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Abstract

Some level-2 and level-3 Distributed Basic Linear Algebra Subroutines (DBLAS) that
have been implemented on the Connection Machine system CM—-200 are described. No
assumption is made on the shape or size of the operands. For matrix-matrix multiplica-
tion, both the nonsystolic and the systolic algorithms are outlined. A systolic algorithm
that computes the product matrix in—place is described in detail. We show that a level-3
DBLAS yields better performance than a level-2 DBLAS. On the Connection Machine
system CM-200, blocking yields a performance improvement by a factor of up to three
over level-2 DBLAS. For certain matrix shapes the systolic algorithms offer both improved
performance and significantly reduced temporary storage requirements compared to the
nonsystolic block algorithms.

We show that, in order to minimize the communication time, an algorithm that leaves
the largest operand matrix stationary should be chosen for matrix—matrix multiplication.
Furthermore, it is shown both analytically and experimentally that the optimum shape
of the processor array yields square stationary submatrices in each processor, i.e., the
ratio between the length of the axes of the processing array must be the same as the
ratio between the corresponding axes of the stationary matrix. The optimum processor
array shape may yield a factor of five performance enhancement for the multiplication of
square matrices. For rectangular matrices a factor of 30 improvement was observed for
an optimum processor array shape compared to a poorly chosen processor array shape.

! Also affiliated with the Division of Applied Sciences, Harvard University, Cambridge, MA 02138.



1 Introduction.

This article describes the algorithms used for matrix—vector, vector—matrix multiplica-
tion, rank-1 updates, and matrix-matrix multiplication on matrices distributed across
the memory of the Connection Machine system CM-200. This system has up to 2048
floating—point processors that support operations in both 32-bit and 64-bit precision.
The memory is distributed among the processing units, with a maximum of 4 Mbytes of
memory per unit and a total memory of 8 Gbytes. Each processing unit has a single 32-bit
wide data path to its memory. Data paths internal to the floating—point unit are 64—bits
wide. The processing units are interconnected as an 11-dimensional Boolean cube, with
two channels between every pair of nodes. Data may be exchanged on all 22 (11 x 2)
channels concurrently. For some phases of the algorithms described below this property
is explored.

Throughout this article, the axis enumerating the rows is referred to as the row axis, and
the axis enumerating the columns is referred to as the column azis. For a two—dimensional
data array A(¢,7), the left index refers to the row axis, and the right index refers to the
column axis. A processing node, or simply node, refers to a processor with associated local
memory and communications facilities. Throughout this presentation, it is assumed that
there are N nodes, which for a two—dimensional processor configuration, have N, nodes
along the row axis, and N, nodes along the column axis (N = N, x N.).

The algorithms described here have no restriction on the shape of the matrices or the
number of processing nodes, other than that each operand is assumed to have at least one
element assigned to each node. The processors may be configured as a one-dimensional
array or a two—dimensional array of arbitrary shape. The algorithms presented here
achieve perfect arithmetic load balance. For operand matrices assigned to a subset of
processors, load balancing is an important issue. Algorithms that address load balancing
issues in greater detail are discussed in [17].

The algorithms presented here are data parallel adaptations of the standard matrix mul-
tiplication algorithm requiring 2P@) R arithmetic operations for the multiplication of a
P x @ matrix by a () x R matrix. The index space for these operations is depicted in
Figure 1. R = 1 corresponds to matrix—vector multiplication, P = 1 to vector-matrix
multiplication, and ¢) = 1 to rank—1 updates. The algorithms described here provide
schedules for the operations in space and time that maintain perfect load balance both
with respect to communication and computation whenever there is one data element per
processor.

The data motion requirements and the performance depend strongly on the data allocation
of the operands. The Connection Machine compilers support a global address space and
allocate arrays based on their shapes. The processors are configured for each array such
that the rank of the data array and the processor array are the same. The ordering of the
axes is also the same. When there are more matrix elements than processors, consecutive
elements along each data array axis (a block) are assigned to a processor.

The outline of this paper is as follows. The next section discusses data allocation issues,
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Figure 1: The index space for matrix multiplication.

and their consequences for the multiplication of matrices of arbitrary shapes. Matrix—
vector, vector-matrix multiplication, and rank-1 updates on distributed data structures
are discussed in Section 2. Algorithms for matrix-matrix multiplication are described in
Section 4. A systolic algorithm that keeps the matrix C' stationary is described in detail.
The optimum shapes of the processor array for the different algorithms are also discussed
in this section. Performance data for the Connection Machine system CM-200 are given
in Section 5.

2 Data allocation.

All Connection Machine system compilers support a global address space and allocate
data evenly among the memory modules. Multiple elements are assigned to the same
memory module based on the consecutive (also known as block) data allocation scheme

7, 12].

For multidimensional arrays, the default mode of the Connection Machine compilers con-
figures the processors such that the average number of local references for each remote
reference is maximized when the data references are equally frequent along all array axes
[26]. The area of the faces for a subarray of a given size is minimized. The user can control
the shape of the processor array, that is, the data layout, through compiler directives. An
axis can be forced to be local to a memory module by the directive SERIAL, if there is
sufficient local memory or if the length of the local axis segment is changed by assigning
weights to the axes. High weights are used for axes with frequent references and low
weights for axes with infrequent references. A relatively high weight for an axis increases
the length of the local segment of that axis at the expense of the length of the segments of



the other axes. The total size of the subarray is independent of the assignment of weights.
Only the shape of the subarray changes.

As an example of the data allocations possible under the model used by the Connection
Machine compilers, consider a 64 x 128 array assigned to 64 processors. Each processor
receives 128 elements. With the processors configured as an 8 x 8 array, each processor
receives a subarray of 8 x 16 elements. In the consecutive allocation, the elements of
the subarray are selected as successive elements along the axes. With the processors
configured as a one-dimensional array, each processor is assigned a subarray that is either
of shape 1 x 128, or of shape 64 x 2, depending upon the orientation of the processor
array with respect to the data array. The shape of the processor array clearly does
not affect the number of arithmetic operations to be performed, but it may affect both
the communication requirements and the efficiency in utilizing the arithmetic units, for
example, by changing the vector lengths.

The consecutive allocation scheme selects elements to be assigned to the same processor.
Compiler directives, such as axis weights and SERIAL, address the issue of choosing
the processor array shape. Another data layout issue is the assignment of data sets
made up of consecutive elements along the different data array axis to processors. The
network topology and the data reference pattern are two important characteristics in this
assignment. In a mesh-connected machine it is natural to assign subarrays of one and
two-dimensional data arrays to processors such that the adjacency in the data array is
preserved when mapped to the processor array. Preserving adjacency in mapping data
arrays of at least three dimensions to two-dimensional processor arrays is impossible [24].

The processors in the Connection Machine system, CM—-200, are interconnected as a
Boolean cube with two channels between each pair of processors. Meshes of any dimension
up to the dimension of the Boolean cube are subgraphs thereof. A Boolean cube network
of n dimensions has 2" nodes. The number of dimensions in Connection Machine system
CM-200 ranges from 7 to 11 depending upon system size (the largest system having 16
times more processors than the smallest system). The nodes of a Boolean cube can
be given addresses such that adjacent nodes differ in precisely one bit in their binary
encoding. Assigning subarrays to processors using the standard binary encoding of the
subarray index along an axis, i.e., the node address, does not preserve adjacency along
an axis. For instance, 3 and 4 differ in all three bits in the encoding of the addresses of
8 processors, and are at a distance of three apart. In general, 2°~! — 1 and 277! differ in
n bits in their binary encoding and are at a distance of n. The number of bits in which
two indices differ translates directly into distance in a Boolean cube architecture.

Binary-reflected Gray codes [23] generate embeddings of arrays into Boolean cube net-
works that preserve adjacency [12]. Gray codes have the property that the encoding of
successive integers differ in precisely one bit. In a Boolean cube network successive in-
dices are assigned to adjacent processors. The binary-reflected Gray code is efficient both
in preserving adjacency, and in processor utilization, when the length of the axes of the
data array is a power of two [9]. For arbitrary data array axes’ length, the Gray code
may be combined with other techniques to generate efficient embeddings [3, 10]. Matrix
multiplication algorithms can be formulated for one, two [2, 8, 12], and three-dimensional



[13] meshes, and Boolean cubes [4, 11, 28].

