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Abstract

Computer agents participate in many collaborative and competitive

multi-agent domains in which humans make decisions. For computer

agents to interact successfully with people in such environments, an un-

derstanding of human reasoning is beneficial. In this paper, we investi-

gate the question of how people reason strategically about others under

uncertainty and the implications of this question for the design of com-

puter agents. Using a situated partial-information negotiation game, we

conduct human-subjects trials to obtain data on human play. We then

construct a hierarchy of models that explores questions about human rea-

soning: Do people explicitly reason about other players in the game? If so,

do people also consider the possible states of other players for which only

partial information is known? Is it worth trying to capture such reasoning

with computer models and subsequently utilize them in computer agents?

We further address these questions by constructing computer agents that

use our models; we deploy our agents in further human-subjects trials for

evaluation. Our results indicate that people do reason about other players

in our game and that the computer agents that best model human play

obtain superior scores.

1 Introduction

With increasing frequency, computer agents are participating in collaborative
and competitive multi-agent domains in which humans reason strategically to
make decisions. Examples include online auctions, financial trading, scheduling,
and computer gaming (online and video). The deployment of computer agents
in such domains requires that the agents understand something about human
behavior so that they can interact successfully with people; the computer agents
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must be sensitive to both how people reason in strategic settings as well as the
social utilities people employ to inform their reasoning. To date, these design
requirements for computer agents have received relatively little attention.

Models of human reasoning have been shown to be helpful for agent design
[Gal et al., 2004]. In their work, [Gal et al., 2004] use a situated full-information
two-player negotiation game; in this game, one player proposes an exchange of
resources and the other player responds by accepting or rejecting the proposal.
[Gal et al., 2004] conducted human-subjects trials and subsequently learned a
model of the responder’s utility function; this model was utilized to construct
a computer proposer agent that took human responder behavior into account.
Nevertheless, [Gal et al., 2004] leaves unexplored the questions of how humans
reason strategically and under uncertainty: the responder of their game reasons
only after the proposal is received, and so requires neither strategic reasoning
(that is, reasoning by one player about what another player might do) nor rea-
soning under uncertainty about another player’s state. Here, we are interested
to focus on these two aspects of human reasoning.

In this paper, we investigate questions about how people reason strategically
about others under uncertainty and the implications of these questions for the
design of computer agents. For example, is human reasoning reflexive, where
the behavior of other players is accounted for implicitly, that is, without ex-
plicit consideration of other players’ possible actions or states? Or, do humans
somehow try to reason strategically about other players by consulting models
that they maintain about them? If so, then does such reasoning also consider
the possible states of other players? And, if either of these possibilities are true,
then is it worth trying to capture such reasoning with computer models and
subsequently utilize them in computer agents?

Our investigation of these questions leads us to a variety of contributions.
We construct a hierarchy of models, whereby models are differentiated not only
by whether they include strategic reasoning, but also by whom that reasoning
concerns. We provide learning algorithms for our models. The human-subjects
experiments we conduct provide a wealth of data which we use to train and
test our models and which can be used for further investigations. Finally, our
analyses provide insight into whether and how humans behave strategically un-
der uncertainty and the issues that surround engineering computer agents to
interact with humans.

We find that a model’s ability to predict human behavior depends upon
whether we model the human as using reflexive or strategic reasoning; further,
if strategic reasoning is used, then the model’s performance also depends upon
whom we model the human to be reasoning about. Beyond the pattern of
reasoning, a model’s performance depends upon the utility functions that we
model humans to be using. We also find that the benefit to be gained from
increasingly sophisticated models diminishes, while the computational costs of
such models increases.

While many fields relate to the goal of creating computer agents that take
human strategic thinking into account, none have yet placed a spotlight on this
goal. For example, classical game theory [Fudenberg and Tirole, 1998] precludes
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modeling agents as anything other than rational actors, severely restricting the
types of reasoning we can capture. Further, the rationality assumption is well
known to be violated in many real-world domains. In recognition of the fact
that human decision making often often deviates from full rationality, the field
of behavioral economics [Rabin, 1998, Camerer, 2003] seeks to explain the gap
between actual human decision-making and that of classical game theory’s homo
economicus. Nevertheless, the decision-making domains studied in behavioral
economics are very abstract and lack situatedness ; being situated entails in-
teraction with and within an environment [Lueg and Pfeifer, 1997]. Further,
behavioral economics does not concern itself with engineering computational
agents that can interact successfully with human decision makers.

