
Building a Better Bloom Filter

Citation
Kirsch, Adam and Michael Mitzenmacher. Building a Better Bloom Filter. Harvard Computer
Science Group Technical Report TR-02-05.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017278

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:23017278
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Building%20a%20Better%20Bloom%20Filter&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=a9edad609abfbaffe1c6f633ae1dcefe&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

������������	�

����������������������� �����������

 "!$#&% ')(+*-,/.10
#&23!

4 (+.10$#6587 4 (:9<;�5823%�#&.10=5�*

>�?A@CB�D�@CB�E

FAG %IH$JK9-5�*�LM.�(+5823.�5ON"* G J=H
P #Q*/R6#Q*<!TSU23(:RV58*-,/(W9CX

F #&%ZY3*<(+!=[�5&\ 4 #&,/,<#6.10MJ3,]5^9/9_,

Building a Better Bloom Filter

Adam Kirsch∗ Michael Mitzenmacher †

Division of Engineering and Applied Sciences

Harvard University
{kirsch,michaelm}@eecs.harvard.edu

Abstract

A technique from the hashing literature is to use two hash functions h1(x) and h2(x) to
simulate additional hash functions of the form gi(x) = h1(x) + ih2(x). We demonstrate that
this technique can be usefully applied to Bloom filters and related data structures. Specifically,
only two hash functions are necessary to effectively implement a Bloom filter without any loss
in the asymptotic false positive probability. This leads to less computation and potentially
less need for randomness in practice.

1 Introduction

A Bloom filter is a simple space-efficient randomized data structure for representing a set in order
to support membership queries. Although Bloom filters allow false positives, the space savings
often outweigh this drawback. The Bloom filter and its many variations have proven increasingly
important for many applications (see, for example, [3]). For those who are not familiar with the
data structure, we review it below in Section 2.

In this paper, we show that applying a standard technique from the hashing literature can
simplify the implementation of Bloom filters significantly. The idea is the following: two hash
functions h1(x) and h2(x) can simulate more than two hash functions of the form gi(x) = h1(x)+
ih2(x). (See, for example, Knuth’s discussion of open addressing with double hashing [10].) In our
context i will range from 0 up to some number k−1 to give k hash functions, and the hash values
are taken modulo the size of the relevant hash table. We demonstrate that this technique can be
usefully applied to Bloom filters and related data structures. Specifically, only two hash functions
are necessary to effectively implement a Bloom filter without an increase in the asymptotic false
positive probability. This leads to less computation and potentially less need for randomness in
practice. This improvement was found empirically in the work of Dillinger and Manolios [5, 6];
here we provide a full theoretical analysis of this technique.

After reviewing the Bloom filter data structure, we begin with a specific example, focusing
on a useful but somewhat idealized Bloom filter construction that provides the main insights.
We then move to a more general setting that covers several issues that might arise in practice,
such as when the size of the hash table is a power of two as opposed to a prime. Finally, we
demonstrate the utility of this approach beyond the simple Bloom filter by showing how it can
be used to reduce the number of hash functions required for the Count-Min sketches of [4].

∗Supported in part by an NSF Graduate Research Fellowship and NSF grants CCR-9983832 and CCR-0121154.
†Supported in part by NSF grants CCR-9983832 and CCR-0121154.

1

2 Standard Bloom filters

We begin by reviewing the fundamentals of Bloom filters, based on the presentation of the survey
[3], which we refer to for further details. A Bloom filter for representing a set S = {x1, x2, . . . , xn}
of n elements from a large universe U consists of an array of m bits, initially all set to 0. The filter
uses k independent hash functions h1, . . . , hk with range {1, . . . , m}, where it assumed that these
hash functions map each element in the universe to a random number uniform over the range.
While the randomness of the hash functions is clearly an optimistic assumption, it appears to be
suitable in practice [8, 13]. For each element x ∈ S, the bits hi(x) are set to 1 for 1 ≤ i ≤ k. (A
location can be set to 1 multiple times.) To check if an item y is in S, we check whether all hi(y)
are set to 1. If not, then clearly y is not a member of S. If all hi(y) are set to 1, we assume that
y is in S, and hence a Bloom filter may yield a false positive.

The probability of a false positive for an element not in the set, or the false positive probability,
can be estimated in a straightforward fashion, given our assumption that hash functions are
perfectly random. After all the elements of S are hashed into the Bloom filter, the probability
that a specific bit is still 0 is

p′ =

(

1 − 1

m

)kn

≈ e−kn/m.

