
Multiplication of Matrices of Arbitrary Shape on a
Data Parallel Computer

Citation
Mathur, Kapil K. and S. Lennart Johnsson. Multiplication of Matrices of Arbitrary Shape on a
Data Parallel Computer. Harvard Computer Science Group Technical Report TR-01-92.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017262

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017262
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Multiplication%20of%20Matrices%20of%20Arbitrary%20Shape%20on%20a%20Data%20Parallel%20Computer&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

Multiplication of Matrices of Arbitrary

Shape on a Data Parallel Computer

Kapil K. Mathur

S. Lennart Johnsson

TR-01-92

January 1992

Parallel Computing Research Group

Center for Research in Computing Technology

Harvard University

Cambridge, Massachusetts

Multiplication of Matrices of Arbitrary Shape

on a Data Parallel Computer

Kapil K. Mathur and S. Lennart Johnsson

1

Thinking Machines Corp.

245 First Street

Cambridge, MA 02142

Abstract

Some level{2 and level{3 Distributed Basic Linear Algebra Subroutines (DBLAS) that

have been implemented on the Connection Machine system CM{200 are described. No

assumption is made on the shape or size of the operands. For matrix{matrix multiplica-

tion, both the nonsystolic and the systolic algorithms are outlined. A systolic algorithm

that computes the product matrix in{place is described in detail. We show that a level{3

DBLAS yields better performance than a level{2 DBLAS. On the Connection Machine

system CM{200, blocking yields a performance improvement by a factor of up to three

over level{2 DBLAS. For certain matrix shapes the systolic algorithms o�er both improved

performance and signi�cantly reduced temporary storage requirements compared to the

nonsystolic block algorithms.

We show that, in order to minimize the communication time, an algorithm that leaves

the largest operand matrix stationary should be chosen for matrix{matrix multiplication.

Furthermore, it is shown both analytically and experimentally that the optimum shape

of the processor array yields square stationary submatrices in each processor, i.e., the

ratio between the length of the axes of the processing array must be the same as the

ratio between the corresponding axes of the stationary matrix. The optimum processor

array shape may yield a factor of �ve performance enhancement for the multiplication of

square matrices. For rectangular matrices a factor of 30 improvement was observed for

an optimum processor array shape compared to a poorly chosen processor array shape.

1

Also a�liated with the Division of Applied Sciences, Harvard University, Cambridge, MA 02138.

1

1 Introduction.

This article describes the algorithms used for matrix{vector, vector{matrix multiplica-

tion, rank{1 updates, and matrix-matrix multiplication on matrices distributed across

the memory of the Connection Machine system CM{200. This system has up to 2048

oating{point processors that support operations in both 32{bit and 64{bit precision.

The memory is distributed among the processing units, with a maximum of 4 Mbytes of

memory per unit and a total memory of 8 Gbytes. Each processing unit has a single 32-bit

wide data path to its memory. Data paths internal to the
oating{point unit are 64{bits

wide. The processing units are interconnected as an 11{dimensional Boolean cube, with

two channels between every pair of nodes. Data may be exchanged on all 22 (11 � 2)

channels concurrently. For some phases of the algorithms described below this property

is explored.

Throughout this article, the axis enumerating the rows is referred to as the row axis, and

the axis enumerating the columns is referred to as the column axis. For a two{dimensional

data array A(i; j), the left index refers to the row axis, and the right index refers to the

column axis. A processing node, or simply node, refers to a processor with associated local

memory and communications facilities. Throughout this presentation, it is assumed that

there are N nodes, which for a two{dimensional processor con�guration, have N

r

nodes

along the row axis, and N

c

nodes along the column axis (N = N

r

�N

c

).

The algorithms described here have no restriction on the shape of the matrices or the

number of processing nodes, other than that each operand is assumed to have at least one

element assigned to each node. The processors may be con�gured as a one{dimensional

array or a two{dimensional array of arbitrary shape. The algorithms presented here

achieve perfect arithmetic load balance. For operand matrices assigned to a subset of

processors, load balancing is an important issue. Algorithms that address load balancing

issues in greater detail are discussed in [17].

The algorithms presented here are data parallel adaptations of the standard matrix mul-

tiplication algorithm requiring 2PQR arithmetic operations for the multiplication of a

P � Q matrix by a Q � R matrix. The index space for these operations is depicted in

Figure 1. R = 1 corresponds to matrix{vector multiplication, P = 1 to vector{matrix

multiplication, and Q = 1 to rank{1 updates. The algorithms described here provide

schedules for the operations in space and time that maintain perfect load balance both

with respect to communication and computation whenever there is one data element per

processor.

The data motion requirements and the performance depend strongly on the data allocation

of the operands. The Connection Machine compilers support a global address space and

allocate arrays based on their shapes. The processors are con�gured for each array such

that the rank of the data array and the processor array are the same. The ordering of the

axes is also the same. When there are more matrix elements than processors, consecutive

elements along each data array axis (a block) are assigned to a processor.

The outline of this paper is as follows. The next section discusses data allocation issues,

2

-

6

�

�

�

�

�

�

�

�

�	

�

�

�

�

�

�

�

�

�

�

�

�

m

n

`

j

k

i

R

Q

P

A(i; �; k)

B(�; j; k)

C(i; j; �)

6

�

�

�

�

�

�	

�

Figure 1: The index space for matrix multiplication.

and their consequences for the multiplication of matrices of arbitrary shapes. Matrix{

vector, vector{matrix multiplication, and rank{1 updates on distributed data structures

are discussed in Section 2. Algorithms for matrix-matrix multiplication are described in

Section 4. A systolic algorithm that keeps the matrix C stationary is described in detail.

The optimum shapes of the processor array for the di�erent algorithms are also discussed

in this section. Performance data for the Connection Machine system CM{200 are given

in Section 5.

2 Data allocation.

All Connection Machine system compilers support a global address space and allocate

data evenly among the memory modules. Multiple elements are assigned to the same

memory module based on the consecutive (also known as block) data allocation scheme

[7, 12].

For multidimensional arrays, the default mode of the Connection Machine compilers con-

�gures the processors such that the average number of local references for each remote

reference is maximized when the data references are equally frequent along all array axes

[26]. The area of the faces for a subarray of a given size is minimized. The user can control

the shape of the processor array, that is, the data layout, through compiler directives. An

axis can be forced to be local to a memory module by the directive SERIAL, if there is

su�cient local memory or if the length of the local axis segment is changed by assigning

weights to the axes. High weights are used for axes with frequent references and low

weights for axes with infrequent references. A relatively high weight for an axis increases

the length of the local segment of that axis at the expense of the length of the segments of

3

the other axes. The total size of the subarray is independent of the assignment of weights.

Only the shape of the subarray changes.

As an example of the data allocations possible under the model used by the Connection

Machine compilers, consider a 64 � 128 array assigned to 64 processors. Each processor

receives 128 elements. With the processors con�gured as an 8 � 8 array, each processor

receives a subarray of 8 � 16 elements. In the consecutive allocation, the elements of

the subarray are selected as successive elements along the axes. With the processors

con�gured as a one-dimensional array, each processor is assigned a subarray that is either

of shape 1 � 128, or of shape 64 � 2, depending upon the orientation of the processor

array with respect to the data array. The shape of the processor array clearly does

not a�ect the number of arithmetic operations to be performed, but it may a�ect both

the communication requirements and the e�ciency in utilizing the arithmetic units, for

example, by changing the vector lengths.

The consecutive allocation scheme selects elements to be assigned to the same processor.

Compiler directives, such as axis weights and SERIAL, address the issue of choosing

the processor array shape. Another data layout issue is the assignment of data sets

made up of consecutive elements along the di�erent data array axis to processors. The

network topology and the data reference pattern are two important characteristics in this

assignment. In a mesh-connected machine it is natural to assign subarrays of one and

two{dimensional data arrays to processors such that the adjacency in the data array is

preserved when mapped to the processor array. Preserving adjacency in mapping data

arrays of at least three dimensions to two{dimensional processor arrays is impossible [24].

The processors in the Connection Machine system, CM{200, are interconnected as a

Boolean cube with two channels between each pair of processors. Meshes of any dimension

up to the dimension of the Boolean cube are subgraphs thereof. A Boolean cube network

of n dimensions has 2

n

nodes. The number of dimensions in Connection Machine system

CM-200 ranges from 7 to 11 depending upon system size (the largest system having 16

times more processors than the smallest system). The nodes of a Boolean cube can

be given addresses such that adjacent nodes di�er in precisely one bit in their binary

encoding. Assigning subarrays to processors using the standard binary encoding of the

subarray index along an axis, i.e., the node address, does not preserve adjacency along

an axis. For instance, 3 and 4 di�er in all three bits in the encoding of the addresses of

8 processors, and are at a distance of three apart. In general, 2

n�1

� 1 and 2

n�1

di�er in

n bits in their binary encoding and are at a distance of n. The number of bits in which

two indices di�er translates directly into distance in a Boolean cube architecture.

Binary{re
ected Gray codes [23] generate embeddings of arrays into Boolean cube net-

works that preserve adjacency [12]. Gray codes have the property that the encoding of

successive integers di�er in precisely one bit. In a Boolean cube network successive in-

dices are assigned to adjacent processors. The binary{re
ected Gray code is e�cient both

in preserving adjacency, and in processor utilization, when the length of the axes of the

data array is a power of two [9]. For arbitrary data array axes' length, the Gray code

may be combined with other techniques to generate e�cient embeddings [3, 10]. Matrix

multiplication algorithms can be formulated for one, two [2, 8, 12], and three{dimensional

4

[13] meshes, and Boolean cubes [4, 11, 28].