3 Level-2 Distributed BLAS (DBLAS).

All level-2 BLAS [19, 5, 6] involve operations on arrays of different shape. Functions,
such as matrix—vector multiplication, vector-matrix multiplication, and rank—1 updates,
involve both vectors and matrices. With data array allocation based on the shape of the
array, an alignment of the operand arrays with respect to each other is necessary before the
operations can be carried out and the result stored as required. In this presentation, BLAS
operating on distributed data structures are referred to as Distributed BLAS (DBLAS).
The data motion issues for some level-2 DBLAS are discussed briefly below. For a more
extensive discussion the reader is referred to [17].

3.1 Matrix—vector and vector—matrix multiplication.

The evaluation of the matrix-vector product y <+ Az requires the operations:

1. Aligning the vector x with the column axis of A.

2. Spreading the vector = along the row axis of A, such that there is one copy of the
appropriate segment of = for every node.

3. Performing a matrix—vector multiplication concurrently on each node.

4. Performing a reduction along the column axis to form y, aligned with the row axis

of A.

5. Aligning y with its original allocation.

In Step 1, the vector x is placed along a processor row of A, such that the range of inner
indices (corresponding to the ()-axis) in a node is identical for A and x. Step 2 replicates
x such that every node has a segment of the vector = that corresponds to the inner indices
of the rows of A. Step 3 defines N concurrent matrix—vector products followed in Step 4
by N, concurrent summations of V. vectors of length N%.

The Connection Machine system CM—-200 implementation is based on the processing node
description. Local level-2 BLAS [18] are used for the operations in each node. Vector—
matrix multiplication is treated similarly. In [17] it is shown that the data motion for the
alignment of the vectors with the matrix constitutes a shuffle on a suitably defined index
set. Optimal implementations on mesh-connected networks is described in [22] and on
Boolean cube networks in [16]. The communication efficiency can be improved further by
combining the alignment and spread operations (Steps 1 and 2), and the reduction and
alignment operations (Steps 4 and 5) [17].



3.2 Rank-1 updates.

The evaluation of the rank-1 update A «— zy” requires the operations:

1. Aligning the vector x with the row axis of A.
2. Aligning the vector y with the column axis of A.

3. Spreading the vector = along the column axis of A, such that there is one copy of
the appropriate segment of = for every node.

4. Spreading the vector y along the row axis of A, such that there is one copy of the
appropriate segment of y for every node.

5. Performing a rank—1 update on each node.

The above description is made with respect to the processing array. A similar description
in terms of the data array is also possible.

The Connection Machine system CM—-200 implementation uses the processing array de-
scription and local level-2 BLAS for the operations on each node. As with matrix—vector
and vector-matrix multiplication, the alignment can be combined with the spread (Steps
1 and 3 and Steps 2 and 4).

4 Matrix—matrix multiplication (level-3 DBLAS).

Matrix—matrix multiplication is a part of level-3 BLAS. For distributed data structures it
can be constructed out of the level-2 DBLAS described above. In [17] it is shown that for
many distributed memory architectures, including the Connection Machine system CM-
200, level-3 DBLAS is required for high efficiency with respect to data motion. A level-3
DBLAS also allows for the use of local level-3 BLLAS, which may enhance the arithmetic
efficiency. This section generalizes the matrix—vector and vector-matrix level-2 DBLAS
to level-3 DBLAS. The systolic versions of these algorithms are then outlined. One impor-
tant advantage of the systolic algorithms is that unlike the straightforward generalizations
of the level-2 DBLAS, the systolic algorithms preserve the memory requirements.

4.1 Matrix multiplication based on level-2 BLAS functions.

The algorithm for matrix—vector multiplication described in the previous section can be
extended for the matrix—matrix multiplication, C' «+ A x B+ D. By extracting one column
of B (and D) and performing a matrix—vector multiplication, one column of the product
matrix C is generated. This column must be deposited into the matrix C'. The extraction
of the column of B (and D) implies a change of layout, if the default data allocation
strategy of the Connection Machine compilers is used: B (D) is a two-dimensional object,
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and the extracted column is one—-dimensional. Similarly, the column of (' obtained by a
matrix—vector multiplication is one-dimensional, but C' is a two—dimensional object. A
detailed description of the required data motion can be found in [17].

Using a matrix—vector multiplication algorithm from a level-2 DBLAS package requires
that the matrix B be transposed, aligned and spread along the row axis one column
at a time. R calls to the matrix—vector multiplication routine are required. After each
such call, the computed product vector must be aligned and deposited in the appropriate
column of C'. The arithmetic operations local to a node can be based on level-1 or level-2

BLAS, but not level-3 BLAS.

The number of calls to the level-2 DBLAS can be reduced by blocking the columns of
B (and C'). For blocks consisting of b columns, blocking reduces the overhead for both
arithmetic and data motion by a factor of 6. The arithmetic efficiency may also be
improved by the use of level-3 BLAS in each node. The communication efficiency also
increases because of improved load balance in the communication system [17].

With a blocking of b columns, each processing node requires temporary storage corre-
sponding to %b data elements for the b columns of B. When b = R, that is, the entire
matrix B is transposed and aligned with A, then the temporary storage requirements,
due to the blocking, increase by a factor of R compared to the unblocked algorithm. Such
an increase in the temporary storage requirement is often unacceptable. The increased
demand for the temporary storage is due to the spread operation (Step 2 of the matrix—
vector multiplication algorithm). Its function is to assure that each column of B can
interact with every row of A with no motion of A. By modifying the implementation
of the spread such that it is performed in a stepwise manner, the memory requirements
can be preserved. For example, if there is at least one column of B allocated to each of
the N, processor rows after the extraction and alignment of b > N, columns, then the
spread function realizes an all-to—all broadcast [8, 14, 25|, which can be implemented as
N, —1 cyclic shifts. The all-to-all broadcast can utilize the full communications capacity
of Boolean cube networks [1, 14]. The reduction operation required in computing C' can
be expressed similarly.

The level-3 DBLAS matrix—matrix multiplication routine based on extraction of b columns
of B, transposition and alignment, all-to—all broadcasting, all-to—all reduction and align-
ment using a memory preserving all-to—all implementation will be referred to as a sys-
tolic matrix—matrix multiplication algorithm with A stationary. Analogous algorithms
for matrix—matrix multiplication can be defined using either a straightforward general-
ization of the vector-matrix multiplication algorithms, or the rank—1 update algorithms,
or systolic versions thereof. In a vector-matrix type algorithm, B is stationary, while in
a rank—1 update algorithm, C' is stationary.

The arithmetic requirements for the three algorithms is the same. There may be differ-
ences in the arithmetic efficiency due to the different shapes of the submatrices of the
different operands assigned to each processing node. For the systolic matrix—matrix mul-
tiplication algorithm with A stationary and b = R, the transposition and alignment of B
can be performed as one operation. On a Boolean cube network, the optimal implemen-



tation of this operation requires a time proportional to < W The communication time is
independent of the shape of the processing array [16]. The all- to all broadcast operation

for B requires a time proportional to %(N —1) ~ W [14]. Similarly, the
reduction for C' requires a time proportional to m [14]. Finally, the alignment of C
requires a time proportional to . Therefore, the optimal configuration of the processing
array satisfies £ = %Tllogz’ xc, or N R~ ,/ P and N, ~ VP N9 for P~ Q.

082
The optimal shape of the processing array is approximately congruent to the shape of
the stationary matrix A. Similarly, the optimum processing array shape of the systolic

algorithm with B stationary is congruent to B, and the optimum processing array shape
of the array with € stationary is congruent to C.

In the Connection Machine Scientific Software Library (CMSSL) [27] nonsystolic algo-
rithms are used for the cases with A and B stationary, while either a nonsystolic or sys-
tolic algorithm is used for the case with ' stationary. The performance depends strongly
upon the shape of the operands. In [17], it is shown that as a first approximation, the
optimal algorithm keeps the matrix with the largest number of elements stationary.

Next, the systolic matrix—matrix multiplication algorithm with C stationary that is used
in CMSSL is presented in detail.

4.2 Systolic matrix multiplication with C stationary.
4.2.1 Square processor arrays, N. = N,.

This algorithm assumes that each of the three operands has at least one element assigned
to each processor. The processors are configured as a two—dimensional array. A binary—
reflected Gray code encoding is used for each axis, such that adjacency in the data array
is preserved in the distributed memory organized as a Boolean cube. A consecutive
data allocation scheme is assumed. This section describes a block algorithm for square
processor arrays. The next section generalizes the algorithm for rectangular processor
arrays. Blocking reduces the number of local memory moves and allows for the use of

level-3 BLLAS on each node.