In this section, we generally use the approximation p = e−kn/m in place of p′ for convenience.
If ρ is the proportion of 0 bits after all the n elements are inserted in the table, then conditioned

on ρ the probability of a false positive is

(1 − ρ)k ≈ (1 − p′)k ≈ (1 − p)k =
(

1 − e−kn/m
)k

.

These approximations follow since E[ρ] = p′, and ρ can be shown to be highly concentrated

around p′ using standard techniques. It is easy to show that the expression
(

1 − e−kn/m
)k

is
minimized when k = ln 2 · (m/n), giving a false positive probability f of

f =
(

1 − e−kn/m
)k

= (1/2)k ≈ (0.6185)m/n.

In practice, k must be an integer, and a smaller, sub-optimal k might be preferred since this
reduces the number of hash functions that have to be computed.

This analysis provides us (roughly) with the probability that a single item z /∈ S gives a false
positive. We would like to make a broader statement, that in fact this gives a false positive rate.
That is, if we choose a large number of distinct elements not in S, the fraction of them that
yield false positives is approximately f . But this result follows immediately from the fact that ρ
is highly concentrated around p′, and for this reason, the false positive probability is sometimes
called the false positive rate.

Before moving on, we note that sometimes Bloom filters are described slightly differently, with
each hash function having a disjoint range of m/k consecutive bit locations instead of having one
shared array of m bits. Repeating the analysis above, we find that in this case the probability
that a specific bit is 0 is

(

1 − k

m

)n

≈ e−kn/m.

Asymptotically the performance is the same as the original scheme, although since for k ≥ 1,

(

1 − k

m

)n

≤
(

1 − 1

m

)kn

,

this modification never decreases the false positive probability.

2

3 A Simple Construction Using Two Hash Functions

As an instructive example case, we consider the following specific application of the general
technique described in the introduction. We devise a Bloom filter that uses k hash functions,
each with range {0, 1, 2, . . . , p − 1} for a prime p. Our hash table consists of m = kp bits; each
hash function is assigned a disjoint subarray of p bits in the filter, that we treat as numbered
{0, 1, 2, . . . , p − 1}. Our k hash functions will be of the form

gi(x) = h1(x) + ih2(x) mod p,

where h1(x) and h2(x) are two independent, uniform random hash functions on the universe with
range {0, 1, 2, . . . , p − 1}, and throughout we assume that i ranges from 0 to k − 1.

In this setting, for any two elements x and y, exactly one of the following three cases occurs:

1. gi(x) 6= gi(y) for all i; or

2. gi(x) = gi(y) for exactly one i; or

3. gi(x) = gi(y) for all i.

That is, if gi(x) = gi(y) for at least two values of i, then it is clear that we must have h1(x) = h1(y)
and h2(x) = h2(y), so all hash values are the same. It is this property that implies the analysis
and makes this an instructive example; in Section 4, we consider more general cases where other
non-trivial collisions can occur.

As a first step, we consider a set S = {x1, x2, . . . , xn} of n elements from U and another
element z /∈ S, and compute the probability that z yields a false positive. A false positive
corresponds to the event F that for each i there is (at least) one j such that gi(z) = gi(xj).
Obviously, one way this can occur is if h1(xj) = h1(z) and h2(xj) = h2(z) for some j. The
probability of this event E is

Pr(E) = 1 −
(

1 − 1

p2

)n

= 1 −
(

1 − k2

m2

)n

.

Notice that when k = cm/n for some constant c, as is standard for a Bloom filter, we have
Pr(E) = o(1). Now since

Pr(F) = Pr(F | E)Pr(E) + Pr(F | ¬E)Pr(¬E)

= Pr(E) + Pr(F | ¬E)Pr(¬E)

= o(1) + Pr(F | ¬E)(1 − o(1)),

it suffices to consider Pr(F | ¬E) to obtain the asymptotic false positive probability, which is a
constant when m/n and k are constants.