3 Level{2 Distributed BLAS (DBLAS).

All level{2 BLAS [19, 5, 6] involve operations on arrays of di�erent shape. Functions,

such as matrix{vector multiplication, vector{matrix multiplication, and rank{1 updates,

involve both vectors and matrices. With data array allocation based on the shape of the

array, an alignment of the operand arrays with respect to each other is necessary before the

operations can be carried out and the result stored as required. In this presentation, BLAS

operating on distributed data structures are referred to as Distributed BLAS (DBLAS).

The data motion issues for some level{2 DBLAS are discussed brie
y below. For a more

extensive discussion the reader is referred to [17].

3.1 Matrix{vector and vector{matrix multiplication.

The evaluation of the matrix-vector product y Ax requires the operations:

1. Aligning the vector x with the column axis of A.

2. Spreading the vector x along the row axis of A, such that there is one copy of the

appropriate segment of x for every node.

3. Performing a matrix{vector multiplication concurrently on each node.

4. Performing a reduction along the column axis to form y, aligned with the row axis

of A.

5. Aligning y with its original allocation.

In Step 1, the vector x is placed along a processor row of A, such that the range of inner

indices (corresponding to the Q-axis) in a node is identical for A and x. Step 2 replicates

x such that every node has a segment of the vector x that corresponds to the inner indices

of the rows of A. Step 3 de�nes N concurrent matrix{vector products followed in Step 4

by N

r

concurrent summations of N

c

vectors of length

P

N

r

.

The Connection Machine system CM{200 implementation is based on the processing node

description. Local level{2 BLAS [18] are used for the operations in each node. Vector{

matrix multiplication is treated similarly. In [17] it is shown that the data motion for the

alignment of the vectors with the matrix constitutes a shu�e on a suitably de�ned index

set. Optimal implementations on mesh-connected networks is described in [22] and on

Boolean cube networks in [16]. The communication e�ciency can be improved further by

combining the alignment and spread operations (Steps 1 and 2), and the reduction and

alignment operations (Steps 4 and 5) [17].

5

3.2 Rank{1 updates.

The evaluation of the rank{1 update A xy

T

requires the operations:

1. Aligning the vector x with the row axis of A.

2. Aligning the vector y with the column axis of A.

3. Spreading the vector x along the column axis of A, such that there is one copy of

the appropriate segment of x for every node.

4. Spreading the vector y along the row axis of A, such that there is one copy of the

appropriate segment of y for every node.

5. Performing a rank{1 update on each node.

The above description is made with respect to the processing array. A similar description

in terms of the data array is also possible.

The Connection Machine system CM{200 implementation uses the processing array de-

scription and local level{2 BLAS for the operations on each node. As with matrix{vector

and vector{matrix multiplication, the alignment can be combined with the spread (Steps

1 and 3 and Steps 2 and 4).

4 Matrix{matrix multiplication (level{3 DBLAS).

Matrix{matrix multiplication is a part of level{3 BLAS. For distributed data structures it

can be constructed out of the level{2 DBLAS described above. In [17] it is shown that for

many distributed memory architectures, including the Connection Machine system CM{

200, level{3 DBLAS is required for high e�ciency with respect to data motion. A level{3

DBLAS also allows for the use of local level{3 BLAS, which may enhance the arithmetic

e�ciency. This section generalizes the matrix{vector and vector{matrix level{2 DBLAS

to level{3 DBLAS. The systolic versions of these algorithms are then outlined. One impor-

tant advantage of the systolic algorithms is that unlike the straightforward generalizations

of the level{2 DBLAS, the systolic algorithms preserve the memory requirements.

4.1 Matrix multiplication based on level{2 BLAS functions.

The algorithm for matrix{vector multiplication described in the previous section can be

extended for the matrix{matrixmultiplication,C A�B+D. By extracting one column

of B (and D) and performing a matrix{vector multiplication, one column of the product

matrix C is generated. This column must be deposited into the matrix C. The extraction

of the column of B (and D) implies a change of layout, if the default data allocation

strategy of the Connection Machine compilers is used: B (D) is a two-dimensional object,

6

and the extracted column is one{dimensional. Similarly, the column of C obtained by a

matrix{vector multiplication is one{dimensional, but C is a two{dimensional object. A

detailed description of the required data motion can be found in [17].

Using a matrix{vector multiplication algorithm from a level{2 DBLAS package requires

that the matrix B be transposed, aligned and spread along the row axis one column

at a time. R calls to the matrix{vector multiplication routine are required. After each

such call, the computed product vector must be aligned and deposited in the appropriate

column of C. The arithmetic operations local to a node can be based on level{1 or level{2

BLAS, but not level{3 BLAS.

The number of calls to the level{2 DBLAS can be reduced by blocking the columns of

B (and C). For blocks consisting of b columns, blocking reduces the overhead for both

arithmetic and data motion by a factor of b. The arithmetic e�ciency may also be

improved by the use of level{3 BLAS in each node. The communication e�ciency also

increases because of improved load balance in the communication system [17].

With a blocking of b columns, each processing node requires temporary storage corre-

sponding to

Q

N

c

b data elements for the b columns of B. When b = R, that is, the entire

matrix B is transposed and aligned with A, then the temporary storage requirements,

due to the blocking, increase by a factor of R compared to the unblocked algorithm. Such

an increase in the temporary storage requirement is often unacceptable. The increased

demand for the temporary storage is due to the spread operation (Step 2 of the matrix{

vector multiplication algorithm). Its function is to assure that each column of B can

interact with every row of A with no motion of A. By modifying the implementation

of the spread such that it is performed in a stepwise manner, the memory requirements

can be preserved. For example, if there is at least one column of B allocated to each of

the N

r

processor rows after the extraction and alignment of b > N

r

columns, then the

spread function realizes an all{to{all broadcast [8, 14, 25], which can be implemented as

N

r

�1 cyclic shifts. The all{to{all broadcast can utilize the full communications capacity

of Boolean cube networks [1, 14]. The reduction operation required in computing C can

be expressed similarly.

The level{3 DBLAS matrix{matrixmultiplication routine based on extraction of b columns

of B, transposition and alignment, all{to{all broadcasting, all{to{all reduction and align-

ment using a memory preserving all{to{all implementation will be referred to as a sys-

tolic matrix{matrix multiplication algorithm with A stationary. Analogous algorithms

for matrix{matrix multiplication can be de�ned using either a straightforward general-

ization of the vector{matrix multiplication algorithms, or the rank{1 update algorithms,

or systolic versions thereof. In a vector{matrix type algorithm, B is stationary, while in

a rank{1 update algorithm, C is stationary.

The arithmetic requirements for the three algorithms is the same. There may be di�er-

ences in the arithmetic e�ciency due to the di�erent shapes of the submatrices of the

di�erent operands assigned to each processing node. For the systolic matrix{matrix mul-

tiplication algorithm with A stationary and b = R, the transposition and alignment of B

can be performed as one operation. On a Boolean cube network, the optimal implemen-

7

tation of this operation requires a time proportional to

QR

2N

. The communication time is

independent of the shape of the processing array [16]. The all-to-all broadcast operation

for B requires a time proportional to

QR

N log

2

N

r

(N

r

� 1) �

QR

N

c

log

2

N

r

[14]. Similarly, the

reduction for C requires a time proportional to

PR

N

r

log

2

N

c

[14]. Finally, the alignment of C

requires a time proportional to

PR

2N

. Therefore, the optimal con�guration of the processing

array satis�es

P

Q

=

N

r

log

2

N

c

N

c

log

2

N

r

, or N

r

�

q

NP

Q

and N

c

�

q

NQ

P

for P � Q.

The optimal shape of the processing array is approximately congruent to the shape of

the stationary matrix A. Similarly, the optimum processing array shape of the systolic

algorithm with B stationary is congruent to B, and the optimum processing array shape

of the array with C stationary is congruent to C.

In the Connection Machine Scienti�c Software Library (CMSSL) [27] nonsystolic algo-

rithms are used for the cases with A and B stationary, while either a nonsystolic or sys-

tolic algorithm is used for the case with C stationary. The performance depends strongly

upon the shape of the operands. In [17], it is shown that as a �rst approximation, the

optimal algorithm keeps the matrix with the largest number of elements stationary.

Next, the systolic matrix{matrix multiplication algorithm with C stationary that is used

in CMSSL is presented in detail.

4.2 Systolic matrix multiplication with C stationary.

4.2.1 Square processor arrays, N

c

= N

r

.

This algorithm assumes that each of the three operands has at least one element assigned

to each processor. The processors are con�gured as a two{dimensional array. A binary{

re
ected Gray code encoding is used for each axis, such that adjacency in the data array

is preserved in the distributed memory organized as a Boolean cube. A consecutive

data allocation scheme is assumed. This section describes a block algorithm for square

processor arrays. The next section generalizes the algorithm for rectangular processor

arrays. Blocking reduces the number of local memory moves and allows for the use of

level{3 BLAS on each node.

With the product matrix C stationary, for each element c

ij

P

Q�1

k=0

a

ik

b

kj

of C, the

corresponding elements of A, a

ik

, and B, b

kj

, for k 2 f0; 1; 2; : : : ; Q�1g, must be moved to

the processing node where c

ij

resides, for all i 2 f0; 1; 2; : : : ; P�1g and j 2 f0; 1; 2; : : : ; R�

1g. The set of processing nodes to which row i of C is assigned must all receive every

element of row i of A. Similarly, the set of processing nodes to which column j of C is

assigned must all receive every element of column j of B. In the index space, this is an

all{to{all broadcast [14] within the rows of A and the columns of B. It is assumed that

matrix rows are aligned with processor rows and matrix columns with processor columns.

This assumption is consistent with the compiler generated data layout.