The field of multi-agent systems (MAS) [Weiss, 2000, Kraus, 2001] is con-
cerned with engineering computer agents that operate and interact in envi-
ronments containing other agents. Nevertheless, much MAS research focuses
on environments comprised of only computer agents, and so agents tend to be
viewed as rational actors; this assumption simplifies the task of recursive model-
ing [Gmytrasiewicz and Durfee, 2001], where an agent models another agent as
an entity that itself models other agents. Recursive models involving bounded-
rational agents are also examined in MAS [Vidal and Durfee, 1995], but such
models are not generally intended to capture the peculiarities of bounded ra-
tionality in human reasoning. Research on modeling human emotion and its
effect on behavior [Seif El Nasr et al., 2000, Gratch and Marsella, 2005] gener-
ally involves no learning at all or no learning from real human data. Thus,
the enterprise of modeling strategic human decision-making for the purpose of
engineering computer agents that are sensitive to human behavior stands apart
from most MAS research.

2 Three-Player Negotiation Game

We require an environment that is appropriate for investigating how humans
reason about others under uncertainty. The environment must be simple enough
for analysis and agent engineering to be tractable, yet rich enough to reflect
salient features of the real world. We desire an environment that is situated,
can provide partial information, and promotes reasoning about other players.
The Colored Trails (CT) framework [Grosz et al., 2004] meets our requirements.

CT is a highly configurable, situated multi-agent task environment that
can be played by humans and computer agents. CT captures the important
high-level features of decision-making found in many real-world environments;
CT is sufficiently abstract to focus on high-level features, yet is simultaneously
grounded in a situated task domain. The situated task activities presented by
the CT environment distinguish CT from the games often used in behavioral
economics, which tend to present highly abstract decision-making scenarios.
[Allain, 2006] demonstrates a framing effect in which a game presented as a sit-
uated task activity elicits stronger concern with social factors such as fairness;
the same underlying game presented in a more abstract payoff matrix form en-
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genders behavior more in line with rational Nash equilibrium play. These results
demonstrate the importance of eschewing highly abstract games in favor of situ-
ated activity if we are interested to learn about how people reason in real-world
settings.

Using the CT environment, we construct a three-player partial-information
negotiation game. Our game is played on a 4x4 board of colored squares; each
square is one of five colors. Each of the three players has a piece on the board
as well as a collection of colored chips that can be used to move her piece; a
player may move her piece to an adjacent square only if she has a chip of the
same color as the square. After the piece is moved, the chip is discarded by the
player. The board also has a square that is designated as the goal. The objective
of each player is to move her piece as close as possible to, and preferably onto,
the goal square. We generate initial conditions such that players can usually
improve their ability to approach the goal by trading chips.

Each game proceeds as follows. Each player is randomly assigned to one
of the three roles in the game, denoted proposer 1, proposer 2, and responder.
Each player knows the state of the board (board colors, goal location, locations
of all player pieces) and the chips that she possesses. Proposers also know the
chips possessed by the responder, but not by each other; this is the source of
uncertainty in the game. The responder knows the chips possessed by both
proposers. The proposers are allowed to exchange chips with the responder,
but not each other. The proposers simultaneously formulate their proposals to
exchange chips and submit them to the responder; any redistribution of chips
between a proposer and the responder is valid, including giving away all chips,
requesting all chips, or anything in between. A proposal may also leave the chips
unchanged. The responder then chooses to accept no more than one of the two
proposals, or declines them both. After the responder’s decision is made, the
CT system informs the proposers of the outcome and automatically moves all
three players’ pieces to obtain the maximal possible score for each player, given
the chips possessed.

A number of factors may influence the offer a proposer ultimately makes.
First, a proposer may need certain chips to improve its utility. But, the respon-
der may also require certain chips, and these requirements may or may not be
synergistic with the needs of the proposer. In addition, because the responder
can accept no more than one proposal, there exists a competitive relationship
between the proposers. Therefore, a proposer may want to reason about what
the other proposer may offer. Since proposers have partial information about
each other (they know each other’s location on the board, but do not know
about each other’s chips), reasoning under uncertainty is required. The behav-
ior of a proposer explores the tension between fulfilling its own utility function
and that of the responder in the face of unknown competition.
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3 Player Models

We construct several models of how humans reason in our game. By examining
the performance of a variety of models, we hope to identify prominent features
of human reasoning and engineer effective computer agents. We concentrate on
modeling the proposer in our game, since our game invites strategic reasoning
under uncertainty for this role. Nevertheless, most of our proposer models will
require models of the responder to operate.