Conditioned on ¬E and (h1(z), h2(z)), the pair (h1(xj), h2(xj)) is uniformly distributed over
the p2 − 1 values in V = {0, . . . , p − 1}2 − (h1(z), h2(z)). Of these, for each i∗ ∈ {0, . . . , k − 1},
the p − 1 pairs in

V ′ = {(a, b) ∈ V : a ≡ i∗(h2(z) − b) + h1(z) mod p, b 6≡ h2(z) mod p}

are the ones such that if (h1(xj), h2(xj)) ∈ V ′, then i∗ is the unique value of i such that gi(xj) =
gi(z). We can therefore view the conditional probability as a variant of a balls-and-bins problem.
There are n balls, and k bins. With probability k(p − 1)/(p2 − 1) = k/(p + 1) a ball lands in
a bin, and with the remaining probability it is discarded; when a ball lands in a bin, the bin it

3

lands in is chosen uniformly at random. What is the probability that all of the bins have at least
one ball?

This can be expressed in various ways. First, we may recall that the number of surjections
from a set of size a to a set of size b is given by b!S(a, b), where S(a, b) refers to the Stirling
number of second kind. Then directly we have

Pr(F | ¬E) =

n
∑

a=k

(

n

a

)(

k

p + 1

)a(

1 − k

p + 1

)n−a k!S(a, k)

ka
.

One could proceed by taking the limit of this expression as n → ∞ (see, for example, the
discussion of [2]).

Alternatively, we may note that for a standard Bloom filter, we have a similar problem.
Assuming each of the k hash values for an element z /∈ S are distinct (which occurs with high
probability), in this case there are nk balls (one for each hash of each item), each with probability
k/m of landing in a bin, which corresponds to a hash value for z. It is clear that in the limit
as m and n grow large and k is held as a fixed constant, the distribution of the number of balls
landing in a bin converges to the same distribution in both cases, and hence the probability of a
false positive converges to

f =
(

1 − e−kn/m
)k

in both cases. As we have stated, a more formal and general argument will be given in Section 4.
Now, as in Section 2, we must argue that f is not only the asymptotic false positive probability,

but that it also acts like a false positive rate. Similar to the case for the standard Bloom filter,
this boils down to a concentration argument. Once the set S is hashed, there is a set

B = {(b1, b2) : h1(z) = b1 and h2(z) = b2 implies z gives a false positive}.

Conditioned on |B|, the probability of a false positive for any element in U−S is |B|/p2, and these
events are independent. If we show that |B| is concentrated around its expectation, it follows
easily that the fraction of false positives in a set of distinct elements not in S is concentrated
around f .

A simple Doob martingale argument suffices. Each hashed element of S can change the
number of pairs in B by at most kp in either direction. From [12, Section 12.5], it follows that
for any ǫ > 0,

Pr(|B − E[B]| ≥ ǫp2) ≤ 2 exp

[−2ǫ2p2

nk2

]

.

It is now easy to derive the desired conclusion. We defer the details until Section 7, where we
give a more rigorous proof of a more general result.

4 A General Framework

In this section, we introduce a general framework for analyzing non-standard Bloom filter schemes,
such as the one examined in Section 3. We show that under very broad conditions, the asymptotic
false positive probability of a scheme is the same as for a standard Bloom filter.

Before delving into details, we must introduce some notation. For any integer ℓ, we define
the set [ℓ] = {0, 1, . . . , ℓ − 1} (note that this definition is slightly non-standard). For a random
variable X, we denote the support of X by Supp(X), and if Y is another random variable, then
X ∼ Y denotes that X and Y have the same distribution. In addition, we use Po(λ) to denote
the Poisson distribution with parameter λ.

4

We will also need some notation concerning multi-sets. For a multi-set M , we use |M | to
denote the number of distinct elements of M , and ‖M‖ to denote the number of elements of M
with multiplicity. For two multi-sets M and M ′, we define M∩M ′ and M∪M ′ to be, respectively,
the intersection and union of M ′ as multi-sets. Furthermore, in an abuse of standard notation,
we define the statement i, i ∈ M as meaning that i is an element of M of multiplicity at least 2.

We are now ready to define the framework. As in the previous sections, U denotes the universe
of items and S ⊆ U denotes the set of n items for which the Bloom filter will answer membership
queries. We define a scheme to be a method of assigning hash locations to every element of
U . More formally, a scheme is specified by a joint distribution of discrete random variables
{H(u) : u ∈ U} (implicitly parameterized by n), where for u ∈ U , H(u) represents the multi-set
of hash-locations assigned to u by the scheme. We do not require a scheme to be defined for every
value of n, but we do insist that it be defined for infinitely many values of n, so that we may
take limits as n → ∞. For example, for the class of schemes discussed in Section 3, we think of
the constants k and c as being fixed to give a particular scheme, which is only defined for values
of n such that p

def
= m/k is a prime, where m

def
= cn. Since there are infinitely many primes, the

asymptotic behavior of this scheme as n → ∞ is well-defined and is exactly the same as discussed
in Section 3, where we let m be a free parameter and analyzed the behavior as n, m → ∞ subject
to m/n and k being fixed constants, and m/k being prime.