Recall that the nonsystolic rank{1 update algorithm realizes the all{to{all broadcast as a

sequence of spreads. The temporary storage requirements for the blocked version of this

8

algorithm increase by a factor of b compared to the nonblocked algorithm. To reduce the

temporary storage, the all{to{all broadcast operation is performed stepwise through cyclic

shifts [21]. This introduces an alignment requirement between A and B. In evaluating

the expression c

ij

P

Q�1

k=0

a

ik

b

kj

, only processors where the inner index k is identical for

both A and B can participate in the computation. For a square processing array, the

inner indices initially are the same for A and B only in the processors on the diagonal

of the array. This property is true for matrices of any shape and any square processor

array

2

. To increase the processor utilization, the matrices must be \aligned" such that

the inner indices are identical in all nodes. A transposition of B or A would clearly align

the inner indices, but partial products for C would then have to be accumulated in space.

The following algorithm aligns A and B such that all processors can participate in the

evaluation of C, without any data motion for C.

Let 0 � i < P , 0 � k < Q, and 0 � j < R denote matrix element indices, and 0 � ` < N

r

and 0 � m < N

c

denote indices for the processor array elements. Since N

r

= N

c

, the

partitioning of the inner axis Q is the same for A and B. Assume that P = �N

r

, Q = �N

r

,

and R =
N

c

. An alignment such that processor (`;m) is assigned matrix elements

A: (�` + �; �(`+m) mod Q+ �), where 0 � � < �, 0 � � < �

B: (�(`+m) mod Q+ �;
m+), where 0 � � < �, and 0 � <

C: (�` + �;
m+)

ensures that the range of inner indices for A and B are identical on each processor. This

property is true for arbitrary values of � and
. Moreover, the range of indices for the P

axis is the same for A and C, and the range of indices for the R axis is the same for B

and C in each processor.

The stepwise all{to{all broadcast operation can be performed by using cyclic shifts. The

data motion for the multiplication of A with B at each step may be expressed as

A: (�`+ �; �(`+m) mod Q+�) (�`+ �; �(`+m+1) mod Q+�), where 0 � � < �,

0 � � < �

B: (�(`+m) mod Q+�;
m+) (�(`+m+1) mod Q+�;
m+), where 0 � � < �,

and 0 � <
.

The shift operation must be repeated N

r

� 1 = N

c

� 1 times. Clearly, the inner indices

of the two matrices are identical for each step of the algorithm. The correctness of the

algorithm follows. After the alignment, and after each cyclic shift, matrices of shape ���

and � �
 are multiplied on each processor. In the Connection Machine system CM{200

implementation described here, level{2 BLAS are used for the local matrix multiplication.

For P = N

r

and R = N

c

, the algorithm described above degenerates to the algorithm in

[2]. For certain high degree networks, such as Boolean cubes, multiple exchange sequences

can be used to make e�ective use of the communications bandwidth [11].

Remark 1. No local data motion is required between the cyclic shifts moving data

between processors. Emulating a large virtual processing array naively on the physical

2

Note, however, that if the layout rule is to minimize the surface area for a given subarray, then for a

rectangular matrix the processors will not be con�gured as a square array.

9

60

70

40

50

20

30

00

10

61

71

41

51

21

31

01

11

62

72

42

52

22

32

02

12

63

73

43

53

23

33

03

13

64

74

44

54

24

34

04

14

65

75

45

55

25

35

05

15

66

76

46

56

26

36

06

16

67

77

47

57

27

37

07

17

60

70

40

50

20

30

00

10

61

71

41

51

21

31

01

11

62

72

42

52

22

32

02

12

63

73

43

53

23

33

03

13

64

74

44

54

24

34

04

14

65

75

45

55

25

35

05

15

66

76

46

56

26

36

06

16

67

77

47

57

27

37

07

17

A B

Figure 2: Allocation of 8� 8 matrices to a 4 � 8 processor array.

array of shape N

r

� N

c

would result in excessive local data motion. The data motion

between the processing nodes would be the same.

Remark 2. With the positive axis direction coinciding with increasing column indices

and decreasing row indices, A is shifted in the negative direction and B in the positive

direction. Shifting A in the positive axis direction and B in the negative direction also

yields a valid algorithm. Further, the submatrices for A and B can be split into two parts,

such that di�erent parts are shifted in di�erent directions. This observation is useful on

architectures where the primitive communication operation is an exchange, which is the

case for the Connection Machine system CM{200. Moreover, the data motion of A and

B can be performed concurrently.

Remark 3. The correctness of the above algorithm relies on the range of the inner indices

being identical for A and B. If N

r

6= N

c

, this property is not true. This restriction is

relaxed in the next section.

4.2.2 Rectangular processor arrays, N

r

6= N

c

.

Figure 2 shows the allocation of square 8 � 8 matrices to 32 processors con�gured as a

4�8 array. The length of the segment of the inner axis assigned to a processor is di�erent

for A and B. Figure 3 shows the result of an alignment and the �rst two steps of the

multiplication phase. For the example, in Figures 2 and 3, the all{to{all broadcast of the

multiplication phase requires 8 cyclic rotation steps for A and 4 steps for B, since there

are 8 processor columns and 4 processor rows. Figure 3 shows the locations of elements

after the �rst and second cyclic shift of A and the �rst shift of B. After the alignment,

all elements of A and half of the elements of B participate in the local multiplication.

After the �rst cyclic shift of A, all its elements are again participating in local matrix

multiplications, with the previously unused elements of B. After the second cyclic shift of

A and the �rst cyclic shift of B, all elements of A and the \�rst" half of the elements of

B are used in the same way as after the alignment. After this sequence is repeated four

times, the matrix C is computed.

10

66

76

44

54

22

32

00

10

67

77

45

55

23

33

01

11

60

70

46

56

24

34

02

12

61

71

47

57

25

35

03

13

62

72

40

50

26

36

04

14

63

73

41

51

27

37

05

15

64

74

42

52

20

30

06

16

65

75

43

53

21

31

07

17

60

70

40

50

20

30

00

10

71

01

51

61

31

41

11

21

02

12

62

72

42

52

22

32

13

23

73

03

53

63

33

43

24

34

04

14

64

74

44

54

35

45

15

25

75

05

55

65

46

56

26

36

06

16

66

76

57

67

37

47

17

27

77

07

Matrix A aligned Matrix B aligned

Rotate A, Multiply and Add

66

76

44

54

22

32

00

10

67

77

45

55

23

33

01

11

60

70

46

56

24

34

02

12

61

71

47

57

25

35

03

13

62

72

40

50

26

36

04

14

63

73

41

51

27

37

05

15

64

74

42

52

20

30

06

16

65

75

43

53

21

31

07

17

60

70

40

50

20

30

00

10

71

01

51

61

31

41

11

21

02

12

62

72

42

52

22

32

13

23

73

03

53

63

33

43

24

34

04

14

64

74

44

54

35

45

15

25

75

05

55

65

46

56

26

36

06

16

66

76

57

67

37

47

17

27

77

07

Matrix A shifted left 1 step Matrix B aligned

Rotate A and B, Multiply and Add

66

76

44

54

22

32

00

10

67

77

45

55

23

33

01

11

60

70

46

56

24

34

02

12

61

71

47

57

25

35

03

13

62

72

40

50

26

36

04

14

63

73

41

51

27

37

05

15

64

74

42

52

20

30

06

16

65

75

43

53

21

31

07

17

60

70

40

50

20

30

00

10

71

01

51

61

31

41

11

21

02

12

62

72

42

52

22

32

13

23

73

03

53

63

33

43

24

34

04

14

64

74

44

54

35

45

15

25

75

05

55

65

46

56

26

36

06

16

66

76

57

67

37

47

17

27

77

07

Matrix A shifted left 2 steps Matrix B shifted up 2 steps

Figure 3: Matrix multiplication on a 4 � 8 array.

11

In Figure 3 all operations requiring a given submatrix are carried out before the entire

submatrix is moved to the adjacent processor. No local data motion is required. When the

inner axis extent per processor is di�erent for A and B, which is the case for a rectangular

processor array, then only a fraction of the local submatrix with the largest inner axis

segment is used in a local matrix multiplication for each rotation step of the submatrix

with the shortest inner axis segment. The submatrices are fully used for each rotation

step in which it participates. If the number of processors assigned to one axis is a multiple

of the number of processors along the other axis, for example, N

c

> N

r

as in Figure 3,

then

N

c

N

r

rotation steps are performed along the longer axis for every rotation step along

the shorter axis. A more general case is shown in Figures 4 and 5.

Let P;Q � N

r

and Q;R � N

c

, and N = N

r

�N

c

, with no other restriction on N

r

and N

c

,

and let �

c

=

Q

N

c

and �

r

=

Q

N

r

. For arbitrary values of N

r

and N

c

, de�ne a square virtual

processor array of shape

N

r

N

c

gcd(N

r

;N

c

)

�

N

r

N

c

gcd(N

r

;N

c

)

. Let `

v

;m

v

identify a block in the virtual

array: (`

v

;m

v

) 2 f0; 1; : : : ;

N

r

N

c

gcd(N

r

;N

c

)

�1g�f0; 1; : : : ;

N

r

N

c

gcd(N

r

;N

c

)

�1g. Let �

v

= d

Qgcd(N

r

;N

c

)

N

r

N

c

e.

After the alignment of the operands with respect to each other and the establishment of

a shared processor array shape, the index assignment for physical processor (`;m) is:

A: (�`+�; �

v

((m

N

r

gcd(N

r

;N

c

)

+`

N

c

gcd(N

r

;N

c

)

) mod

N

r

N

c

gcd(N

r

;N

c

)

)+�) = (�`+�; (�

c

m+�

r

`) mod Q+

�), where 0 � � < � and 0 � � < �

c

.

B: (�

v

((`

N

c

gcd(N

r

;N

c

)

+m

N

r

gcd(N

r

;N

c

)

) mod

N

r

N

c

gcd(N

r

;N

c

)

) + �;
m+) = ((�

r

` + �

c

m) mod Q +

�;
m+), where 0 � � < �

r

and 0 � <
.

C: (�` + �;
m+).

Note that after the alignment, all arrays are allocated to the processors assuming the

same processor array con�guration.