3.1 Reflexive Models

Our most basic models, the reflexive models, are based upon the architecture of
[Gal et al., 2004, Gal and Pfeffer, 2006]. All of our models (reflexive and strate-
gic) make use of only two simple features that quantify proposal properties; these
features are rather general and can be applied to almost any negotiation game.
Though our game involves three players, each proposal specifies a pair-wise in-
teraction between two players. Let self-benefit (SB) quantify the change in score
a player will receive if a proposal is accepted, and other-benefit (OB) quantify
the change in score the other player will receive if the proposal is accepted.
Other features were investigated with cross validation, but were found not to
improve our models. In particular, we considered categorical discretizations
of SB and OB to indicate whether benefit is positive, negative, or zero; these
were believed to be useful to express “rational” play. We also considered two
features that addressed the fairness of a proposal, one that corresponds to the
Nash bargaining concept [Nash, 1950] and another that considers the context
of alternative proposals that could have been made [Falk et al., 2003].

Let each proposal O = 〈SB, OB〉 be a vector of feature values; let w =
〈wSB, wOB〉 be the vector of corresponding feature weight parameters. We define
the linear utility function U : O→ R on the space O of offers to be

U(O) =
∑

l

wl ·Ol. (1)

Let φ denote the status-quo, which for the responder represents the option
of rejecting both offers, and for the proposer represents the proposal that no
chips change hands. Note that U(φ) = 0, since SB = OB = 0.

Since all humans will likely not share the same utility function, we use mix-
ture models to cluster human play into different behavioral types. We have T

types; an individual of type ti uses utility function U ti with weight vector w
ti .

Let ρti be the proportion of individuals of type ti.
Humans also select offers non-deterministically; we are prone to make errors.

Further, since our models will not be perfect, we care to have our models attach
probabilities to different outcomes. To accommodate these factors, we convert
proposal utilities to probabilities of selection with a soft-max function. Let O
be a set of options to choose from. The probability that an individual of type
ti will select the m-th proposal in O is
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Pr(selected = Om|O, ti) =
eUti (Om)

∑

k eUti (Ok)
. (2)

Taking an expectation over all behavioral types gives

Pr(selected = Om|O) =
∑

i

Pr(selected = Om|O, ti)ρ
ti . (3)

A reflexive model of player behavior makes the assumption that the player
does not explicitly reason about other players in the decision-making process.
Such an assumption is clearly appropriate for modeling the responder of our
game, since the responder’s decision-making requires neither strategic thinking
nor reasoning under uncertainty; the responder simply reacts to the decisions
that are made by the proposers. The responder has three choicesO = {O, O, φ},
where O and O are the two proposer offers, and φ is the null offer, which the
responder selects if it cares for neither proposer offer. Our model of responder
behavior is a mixture model precisely of the form described by Equations (1)–
(3); the wti

l are model parameters that are easily interpreted to represent the
responder’s utility function.

Our simplest model of proposer behavior is also reflexive; this model as-
sumes that a proposer does not explicitly reason about the responder and
other proposer, even though such reasoning is meaningful in our game. Here,
O = {O1 . . . OM} is the set of proposals that the proposer can make, given its
game state. Like the responder model, the reflexive proposer model is described
by Equations (1)–(3), and the wti

l are model parameters. Unlike the responder
model, however, the wti

l are not so easily interpreted to represent the proposer’s
utility function. This is because, to the extent that a proposer implicitly rea-
sons about other players, model training will cause the w to represent, as best
they can, some amalgam of the proposer’s utility function and implicit reason-
ing process. We denote our reflexive responder and proposer models R{} and
P{}, respectively. We use the empty curly braces to indicate a reflexive model.
Below we introduce strategic proposer models that reason about other players
using other models; these other models are indicated by being enclosed in the
braces.