With the product matrix €' stationary, for each element ¢;; « 2222—01 aipby; of C, the
corresponding elements of A, a;;, and B, by, for k € {0,1,2,...,Q—1}, must be moved to
the processing node where ¢;; resides, for all ¢ € {0,1,2,..., P—=1}and j € {0,1,2,..., R—
1}. The set of processing nodes to which row 7 of C is assigned must all receive every
element of row ¢ of A. Similarly, the set of processing nodes to which column j of C is
assigned must all receive every element of column j of B. In the index space, this is an
all-to-all broadcast [14] within the rows of A and the columns of B. It is assumed that
matrix rows are aligned with processor rows and matrix columns with processor columns.
This assumption is consistent with the compiler generated data layout.

Recall that the nonsystolic rank—1 update algorithm realizes the all-to—all broadcast as a
sequence of spreads. The temporary storage requirements for the blocked version of this



algorithm increase by a factor of b compared to the nonblocked algorithm. To reduce the
temporary storage, the all-to—all broadcast operation is performed stepwise through cyclic
shifts [21]. This introduces an alignment requirement between A and B. In evaluating
the expression ¢;; 2222—01 a;by;, only processors where the inner index £ is identical for
both A and B can participate in the computation. For a square processing array, the
inner indices initially are the same for A and B only in the processors on the diagonal
of the array. This property is true for matrices of any shape and any square processor
array®. To increase the processor utilization, the matrices must be “aligned” such that
the inner indices are identical in all nodes. A transposition of B or A would clearly align
the inner indices, but partial products for C' would then have to be accumulated in space.
The following algorithm aligns A and B such that all processors can participate in the
evaluation of ', without any data motion for C.

Let 0 <e < P,0 < k< @,and 0 < j < R denote matrix element indices, and 0 < ¢ < N,
and 0 < m < N, denote indices for the processor array elements. Since N, = N, the
partitioning of the inner axis () is the same for A and B. Assume that P = aN,, ) = N,,
and R = vN.. An alignment such that processor (¢,m) is assigned matrix elements

A: (al + ¢, (L +m) mod Q 4 x), where 0 < ¢ <, 0 <y < 3
B: (B({+m)mod Q + x,ym + 1), where 0 < y < #,and 0 <t <~
C: (al + ¢, ym +)

ensures that the range of inner indices for A and B are identical on each processor. This
property is true for arbitrary values of o and ~. Moreover, the range of indices for the P
axis 1s the same for A and €', and the range of indices for the R axis is the same for B
and (' in each processor.

The stepwise all-to—all broadcast operation can be performed by using cyclic shifts. The
data motion for the multiplication of A with B at each step may be expressed as

A (el + ¢, 8(L+m)mod Q + x) « (al+ ¢, ({+m+1) mod @ + x), where 0 < ¢ < «,
0<x<p

B: (B{L+m) mod @+ x,ym+¢) — (B(E4m+1) mod Q+x, ym + 1), where 0 < x < 4,
and 0 <o <.

The shift operation must be repeated N, —1 = N, — 1 times. Clearly, the inner indices
of the two matrices are identical for each step of the algorithm. The correctness of the
algorithm follows. After the alignment, and after each cyclic shift, matrices of shape a x 3
and 3 X v are multiplied on each processor. In the Connection Machine system CM-200
implementation described here, level-2 BLAS are used for the local matrix multiplication.

For P = N, and R = N,, the algorithm described above degenerates to the algorithm in
[2]. For certain high degree networks, such as Boolean cubes, multiple exchange sequences
can be used to make effective use of the communications bandwidth [11].

Remark 1. No local data motion is required between the cyclic shifts moving data
between processors. Emulating a large virtual processing array naively on the physical

?Note, however, that if the layout rule is to minimize the surface area for a given subarray, then for a
rectangular matrix the processors will not be configured as a square array.
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10|11 12|13 |14 |15)16|17 1011 1211314151617
2002112212324 |25)26]27 201212212324 ]25]26 |27
30131 132]33]34|35]36|37 30131132|33]34135]36|37
40141 |42]43 |44 4546 147 401411424344 |45]46 |47
5015115215354 |55]56 |57 S0151152153|54155]56 |57
60161 162]163]64]65]66]67 60]61162]63]64]165]66|67
TOY7L 72| 73|74 75)76|77 T0)7L 72| 73|74 75|76]T7
A B

Figure 2: Allocation of 8 x 8 matrices to a 4 X 8 processor array.

array of shape N, x N. would result in excessive local data motion. The data motion
between the processing nodes would be the same.

Remark 2. With the positive axis direction coinciding with increasing column indices
and decreasing row indices, A is shifted in the negative direction and B in the positive
direction. Shifting A in the positive axis direction and B in the negative direction also
yields a valid algorithm. Further, the submatrices for A and B can be split into two parts,
such that different parts are shifted in different directions. This observation is useful on
architectures where the primitive communication operation is an exchange, which is the
case for the Connection Machine system CM-200. Moreover, the data motion of A and
B can be performed concurrently.

Remark 3. The correctness of the above algorithm relies on the range of the inner indices
being identical for A and B. If N, # N., this property is not true. This restriction is
relaxed in the next section.

4.2.2 Rectangular processor arrays, N, # N..

Figure 2 shows the allocation of square 8 x 8 matrices to 32 processors configured as a
4 x 8 array. The length of the segment of the inner axis assigned to a processor is different
for A and B. Figure 3 shows the result of an alignment and the first two steps of the
multiplication phase. For the example, in Figures 2 and 3, the all-to—all broadcast of the
multiplication phase requires 8 cyclic rotation steps for A and 4 steps for B, since there
are 8 processor columns and 4 processor rows. Figure 3 shows the locations of elements
after the first and second cyclic shift of A and the first shift of B. After the alignment,
all elements of A and half of the elements of B participate in the local multiplication.
After the first cyclic shift of A, all its elements are again participating in local matrix
multiplications, with the previously unused elements of B. After the second cyclic shift of
A and the first cyclic shift of B, all elements of A and the “first” half of the elements of
B are used in the same way as after the alignment. After this sequence is repeated four
times, the matrix C' is computed.
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00]|01]|02]03]04]|05]06]07 00]|11]|22]33]|44]|55]|66]|77
10|11|12|13|14|15]16|17 1021132435465 76|07
22|23|24]25|26]27]20]21 20|31|42|53|64|75]|06]|17
32|33|34]35]36|37]30]31 30141152163 74]05]16|27
44|45]|46](47]40]41]42]43 40]51|62]|73|04]|15]26]37
54|55|56|57|50|51|52]53 50161 72]03]14]25]136 |47
66]|67]|60|61]62|63|64]|65 60[|71]|02]13]|24]|35]46]57
T6|TT|70|T1|72]73| 74|75 70101 |12]23]34]45]56 |67
Matrix A aligned Matrix B aligned

Rotate A, Multiply and Add

01|02]|03]04]05]06]07]00 001112233 ]44155|66|77
11|12|13|14|15]|16[17]|10 10|21|32]43]54|65|76|07
23|24|25|26|27]20]|21|22 2013114253164 75|06 |17
33|34|35]36]37]|30|31}32 30]|41]52]|63|74|05]16]|27
45|46|47(40]41]|42]43]44 4015116273104 115126 |37
55|56|57|50]|51|52|53]|54 50(61|72|03|14|25]|36]|47
67]60]|61]|62]63|64|65]66 601 71102|13]24]35]46|57
TT|70|71|72|73|74|75]76 70|01|12]|23|34|45]56]|67
Matrix A shifted left 1 step Matrix B aligned

Rotate A and B, Multiply and Add

02]|03]04]05]06|07]00J01 20|31|42|53|64|75]|06]|17
12|13|14|15|16|17]10|11 3014152163 74]05]16]27
24|25|26|27|20|21|22]23 40]51|62]|73|04]|15]26]37
34|35|36(37]30]|31]32]33 501617210314 |25]36 |47
46|47|40|41]|42]43|44]|45 60[|71]|02]13]|24|35]46]57
56|57|50|51|52]|53|54|55 700011122334 |45]56 |67
60]|61]|62]|63|64|65]66]67 00]|11]|22]33]|44]|55]|66]|77
70|71|72|73|74|75]76]|77 10]21132]43]54165] 76|07

Matrix A shifted left 2 steps Matrix B shifted up 2 steps

Figure 3: Matrix multiplication on a 4 x 8 array.
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In Figure 3 all operations requiring a given submatrix are carried out before the entire
submatrix is moved to the adjacent processor. No local data motion is required. When the
inner axis extent per processor is different for A and B, which is the case for a rectangular
processor array, then only a fraction of the local submatrix with the largest inner axis
segment is used in a local matrix multiplication for each rotation step of the submatrix
with the shortest inner axis segment. The submatrices are fully used for each rotation
step in which it participates. If the number of processors assigned to one axis is a multiple
of the number of processors along the other axis, for example, N. > N, as in Figure 3,
then C rotation steps are performed along the longer axis for every rotation step along
the shorter axis. A more general case is shown in Figures 4 and 5.