Clearly, for every processor, the smallest inner index for A and B is identical. But, the

range of inner indices, �, is di�erent for A and B. The number of identical indices is

min(�

r

; �

c

). The number of local blocks along the inner axis of A is

N

r

gcd(N

r

;N

c

)

, and of B

is

N

c

gcd(N

r

;N

c

)

.

For the multiplication phase, N

c

shifts are required for A and N

r

shifts for B. When

N

c

> N

r

, b

N

c

N

r

c shifts of A are performed without any shift of B. For each such shift, a

rank-�

c

update is performed concurrently on all nodes, consuming the entire submatrix

of A on a node. For each shift the indices of A on a node changes as: (�` + �; (�

c

m +

�

r

`) mod Q + �) (�` + �; (�

c

(m + 1) + �

r

`) mod Q + �). The next shift of A, shift

b

N

c

N

r

c + 1, brings in the indices of A that correspond to the remaining inner indices of

B (if N

c

is not a multiple of N

r

) and some additional indices. A rank-mod

�

r

�

c

update

is performed �rst to consume all inner indices of B, followed by a move of B, and a

rank-(�

c

� mod

�

r

�

c

) before A is moved again. The cyclic shift of B brings about the index

change: ((�

r

`+ �

c

m) mod Q+ �;
m+) ((�

r

(`+ 1) + �

c

m) mod Q+ �;
m+). If

N

r

> N

c

, then B is moved more often, and a similar analysis applies. The index sets for

the blocks each processor receives are monotonically increasing, contiguous and periodic.

12

30 31

40 41

50 51

00 01

10 11

20 21

32 33

42 43

52 53

02 03

12 13

22 23

34 35

44 45

54 55

04 05

14 15

24 25

30 31

40 41

50 51

00 01

10 11

20 21

32 33

42 43

52 53

02 03

12 13

22 23

34 35

44 45

54 55

04 05

14 15

24 25

Matrix A Matrix B

Align

33 34

43 44

53 54

00 01

10 11

20 21

35 30

45 40

55 50

02 03

12 13

22 23

31 32

41 42

51 52

04 05

14 15

24 25

30 31

40 41

50 51

00 01

10 11

20 21

52 53

02 03

12 13

22 23

32 33

42 43

14 15

24 25

34 35

44 45

54 55

04 05

Matrix A aligned Matrix B aligned

Rotate A, Multiply and Add

33 34

43 44

53 54

00 01

10 11

20 21

35 30

45 40

55 50

02 03

12 13

22 23

31 32

41 42

51 52

04 05

14 15

24 25

30 31

40 41

50 51

00 01

10 11

20 21

52 53

02 03

12 13

22 23

32 33

42 43

14 15

24 25

34 35

44 45

54 55

04 05

Matrix A left shifted 1 step Matrix B aligned

Rotate B, Multiply and Add

33 34

43 44

53 54

00 01

10 11

20 21

35 30

45 40

55 50

02 03

12 13

22 23

31 32

41 42

51 52

04 05

14 15

24 25

30 31

40 41

50 51

00 01

10 11

20 21

52 53

02 03

12 13

22 23

32 33

42 43

14 15

24 25

34 35

44 45

54 55

04 05

Matrix A left shifted 1 step Matrix B shifted up 1 step

Figure 4: Matrix multiplication on a 2 � 3 array.

13

Rotate A, Multiply and Add

33 34

43 44

53 54

00 01

10 11

20 21

35 30

45 40

55 50

02 03

12 13

22 23

31 32

41 42

51 52

04 05

14 15

24 25

30 31

40 41

50 51

00 01

10 11

20 21

52 53

02 03

12 13

22 23

32 33

42 43

14 15

24 25

34 35

44 45

54 55

04 05

Matrix A left shifted 2 steps Matrix B shifted up 1 step

Figure 5: Matrix multiplication on a 2� 3 array, last step.

The pseudocode for the above algorithm is given in the Appendix.

Claim 1. By performing the alignment along the longest axis as if the processor array was

square with the number of processors along each axis equal to the number of processors

along the shortest axis, and the alignment along the shortest axis as if the processor

array was square with the number of processors along each axis equal to the number of

processors along the longest axis, the multiplication of two matrices can be accomplished

by performing the minimum number of rotation steps along each axis.

The correctness of the claim follows from the algorithm outlined above. Figures 4 and 5

show an example where the least common divisor of N

r

and N

c

is 1.

Remark 4. There is no local data motion (except what is required by the local BLAS)

as was the case for a square processing array. Entire submatrices are moved between

processors when necessary.

Remark 5. If one of the axes is not a multiple of the other, then not all local matrix

multiplications are of the same rank. A uniform rank can be achieved without extra local

memory moves, but at the expense of having some shifts use di�erent block sizes and

more complex memory management.

Remark 6. As in the case of a square processing array, A and B can be split into two

halves, such that an exchange operation can be performed along each axis. Note also that

moves on the two axes may not always be performed concurrently, since the longer axis

requires more cyclic shifts than the shorter axis. Furthermore, in general the submatrices

of A and B on each node are of di�erent size, and a complete overlap of the motion of

A and B is impossible even for a square processor array. If the lengths of the axes are

relatively prime, then no communication is overlapped between A and B.

14

4.3 Optimum shape of the processor array.

Ignoring the e�ects of the ceiling functions, the speedup of the arithmetic operations

is perfect and independent of the shape of the processor array. With the inner axis

entirely instantiated in time, the matrix product requires 2d

P

N

r

ed

R

N

c

ed

Q gcd(N

r

;N

c

)

N

r

N

c

e

N

r

N

c

gcd(N

r

;N

c

)

arithmetic operations in sequence. The arithmetic time is proportional to the number of

matrix elements of C per physical processor, the order of the rank d

Q gcd(N

r

;N

c

)

N

r

N

c

e updates,

and the number of such updates in sequence.

The communication time for the multiplication phase is proportional to d

P

N

r

ed

Q

N

c

e(N

c

�1)

for A and to d

Q

N

r

ed

R

N

c

e(N

r

� 1) for B. The communication time is entirely due to the all{

to{all broadcast. Reference [14] shows that the above broadcast times are optimum when

communication is restricted to one channel at a time per processor. With concurrent com-

munication on all channels of every node of a Boolean cube network, the communication

time can be reduced by a factor of log

2

N

c

for A and a factor of log

2

N

r

for B [11, 14].

The alignment phase for the Connection Machine system CM-200 implementation com-

bines establishing a shared processor con�guration for the three arrays with the alignment

of the matrices with respect to each other. This operation is performed by the router.

Reshaping the processor array for an operand, if necessary, constitutes a shu�e operation

on a suitably de�ned index set. For the Connection Machine system, CM{200, reshaping

the processor array implies that the number of processors along one axis is reduced by

some power of two, while the number of processors along the other axis is increased by

the same factor. Figure 6 gives an example in which a 2 � 4 processor array is reshaped

into a 4�2 array. The number of partitions along the �rst axis doubles, while the number

of partitions along the second axis is reduced by a factor of two. To verify that this oper-

ation is a shu�e, introduce a second index for the partitioning of the set of matrix rows

initially in each processor. Then the content of the �rst two processor columns before

the reshape operation is formed by blocks labeled 00,01,10,11,20,21,30 and 31, where the

�rst index denotes the processor to which the block of rows is assigned. After reshaping

the processor array, processor 0 contains blocks 00 and 20, processor 1 blocks 01 and 21,

processor 2 blocks 10 and 30, and processor 3 blocks 11 and 31. This reallocation can

be described as the reordering of the sequence 00,01,10,11,20,21,30,31 into the sequence

00,20,01,21,10,30,11,31. This reordering is known as a shu�e. Optimum Boolean cube

algorithms are given in [15, 16]. With concurrent communication on all channels of every

processor, as in the case of the Connection Machine system CM{200, the optimum time

for the reshaping is independent of the axes extent and is proportional to the number of

elements per processor.

The alignment of the matrices with respect to each other implies a skewing of rows with

respect to each other for A and a skewing of columns with respect to each other for

B, if a shared processor array shape has already been established. The skewing can be

performed as a sequence of cyclic shifts, with the number of cyclic shifts depending upon

the processor row for A and the processor column for B. On a Boolean cube network,

it is conjectured [12] that the data motion for this operation can be pipelined, and that

the communication time is proportional to the number of elements per processor and

15

1

0

3

2

5

4

7

6

=)

3

2

1

0

7

6

5

4

Figure 6: Reshaping a processor array.

essentially is independent of the shift length and the number of processors. Hence, it is

expected that the time for the combined processor array reshaping and matrix alignment

is proportional to the size of the submatrices assigned to each processor, and almost

independent of the machine size. The measurements reported in Section 5 show that this

assumption is valid for the Connection Machine system CM-200 router.

The number of arithmetic operations in sequence is independent of the processor array

shape. To a �rst approximation, the alignment/reshaping is also independent of the array

shape. Hence the optimum shape is determined solely by the time for the all{to{all

broadcast in the multiplication phase.

Claim 2. The optimum aspect ratio of the physical processor array is the same as the

aspect ratio of the product matrix C, i.e., N

r

=

q

PN

R

and N

c

=

q

RN

P

, or

N

r

N

c

=

P

R

.

The claim follows directly from the expressions for the time required for all{to{all broad-

cast, and is veri�ed experimentally in Section 5. Note that the optimum two-dimensional

processor array shape is the default processor array shape for C (assigned by the Con-

nection Machine compilers).

The communication times for the multiplication phase may be reduced further by con-

�guring the processors as a three{dimensional array [13] and by using all communication

channels in Boolean cubes [11]. During the multiplication phase, the algorithm described

here and used for the performance data reported in the next section, concurrently uses at

most only four channels per processor.