Having defined the notion of a scheme, we may now formalize some important concepts with
new notation (all of which is implicitly parameterized by n). We define H to be the set of all
hash locations that can be assigned by the scheme (formally, H is the set of elements that appear
in some multi-set in the support of H(u), for some u ∈ U). For x ∈ S and z ∈ U − S, define
C(x, z) = H(x)∩H(z) to be the multi-set of hash collisions of x with z. We let F(z) denote the
false positive event for z ∈ U − S, which occurs when each of z’s hash locations is also a hash
location for some x ∈ S.

In the schemes that we consider, {H(u) : u ∈ U} will always be independent and identically
distributed. In this case, Pr(F(z)) is the same for all z ∈ U − S, as is the joint distribution
of {C(x, z) : x ∈ S}. Thus, to simplify the notation, we may fix an arbitrary z ∈ U − S and
simply use Pr(F) instead of Pr(F(z)) to denote the false positive probability, and we may use
{C(x) : x ∈ S} instead of {C(x, z) : x ∈ S} to denote the joint probability distribution of the
multi-sets of hash collisions of elements of S with z.

The main technical result of this section is the following key theorem, which is a formalization
and generalization of the argument given in Section 3 for showing that the asymptotic false
positive probability for the scheme analyzed there is the same as for a standard Bloom filter with
the same parameters.

Theorem 4.1. Fix a scheme. Suppose that there are constants λ and k such that:

1. {H(u) : u ∈ U} are independent and identically distributed.

2. For u ∈ U , ‖H(u)‖ = k.

3. For x ∈ S

Pr(‖C(x)‖ = i) =







1 − λ
n + o(1/n) i = 0

λ
n + o(1/n) i = 1

o(1/n) i > 1

.

4. For x ∈ S,

max
i∈H

∣

∣

∣

∣

Pr(i ∈ C(x) | ‖C(x)‖ = 1, i ∈ H(z)) − 1

k

∣

∣

∣

∣

= o(1) as n → ∞.

5

Then

lim
n→∞

Pr(F) =
(

1 − e−λ/k
)k

.

Proof. For ease of exposition, we assign every element of H(z) a unique number in [k] (treating
multiple instances of the same hash location as distinct elements). More formally, we define an
arbitrary bijection fM from M to [k] for every multi-set M ⊆ H with ‖M‖ = k (where fM treats
multiple instances of the same hash location in M as distinct elements), and label the elements of
H(z) according to fH(z). This convention allows us to identify the elements of H(z) by numbers
i ∈ [k], rather than hash locations i ∈ H.

For i ∈ [k] and x ∈ S, define Xi(x) = 1 if i ∈ C(x) and 0 otherwise, and define Xi
def
=

∑

x∈S Xi(x). Note that i ∈ C(x) is an abuse of notation; what we really mean is f−1
H(z)(i) ∈ C(x),

although we will continue using the former since it is much less cumbersome.
We show that Xn def

= (X0, . . . , Xk−1) converges in distribution to a vector P
def
= (P0, . . . , Pk−1)

of k independent Poisson random variables with parameter λ/k, as n → ∞. To do this, we make
use of moment generating functions. For a random variable R, the moment generating function
of R is defined by MR(t)

def
= E[exp(tR)]. We show that for any t0, . . . , tk,

lim
n→∞

MPk−1
i=0 tiXi

(tk) = MPk−1
i=0 tiPi

(tk),

which is sufficient by [1, Theorem 29.4 and p. 390], since

MPk−1
i=0 tiPi

(tk) = E

[

etk
P

i∈[k] tiPi

]

=
∏

i∈k

E

[

etktiPo(λ/k)
]

=
∏

i∈k

∞
∑

j=0

e−λ/k λj

kjj!
etktij

=
∏

i∈k

e
λ

k
(etkti−1)

= e
λ

k
(
P

i∈k
etkti−1) < ∞,

where the first step is just the definition of the moment generating function, the second step
follows from independence of the tiPi(λk)’s, the third step is just the definition of the Poisson
distribution, the fourth step follows from the Taylor series for ex, and the fifth step is obvious.

