tion with a top-down, greedy algorithm. The greedy al-
gorithm inserts sign extensions or zero extensions below

each operator as required by that operator’s fill type.
If an operator has more than one fill type, the greedy
algorithm picks one that requires fewer extensions im-
mediately below the operator. The greedy algorithm
may seem simpler than dynamic programming, but in
practice, it was surprisingly difficult to write and to
think about, and we are less confident in its correct-
ness.

We added both algorithms to the Quick C-- com-
piler, a compiler for C-- (Peyton Jones et al., 1999;
Ramsey and Peyton Jones, 2000). The implementation
is about 600 lines of Objective Caml code, including
both algorithms and some supporting infrastructure.
We then widened some 32-bit programs from a small
test suite distributed with the LCC compiler (Fraser
and Hanson, 1995). For this preliminary experiment,
we placed variables in memory with garbage in the high
bits, so for any x, Γ(x) = g[32]. Quick C-- generates
such poor code that measurements of run time are not
meaningful, so as a proxy we evaluate effectiveness by
counting the number of operations in the widened code.

Table 1 shows the results. The “Original” column
shows the number of operations in original code. The
“Greedy” and “DP” columns show the total num-
ber of operations in widened code. The final column
shows the percent reduction in the number of opera-
tions going from the greedy algorithm to the dynamic-
programming algorithm. The reductions range from
24% to 49%, showing that the dynamic-programming
algorithm produces much better results.

8 Related work

The related work we are aware of addresses variable
placement. As noted above, Kawahito et al. (2002)
achieve performance benefits by treating variable place-
ment differently at definitions and uses; the resulting
redundancies make it possible to move extensions out of
loops. Our work complements this work: Our widener
minimizes the number of extensions locally, and their
global extension-removal algorithm can be run as a
post-pass.

Razdan and Smith (1994), and later Stephenson
et al. (2000) and Budiu et al. (2000) show how to infer
bitwidths for variables. Such inferred widths could be
used to compute fill types for Γ during variable place-
ment.

9 Discussion

We have identified several potential extensions to our
system, but none of significant value. For example, it
is possible to define a fill type o[n], which means that
a value has ones in all but the least significant n bits.
While the Boolean operators preserve the o type in

12



File name Original Greedy DP Reduction
incr.c 17 51 30 24%

struct.c 20 70 36 49%
front.c 31 93 58 38%

8q.c 36 113 66 42%
sort.c 61 187 117 37%
wf1.c 65 201 124 38%
init.c 77 239 148 38%
cq.c 79 252 151 40%

stdarg.c 112 392 215 45%
yacc.c 118 350 209 40%

switch.c 120 369 235 36%
limits.c 213 681 422 38%

Table 1: Dynamic programming versus a greedy algorithm on a subset of the LCC compiler test suite. Original
column counts operations in WL produced by the compiler. Greedy and DP show the number of operations after
widening (smaller is better). Reduction shows the percent reduction in operations, going from Greedy to DP.

ways one might expect (dual to the z type), it is not
useful because no operation requires an operand with
ones in the high bits.

and :: o × o → o

borrow :: o × o → z
carry :: o × z → z
carry :: z × o → z

com :: z → o
com :: o → z

or :: g × o → o
or :: o × g → o

xor :: z × o → o
xor :: o × z → o
xor :: o × o → z

In addition to the subsumption rules we already have
for fill types, we can add two more based on the one
and zero types.

Fill-Subsume-Zero (n < n′)

Γ ` e :: z[n]
Γ ` e :: s[n′]

Fill-Subsume-One (n < n′)

Γ ` e :: o[n]
Γ ` e :: s[n′]

Another potential extension is to apply widening to
floating-point computations. Sign extension and trun-
cation have their analogs in instructions for floating-
point conversions, but there is a big difference: If

a floating-point computation is performed with extra
precision and truncated only at the end, we get a dif-
ferent answer than if every intermediate result is trun-
cated to use less precision. If exact answers are re-
quired, then, one cannot remove any explicit extensions
or truncations, and our ideas offer no benefit relative
to a näıve translation. If, however, the programmer
wants approximate answers fast, one can perform en-
tire computations at higher precision. Our C-- back
end for the Pentium offers this option, widening 32-
bit and 64-bit floating-point computations to the full
80 bits offered by the hardware.