5 Performance.

Table 1 and Figures 7, 8 and 9 give the performance of the matrix{vector, vector{matrix,

and rank{1 update routines for square matrices. For real operands, the peak performance

of the three algorithms in 64{bit precision is 4500 M
ops/s, 5825 M
ops/s, and 3266

M
ops/s, respectively. The corresponding peak performance of the three algorithms for

complex operands is 9200 M
ops/s, 11950 M
ops/s, and 4900 M
ops/s respectively. The

improvement in performance, for a �xed number of processors, is primarily due to an

increased e�ciency of the local level{2 BLAS.

Table 2 gives the performance for the local matrix{vector multiplication kernels [18]. The

16

Matrix M
ops/s Time (millisec)

shape Number of processors Number of processors

P � P 256 512 1024 2048 256 512 1024 2048

Matrix{vector multiplication

512 107 104 128 143 4.9 5.0 4.1 3.7

1024 233 279 405 411 9.0 7.5 5.2 5.1

2048 443 596 908 1122 18.9 14.0 9.2 7.5

4096 697 1067 1643 2330 48.2 31.4 20.4 14.4

8192 | | 3056 4541 | | 43.9 29.6

Vector{matrix multiplication

512 105 124 125 147 5.0 4.2 4.2 3.6

1024 266 325 406 474 7.9 6.5 5.2 4.4

2048 496 838 918 1246 16.9 10.0 9.1 6.7

4096 790 1462 2121 2709 42.5 22.9 15.8 12.4

8192 | | 3913 5829 | | 34.3 23.0

Rank{1 update

512 99 111 119 129 5.3 4.7 4.4 4.1

1024 213 278 380 426 9.9 7.5 5.5 4.9

2048 346 577 763 1078 24.3 14.5 11.0 7.8

4096 453 823 1450 2007 74.1 40.8 23.1 16.7

8192 | | 1901 3266 | | 70.6 41.1

Table 1: Performance data for matrix{vector, vector{matrix, and rank{1 updates on

di�erent Connection Machine system CM{200 con�gurations, 64{bit precision.

17

-
N

256 512 1024 2048

6

G
ops/s

0

1

2

3

4

5

�

~

}

|

�

~

}

|

�

~

}

|

4

�

~

}

|

4

�: P= 512

~: P=1024

}: P=2048

|: P=4096

4: P=8192

Figure 7: Execution rates for multiplication of a P �P matrix by a vector on Connection

Machine system CM{200 with N processors, 64{bit precision.

-
N

256 512 1024 2048

6

G
ops/s

0

1

2

3

4

5

6

�

~

}

|

�

~

}

|

�

~

}

|

4

�

~

}

|

4

�: P= 512

~: P=1024

}: P=2048

|: P=4096

4: P=8192

Figure 8: Execution rates for multiplication of a vector by a P �P matrix on Connection

Machine system CM{200 with N processors, 64{bit precision.

18

- N

256 512 1024 2048

6

G
ops/s

0

1

2

3

4

�

~

}

|

�

~

}

|

�

~

}

|

4

�

~

}

|

4

�: P= 512

~: P=1024

}: P=2048

|: P=4096

4: P=8192

Figure 9: Execution rates for rank{1 updates on P �P matrices on Connection Machine

system CM{200 with N processors, 64{bit precision.

performance of the local kernels for 256�512 submatrices is almost three times higher than

for 4�8 submatrices. Note that the performance numbers in this table correspond to one

oating point unit of the Connection Machine system CM{200. The peak performance for

the rank{1 update kernels is approximately 25% of the peak performance of the matrix{

vector multiplication kernels.

When there is at least one data element per processor for each operand, almost 30% of

the total time of the matrix{vector multiply is spent in the local level{2 BLAS. Another

35% of the total time is spent in the two align operations (Steps 1 and 5 of the algorithm

in Section 3). The remaining 35% is spent in the spread (Step 2) and reduction (Step 4)

operations. The main reason for the di�erence in the peak performance of the matrix{

vector and the vector{matrix implementations is the asymmetry in the communication

times for the align operations in Steps 1 and 5 are signi�cantly di�erent. Moreover, for

rectangular processor layouts, the time for the spread and the reduction operations are

considerably di�erent. The peak performance of the rank{1 update is signi�cantly less

than the peak performance of the matrix{vector and the vector{matrix functions primarily

because of the lower e�ciency of the corresponding local level{2 BLAS.

Tables 3 { 4 and Figures 10 { 14 give some performance data for the systolic matrix{

matrix multiplication algorithm with the product matrix stationary and with processors

con�gured as a two{dimensional array. For a given machine size, the performance in-

creases as the size of the submatrices on the processing nodes increases. The overall

performance for the square matrix multiplication increases by a factor of nearly 15 as the

19

DGEMV

Number of Number of columns

Rows 2 3 4 5 8 16 32 64 128 512 2048

2 0.64 0.89 1.10 1.29 2.03 3.04 3.93 4.67 5.17 5.62 5.74

3 0.91 1.25 1.53 1.78 2.71 4.20 5.15 5.80 6.21 6.56 6.66

4 1.13 1.54 1.88 2.17 3.22 4.44 5.51 6.26 6.72 7.12 7.23

5 1.33 1.80 2.18 2.51 3.64 5.23 6.21 6.84 7.22 7.54 7.63

8 1.80 2.39 2.87 3.26 4.47 5.82 6.85 7.51 7.90 8.11 8.22

16 2.54 3.29 3.79 4.25 5.58 6.89 7.80 8.35 8.65 8.90 8.97

32 2.79 3.60 4.11 4.69 5.92 7.14 7.95 8.44 8.70 8.92 |

64 3.19 4.10 4.60 5.12 6.37 7.52 8.26 8.69 8.93 9.11 |

128 3.33 4.20 4.74 5.22 6.49 7.60 8.30 8.70 8.92 | |

512 3.45 4.33 4.86 5.30 6.53 7.57 8.22 8.60 | | |

2048 3.49 4.89 4.91 5.34 6.57 7.60 | | | | |

Table 2: Execution rate in M
ops/s for matrix{vector multiplication on one Connection

Machine system CM{200
oating{point processor, 64{bit precision.

size of the submatrices increases from 4�8 to 256�512 (Figure 12). For a given processor

con�guration the communication time for A increases in proportion to P and Q, and for

B in proportion to Q and R. The number of arithmetic operations increases in proportion

to P , Q, and R. Hence, the relative in
uence of the communication decreases with an

increased matrix size. However, the in
uence decreases less rapidly than predicted by this

simple analysis, because the e�ective
oating point rate of the local BLAS increases with

the size of the submatrices. It is clear from Table 4 that there are no size restrictions on

the extents of the matrix axes.

Table 5 provides some additional insights into the behavior of the systolic matrix{matrix

multiplication routine with the product matrix stationary. As a �rst approximation, the

alignment time is proportional to the number of matrix elements per processor. There is

a slight increase in the alignment time with the machine size (about 6 { 7% for a factor

of 4 increase in machine size (not reported in the tables)). The time for cyclic shifts is

proportional to the number of elements per processor and the number of shifts along an

axis. The dependence of the time for cyclic shifts upon the number of elements per node

is veri�ed by the measurements in Table 5. The Connection Machine model CM{200

communication system allows data to be exchanged concurrently on all channels of every

processor. Each of the operands A and B is split into two halves, one half moving in

the positive direction of an axis and the other half in the negative direction. Moreover,

equal{sized parts of A and B are moved concurrently whenever possible. Recall that for

rectangular arrays more cyclic shifts are required for the longer axis and that for di�erent

sized matrices the submatrices are of di�erent size.

The overall performance as a function matrix sizes and the number of processors is shown

in Figures 10 and 11. Increasing the number of processors by a factor of four and con�g-

uring the machine as a square array reduces the number of matrix elements per processor

20

by a factor of four, but doubles the processor axes' lengths. The time for the alignment

is reduced by almost a factor of two, and the time for the cyclic shifts is reduced by a

factor of two. The number of arithmetic operations per processor for square matrices

and processing node con�gurations decreases by a factor of eight for each local matrix

multiply. However, the number of calls to the local matrix multiply function increases by

a factor of two. The loss in e�ciency in the local level{2 BLAS because of a reduced size

of the submatrices, does not quite reduce the arithmetic time by a factor of four. The

relative importance of the communication increases by about a factor of two.

For double precision operands, the systolic multiplication phase (local matrix multiply and

cyclic shifts in Table 3) has a peak
oating{point rate of approximately 11 G
ops/s. After

accounting for the alignment and recon�guration phases, the overall algorithm peaks at

nearly 10 G
ops/s. The overall peak performance of the algorithm for complex matrices

(N = 8192) is 12.5 G
ops/s.

Figures 13 and 14 show how the performance of the systolic algorithm for the multi-

plication of a rectangular matrix and a square matrix varies with the machine size (C

stationary). The speedup with the machine size is almost identical for the di�erent ma-

trix shapes and is linear in the machine size. The e�ciency for matrices of a given size

decreases with machine size, as explained above. The speedup is approximately 5 for an

increase in machine size by a factor of 8.

Figure 15 shows the dependence of the performance upon the shape of the product ma-

trix for the systolic algorithm with C stationary. For a given inner dimension Q, the

performance is approximately independent of the values of P and R for P � R = const.

The performance increases with the value of the constant and increased values of Q. The

deviation from perfect symmetry is due mostly to the fact that a Connection Machine

system CM{200 with 2048 processors cannot be con�gured as a square array. In this case,

one of the pairs in each symmetric case (P �R and R�P) may incur a reallocation of the

product matrix, while the other case does not. The asymmetry is very small for machine

sizes for which the number of
oating-point processors is a square, as seen from Table

3. Note that in Figure 15 P and R are expressed relative to Q. Hence, the increased

performance as Q increases, since all three local axes increases with an increased value of

Q for �xed ratios of P=Q and R=Q.