6

Proceeding, we write

MP
i∈[k] tiXi

(tk)

= MP
i∈[k] ti

P
x∈S

Xi(x)(tk)

= MP
x∈S

P
i∈[k] tiXi(x)(tk)

=
(

MP
i∈[k] tiXi(x)(tk)

)n

=

(

Pr(‖C(x)‖ = 0)

+
k
∑

j=1

Pr(‖C(x)‖ = j)
∑

T⊆[k]:|T |=j

Pr(C(x) = f−1
H(z)(T) | ‖C(x)‖ = j)etk

P
i∈T

ti

)n

=



1 − λ

n
+

λ

n

∑

i∈[k]

Pr(i ∈ C(x) | ‖C(x)‖ = 1)etkti + o(1/n)





n

=



1 − λ

n
+

λ

n

∑

i∈[k]

(

1

k
+ o(1)

)

etkti + o(1/n)





n

=

(

1 − λ

n
+

λ
∑

i∈[k] e
tkti

kn
+ o(1/n)

)n

→ e−λ+λ

k

P
i∈[k] e

tkti

as n → ∞
= e

λ

k
(
P

i∈[k](etkti−1))

= MP
i∈[k] tiPoi(λk)(tk).

The first two steps are obvious. The third step follows from the fact that the H(x)’s are indepen-
dent and identically distributed (for x ∈ S) conditioned on H(z), so the

∑

i∈[k] tiXi(x)’s are too,
since each is a function of the corresponding H(x). The fourth step follows from the definition
of the moment generating function. The fifth and sixth steps follow from the assumptions on the
distribution of C(x) (in the sixth step, the conditioning on i ∈ H(z) is implicit in our convention
that associates integers in [k] with the elements of H(z)). The seventh, eighth, and ninth steps
are obvious, and the tenth step follows from a previous computation.

Now fix some bijection g : Z
k
≥0 → Z≥0, and define h : Z≥0 → {0, 1} : h(x) = 1 if and

only if every coordinate of g−1(x) is greater than 0. Since {Xn} converges to P in distribution,
{g(Xn)} converges to g(P) in distribution, because g is a bijection and Xn and P have discrete
distributions. Skorohod’s Representation Theorem [1, Theorem 25.6] now implies that there is
some probability space where one may define random variables {Yn} and P ′, where Yn ∼ g(Xn)
and P ′ ∼ g(P), and {Yn} converges to P ′ almost surely. Of course, since the Yn’s only take
integer values, whenever {Yn} converges to P ′, there must be some n0 such that Yn0 = Yn1 = P ′

for any n1 > n0, and so {h(Yn)} trivially converges to h(P ′). Therefore, {h(Yn)} converges to

7

h(P ′) almost surely, so

Pr(F) = Pr(∀i ∈ [k], Xi > 0)

= E[h(g(Xn))]

= E[h(Yn)]

→ E[h(P ′)] as n → ∞
= Pr(Po(λ/k) > 0)k

=
(

1 − e−λ/k
)k

,

where the fourth step is the only nontrivial one, and it follows from [1, Theorem 5.4].

It turns out that the conditions of Theorem 4.1 can be verified very easily in many cases.

Lemma 4.1. Fix a scheme. Suppose that there are constants λ and k such that:

1. {H(u) : u ∈ U} are independent and identically distributed.

2. For u ∈ U , ‖H(u)‖ = k.

3. For u ∈ U ,

max
i∈H

∣

∣

∣

∣

Pr(i ∈ H(u)) − λ

kn

∣

∣

∣

∣

= o(1/n).

4. For u ∈ U ,
max

i1,i2∈H
Pr(i1, i2 ∈ H(u)) = o(1/n).

5. The set of all possible hash locations H satisfies |H| = O(n).

Then the conditions of Theorem 4.1 hold (with the same value for λ), and so the conclusion does
as well.

Remark. Recall that, under our notation, the statement i, i ∈ H(u) is true if and only if i is an
element of H(u) of multiplicity at least 2.

Proof. We adopt the convention introduced in the proof of Theorem 4.1 where the elements of
H(z) are identified by the integers in [k].