Floating-point widening is much simpler, in a sense,
than integer widening (as long as we don’t want to
preserve the exact semantics). There are not sign or
zero types; every floating point number is the same.
We give floating point expressions a fill type f with an
index that is maintained at the width of the unwidened
expression. The only necessary additions to the system
are the rules in Fig. 9.

We have also experimented with an extension that
keeps narrow values in the high bits instead of the low
bits. This representation can be more efficient for op-
erations that set an overflow flag, for example. Sample
rules for the high-bits type h[n] follow. Other rules
that use a σ or τ to stand for multiple fill types would
need to be changed to either include or exclude the h[n]
type.

To-High(U(kw) = w − n, n ≤ w)

Γ,M ` e ↪→
c

e′ :: g[n] shl : w × w → w

Γ,M ` e ↪→c+1 shlw(e′, kw) :: h[w − n] : w

From-High-s(U(kw) = n)

Γ,M ` e ↪→
c

e′ :: h[n] : w shra : w × w → w

Γ,M ` e ↪→c+1 shra(e′, kw) :: s[w − n] : w

13



Float-Var
Γ(xw) = f

Γ,M ` xw ↪→0 xw :: f : w

Float-Lit (n ≤ w, k′w = f2fn←w kn)

Γ,M ` kn ↪→0 k′w :: f : w

Widen-Float (n ≤ w ≤ w′)

Γ,M ` e ↪→
c

e′ :: f : w f2fw′←w ∈ M

Γ,M ` e ↪→c+1 f2fw′←w e′ :: f : w′

Narrow-Float (n ≤ w ≤ w′)

Γ,M ` e ↪→
c

e′ :: f : w′ f2fw←w′ ∈ M

Γ,M ` e ↪→c+1 f2fw←w′ e′ :: f : w′

Drop-Widen-Float (n ≤ n′ ≤ w)

Γ,M ` e ↪→
c

e′ :: f : w

Γ,M ` f2fn′←n e ↪→
c

e′ :: f : w

Drop-Narrow-Float (n ≤ n′ ≤ w)

Γ,M ` e ↪→c e′ :: f : w

Γ,M ` f2fn←n′ e ↪→
c

e′ :: f : w

Binop-Float (n1 ≤ w1, n2 ≤ w2, n ≤ w)

Γ,M ` e1 ↪→
c1

e′1 :: f : w1

Γ,M ` e2 ↪→c2 e′2 :: f : w2 ⊕w←w1×w2 ∈ M

Γ,M ` ⊕n←n1×n2(e1, e2) ↪→
c1+c2+1 ⊕w←w1×w2 (e′1, e

′
2) :: f : w

Assign-Float
Γ,M ` e ↪→c e′ :: f

Γ,M ` xw := e ↪→ xw := e′

Figure 9: Floating-point widening rules

From-High-z(U(kw) = n)

Γ,M ` e ↪→
c

e′ :: h[n] : w shra : w × w → w

Γ,M ` e ↪→
c+1 shrl(e′, kw) :: z[w − n] : w

Even without these extensions, it is surprising how
much machinery is needed to solve a seemingly sim-
ple problem. We started out with much simpler ideas,
among which the central one was to rewrite expressions
by exploiting algebraic laws such as the following:

lon←w(sxw←n x) = x

lon←w(zxw←n x) = x

sxw←n(mul(x, y)) = mul(sxw←n x, sxw←n y)
zxw←n(mulu(x, y)) = mulu(zxw←n x, zxw←n y)

Unfortunately, simple algebraic rewriting has two defi-
ciencies:

• It is not always obvious what extension operator to
pick when rewriting an expression: A choice made at
an outer level may affect the cost of rewriting deeply
nested subexpressions. Perhaps this problem could
be addressed using dynamic programming, but then
the simplicity of rewriting would be lost.