Figures 16 and 17 illustrate the in
uence of the shape of the shared processing node

con�guration on the overall performance of the systolic matrix multiply algorithm with

C stationary. For square operand matrices, when the processing nodes are con�gured as

a linear array (N

r

= 1 or N

c

= 1), the number of cyclic shifts that are required for the

all{to{all broadcast in the multiplication phase completely dominates the algorithm. For

the square matrices considered in Figure 16, the total number of cyclic shifts is minimum

when N

r

= N

c

. For the rectangular shapes illustrated in Figure 17, performance is optimal

when the shared processor con�guration is of the same shape as the product matrix when

P < R. For the case when P > R, the default processor layout for the product matrix

makes it essential for the Connection Machine system CM-200 implementation to do one

extra route operation to recon�gure the product matrix. This extra communication step

shifts the optimum
oating point rate versus shared processor con�guration to the left.

21

Matrix shape M
ops/s Time (sec)

P �Q� R Number of processors Number of processors

256 512 1024 2048 256 512 1024 2048

1024� 1024� 128 300 365 704 838 0.895 0.735 0.381 0.320

1024� 1024� 256 377 548 826 1339 1.424 0.980 0.650 0.401

1024� 1024� 512 559 736 1289 1729 1.921 1.459 0.833 0.621

1024� 1024� 1024 744 1079 1788 2647 4.022 2.544 1.745 1.054

512� 1024� 1024 534 844 1231 2038 2.011 1.272 0.872 0.527

256� 1024� 1024 403 597 913 1366 1.332 0.899 0.588 0.393

128� 1024� 1024 271 389 609 987 0.991 0.690 0.441 0.272

2048� 2048� 128 521 674 1244 1608 2.061 1.593 0.863 0.668

2048� 2048� 256 476 622 1236 1520 4.512 3.453 1.737 1.413

2048� 2048� 512 649 815 1515 2507 6.618 5.270 2.835 1.713

2048� 2048� 1024 908 1257 2252 3177 9.460 6.834 3.814 2.704

2048� 2048� 2048 1128 1724 2975 4646 15.230 9.965 5.775 3.698

1024� 2048� 2048 871 1417 2194 3687 9.862 6.062 3.915 2.330

512� 2048� 2048 685 1039 1686 2509 6.270 4.134 2.547 1.712

256� 2048� 2048 470 740 1167 1849 4.569 2.902 1.840 1.161

128� 2048� 2048 481 879 1189 1909 2.232 1.222 0.903 0.562

4096� 4096� 256 743 1074 2044 2797 11.560 8.000 4.203 3.071

4096� 4096� 512 706 1033 1967 2608 24.334 16.631 8.734 6.587

4096� 4096� 1024 1020 1336 2546 4351 33.686 25.718 13.500 7.897

4096� 4096� 2048 | 1892 3513 5365 | 36.321 19.561 12.809

4096� 4096� 4096 1516 2348 4327 7318 90.650 58.534 31.763 18.781

2048� 4096� 4096 1263 2031 3486 6106 54.410 33.835 19.713 11.254

1024� 4096� 4096 1050 1636 2816 4552 32.724 21.002 12.202 7.548

512� 4096� 4096 786 1152 2025 3425 21.857 14.913 8.484 5.016

256� 4096� 4096 748 1392 2004 3539 11.484 6.171 4.286 2.427

256� 256� 256 240 320 497 668 0.140 0.105 0.068 0.050

512� 512� 512 439 609 987 1400 0.612 0.441 0.272 0.192

1024� 1024� 1024 744 1079 1788 2647 2.888 1.991 1.201 0.811

2048� 2048� 2048 1128 1724 2975 4646 15.232 9.965 5.776 3.698

4096� 4096� 4096 1517 2348 4327 7318 90.650 58.547 31.767 18.781

8192� 8192� 8192 | | | 9929 | | | 110.737

Table 3: Performance of the systolic matrix multiplication algorithm with C stationary

on some Connection Machine system CM{200 con�gurations, 64{bit precision.

22

Matrix shape G
ops/s

P � P � P Real Complex

6400 9.3 12.5

6656 9.5 12.7

6912 9.6 12.8

7168 9.8 12.9

7424 9.9 13.0

7680 10.1 13.2

7936 10.3 13.3

8192 10.6 13.6

8448 10.6 13.6

8704 10.7 13.6

8960 10.8 13.7

9216 11.0 13.9

9472 11.1 14.0

9728 11.3 14.1

9984 11.3 14.1

10240 11.5 14.3

10496 11.6 14.3

10752 11.7 14.4

11008 11.8 14.5

11264 11.9 14.6

11520 11.9 14.5

11776 12.1 14.7

12032 12.2 14.7

12288 12.3 14.8

12544 12.3 14.9

12800 12.4 14.9

13056 12.5 14.9

13312 12.6 15.0

13568 12.7

13824 12.8

14080 12.8

14336 12.9

14592 12.9

14848 13.0

15104 13.1

15360 13.2

15616 13.2

15872 13.3

Table 4: Performance of the systolic matrix multiplication algorithm with C stationary

on a 64K Connection Machine system CM{200 con�guration, 64{bit precision.

23

Matrix size 256� 256 512� 512 1024� 1024 2048� 2048 4096� 4096

Operation Time % Time % Time % Time % Time %

Alignment 0.030 22 0.117 19 0.473 16 1.914 13 7.758 9

Local matmul 0.020 14 0.133 22 0.968 34 7.529 49 59.738 66

Cyclic shifts 0.089 64 0.362 59 1.447 50 5.789 38 23.153 26

Total 0.139 100 0.613 100 2.889 100 15.232 100 90.650 100

Table 5: Relative execution times for the global matrix multiplication algorithm on a 256

processor Connection Machine system CM{200, 64{bit precision.

- N

256 512 1024 2048

6

Time (s)

0

10

20

30

40

50

60

70

�~

}

|

�

~

}

|

4

�

~

}

|

4

�
~

}

|

4

�: Matrix size 256

~: Matrix size 512

}: Matrix size 1024

|: Matrix size 2048

4: Matrix size 4096

Figure 10: Execution time for multiplication of square matrices, 64{bit precision. N is

the size of the Connection Machine system CM{200.

24

- N

256 512 1024 2048

6

G
ops/s

0

2

4

6

8

10

�

~

}

|

4

�

~

}

|

4

�

~

}

|

4

�

~

}

|

4

�

�: Matrix size 256

~: Matrix size 512

}: Matrix size 1024

|: Matrix size 2048

4: Matrix size 4096

� : Matrix size 8192

Figure 11: Execution rates for multiplication of square matrices, 64{bit precision. N is

the size of the Connection Machine system CM{200.

-
P

0 2K 4K 6K 8K

6

G
ops/s

0

2

4

6

8

10

t

t

t

t

t

t

Figure 12: Performance of square matrix multiplication as a function of matrix size P on

a 2048 processor Connection Machine system CM{200, 64{bit precision.

25

- N

256 512 1024 2048

6

Time (s)

0

10

20

30

40

50

60

70

80

90

�

~

}

|

4

�
~

}

|

4

�
~

}

|

4

�~

}

|

4

�: P= 256

~: P= 512

}: P=1024

|: P=2048

4: P=4096

Figure 13: Execution time for a P � 4096 � 4096 matrix multiplication, 64{bit precision.

N is the size of the Connection Machine system CM{200.

- N

256 512 1024 2048

6

G
ops/s

0

2

4

6

8

�

~

}

|

4

�

~

}

|

4

�
~

}

|

4

�

~

}

|

4

�: P= 256

~: P= 512

}: P=1024

|: P=2048

4: P=4096

Figure 14: Execution rates for P � 4096 � 4096 matrix multiplication, 64{bit precision.

N is the size of the Connection Machine system CM{200.

26

-

P

RQ=16 Q=8 Q=4 Q=2 Q Q Q Q Q

Q Q Q Q Q Q=2 Q=4 Q=8 Q=16

6

G
ops/s

0

2

4

6

8

10

�

�

�

�

�

�

�

�

�

~

~

~

~

~

~

~

~

~

}

}

}

}

}

}

}

}

}

|

|

|

|

|

|

|

|

|

�: Q=1024

~: Q=2048

}: Q=4096

|: Q=8192

Figure 15: Execution rates for multiplication of rectangular matrices on a 2048 processor

Connection Machine system CM{200, 64{bit precision.

-

log

2

(N

r

)

log

2

(N

c

)0 1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1 0

6

M
ops/s

0

200

400

600

800

1000

1200

�

�

�

�

�

�

�

�

�

~

~

~

~

~

~

~

~

~

}

}

}

}

}

}

}

}

}

�: P= 512

~: P=1024

}: P=2048

Figure 16: In
uence of shared processor con�guration on the performance for multipli-

cation of square matrices of size P , 64{bit precision. The shape of the 256 processor

Connection Machine system CM{200 is N

r

�N

c

= 256.

27

-

log

2

(N

r

)

log

2

(N

c

)0 1 2 3 4 5 6 7 8

8 7 6 5 4 3 2 1 0

6

M
ops/s

0

200

400

600

800

1000

1200

1400

�

�

�

�

�

�

�

�

�

~

~

~

~

~

~

~

~

~

}

}

}

}

}

}

}

}

}

|

|

|

|

|

|

|

|

|

�: P = 512;Q = 128;R = 2048

~: P = 1024;Q = 256;R = 4096

}: P = 2048;Q = 512;R = 8192

|: P = 8192;Q = 512;R = 2048

Figure 17: In
uence of shared processor con�guration on multiplication of rectangular

matrices of shape P �Q�R, 64{bit precision. The shape of the 256 processor Connection

Machine system CM{200 is N

r

�N

c

= 256.

Finally, Table 6 and Figure 18 show the performance for the multiplication of a square

matrixA by a rectangular matrixB. The number of columns in B varies from one to 8192.