3.2 Strategic Models

The reflexive models explicitly reason about the options they have, but not
about the other players in the game. Our game’s structure makes a reflexive
model appropriate for the responder; but, it is possible that a reflexive model
of proposer behavior can be improved upon. Here, we introduce new strategic
models of proposer behavior.

More sophisticated than P{}, we can model a proposer as reasoning explic-
itly about the responder, but still not the other proposer. The existence of
the other proposer is acknowledged, but the partial information about the other
proposer that the game provides is ignored. Unfortunately, without explicit rea-
soning about the other proposer, we cannot utilize our responder model R{},
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because it requires that we specify both proposers’ offers. To address this prob-
lem, we construct a modified responder model R−{} that does not require two
proposer offers. Our proposer model then utilizes this modified responder model
to reason about the responder, specifically about how likely the proposer’s offers
are to be accepted by the responder.

The modified responder model R−{} accepts two known choices O = {O, φ}
as input and represents the unknown O with a fixed “generic” proposal that has
utility vti (vti is a model parameter in addition to feature weights wti

l ):

R−{}

Pr(selected = Om|O, ti)=
eUti (Om)

evti +
∑

k eUti (Ok)
, (4)

R−{}

Pr(selected = O|O, ti)=
evti

evti +
∑

k eUti (Ok)
, (5)

where vti is the generic utility given by responder type ti to the unknown
proposal O. Our first strategic proposer model, therefore, is denoted P{R−{}},
to indicate that a pre-learned responder model of type R−{} is embedded in
the proposer model.

Proposer model P{R−{}} uses R−{} to reason about how the responder
might react to possible offers, thus converting its utilities to expected utilities:

EU ti(O) = U ti(O) ·
R−{}

Pr(selected = O|O, φ) (6)

The expected utilities, rather than the plain utilities, are then plugged into
(2) and (3). The utility functions U ti used by P{R−{}} contain the parameters
wti

l of the model that are to be learned.
Next in our hierarchy is a model of proposer behavior that asserts that

a proposer explicitly reasons about both the responder and other proposer;
this model takes into account the partial information available about the other
proposer to reason about what that proposer might offer and how its offers
might affect the responder’s decision. To perform such reasoning, the proposer
model must itself utilize models of the responder and other proposer. One
such proposer model is P{R{}, P{}}. This model embeds our reflexive model
of responder behavior; it also models the other proposer as being reflexive.
Another such proposer model is P{R{}, P{R−{}}}, which models the other
proposer as reasoning about the responder but not the first proposer. We refer to
P{R{}, P{}} and P{R{}, P{R−{}} as level-one models; the models of proposer
behavior embedded in the level-one models do not model the other proposer
(P{R−{}} only models the responder), and so are level-zero proposer models.
The parameters of a level-one model remain the wti

l feature weights of its utility
functions; the embedded models are pre-learned, and so do not contribute any
level-one parameters.

A level-two proposer model is still more sophisticated; it states that a pro-
poser (for clarity named P1) reasons about both the responder and other pro-
poser (for clarity named P2), and further states that P1 believes that P2 itself
reasons about P1. In the level-two model P{R{}, P{R{}, P{}}}, P1 believes
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that P2 models P1 as being reflexive; in level-two model P{R{}, P{R{}, P{R−{}}}},
P1 believes that P2 models P1 as reasoning about the responder, but not P2.
The parameters of a level-two model are again the w of its utility function. In
principle, we can create a level-N proposer model by recursively embedding a
level-(N − 1) model.

The expected utility EU (O) of an offer O to a level-N model (say, P{R{}, P{N−
1}}) is

EU (O) =

∑

C∈C

∑

O∈O|C

Pr(C) ·
P{N−1}

Pr(selected = O|O) ·

R{}

Pr(selected = O|O, φ) ·U (O). (7)

Equation (7) operates as follows. We consider all possible chipsets C that
the other proposer might have. For each such chipset C, we consider all possible
offers O that the other proposer could make. To calculate our expected utility
for offer O, we need to consider several factors. First, is the probability that the
other proposer has a certain chipset C. Then, given C, we use our level N − 1
model of the other proposer to estimate the probability that it will make offer
O. We next use our model of the responder to estimate the probability that it
will accept our proposal O over O and φ. The product of these probabilities
times our utility for O gives our expected utility for O. The expected utilities
for all the offers in O are then plugged into the soft-max equation (2) to obtain
a probability distribution over offers for the level-N model.