Let P,QQ > N, and Q,R> Nc, and N = N, x N, with no other restriction on N, and N,,

and let 8, = < and 3, = <. For arbitrary values of N, and N., define a square virtual

processor array of shape gcd](V]TVNCN) X ngJ(V]T\,N% 7 Let ¢V, m" identify a block in the virtual
v U rivVe rivVe v cd NTvNC

array: ((V,m") € {0,1,. "77gcd]27NNN 1} x{0,1,. "77gcd]27NNNc 1}. Let g¥ = (7@ N(TNC )]

After the alignment of the operands with respect to each other and the establishment of
a shared processor array shape, the index assignment for physical processor (¢, m) is:

A: (al+9, 5v((mgcd(%:7Nc) —|—€gcd(%f7Nc)) mod %)‘H@ (al+0, (Bem+5,0) mod Q+
X), where 0 < ¢ < a and 0 < y < f3..

B (BU((¢ god NT,NC) + mgcd(]]\\;h]\fc)) mod gcdjzfjr\f]:i%c)) +x,ym + ) = (8,4 + Bem) mod () +
X, ym + ), where 0 < y < 3, and 0 < ¢ < 7.

C: (ol + ¢, ym +1b).

Note that after the alignment, all arrays are allocated to the processors assuming the
same processor array configuration.

Clearly, for every processor, the smallest inner index for A and B is identical. But, the
range of inner indices, y, is different for A and B. The number of identical indices is

min(f3,, 8:). The number of local blocks along the inner axis of A is m, and of B
Ne

is ged(Ny No)©

For the multiplication phase, N. shifts are required for A and N, shifts for B. When
N. > N,, | CJ shifts of A are performed without any shift of B. For each such shift, a
rank- 3, updarte is performed concurrently on all nodes, consuming the entire submatrix
of A on a node. For each shift the indices of A on a node changes as: (ol + ¢, (F.m +
B:l) mod Q@ + x) «— (ol + &, (B:(m + 1) + ,.0) mod @ + x). The next shift of A, shift

L%J + 1, brings in the indices of A that correspond to the remaining inner indices of
Br

B (if N, is not a multiple of N,) and some additional indices. A ramk—modlﬁc
is performed first to consume all inner indices of B, followed by a move of B, and a
rank-(3. — mod %) before A is moved again. The cyclic shift of B brings about the index
change: (3.0 + B.m) mod Q + x,ym + ) — ((3.,({+ 1) + fom) mod Q + x,ym + ). If

N, > N, then B is moved more often, and a similar analysis applies. The index sets for

update

the blocks each processor receives are monotonically increasing, contiguous and periodic.
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00 01102 03104 05 00 01]02 03104 05
10 1112 1314 15 10 1112 13|14 15
20 21|22 23|24 25 20 21|22 23|24 25
30 31132 33|34 35 30 31132 33|34 35
40 41142 4344 45 40 41142 43144 45
50 51|52 5354 55 50 51|52 53|54 55
Matrix A Matrix B
Align
00 01)02 03|04 05 00 01|22 23|44 45
10 11}12 13|14 15 10 11132 33|54 55
20 21)22 23|24 25 20 21142 43104 05
33 34135 30|31 32 30 31|52 53|14 15
43 44|45 40|41 42 40 41|02 03)24 25
53 54155 50|51 52 50 51112 13134 35
Matrix A aligned Matrix B aligned

Rotate A, Multiply and Add

02 03]04 05]00 01 00 0122 23|44 45
12 13|14 15|10 11 10 1132 33|54 55
22 23|24 25]20 21 20 21j42 43|04 05
35 3031 32|33 34 30 31|52 53|14 15
45 40141 42]43 44 40 41102 0324 25
55 50|51 52|53 54 50 51]12 13|34 35
Matrix A left shifted 1 step Matrix B aligned

Rotate B, Multiply and Add

02 03104 05]00 01 30 31|52 53|14 15
12 13114 15|10 11 40 41102 03124 25
22 23124 25]20 21 50 51112 13134 35
35 30]31 32]33 34 00 01|22 23|44 45
45 40141 42|43 44 10 11132 33154 55
55 50151 52153 54 20 21142 43104 05

Matrix A left shifted 1 step Matrix B shifted up 1 step

Figure 4: Matrix multiplication on a 2 x 3 array.
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Rotate A, Multiply and Add

04 O5|OO 01|02 03 30 31152 53|14 15
14 15|10 11|12 13 40 41|02 03)24 25
24 25)20 21|22 23 50 51]12 13|34 35
31 32|33 34|35 30 00 0122 2344 45
41 42)43 44]|45 40 10 11132 33|54 55
51 52153 54|55 50 20 21j42 43|04 05

Matrix A left shifted 2 steps Matrix B shifted up 1 step
Figure 5: Matrix multiplication on a 2 X 3 array, last step.

The pseudocode for the above algorithm is given in the Appendix.

Claim 1. By performing the alignment along the longest axis as if the processor array was
square with the number of processors along each axis equal to the number of processors
along the shortest axis, and the alignment along the shortest axis as if the processor
array was square with the number of processors along each axis equal to the number of
processors along the longest axis, the multiplication of two matrices can be accomplished
by performing the minimum number of rotation steps along each axis.

The correctness of the claim follows from the algorithm outlined above. Figures 4 and 5
show an example where the least common divisor of N, and N, is 1.

Remark 4. There is no local data motion (except what is required by the local BLAS)
as was the case for a square processing array. Entire submatrices are moved between
processors when necessary.

Remark 5. If one of the axes is not a multiple of the other, then not all local matrix
multiplications are of the same rank. A uniform rank can be achieved without extra local
memory moves, but at the expense of having some shifts use different block sizes and
more complex memory management.

Remark 6. As in the case of a square processing array, A and B can be split into two
halves, such that an exchange operation can be performed along each axis. Note also that
moves on the two axes may not always be performed concurrently, since the longer axis
requires more cyclic shifts than the shorter axis. Furthermore, in general the submatrices
of A and B on each node are of different size, and a complete overlap of the motion of
A and B is impossible even for a square processor array. If the lengths of the axes are
relatively prime, then no communication is overlapped between A and B.
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4.3 Optimum shape of the processor array.

Ignoring the effects of the ceiling functions, the speedup of the arithmetic operations
is perfect and independent of the shape of the processor array. With the inner axis
en.tirely i.nstantiat.ed in. time, the matrix prf)duct I:eqt.lires.Z (N%W (Nﬁj (Q gC]%,(T]]VVZ’NC)W ngN]TV]ZM)
arithmetic operations in sequence. The arithmetic time is proportional to the number of
matrix elements of C' per physical processor, the order of the rank (ww updates,

NN,
and the number of such updates in sequence.

The communication time for the multiplication phase is proportional to (NLW (%W (N.—1)

for A and to (NQJ (Nij (N, — 1) for B. The communication time is entirely due to the all-
to—all broadcast. Reference [14] shows that the above broadcast times are optimum when
communication is restricted to one channel at a time per processor. With concurrent com-
munication on all channels of every node of a Boolean cube network, the communication

time can be reduced by a factor of log, V. for A and a factor of log, N, for B [11, 14].

The alignment phase for the Connection Machine system CM-200 implementation com-
bines establishing a shared processor configuration for the three arrays with the alignment
of the matrices with respect to each other. This operation is performed by the router.
Reshaping the processor array for an operand, if necessary, constitutes a shuffle operation
on a suitably defined index set. For the Connection Machine system, CM—200, reshaping
the processor array implies that the number of processors along one axis is reduced by
some power of two, while the number of processors along the other axis is increased by
the same factor. Figure 6 gives an example in which a 2 X 4 processor array is reshaped
into a 4 X 2 array. The number of partitions along the first axis doubles, while the number
of partitions along the second axis is reduced by a factor of two. To verify that this oper-
ation is a shuffle, introduce a second index for the partitioning of the set of matrix rows
initially in each processor. Then the content of the first two processor columns before
the reshape operation is formed by blocks labeled 00,01,10,11,20,21,30 and 31, where the
first index denotes the processor to which the block of rows is assigned. After reshaping
the processor array, processor 0 contains blocks 00 and 20, processor 1 blocks 01 and 21,
processor 2 blocks 10 and 30, and processor 3 blocks 11 and 31. This reallocation can
be described as the reordering of the sequence 00,01,10,11,20,21,30,31 into the sequence
00,20,01,21,10,30,11,31. This reordering is known as a shuffle. Optimum Boolean cube
algorithms are given in [15, 16]. With concurrent communication on all channels of every
processor, as in the case of the Connection Machine system CM-200, the optimum time
for the reshaping is independent of the axes extent and is proportional to the number of
elements per processor.