The first two conditions of Theorem 4.1 are trivially satisfied. For the third condition, observe
that for any j ∈ {2, . . . , k} and x ∈ S,

Pr(‖C(x)‖ = j) ≤ Pr(‖C(x)‖ > 1)

= Pr (∃i1 ≤ i2 ∈ [k] : i1, i2 ∈ H(x) or ∃i ∈ H : i ∈ H(x), i, i ∈ H(z))

≤
∑

i1≤i2∈[k]

Pr(i1, i2 ∈ H(x)) +
∑

i∈H

Pr(i ∈ H(x))Pr(i, i ∈ H(z))

≤ k2o(1/n) + |H|
(

λ

kn
+ o(1/n)

)

o(1/n)

= o(1/n) + |H|o(1/n2)

= o(1/n) + O(n)o(1/n2)

= o(1/n)

8

and

Pr(‖C(x)‖ = 1) ≤ Pr(|C(x)| ≥ 1) ≤
∑

i∈[k]

Pr(i ∈ H(x)) ≤ k

(

λ

kn
+ o(1/n)

)

=
λ

n
+ o(1/n),

and

Pr(‖C(x)‖ ≥ 1) = Pr





⋃

i∈[k]

i ∈ H(x)





≥
∑

i∈[k]

Pr(i ∈ H(x)) −
∑

i1<i2∈[k]

Pr(i1, i2 ∈ H(x))

≥ k

(

λ

kn
+ o(1/n)

)

− k2o(1/n)

=
λ

n
+ o(1/n),

so

Pr(‖C(x)‖ = 1) = Pr(‖C(x)‖ ≥ 1) − Pr(‖C(x)‖ > 1)

≥ λ

n
+ o(1/n) − o(1/n)

=
λ

n
+ o(1/n).

Therefore,

Pr(‖C(x)‖ = 1) =
λ

n
+ o(1/n),

and

Pr(‖C(x)‖ = 0) = 1 −
k
∑

j=1

Pr(‖C(x)‖ = j) = 1 − λ

n
+ o(1/n).

We have now shown that the third condition of Theorem 4.1 is satisfied.
For the fourth condition, we observe that for any i ∈ [k] and x ∈ S,

Pr(i ∈ C(x), ‖C(x)‖ = 1) ≤ Pr(i ∈ H(x)) =
λ

kn
+ o(1/n),

and

Pr(i ∈ C(x), ‖C(x)‖ = 1) = Pr(i ∈ H(x)) − Pr(i ∈ H(x), ‖C(x)‖ > 1)

≥ Pr(i ∈ H(x)) − Pr(‖C(x)‖ > 1)

=
λ

kn
+ o(1/n) − o(1/n),

so

Pr(i ∈ C(x), ‖C(x)‖ = 1) =
λ

kn
+ o(1/n),

implying that

Pr(i ∈ C(x) | ‖C(x)‖ = 1) =
Pr(i ∈ C(x), ‖C(x)‖ = 1)

Pr(‖C(x)‖ = 1)
=

λ
kn + o(1/n)
λ
n + o(1/n)

=
1

k
+ o(1),

completing the proof (the conditioning on i ∈ H(z) is once again implied by the convention that
associates elements of [k] with the hash locations in H(z)).

9

5 Some Specific Schemes

We are now ready to analyze some specific schemes. In particular, we examine a natural general-
ization of the scheme described in Section 3, as well as the double hashing and extended double
hashing schemes introduced in [5, 6].

In both of these cases, we consider a Bloom filter consisting of an array of m = cn bits and
k hash functions, where c > 0 and k ≥ 1 are fixed constants. The nature of the hash functions
depends on the particular scheme under consideration.

5.1 Partition Schemes

First, we consider the class of partition schemes, where the Bloom filter is defined by an array of
m bits that is partitioned into k disjoint arrays of m′ = m/k bits (we require that m be divisible
by k), and an item u ∈ U is hashed to location

h1(u) + ih2(u) mod m′

of array i, for i ∈ [k], where h1 and h2 are independent fully random hash functions with codomain
[m′]. Note that the scheme analyzed in Section 3 is a partition scheme where m′ is prime (and
so is denoted by p in Section 3) .

Unless otherwise stated, henceforth we do all arithmetic involving h1 and h2 modulo m′.
We prove the following theorem concerning partition schemes.

Theorem 5.1. For a partition scheme,

lim
n→∞

Pr(F) =
(

1 − e−k/c
)k

.