• There is no obvious way to deal with garbage in the
high bits. Attempts to introduce a gx (“garbage
extend”) operator lead to a warm feeling at first,
but gx is a relation, not a function, and the math
quickly becomes unwieldy.

Algebraic rewriting is still useful when dealing with the
eight non-widenable operators, which perform bitwise
rotations or overflow detection. Each application of
a non-widenable operator must be translated, before
widening, into an equivalent expression that uses only
widenable operators. For example, the operator that
determines if an addition overflows, add overflows, can
be rewritten using either of these equations:

add overflowsn(x, y)

= ne(sxlow←w(n, sxw←n x+sxw←n y), sxw←n x+sxw←n y)

add overflowsn(x, y)

= add overflowsw(shl(sxw←n x, w−n), shl(sxw←n y, w−n))

where ne is inequality and shl is shift left.
Although the amount of machinery is surprising, our

solution does provide a satisfying separation of con-
cerns:

• The capabilities of the target machine are captured
in the machine environment M .

• Global decisions about variables are captured in the
fill-type environment Γ.

• Machine-independent truths about the widenability
of operators are captured in their fill types (Fig. 7).

We hope that fill types, especially, will be of lasting
value to anyone who has to think about running narrow
programs on a wide machine.

Acknowledgements

This work has been funded in part by NSF grants CCR-
0311482 and CCR-0096069. João Dias, Paul Govereau,
Glenn Holloway, Reuben Olinsky, Sukyoung Ryu, and
Chung-chieh Shan provided helpful comments on the
paper.

14



References

David F. Bacon. Kava: A Java dialect with a uni-
form object model for lightweight classes. In Pro-
ceedings of the Joint ACM Java Grande/ISCOPE
Conference, pages 68–77, Stanford, California, June
2001.

Mihai Budiu, Majd Sakr, Kip Walker, and Seth C.
Goldstein. BitValue inference: Detecting and ex-
ploiting narrow bitwidth computations. In Proceed-
ings of the EuroPar 2000 European Conference on
Parallel Computing, volume 1900 of LNCS, pages
969–979, August 2000.

Christopher W. Fraser and David R. Hanson. A Re-
targetable C Compiler: Design and Implementation.
Benjamin/Cummings, Redwood City, CA, 1995.

Motohiro Kawahito, Hideaki Komatsu, and Toshio
Nakatani. Effective sign extension elimination. Pro-
ceedings of the ACM SIGPLAN ’02 Conference on
Programming Language Design and Implementation,
in SIGPLAN Notices, 37(5):187–198, May 2002.

Simon L. Peyton Jones, Norman Ramsey, and Fermin
Reig. C--: a portable assembly language that sup-
ports garbage collection. In International Conference
on Principles and Practice of Declarative Program-
ming, volume 1702 of LNCS, pages 1–28. Springer
Verlag, September 1999.

Norman Ramsey and Jack W. Davidson. Machine de-
scriptions to build tools for embedded systems. In
ACM SIGPLAN Workshop on Languages, Compil-
ers, and Tools for Embedded Systems (LCTES’98),
volume 1474 of LNCS, pages 172–188. Springer Ver-
lag, June 1998.

Norman Ramsey and Simon L. Peyton Jones. A sin-
gle intermediate language that supports multiple
implementations of exceptions. Proceedings of the
ACM SIGPLAN ’00 Conference on Programming
Language Design and Implementation, in SIGPLAN
Notices, 35(5):285–298, May 2000.

Rahul Razdan and Michael D. Smith. A high-
performance microarchitecture with hardware-
programmable functional units. In Proceedings
of the 27th Annual International Symposium on
Microarchitecture, pages 172–80. IEEE/ACM,
November 1994.

Mark Stephenson, Jonathan Babb, and Saman P. Ama-
rasinghe. Bitwidth analysis with application to sil-
icon compilation. Proceedings of the ACM SIG-
PLAN ’00 Conference on Programming Language
Design and Implementation, in SIGPLAN Notices,
35(5):108–120, May 2000.

15