3.3 Emulating and Strategizing Agents

We utilize the models described above in two ways to construct computer agents
that play proposers in our game. Let O be the set of possible offers that the
computer agent can make in a game. Our first approach uses a human model
to achieve a crude form of emulation; the computer agent queries the model to
learn which offer in O, according to the model, a human is most likely to make
and makes that offer. Our second approach uses models of human responders
and proposers to strategize in order to maximize the agent’s expected utility.
Here, the computer agent uses a pattern of reasoning that is identical to a level-
N proposer model, except that the computer agent’s utility function is entirely
selfish (that is, wSB > 0 and wOB = 0). Thus, a strategic computer agent that
uses a level-N proposer model is performing level-N + 1 reasoning.

4 Learning

Models are trained by gradient descent. Let g(selected = O∗|O) be the prob-
ability that some model assigns to the proposal O∗ that was actually selected
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by a human player, given the set of options O. The error function F that we
minimize measures negative log likelihood of the data (containing D decision
instances), given a model:

F = −

D
∑

d=1

ln(g(selected = O∗d|Od)). (8)

The derivative of the error function with respect to some model parameter
wti

l (or vti in R−{}) is

∂F

∂wti

l

= −

D
∑

d=1

∂g

∂w
ti

l

g(selected = O∗d|Od)
. (9)

Let α be our learning rate. The weight-update equation for some model
parameter wti

l is

wti

l ← wti

l − α ·
∂F

∂wti

l

. (10)

To update the probability ρti of type ti in the mixture, we multiply by the
negative of the gradient, which turns out to be equivalent to using Bayes’ rule:

ρti ←−
∂F

∂ρti

· ρti

=

D
∑

d=1

g(selected = O∗d|Od, ti) · ρ
ti

g(selected = O∗d|Od)
.

(11)

Equation (9) requires that we further calculate the partial derivative of func-
tion g, which represents the behavior of our model. Though g varies with each
model, we find that the derivative of g has a similar structure over all models.
The partial derivative of g with respect to some wti

l for our reflexive models
(and R−{}) is:

∂g(O∗|O, ti)

∂wti

l

= g(O∗|O, ti)
(

O∗
l −

∑

k

Ok
l · g(Ok|O, ti)

)

(12)

The partial derivative of g with respect to vti in R−{} is:

∂g(O∗|O, ti)

∂vti

= −
eUti (O∗) · evti

(

evti +
∑

k eUti (Ok)
)2 (13)

The partial derivative of g with respect to some wti

l for model P{R−{}} is:
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∂g(O∗|O, ti)

∂wti

l

= g(O∗|O, ti)
(

O∗
l ·

R−{}

Pr(O∗|O) −

∑

k

Ok
l · g(Ok|O, ti)·

R−{}

Pr(Ok|O)
)

(14)

The partial derivative of g with respect to some wti

l for a level-N model is:

∂g(O∗|O, ti)

∂wti

l

= g(O∗|O, ti)
(

O∗
l · Z(O∗)−

∑

k

Ok
l · Z(Ok) · g(Ok|O, ti)

)

, (15)

where

Z(O) =
∑

C∈C

∑

O∈O|C

Pr(C) ·
P{N−1}

Pr (selected = O|O) ·

R{}

Pr(selected = O|O, φ). (16)

Note that using Equation (15) entails the calculations performed in (7). For
higher level models, this is recursive, making the cost of a level-N model grow
exponentially with N . Thus, only small N are feasible; nevertheless, we do not
expect human reasoning to correspond to large N .

5 Human-Subjects Trials

We recruited 69 human subjects to play our negotiation game for 15 rounds; over
half of their total compensation was determined by the scores they accumulated
over the rounds. Subjects were randomly matched in each round. To emphasize
that they were playing a sequence of one-shot games, not an iterated game,
subjects performed an unrelated activity between rounds. We obtained a total
of 268 games in which all three players were human subjects. Another 221
games involved a human Responder deciding between two hand-crafted offers;
the hand-crafted offers are not used to train proposer models.