Proof. We will show that H(u)’s satisfy the conditions of Lemma 4.1 with λ = k2/c. For i ∈ [k]
and u ∈ U , define

gi(u) = (i, h1(u) + ih2(u))

H(u) = (gi(u) : i ∈ [k]).

That is, gi(u) is u’s ith hash location, and H(u) is the multi-set of u’s hash locations. This
notation is obviously consistent with the definitions required by Lemma 4.1.

Since h1 and h2 are independent and fully random, the first two conditions are trivial. The
last condition is also trivial, since there are m = cn possible hash locations. For the remaining
two conditions, fix u ∈ U . Observe that for (i, r) ∈ [k] × [m′],

Pr((i, r) ∈ H(u)) = Pr(h1(u) = r − ih2(u)) =
1

m′
=

k2/c

kn
,

and that for distinct (i1, r1), (i2, r2) ∈ [k] × [m′], we have

Pr((i1, r1), (i2, r2) ∈ H(u)) = Pr(i1 ∈ H(u))Pr(i2 ∈ H(u) | i1 ∈ H(u))

=
1

m′
Pr(h1(u) = r2 − i2h2(u) | h1(u) = r1 − i1h2(u))

=
1

m′
Pr((i1 − i2)h2(u) = r1 − r2)

≤ 1

m′
· gcd(|i2 − i1|, m′)

m′

≤ k

(m′)2

= o(1/n)

10

where the fourth step is the only nontrivial step, and it follows from the standard fact that for
any r, s ∈ [m], there are at most gcd(r, m) values t ∈ [m] such that rt ≡ s mod m (see, for
example, [9, Proposition 3.3.1]). Finally, since it is clear that from the definition of the scheme
that |H(u)| = k for all u ∈ U , we have that for any (i, r) ∈ [k] × [m′],

Pr((i, r), (i, r) ∈ H(u)) = 0.

5.2 (Extended) Double Hashing Schemes

Next, we consider the class of double hashing and extended double hashing schemes, which are
analyzed empirically in [5, 6]. In these schemes, an item u ∈ U is hashed to location

h1(u) + ih2(u) + f(i) mod m

of the array of m bits, for i ∈ [k], where h1 and h2 are independent fully random hash functions
with codomain [m], and f : [k] → [m] is an arbitrary function. When f(i) ≡ 0, the scheme is
called a double hashing scheme. Otherwise, it is called an extended double hashing scheme (with
f).

Unless otherwise stated, we do all arithmetic involving h1 and h2 modulo m.
We prove the following theorem concerning double hashing schemes.

Theorem 5.2. For any (extended) double hashing scheme,

lim
n→∞

Pr(F) =
(

1 − e−k/c
)k

.

Remark. The result holds for any choice of f . In fact, f can even be drawn from an arbitrary
probability distribution over [m][k], so long as it is drawn independently of the two random hash
functions h1 and h2.

Proof. We proceed by showing that the conditions of Lemma 4.1 are satisfied (for λ = k2/c) by
this scheme. Since h1 and h2 are independent and fully random, the first two conditions trivially
hold. The last condition is also trivial, since there are m = cn possible hash locations.

Showing that the third and fourth conditions hold requires more effort. First, we need some
notation. For u ∈ U , i ∈ [k], define

gi(u) = h1(u) + ih2(u) + f(i)

H(u) = (gi(u) : i ∈ [k]).

That is, gi(u) is u’s ith hash location, and H(u) is the multi-set of u’s hash locations. This
notation is obviously consistent with the definitions required by Lemma 4.1. Fix u ∈ U . For
r ∈ [m],

Pr(∃j ∈ [k] : gj(u) = r) ≤
∑

j∈[k]

Pr(h1(u) = r − jh2(u) − f(j)) =
k

m
.