The alignment of the matrices with respect to each other implies a skewing of rows with
respect to each other for A and a skewing of columns with respect to each other for
B, if a shared processor array shape has already been established. The skewing can be
performed as a sequence of cyclic shifts, with the number of cyclic shifts depending upon
the processor row for A and the processor column for B. On a Boolean cube network,
it is conjectured [12] that the data motion for this operation can be pipelined, and that
the communication time is proportional to the number of elements per processor and
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Figure 6: Reshaping a processor array.

essentially is independent of the shift length and the number of processors. Hence, it is
expected that the time for the combined processor array reshaping and matrix alignment
is proportional to the size of the submatrices assigned to each processor, and almost
independent of the machine size. The measurements reported in Section 5 show that this
assumption is valid for the Connection Machine system CM-200 router.

The number of arithmetic operations in sequence is independent of the processor array
shape. To a first approximation, the alignment /reshaping is also independent of the array
shape. Hence the optimum shape is determined solely by the time for the all-to-all
broadcast in the multiplication phase.

Claim 2. The optimum aspect ratio of the physical processor array is the same as the

aspect ratio of the product matriz C', i.e., N, = \/?N and N, = %, or % = %.

The claim follows directly from the expressions for the time required for all-to—all broad-
cast, and is verified experimentally in Section 5. Note that the optimum two-dimensional
processor array shape is the default processor array shape for C (assigned by the Con-
nection Machine compilers).

The communication times for the multiplication phase may be reduced further by con-
figuring the processors as a three-dimensional array [13] and by using all communication
channels in Boolean cubes [11]. During the multiplication phase, the algorithm described
here and used for the performance data reported in the next section, concurrently uses at
most only four channels per processor.

5 Performance.

Table 1 and Figures 7, 8 and 9 give the performance of the matrix—vector, vector-matrix,
and rank-1 update routines for square matrices. For real operands, the peak performance
of the three algorithms in 64-bit precision is 4500 Mflops/s, 5825 Mflops/s, and 3266
Mflops/s, respectively. The corresponding peak performance of the three algorithms for
complex operands is 9200 Mflops/s, 11950 Mflops/s, and 4900 Mflops/s respectively. The
improvement in performance, for a fixed number of processors, is primarily due to an
increased efficiency of the local level-2 BLAS.

Table 2 gives the performance for the local matrix—vector multiplication kernels [18]. The
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Matrix Mflops/s Time (millisec)
shape Number of processors Number of processors
P x P [ 256 512 ] 1024 [ 2048 | 256 [ 512 | 1024 | 2048
Matrix—vector multiplication

512 1 107 | 104 | 128 | 143 | 4.9 | 5.0 4.1 3.7
1024 | 233 | 279 | 405 | 411 | 9.0 | 7.5 5.2 5.1
2048 | 443 | 596 | 908 | 1122 | 18.9 | 14.0 9.2 7.5
4096 | 697 | 1067 | 1643 | 2330 | 48.2 | 31.4 | 204 | 144
8192 | — — | 3056 | 4541 — — | 43.9 ] 29.6
Vector-matrix multiplication
512 | 105 | 124 | 125 | 147 | 5.0 | 4.2 4.2 3.6
1024 | 266 | 325 | 406 | 474 7.9 | 6.5 5.2 4.4
2048 | 496 | 838 | 918 | 1246 | 16.9 | 10.0 9.1 6.7
4096 | 790 | 1462 | 2121 | 2709 | 42.5 | 22.9 | 15.8 | 124
8192 | — — | 3913 | 5829 — — | 34.3 | 23.0
Rank-1 update
5121 99 | 111 | 119 129 53| 47| 44| 4.1
1024 | 213 | 278 | 380 | 426 | 9.9 | 7.5 5.5 4.9
2048 | 346 | /77| 763 | 1078 | 24.3 | 14.5 | 11.0 7.8
4096 | 453 | 823 | 1450 | 2007 | 74.1 | 40.8 | 23.1 | 16.7
8192 | — — | 1901 | 3266 — — | 70.6 | 41.1

Table 1: Performance data for matrix-—vector, vector-matrix, and rank-1 updates on
different Connection Machine system CM—-200 configurations, 64—bit precision.
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Figure 7: Execution rates for multiplication of a P x P matrix by a vector on Connection
Machine system CM-200 with N processors, 64—bit precision.

Gflops/s & P— 512
6 ©: P=1024 A
O: P=2048
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Figure 8: Execution rates for multiplication of a vector by a P x P matrix on Connection
Machine system CM-200 with N processors, 64—bit precision.
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Figure 9: Execution rates for rank—1 updates on P x P matrices on Connection Machine
system CM-200 with N processors, 64-bit precision.

performance of the local kernels for 256 x512 submatrices is almost three times higher than
for 4 x 8 submatrices. Note that the performance numbers in this table correspond to one
floating point unit of the Connection Machine system CM—-200. The peak performance for
the rank—1 update kernels is approximately 25% of the peak performance of the matrix—
vector multiplication kernels.

When there is at least one data element per processor for each operand, almost 30% of
the total time of the matrix—vector multiply is spent in the local level-2 BLAS. Another
35% of the total time is spent in the two align operations (Steps 1 and 5 of the algorithm
in Section 3). The remaining 35% is spent in the spread (Step 2) and reduction (Step 4)
operations. The main reason for the difference in the peak performance of the matrix—
vector and the vector-matrix implementations is the asymmetry in the communication
times for the align operations in Steps 1 and 5 are significantly different. Moreover, for
rectangular processor layouts, the time for the spread and the reduction operations are
considerably different. The peak performance of the rank—1 update is significantly less
than the peak performance of the matrix—vector and the vector-matrix functions primarily
because of the lower efficiency of the corresponding local level-2 BLAS.

Tables 3 — 4 and Figures 10 — 14 give some performance data for the systolic matrix—
matrix multiplication algorithm with the product matrix stationary and with processors
configured as a two—dimensional array. For a given machine size, the performance in-
creases as the size of the submatrices on the processing nodes increases. The overall
performance for the square matrix multiplication increases by a factor of nearly 15 as the
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DGEMYV

Number of Number of columns

Rows 2 3 4 5 8 16 32 64 | 128 | 512 | 2048
21064089 1.10|1.29|2.03|3.04|3.93|4.67|5.17|5.62| 5.74
31091 125|153 |1.798|2.71|4.20|5.15|5.80|6.21 | 6.56 | 6.66
4113|154 | 1.88 (217 |3.22|4.44 | 551 |6.26|6.72 | 7.12 | 7.23
5
8
6

1.33 1 1.80 | 2.18 | 2.51 | 3.64 | 5.23 | 6.21 | 6.84 | 7.22 | 7.54 | 7.63
1.80 | 2.39 | 2.87 | 3.26 | 4.47 | 5.82 | 6.85 | 7.51 | 7.90 | 8.11 | 8.22
2.54 1329 | 3.79 | 4.25 | 5.58 | 6.89 | 7.80 | 8.35 | 8.65 | 8.90 | 8.97
321279360 | 411|469 | 592 | 7.14 | 7.95 | 844 | 8.70 | 8.92 —
64 | 3.19 | 4.10 | 4.60 | 5.12 | 6.37 | 7.52 | 8.26 | 8.69 | 8.93 | 9.11 —
128 | 3.33 | 4.20 | 4.74 | 5.22 | 6.49 | 7.60 | 8.30 | 8.70 | 8.92 — —
512 | 3.45 | 4.33 | 4.86 | 5.30 | 6.53 | 7.57 | 8.22 | 8.60 — — —
2048 | 3.49 | 4.89 | 4.91 | 5.34 | 6.57 | 7.60 — — — — —

Table 2: Execution rate in Mflops/s for matrix-vector multiplication on one Connection
Machine system CM—-200 floating—point processor, 64—bit precision.

size of the submatrices increases from 4 x 8 to 256 x 512 (Figure 12). For a given processor
configuration the communication time for A increases in proportion to P and (), and for
B in proportion to () and R. The number of arithmetic operations increases in proportion
to P, (), and R. Hence, the relative influence of the communication decreases with an
increased matrix size. However, the influence decreases less rapidly than predicted by this
simple analysis, because the effective floating point rate of the local BLAS increases with
the size of the submatrices. It is clear from Table 4 that there are no size restrictions on
the extents of the matrix axes.