The e�ect of the blocking introduced for the nonsystolic \matrix{vector" multiplication

algorithm, and the selection of algorithm for matrix{matrix multiplication as a function

of the shape of the operands is clear. When

P

R

� 8, a matrix{vector type algorithm is used

with a block size of min(R; 64) (A is stationary). When

R

P

� 16, a vector{matrix algorithm

is used to evaluate the product (B is stationary). The block size is min(P; 32). For the data

reported in Table 6 and Figure 18, all other shapes use the systolic matrix multiplication

algorithm with C stationary. For small matrices, blocking of vectors for the nonsystolic

algorithm, yields more than a three-fold performance increase for square matrices, while

for large matrices the performance increase is about 5%. For small matrices, blocking

improves the performance of the local level{2 BLAS by about 50%.

6 Summary.

Level{2 and level{3 DBLAS used in the Connection Machine Scienti�c Software Library,

CMSSL, are described brie
y. Both the nonsystolic and the systolic algorithms for matrix{

matrix multiplication on distributed data structures, with A, B, or C stationary are

outlined. A systolic matrix{matrix multiplication algorithm keeping C stationary is de-

scribed in detail. The systolic algorithms perform the all{to{all broadcast and reduction

operations as a sequence of cyclic shifts, thereby reducing the need for temporary storage.

28

Matrix shape M
ops/s Time (millisec)

P � P �R Number of processors Number of processors

256 512 1024 2048 256 512 1024 2048

256� 256� 1 33 35 43 49 4.0 3.7 3.0 2.7

256� 256� 4 62 74 104 105 8.5 7.1 5.0 5.0

256� 256� 16 74 93 154 171 28.3 22.6 13.6 12.3

256� 256� 64 104 145 206 303 80.7 57.9 40.7 27.7

256� 256� 256 240 320 497 668 139.8 104.9 67.5 50.2

256� 256� 1024 398 564 834 1151 337.2 238.0 160.9 116.6

256� 256� 4096 182 346 397 738 2949.8 1551.7 1352.3 727.5

256� 256� 8192 | | 698 795 | | 1538.3 1350.6

512� 512� 1 107 104 128 143 4.9 4.0 4.1 3.7

512� 512� 4 133 164 251 297 15.8 12.8 8.4 7.1

512� 512� 16 165 186 329 386 50.8 45.1 25.5 21.7

512� 512� 64 167 204 367 405 200.9 164.5 91.4 82.9

512� 512� 256 318 398 689 890 422.1 337.2 194.8 150.8

512� 512� 1024 528 826 1219 1948 1016.8 650.0 440.4 275.6

512� 512� 4096 796 1205 1981 2902 2697.8 1782.1 1084.0 740.0

512� 512� 8192 | | 755 1435 | | 5688.7 2993.0

1024� 1024� 1 233 279 405 411 9.0 5.2 5.1 5.1

1024� 1024� 4 253 344 570 652 33.2 24.4 14.7 12.9

1024� 1024� 16 308 390 621 800 108.9 86.0 54.0 41.9

1024� 1024� 64 294 391 708 865 456.5 343.3 189.6 155.2

1024� 1024� 256 377 548 826 1339 1424.1 979.7 650.0 400.9

1024� 1024� 1024 744 1079 1788 2647 2886.4 1990.3 1201.1 811.3

1024� 1024� 4096 1066 1652 2771 4478 8058.1 5199.7 3099.9 1918.3

1024� 1024� 8192 | | 3219 5383 | | 5337.0 3191.5

4096� 4096� 1 697 1067 1913 2330 48.1 31.4 17.5 14.4

4096� 4096� 4 719 1187 1995 2734 186.7 113.1 67.3 49.1

4096� 4096� 16 794 1217 2262 2966 676.2 441.1 237.3 181.0

4096� 4096� 64 787 1160 2258 2962 2728.7 1851.3 951.1 725.0

4096� 4096� 256 743 1074 2044 2797 11561.2 7998.1 4202.5 2883.5

4096� 4096� 1024 1020 1336 2546 4351 33686.0 25718.4 13495.6 7897.0

4096� 4096� 4096 1517 2348 4327 7318 90599.2 58534.5 31763.1 18780.9

4096� 4096� 8192 | | 4952 8929 | | 55508.5 30784.8

8192� 8192� 1 | | 3056 4541 | | 43.9 29.6

8192� 8192� 4 | | 3354 4643 | | 160.1 115.6

8192� 8192� 16 | | 3416 5011 | | 628.7 428.6

8192� 8192� 64 | | 3416 4993 | | 2514.6 1720.4

8192� 8192� 256 | | 3164 4756 | | 10859.6 7224.5

8192� 8192� 1024 | | 2906 4308 | | 47294.9 31903.2

8192� 8192� 4096 | | | 8027 | | | 68488.3

8192� 8192� 8192 | | | 9929 | | | 110737.4

Table 6: Performance for the multiplication of a square matrix A by a rectangular matrix

B on some Connection Machine system CM{200 con�gurations using the matrix{matrix

multiplication function in CMSSL, 64{bit precision.

29

-

log

2

(R)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

6

G
ops/s

0

2

4

6

8

10

�

�

�

�

�
�

�

�

�

�

�

�

�

�

~

~

~

~

~

~ ~ ~

~

~

~

~

~

~

}

}

}

}

} } }
}

}

}

}

}

}

}

|

|

|

|
|

|

|

|

|

|

|

|

|

|

�: P = 1024

~: P = 2048

}: P = 4096

|: P = 8192

Figure 18: Performance of the matrix multiplication function in the Connection Machine

Scienti�c Software Library for the multiplication of a P � P matrix by a P � R matrix

on Connection Machine system CM{200, 64{bit precision.

All algorithms require that the operands �rst be aligned with respect to each other, and

that a common machine con�guration is established for all operands.

For the matrix{vector multiplication routine, about 35% of the time is spent in the align-

ment of the two vectors, while the spread{and{reduce operations account for another 30%

of the total time. The matrix{vector and vector{matrix multiplication routines have com-

parable performance. The di�erence is due to the asymmetry in the route operation. The

performance of the rank{1 update routine is always less than for the matrix{vector and

vector{matrix routines. For small matrices, the performance di�erence is about 10%, but

for large matrices the performance di�erence is close to a factor of two. The performance

for the local level{2 BLAS used in the level{2 DBLAS is up to a factor of four higher for

matrix{vector (vector{matrix) multiplication than for rank-1 updates.

It has been shown experimentally that introducing blocking in the matrix{vector and

vector{matrix multiplication routines in their use for matrix{matrix multiplication yields

a performance improvement by over a factor of three for small matrices. For large matrices,

the performance gain by blocking is about 5%. Most of the performance gain for small

matrices is due to improved performance of the local level{2 BLAS. For the same blocking

factor, the performance of the matrix{vector and vector{matrix multiplication routines is

always better than the performance of the rank-b update, primarily because of the better

performance of the local level{2 BLAS functions.

For the systolic matrix{matrix multiplication routine with C stationary, about 20% of

the time is spent for the alignment of small matrices. The alignment of large matrices

accounts for nearly 10% of the total time. The fraction of time spent for the cyclic

30

rotation decreases from about 65% for small matrices to about 25% for large matrices.

For submatrices of shape p�q, q�r, and p�r, the time for cyclic rotation is proportional to

the number of data elements moved in sequence, which for A is

p�q

2

N

c

, and for B is

q�r

2

N

r

.

These shifts are partially overlapped. The required number of
oating point operations,

2p � q � r increases with the size of the local matrices. The total time increases at a

slower rate, because the
oating point rate increases with an increase in the local matrix

size. The increase in the
oating{point rate is a factor of 14 from 2 � 2 submatrices to

large submatrices.

As a �rst approximation, the algorithm which keeps the matrix with the largest number

of elements stationary should be used to compute the matrix product. Deviations from

this rule are primarily due to particular implementation issues for communication routines

and variations in arithmetic e�ciency due to di�erent vector lengths for the di�erent local

submatrices.

The aspect ratio of the shape of the processor array for optimum communication per-

formance shall be the same as the aspect ratio of the shape of the stationary matrix.

This result has also been veri�ed experimentally. For square matrices, the performance

varies by a factor of over �ve as a function of the shape of the processing array. For the

rectangular matrices used in the experiments reported here, the in
uence of the shared

processing node con�guration is much more severe (18 M
ops/s versus the optimal 559

M
ops/s { a factor of more than 30).

The local level{2 BLAS used in the algorithm are well{optimized for the node architec-

ture, having a peak e�ciency in excess of 90%. For improved e�ciency in the global

matrix multiplication algorithm, a decrease in the need for communication is desirable, in

particular, in the multiplication phase of the algorithm. Con�guring the processors as a

three{dimensional array may yield lower communication requirements for the multiplica-

tion phase [13, 20]. A decrease in communication time can also be achieved by exploiting

more of the communications bandwidth of the Boolean cube network by using multiple

concurrent exchange sequences as suggested in [11].

Acknowledgment

Many people at Thinking Machines Corp. have provided support for the distributed

BLAS functions that are described here. These include Mark Bromley, Alan Edelman,

Tim Harris, Steve Heller, Doug MacDonald, and Luis Ortiz.

References

[1] Jean-Philippe Brunet and S. Lennart Johnsson. All-to-all broadcast with applications

on the Connection Machine. International Journal of Supercomputer Applications,

6(3):241{256, 1992.

[2] L.E. Cannon. A Cellular Computer to Implement the Kalman Filter Algorithm. PhD

thesis, Montana State Univ., 1969.

31

[3] M.Y. Chan. Embedding of grids into optimal hypercubes. SIAM J. Computing,

20(5):834{864, 1991.

[4] Eliezer Dekel, David Nassimi, and Sartaj Sahni. Parallel matrix and graph algo-

rithms. SIAM J. Computing, 10:657{673, 1981.

[5] Jack J. Dongarra, Jeremy Du Croz, Iain Du�, and Sven Hammarling. A Set of Level

3 Basic Linear Algebra Subprograms. Technical Report Reprint No. 1, Argonne

National Laboratories, Mathematics and Computer Science Division, August 1988.