Using cross validation, we determined that our model of responder behav-
ior best fit the data with two types; we then used two types for our proposer
models, as well. We trained two responder models R{} and R−{}, and two
level-zero proposer models P{} and P{R{}}. The high cost of training the
level-one models P{R{}, P{}} and P{R{}, P{R−{}}} (≈ 2 hours per epoch of
gradient descent) required us to use an alternative; rather than learn, we chose
to adopt the utility function of R{} to be the utility function for the level-
one proposer models. While necessitated by an impractical training time, this
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approach allowed us to consider the hypothesis that responders and proposers
share the same utility function. Using these models, we constructed six com-
puter proposer agents. Two agents used models P{} and P{R{}}, respectively,
to “emulate” human behavior; these agents make the offer that the model says
a human proposer is most likely to make. The remaining four proposer agents
use the models to construct best replies to what the models say is the expected
behavior of human proposers. We recruited an additional 61 human subjects to
test the performance of our models and agents. Each game-state was used seven
times. In one copy, all players were human. In the other six copies, Proposer 1
was one of our agents, and the other two players were human. This allows us
to compare the performance of Proposer 1 across each copy.

6 Results

Table 1 gives the negative log likelihood of our test data given each proposer
model; smaller numbers are better. Random guessing produces a negative log
likelihood of 537. These results indicate that strategic reasoning fits human
proposer behavior better than reflexive reasoning. Reasoning about both the
responder and other proposer appears to fit human data about the same as
reasoning only about the responder; as we discuss above, however, the level-one
models were not trained, but used the utility function of R{}.

Table 2 summarizes our results from testing our models and computer pro-
poser agents. First, we find that human proposers have many more of their offers
accepted than computer proposers. Yet, we find that all of our best-response
agents each obtain higher total benefits (p < 0.01, paired sign test) in trading
than human proposers. The agent playing best-response to P{R−{}} obtains
the highest total benefit. There is some statistical evidence that this agent
outperforms the agent playing best-response to P{} (p < 0.12); thus, it is in-
sufficient for the computer agent to simply reason about the other proposer—it
is important to reason with a good model. Nevertheless, playing best-response
to P{} outperforms the agent that emulates using P{R−{}} (p < 0.12). The
responder is able to accumulate much higher total benefit when interacting with
human proposers than with our computer agents. Human offers are much more
generous than required in order to be accepted by the responder. This gap be-
tween what human proposers offer and what is required by human responders
is exploited by our best-response agents to give them higher total benefit.

Our data show that human proposers model the responder to reason. Our
data also show that modeling humans as also reasoning under uncertainty about
the other proposer outperforms modeling humans as acting reflexively; never-
theless, the performance of these level-one models do not improve upon the
simpler P{R{}}, which only models the responder, so the extent to which hu-
mans reason under uncertainty is unclear. What is clear, however, is that the
high training cost for our level-one models raises the question of whether it
is worth modeling people as hypothetically filling in missing state information
about other players.
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Table 1: Fit to data (negative log likelihood).

P{} P{R{}} P{R{}, P{}} P{R{}, P{R−{}}}
474 438 443 442

Table 2: Proposer performance. PB is expected total benefit to Proposer 1; RB
is expected total benefit to responder when accepting offers of Proposer 1; AO
is expected number of accepted offers by Proposer 1.

Player Type (Proposer 1) PB RB AO
Human 1292 1609 22.10

Emulator: P{} 529 311 6.75
Emulator: P{R−{}} 1212 667 16.00
Best-response: P{} 1324 379 14.53
Best-response: P{R−{}} 1516 650 16.57
BR: P{R{}, P{}} 1325 365 14.90
BR: P{R{}, P{R−{}}} 1353 398 15.15

7 Conclusion

Our paper concerns strategic human reasoning about others under uncertainty
and its implications for the design of computer agents intended to interact with
humans. We conduct human-subjects trials in which people play a three-player
partial-information negotiation game. We then construct a hierarchy of models
to investigate how people reason. We have shown that humans are not reflex-
ive reasoners, but rather model other players to think strategically. We have
demonstrated that models of human reasoning about others can be effectively
leveraged to construct computer agents that interact successfully with humans;
computer agents outperform human players. Similar demonstrations in other
domains will be useful future work. Also, engineering issues associated with
the execution time of level-one models need to be addressed. We are examining
sampling schemes to make these models feasible to train and use in real time.
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