Table 5 provides some additional insights into the behavior of the systolic matrix—matrix
multiplication routine with the product matrix stationary. As a first approximation, the
alignment time is proportional to the number of matrix elements per processor. There is
a slight increase in the alignment time with the machine size (about 6 — 7% for a factor
of 4 increase in machine size (not reported in the tables)). The time for cyclic shifts is
proportional to the number of elements per processor and the number of shifts along an
axis. The dependence of the time for cyclic shifts upon the number of elements per node
is verified by the measurements in Table 5. The Connection Machine model CM-200
communication system allows data to be exchanged concurrently on all channels of every
processor. Each of the operands A and B is split into two halves, one half moving in
the positive direction of an axis and the other half in the negative direction. Moreover,
equal-sized parts of A and B are moved concurrently whenever possible. Recall that for
rectangular arrays more cyclic shifts are required for the longer axis and that for different
sized matrices the submatrices are of different size.

The overall performance as a function matrix sizes and the number of processors is shown
in Figures 10 and 11. Increasing the number of processors by a factor of four and config-
uring the machine as a square array reduces the number of matrix elements per processor
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by a factor of four, but doubles the processor axes’ lengths. The time for the alignment
is reduced by almost a factor of two, and the time for the cyclic shifts is reduced by a
factor of two. The number of arithmetic operations per processor for square matrices
and processing node configurations decreases by a factor of eight for each local matrix
multiply. However, the number of calls to the local matrix multiply function increases by
a factor of two. The loss in efficiency in the local level-2 BLAS because of a reduced size
of the submatrices, does not quite reduce the arithmetic time by a factor of four. The
relative importance of the communication increases by about a factor of two.

For double precision operands, the systolic multiplication phase (local matrix multiply and
cyclic shifts in Table 3) has a peak floating—point rate of approximately 11 Gflops/s. After
accounting for the alignment and reconfiguration phases, the overall algorithm peaks at
nearly 10 Gflops/s. The overall peak performance of the algorithm for complex matrices

(N =8192) is 12.5 Gflops/s.

Figures 13 and 14 show how the performance of the systolic algorithm for the multi-
plication of a rectangular matrix and a square matrix varies with the machine size (C
stationary). The speedup with the machine size is almost identical for the different ma-
trix shapes and is linear in the machine size. The efficiency for matrices of a given size
decreases with machine size, as explained above. The speedup is approximately 5 for an
increase in machine size by a factor of 8.

Figure 15 shows the dependence of the performance upon the shape of the product ma-
trix for the systolic algorithm with C' stationary. For a given inner dimension (), the
performance is approximately independent of the values of P and R for P x R = const.
The performance increases with the value of the constant and increased values of ). The
deviation from perfect symmetry is due mostly to the fact that a Connection Machine
system CM—-200 with 2048 processors cannot be configured as a square array. In this case,
one of the pairs in each symmetric case (P x R and R x P) may incur a reallocation of the
product matrix, while the other case does not. The asymmetry is very small for machine
sizes for which the number of floating-point processors is a square, as seen from Table
3. Note that in Figure 15 P and R are expressed relative to (). Hence, the increased
performance as () increases, since all three local axes increases with an increased value of

@ for fixed ratios of P/() and R/Q).

Figures 16 and 17 illustrate the influence of the shape of the shared processing node
configuration on the overall performance of the systolic matrix multiply algorithm with
(' stationary. For square operand matrices, when the processing nodes are configured as
a linear array (N, = 1 or N, = 1), the number of cyclic shifts that are required for the
all-to—all broadcast in the multiplication phase completely dominates the algorithm. For
the square matrices considered in Figure 16, the total number of cyclic shifts is minimum
when N, = N.. For the rectangular shapes illustrated in Figure 17, performance is optimal
when the shared processor configuration is of the same shape as the product matrix when
P < R. For the case when P > R, the default processor layout for the product matrix
makes it essential for the Connection Machine system CM-200 implementation to do one
extra route operation to reconfigure the product matrix. This extra communication step
shifts the optimum floating point rate versus shared processor configuration to the left.
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Matrix shape Mflops/s Time (sec)
PxQXxR Number of processors Number of processors
256 | 512 | 1024 | 2048 256 512 1024 2048
1024 x 1024 x 128 | 300 | 365 | 704 | 838 | 0.895| 0.735| 0.381 0.320
1024 x 1024 x 256 | 377 | 548 | 826 | 1339 | 1.424 | 0.980 | 0.650 0.401
1024 x 1024 x 512 | B39 | 736 | 1289 | 1729 | 1.921 | 1.459 | 0.833 0.621
1024 x 1024 x 1024 | 744 | 1079 | 1788 | 2647 | 4.022 | 2.544 | 1.745 1.054
512 x 1024 x 1024 | 534 | 844 | 1231 | 2038 | 2.011 | 1.272 | 0.872 0.527
256 X 1024 x 1024 | 403 | 597 | 913 | 1366 | 1.332 | 0.899 | 0.588 0.393
128 x 1024 x 1024 | 271 | 389 | 609 | 987 | 0.991 | 0.690 | 0.441 0.272
2048 x 2048 x 128 | 521 | 674 | 1244 | 1608 | 2.061 | 1.593 | 0.863 0.668
2048 x 2048 x 256 | 476 | 622 | 1236 | 1520 | 4.512 | 3.453 | 1.737 1.413
2048 x 2048 x 512 | 649 | 815 | 1515 | 2507 | 6.618 | 5.270 | 2.835 1.713
2048 x 2048 x 1024 | 908 | 1257 | 2252 | 3177 | 9.460 | 6.834 | 3.814 2.704
2048 x 2048 x 2048 | 1128 | 1724 | 2975 | 4646 | 15.230 | 9.965 | 5.775 3.698
1024 x 2048 x 2048 | 871 | 1417 | 2194 | 3687 | 9.862 | 6.062 | 3.915 2.330
512 X 2048 x 2048 | 685 | 1039 | 1686 | 2509 | 6.270 | 4.134 | 2.547 1.712
256 X 2048 x 2048 | 470 | 740 | 1167 | 1849 | 4.569 | 2.902 | 1.840 1.161
128 x 2048 x 2048 | 481 | 879 | 1189 | 1909 | 2.232 | 1.222 | 0.903 0.562
4096 x 4096 x 256 | 743 | 1074 | 2044 | 2797 | 11.560 | 8.000 | 4.203 3.071
4096 x 4096 x 512 | 706 | 1033 | 1967 | 2608 | 24.334 | 16.631 | 8.734 6.587
4096 x 4096 x 1024 | 1020 | 1336 | 2546 | 4351 | 33.686 | 25.718 | 13.500 7.897
4096 x 4096 x 2048 — | 1892 | 3513 | 5365 — | 36.321 | 19.561 | 12.809
4096 x 4096 x 4096 | 1516 | 2348 | 4327 | 7318 | 90.650 | 58.534 | 31.763 | 18.781
2048 x 4096 x 4096 | 1263 | 2031 | 3486 | 6106 | 54.410 | 33.835 | 19.713 | 11.254
1024 x 4096 x 4096 | 1050 | 1636 | 2816 | 4552 | 32.724 | 21.002 | 12.202 7.548
512 X 4096 x 4096 | 786 | 1152 | 2025 | 3425 | 21.857 | 14.913 | 8.484 5.016
256 X 4096 x 4096 | 748 | 1392 | 2004 | 3539 | 11.484 | 6.171 | 4.286 2.427
256 X 256 x 256 | 240 | 320 | 497 | 668 | 0.140 | 0.105 | 0.068 0.050
512 x 512 x 512 | 439 | 609 | 987 | 1400 | 0.612 | 0.441 | 0.272 0.192
1024 x 1024 x 1024 | 744 | 1079 | 1788 | 2647 | 2.888 | 1.991 | 1.201 0.811
2048 x 2048 x 2048 | 1128 | 1724 | 2975 | 4646 | 15.232 | 9.965 | 5.776 3.698
4096 x 4096 x 4096 | 1517 | 2348 | 4327 | 7318 | 90.650 | 58.547 | 31.767 | 18.781
8192 x 8192 x 8192 — — — 19929 — — — | 110.737