[6] Jack J. Dongarra, Jeremy Du Croz, Iain Du�, and Sven Hammarling. A Set of Level

3 Basic Linear Algebra Subprograms: Model implementation and test programs.

Technical Report Reprint No. 2, Argonne National Laboratories, Mathematics and

Computer Science Division, August 1988.

[7] Geo�rey C. Fox and Wojtek Furmanski. Optimal communication algorithms on the

hypercube. Technical Report CCCP-314, California Institute of Technology, July

1986.

[8] Geo�rey C. Fox, Mark A. Johnson, Gregory A. Lyzenga, Steve W. Otto, John K.

Salmon, and DavidW.Walker. Solving Problems on Concurrent Processors. Prentice-

Hall, 1988.

[9] I. Havel and J. M�oravek. B-valuations of graphs. Czech. Math. J., 22:338{351, 1972.

[10] Ching-Tien Ho and S. Lennart Johnsson. Embedding meshes in Boolean cubes by

graph decomposition. J. of Parallel and Distributed Computing, 8(4):325{339, April

1990.

[11] Ching-Tien Ho and S. Lennart Johnsson. Matrix multiplication on hypercubes using

full bandwidth and constant storage. In The Sixth Distributed Memory Computing

Conference, pages 447{451. IEEE Computer Society Press, 1991.

[12] S. Lennart Johnsson. Communication e�cient basic linear algebra computations

on hypercube architectures. J. Parallel Distributed Computing, 4(2):133{172, April

1987.

[13] S. Lennart Johnsson and Ching-Tien Ho. Algorithms for multiplying matrices of

arbitrary shapes using shared memory primitives on a Boolean cube. Technical

Report YALEU/DCS/RR-569, Dept. of Computer Science, Yale University, October

1987.

[14] S. Lennart Johnsson and Ching-Tien Ho. Spanning graphs for optimum broad-

casting and personalized communication in hypercubes. IEEE Trans. Computers,

38(9):1249{1268, September 1989.

[15] S. Lennart Johnsson and Ching-Tien Ho. Maximizing channel utilization for all-to-

all personalized communication on Boolean cubes. In The Sixth Distributed Memory

Computing Conference, pages 299{304. IEEE Computer Society Press, 1991.

32

[16] S. Lennart Johnsson and Ching-Tien Ho. Generalized shu�e permutations on

Boolean cubes. J. Parallel and Distributed Computing, 16(1):1{14, 1992.

[17] S. Lennart Johnsson and Kapil K. Mathur. Distributed BLAS. Technical report,

Thinking Machines Corp., 1992. In preparation.

[18] S. Lennart Johnsson and Luis F. Ortiz. Local Basic Linear Algebra Subroutines

(LBLAS) for distributed memory architectures and languages with an array syntax.

The International Journal of Supercomputer Applications, 6(4):322{350, 1992.

[19] C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh. Basic Linear Algebra

Subprograms for Fortran Usage. ACM TOMS, 5(3):308{323, September 1979.

[20] Kapil K. Mathur and S. Lennart Johnsson. Matrix multiplication on a three-

dimensional array. Technical report, Thinking Machines Corp., November 1991.

[21] Kapil K. Mathur and S. Lennart Johnsson. All{to{all communication algorithms

for distributed BLAS. In 6th SIAM Conference on Parallel Processing for Scienti�c

Computing. SIAM, 1993. Harvard University Technical Report TR-07-93.

[22] David Nassimi and Sartaj Sahni. Optimal BPC permutations on a cube connected

SIMD computer. IEEE Trans. Computers, C-31(4):338{341, April 1982.

[23] E.M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Prentice-Hall,

Englewood Cli�s. NJ, 1977.

[24] Arnold L. Rosenberg. Preserving proximity in arrays. SIAM J. Computing, 4:443{

460, 1975.

[25] Quentin F. Stout and Bruce Wagar. Passing messages in link-bound hypercubes. In

Michael T. Heath, editor, Hypercube Multiprocessors 1987. Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1987.

[26] Thinking Machines Corp. CM Fortran optimization notes: slicewise model, version

1.0, 1991.

[27] Thinking Machines Corp. CMSSL for CM Fortran, Version 3.1, 1993.

[28] Walter Tichy. Parallel matrix multiplication on the Connection Machine. In Horst D.

Simon, editor, Scienti�c Applications of the Connection Machine, pages 174{187.

World Scienti�c, 1989.

33

7 Appendix

This section describes the systolic algorithm where the product matrix C is kept station-

ary. The shape of the operand matrices is arbitrary. The processing nodes are assumed

to be con�gured as a two{dimensional array of shape N

r

�N

c

for any N

r

and N

c

.

The alignment of each operand is expressed using two forall loops in the pseudocode

below. The inner loop de�nes the maximum data set that is guaranteed to have the

same data motion during alignment. For the matrix A, the alignment is performed on

submatrices of shape � � �

v

(� = d

P

N

r

e; �

v

= d

Qgcd(N

r

;N

c

)

N

r

N

c

e). For the matrix B the same

properties hold for submatrices of shape �

v

�
 (
 = d

R

N

c

e). All submatrices can be aligned

concurrently, should there be su�cient communications bandwidth available.

The �rst three loops for the multiplication phase in the pseudocode below de�ne a matrix

multiplication local to a processor. It is the multiplication immediately succeeding the

alignment. The main loop performs the remaining multiplications and a single cyclic

shift. The local matrix multiplication is performed as a block outer product, or rank-

d

Q gcd(N

r

;N

c

)

N

r

N

c

e update. This update is de�ned in terms of a matrix{vector multiplication,

where the matrix is of shape d

P

N

r

e�d

Qgcd(N

r

;N

c

)

N

r

N

c

e. The matrix{vector product is expressed

as a sequence of AXPY operations [19] with a vector length of d

P

N

r

e. This loop is for

illustration only. The actual code calls a (local) matrix{vector routine. The local indices

for matrix C are � and �; for matrix A the indices are � and , and for the matrix B the

local indices are � and �. The local submatrix of A is treated in blocks of d

Q gcd(N

r

;N

c

)

N

r

N

c

e

columns, and the local submatrix of B in blocks of d

Qgcd(N

r

;N

c

)

N

r

N

c

e rows. The inner index of

the matrices A and B is �

v

^

Q+

v

, where

v

is the index local to a block, and

^

Q is the

block index. The local block index for A is

^

Q mod

N

r

gcd(N

r

;N

c

)

and the local block index for

B is

^

Q mod

N

c

gcd(N

r

;N

c

)

.

The organization of the computations corresponds to a reshaping of the data arrays to

arrays with six axes. Two of the axes de�ne the processor array. Two more axes are

necessary for the enumeration of the virtual processors being emulated by a physical

processor (one virtual axes for each of the physical processor array axis). Finally, two

axes de�ne the number of rows and columns for each virtual processor. For a square

processor array a processor will emulate only one virtual processor, and four axes su�ce.

Algorithm AM(C,A,B)

forall `;m 2 f0; 1; : : : ; N

r

� 1g � f0; 1; : : : ; N

c

� 1g do

Alignment:

forall

^

Q := 0 to

N

r

gcd(N

r

;N

c

)

� 1 do

forall �;

v

2 f0; 1; : : : ; � � 1g � f0; 1; : : : ; �

v

� 1g do

a(�` + �; �

v

(m

N

r

gcd(N

r

;N

c

)

+

^

Q) +

v

)

 a(�` + �; �

v

(m

N

r

gcd(N

r

;N

c

)

+

^

Q+ `

N

c

gcd(N

r

;N

c

)

) mod

N

r

N

c

gcd(N

r

;N

c

)

+

v

)

34

endforall �;

v

endforall

^

Q

forall

^

Q := 0 to

N

c

gcd(N

r

;N

c

)

� 1 do

forall

v

; � 2 f0; 1; : : : ; �

v

� 1g � f0; 1; : : : ;

1

� 1g do

b(�

v

(`

N

c

gcd(N

r

;N

c

)

+

^

Q) +

v

;

1

m+ �)

 b(�

v

(`

N

c

gcd(N

r

;N

c

)

+

^

Q+m

N

r

gcd(N

r

;N

c

)

) mod

N

r

N

c

gcd(N

r

;N

c

)

+

v

;

1

m+ �)

endforall

v

; �

endforall

^

Q

Multiplication:

for � := 0 to
 � 1 do

for

v

:= 0 to �

v

� 1 do

for � := 0 to � � 1 do

c(�`+ �;
m+ �) c(�`+ �;
m+ �) + a(�` + �;

v

)� b(

v

;
m+ �)

endfor �

endfor

v

endfor �

for

^

Q:=1 to

N

r

N

c

gcd(N

r

;N

c

)

� 1 do

if

^

Q mod

N

r

gcd(N

r

;N

c

)

= 0 then

forall �; 2 f0; 1; : : : ; �� 1g � f0; 1; : : : ; �

c

� 1g do

a(�`+ �; �

c

m+) a(�` + �; �

c

((m+ 1) mod N

c

) +)

endforall �;

endif

if

^

Q mod

N

c

gcd(N

r

;N

c

)

= 0 then

forall �; � 2 f0; 1; : : : ; �

r

� 1g � f0; 1; : : : ;
 � 1g do

b(�

r

`+ �;
m+ �) b(�

r

((` + 1) mod N

r

) + �;
m+ �)

endforall �; �

endif

for � := 0 to
 � 1 do

for

v

:= 0 to �

v

� 1 do

for � := 0 to �� 1 do

c(�` + �;
m+ �) c(�` + �;
m+ �)+

+a(�`+ �; �

v

^

Q mod

N

r

gcd(N

r

;N

c

)

+

v

)� b(�

v

^

Q mod

N

c

gcd(N

r

;N

c

)

+

v

;
m+ �)

endfor �

endfor

v

endfor �

endfor

^

Q

endforall `;m

35