Table 3: Performance of the systolic matrix multiplication algorithm with C stationary
on some Connection Machine system CM-200 configurations, 64-bit precision.
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Matrix shape Gflops/s
P x P x P | Real | Complex
6400 | 9.3 12.5
6656 | 9.5 12.7
6912 9.6 12.8
7168 | 9.8 12.9
7424 9.9 13.0
7680 | 10.1 13.2
7936 | 10.3 13.3
8192 | 10.6 13.6
8448 | 10.6 13.6
8704 | 10.7 13.6
8960 | 10.8 13.7
9216 | 11.0 13.9
9472 | 11.1 14.0
9728 | 11.3 14.1
9984 | 11.3 14.1
10240 | 11.5 14.3
10496 | 11.6 14.3
10752 | 11.7 14.4
11008 | 11.8 14.5
11264 | 11.9 14.6
11520 | 11.9 14.5
11776 | 12.1 14.7
12032 | 12.2 14.7
12288 | 12.3 14.8
12544 | 12.3 14.9
12800 | 12.4 14.9
13056 | 12.5 14.9
13312 | 12.6 15.0
13568 | 12.7
13824 | 12.8
14080 | 12.8
14336 | 12.9
14592 | 12.9
14848 | 13.0
15104 | 13.1
15360 | 13.2
15616 | 13.2
15872 | 13.3

Table 4: Performance of the systolic matrix multiplication algorithm with C stationary
on a 64K Connection Machine system CM-200 configuration, 64—bit precision.
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Matrix size 256 x 256 512 x 512 | 1024 x 1024 | 2048 x 2048 | 4096 x 4096
Operation Time % | Time % | Time % | Time % | Time %
Alignment 0.030 221 0.117 19 1 0.473 16 1.914 13 7.7H8 9
Local matmul | 0.020 14 | 0.133 | 22 | 0.968 34| 7.529 | 49 | 59.738 | 66
Cyclic shifts 0.089 | 64 | 0.362 | 59 | 1.447 50 | H5.789 | 38| 23.153 | 26
Total 0.139 | 100 | 0.613 | 100 | 2.889 | 100 | 15.232 | 100 | 90.650 | 100

Table 5: Relative execution times for the global matrix multiplication algorithm on a 256
processor Connection Machine system CM-200, 64-bit precision.

Time (s)
70_| ®: Matrix size 256
O: Matrix size 512
60_| A & Matrix size 1024
&: Matrix size 2048
50 _| A Matrix size 4096
40 _|
30 _| A
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10 |
& &
I S S T T
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Figure 10: Execution time for multiplication of square matrices, 64-bit precision. N is
the size of the Connection Machine system CM-200.
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Figure 11: Execution rates for multiplication of square matrices, 64-bit precision. N is
the size of the Connection Machine system CM-200.
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Figure 12: Performance of square matrix multiplication as a function of matrix size P on
a 2048 processor Connection Machine system CM-200, 64-bit precision.
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Figure 13: Execution time for a P x 4096 x 4096 matrix multiplication, 64—bit precision.
N is the size of the Connection Machine system CM-200.
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Figure 14: Execution rates for P x 4096 x 4096 matrix multiplication, 64—bit precision.
N is the size of the Connection Machine system CM-200.
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Figure 15: Execution rates for multiplication of rectangular matrices on a 2048 processor
Connection Machine system CM—-200, 64—bit precision.
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Figure 16: Influence of shared processor configuration on the performance for multipli-
cation of square matrices of size P, 64-bit precision. The shape of the 256 processor

Connection Machine system CM-200 is N, x N. = 256.
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Figure 17: Influence of shared processor configuration on multiplication of rectangular
matrices of shape P x ) x R, 64-bit precision. The shape of the 256 processor Connection
Machine system CM—-200 is N, x N, = 256.

Finally, Table 6 and Figure 18 show the performance for the multiplication of a square
matrix A by a rectangular matrix B. The number of columns in B varies from one to 8192.
The effect of the blocking introduced for the nonsystolic “matrix—vector” multiplication
algorithm, and the selection of algorithm for matrix—matrix multiplication as a function
of the shape of the operands is clear. When > 8, a matrix—vector type algorithm is used
with a block size of min( R, 64) (A is statlonary) When = > 16, a vector-matrix algorithm
is used to evaluate the product (B is stationary). The block size is min( P, 32). For the data
reported in Table 6 and Figure 18, all other shapes use the systolic matrix multiplication
algorithm with ' stationary. For small matrices, blocking of vectors for the nonsystolic
algorithm, yields more than a three-fold performance increase for square matrices, while
for large matrices the performance increase is about 5%. For small matrices, blocking
improves the performance of the local level-2 BLAS by about 50%.

6 Summary.

Level-2 and level-3 DBLAS used in the Connection Machine Scientific Software Library,
CMSSL, are described briefly. Both the nonsystolic and the systolic algorithms for matrix—
matrix multiplication on distributed data structures, with A, B, or C stationary are
outlined. A systolic matrix—matrix multiplication algorithm keeping ' stationary is de-
scribed in detail. The systolic algorithms perform the all-to-all broadcast and reduction
operations as a sequence of cyclic shifts, thereby reducing the need for temporary storage.
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Matrix shape Mflops/s Time (millisec)

PXxXPXR Number of processors Number of processors
256 | 512 | 1024 | 2048 256 512 1024 2048
256 x 256 x 1 33 35 43 49 4.0 3.7 3.0 2.7
256 X 256 x 4 62 74 104 | 105 8.5 7.1 5.0 5.0
256 X 256 x 16 74 93 | 154 | 171 28.3 22.6 13.6 12.3
256 X 256 x 64 | 104 | 145 | 206 | 303 80.7 57.9 40.7 27.7
256 X 256 x 256 | 240 | 320 | 497 | 668 139.8 104.9 67.5 50.2

256 X 256 x 1024 | 398 | 564 | 834 | 1151 337.2 238.0 160.9 116.6
256 X 256 x 4096 | 182 | 346 | 397 | 738 | 2949.8 | 1551.7 | 1352.3 727.5

256 X 256 x 8192 — — | 698 | 795 — — | 1538.3 1350.6
512 x512x 1| 107 | 104 | 128 | 143 4.9 4.0 4.1 3.7
512 x 512 x4 | 133 | 164 | 251 | 297 15.8 12.8 8.4 7.1

512 x 512 x 16 | 165 | 186 | 329 | 386 50.8 45.1 25.5 21.7
512 x 512 x 64 | 167 | 204 | 367 | 405 200.9 164.5 91.4 82.9

512 x 512 x 256 | 318 | 398 | 689 | 890 422.1 337.2 194.8 150.8
512 x 512 x 1024 | 528 | 826 | 1219 | 1948 | 1016.8 650.0 440.4 275.6
512 x 512 x 4096 | 796 | 1205 | 1981 | 2902 | 2697.8 | 1782.1 | 1084.0 740.0

512 x 512 x 8192 — — | 755 | 1435 — — | 5688.7 2993.0
1024 x 1024 x 1 | 233 | 279 | 405 | 411 9.0 5.2 5.1 5.1
1024 x 1024 x 4 | 253 | 344 | 570 | 652 33.2 24.4 14.7 12.9

1024 x 1024 x 16 | 308 | 390 | 621 | 800 108.9 86.0 54.0 41.9

1024 x 1024 x 64 | 294 | 391 | 708 | 865 456.5 343.3 189.6 155.2
1024 x 1024 x 256 | 377 | 548 | 826 | 1339 | 1424.1 979.7 650.0 400.9
1024 x 1024 x 1024 | 744 | 1079 | 1788 | 2647 | 2886.4 | 1990.3 | 1201.1 811.3
1024 x 1024 x 4096 | 1066 | 1652 | 2771 | 4478 | 8058.1 | 5199.7 | 3099.9 1918.3

1024 x 1024 x 8192 — — | 3219 | 5383 — — | 5337.0 3191.5
4096 x 4096 x 1 | 697 | 1067 | 1913 | 2330 48.1 31.4 17.5 14.4
4096 x 4096 x 4 | 719 | 1187 | 1995 | 2734 186.7 113.1 67.3 49.1

4096 x 4096 x 16 | 794 | 1217 | 2262 | 2966 676.2 441.1 237.3 181.0
4096 x 4096 x 64 | 787 | 1160 | 2258 | 2962 | 2728.7 | 1851.3 951.1 725.0
4096 x 4096 x 256 | 743 | 1074 | 2044 | 2797 | 11561.2 | 7998.1 | 4202.5 2883.5
4096 x 4096 x 1024 | 1020 | 1336 | 2546 | 4351 | 33686.0 | 25718.4 | 13495.6 7897.0
4096 x 4096 x 4096 | 1517 | 2348 | 4327 | 7318 | 90599.2 | 58534.5 | 31763.1 | 18780.9

4096 x 4096 x 8192 — — | 4952 | 8929 — — | 55508.5 | 30784.8
8192 x 8192 x 1 — — | 3056 | 4541 — — 43.9 29.6
8192 x 8192 x 4 — — | 3354 | 4643 — — 160.1 115.6

8192 x 8192 x 16 — — | 3416 | 5011 — — 628.7 428.6
8192 x 8192 x 64 — — | 3416 | 4993 — — | 2514.6 1720.4
8192 x 8192 x 256 — — | 3164 | 4756 — — | 10859.6 7224.5

8192 x 8192 x 1024 — — | 2906 | 4308 — — | 47294.9 | 31903.2

8192 x 8192 x 4096 — — — | 8027 — — — | 68488.3

8192 x 8192 x 8192 — — — 1 9929 — — — | 110737.4

Table 6: Performance for the multiplication of a square matrix A by a rectangular matrix
B on some Connection Machine system CM-200 configurations using the matrix—matrix
multiplication function in CMSSL, 64-bit precision.
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Figure 18: Performance of the matrix multiplication function in the Connection Machine
Scientific Software Library for the multiplication of a P x P matrix by a P x R matrix
on Connection Machine system CM-200, 64-bit precision.

All algorithms require that the operands first be aligned with respect to each other, and
that a common machine configuration is established for all operands.

For the matrix—vector multiplication routine, about 35% of the time is spent in the align-
ment of the two vectors, while the spread—and-reduce operations account for another 30%
of the total time. The matrix—vector and vector-matrix multiplication routines have com-
parable performance. The difference is due to the asymmetry in the route operation. The
performance of the rank-1 update routine is always less than for the matrix—vector and
vector—matrix routines. For small matrices, the performance difference is about 10%, but
for large matrices the performance difference is close to a factor of two. The performance

for the local level-2 BLLAS used in the level-2 DBLAS is up to a factor of four higher for

matrix—vector (vector—-matrix) multiplication than for rank-1 updates.

It has been shown experimentally that introducing blocking in the matrix—vector and
vector-matrix multiplication routines in their use for matrix-matrix multiplication yields
a performance improvement by over a factor of three for small matrices. For large matrices,
the performance gain by blocking is about 5%. Most of the performance gain for small
matrices is due to improved performance of the local level-2 BLAS. For the same blocking
factor, the performance of the matrix—vector and vector-matrix multiplication routines is
always better than the performance of the rank-b update, primarily because of the better
performance of the local level-2 BLAS functions.

For the systolic matrix-matrix multiplication routine with C' stationary, about 20% of
the time is spent for the alignment of small matrices. The alignment of large matrices
accounts for nearly 10% of the total time. The fraction of time spent for the cyclic
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rotation decreases from about 65% for small matrices to about 25% for large matrices.
For submatrices of shape px ¢, ¢ xr, and pxr, the time for cyclic rotation is proportional to
the number of data elements moved in sequence, which for A is 22N, and for B is XN,
These shifts are partially overlapped. The required number of floating point operations,
2p X ¢ X r increases with the size of the local matrices. The total time increases at a
slower rate, because the floating point rate increases with an increase in the local matrix
size. The increase in the floating—point rate is a factor of 14 from 2 x 2 submatrices to

large submatrices.

As a first approximation, the algorithm which keeps the matrix with the largest number
of elements stationary should be used to compute the matrix product. Deviations from
this rule are primarily due to particular implementation issues for communication routines
and variations in arithmetic efficiency due to different vector lengths for the different local
submatrices.

The aspect ratio of the shape of the processor array for optimum communication per-
formance shall be the same as the aspect ratio of the shape of the stationary matrix.
This result has also been verified experimentally. For square matrices, the performance
varies by a factor of over five as a function of the shape of the processing array. For the
rectangular matrices used in the experiments reported here, the influence of the shared
processing node configuration is much more severe (18 Mflops/s versus the optimal 559
Mflops/s — a factor of more than 30).

The local level-2 BLAS used in the algorithm are well-optimized for the node architec-
ture, having a peak efficiency in excess of 90%. For improved efficiency in the global
matrix multiplication algorithm, a decrease in the need for communication is desirable, in
particular, in the multiplication phase of the algorithm. Configuring the processors as a
three-dimensional array may yield lower communication requirements for the multiplica-
tion phase [13, 20]. A decrease in communication time can also be achieved by exploiting
more of the communications bandwidth of the Boolean cube network by using multiple
concurrent exchange sequences as suggested in [11].
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7 Appendix

This section describes the systolic algorithm where the product matrix C' is kept station-
ary. The shape of the operand matrices is arbitrary. The processing nodes are assumed
to be configured as a two—dimensional array of shape N, x N, for any N, and N..

The alignment of each operand is expressed using two forall loops in the pseudocode
below. The inner loop defines the maximum data set that is guaranteed to have the
same data motion during alignment. For the matrix A, the alignment is performed on

submatrices of shape o x ¥ (a = (—W By = (%@V\QM)D For the matrix B the same

properties hold for submatrices of shape 8" x~ (y = (Nij ). All submatrices can be aligned
concurrently, should there be sufficient communications bandwidth available.

The first three loops for the multiplication phase in the pseudocode below define a matrix
multiplication local to a processor. It is the multiplication immediately succeeding the
alignment. The main loop performs the remaining multiplications and a single cyclic
shift. The local matrix multiplication is performed as a block outer product, or rank-
(%]X,“Nc)w update. This update is defined in terms of a matrix—vector multiplication,

riVe

where the matrix is of shape (NLW X (%ww The matrix—vector product is expressed

as a sequence of AXPY operations [19] with a vector length of ( —]. This loop is for
illustration only. The actual code calls a (local) matrix—vector routine. The local indices
for matrix C' are ¢ and v; for matrix A the indices are ¢ and v, and for the matrix B the

local indices are p and v. The local submatrix of A is treated in blocks of (WW

columns, and the local submatrix of B in blocks of (Mcﬁrww rows. The inner index of

the matrices A and B is ﬂ”Q + ", where 9" is the mdex local to a block, and Q is the
block index. The local block index for A is Q mod ——*—— and the local block index for

(NN)
BlSQmOdW

The organization of the computations corresponds to a reshaping of the data arrays to
arrays with six axes. Two of the axes define the processor array. Two more axes are
necessary for the enumeration of the virtual processors being emulated by a physical
processor (one virtual axes for each of the physical processor array axis). Finally, two
axes define the number of rows and columns for each virtual processor. For a square
processor array a processor will emulate only one virtual processor, and four axes suffice.

Algorithm AM(C,A,B)

forall /,m € {0,1,...,N, — 1} x{0,1,...,N. — 1} do

Alignment:
forallQ —OtOW—ldO
forall ¢,¢" € {0,1,. a—l}x{Ol .0 =1} do

a(al + ¢, 3" (m ngNN "’Q)—Hb)
—a(al + ¢, 5 (m W—l—@—l-gm) mod ngN]TV]r\EVC +9")
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endforall ¢,y
endforall Q
forall Q =0 to W 1 do

forall v*,v € {0,1,.... 3" =1} x{0,1,...,91 — 1} do

b(BY(L W—FQ)‘H@ nm+v)
— b(pr(( W—I—Q—I—mm)modgcdj&%—l—;b ,m 4 v)

endforall ", v

endforall Q

Multiplication:

for v:=0to~—1do
for " :=0to " —1 do
for ¢ :=0toa—1do
clal + g,ym +v) — clal + d,ym 4+ v) + alal + ¢, 7)) X b(¢*,ym + v)

endfor ¢
endfor "
endfor v
forQ—ltO%—ldo
lf Q mod W =0 then

forall ¢,v» € {0,1,....,a—1} x{0,1,...,5.— 1} do
alal + ¢, fem + ) — alal + ¢, B.((m + 1) mod N.) + %)
endforall ¢,
endif
1fQ mod W = 0 then
forall y,v € {0,1,...,8, — 1} x{0,1,...,v—1} do
b(B A+ pyym +v) «— b(B.(({ + 1) mod N,.) + p,ym + v)
endforall u, v
endif
for v:=0to~—1do
for " :=0to " —1 do
for 9 :=0toa—1do
(ozﬁ—l—qb,’ym—l—l/)Hc(ozﬁ—l—qb,’ym—l—l/)—l— A
+a(al + ¢, 3°() mod ngN vyt YY) x b(S*Q mod m + v, ym 4+ v)
endfor ¢
endfor "
endfor v
endfor Q

endforall /,m
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