11

Furthermore, for any j1, j2 ∈ [k] and r1, r2 ∈ [m]

Pr(gj1(u) = r1, gj2(u) = r2) = Pr(gj1(u) = r1)Pr(gj2(u) = r2 | gj1(u) = r1)

=
1

m
Pr(gj2(u) = r2 | gj1(u) = r1)

=
1

m
Pr((j1 − j2)h2(u) = r1 − r2 + f(j2) − f(j1))

≤ 1

m
· gcd(|j1 − j2|, m)

m

≤ 1

m
· k

m

=
k

m2

= o(1/n),

where the fourth step is the only nontrivial step, and it follows from the standard fact that for any
r, s ∈ [m], there are at most gcd(r, m) values t ∈ [m] such that rt ≡ s mod m (see, for example,
[9, Proposition 3.3.1]). Therefore, for r ∈ [m],

Pr(∃j ∈ [k] : gj(u) = r) ≥
∑

j∈[k]

Pr(gj(u) = r) −
∑

j1<j2∈[k]

Pr(gj1(u) = r, gj2(u) = r)

≥ k

m
− k2o(1/n)

=
k

m
+ o(1/n),

implying that

Pr(r ∈ H(u)) = Pr(∃j ∈ [k] : gj(u) = r) =
k

m
+ o(1/n),

so the third condition of Lemma 4.1 holds. For the fourth condition, fix any r1, r2 ∈ [m]. Then

Pr(r1, r2 ∈ H(u)) ≤
∑

j1,j2∈[k]

Pr(gj1(u) = r1, gj2(u) = r2) ≤ k2o(1/n) = o(1/n),

completing the proof.

6 Rate of Convergence

In the previous sections, we identified a broad class of non-standard Bloom filter schemes that have
the same asymptotic false positive probability as a standard Bloom filter. Unfortunately, these
results are not particularly compelling in settings with very limited space, since it is reasonable
to think that the rate of convergence in the conclusion of Theorem 4.1 might be fairly slow. This
problem is compounded by the fact that Bloom filters are particularly attractive in applications
where space is extremely limited (for example, see [3]), since they give a fairly small error rate
while using only a small constant number of bits per item. Thus, with these applications in mind,
we provide a detailed analysis of the rate of convergence in Theorem 4.1.

Before proceeding with the results, we introduce some useful notation. For functions f(n) and
g(n), we use f(n) ∼ g(n) to denote that limn→∞ f(n)/g(n) = 1. Similarly, we use f(n) . g(n) to
denote that lim supn→∞ f(n)/g(n) ≤ 1 and f(n) & g(n) to denote that lim infn→∞ f(n)/g(n) ≥ 1.

We are now ready to prove the main technical result of this section.

12

Theorem 6.1. Under the same conditions as in Theorem 4.1,

Pr(F) −
(

1 − e−λ/k
)k

∼ nǫ(n),

where

ǫ(n)
def
=

(

Pr(‖C(x)‖ = 0) − 1 +
λ

n

)

(

1 − e−
λ

k

)k

+

(

Pr(‖C(x)‖ = 1) − λ

n

)

(

1 − e−
λ

k

)k−1

+
k
∑

j=2

Pr(‖C(x)‖ = j)
(

1 − e−
λ

k

)k−j
.

Remark. This result is intuitively pleasing, since it says that the portion of the false pos-
itive probability represented by the asymptotic error term is essentially the probability that
‖C(x, z)‖ > 1 for exactly one x ∈ S and z’s other k − ‖C(x, z)‖ hash locations are hit by the
other elements of S in the “asymptotic” filter (that is, in the limit as n−1 → ∞), which happens
with probability (1 − e−λ/k)k−‖C(x,z)‖. (This almost follows from Theorem 4.1. The difference
is that now z has only k − ‖C(x, z)‖ hash locations, while the elements of S − {x} each have k
hash locations; however, it should be clear from the proof of Theorem 4.1 that the limiting false
positive probability in this case is (1 − e−λ/k)k−‖C(x,z)‖.)

Proof. We begin along the same lines as in the proof of Theorem 4.1. First, we adopt the
convention introduced there that allows us to associate the elements of H(z) (with multiplicity)
with the elements of [k]. Next, for i ∈ [k] and x ∈ S, we define Xi(x) = 1 if i ∈ C(x) and Xi(x) = 0

otherwise, Xi
def
=
∑

x∈S Xi(x), and X
def
= (X0, . . . , Xk−1). Finally, we define P

def
= (P0, . . . , Pk−1)

to be a vector of k independent Po(λ/k) random variables.
Define

f(n)
def
= Pr(‖C(x)‖ = 0) − 1 +

λ

n

gi(n)
def
= Pr(i ∈ C(x), ‖C(x)‖ = 1) − λ

kn
for i ∈ [k]

hT (n)
def
= Pr(C(x) = f−1

H(z)(T)) for T ⊆ [k] : |T | > 1,

and note that they are all o (1/n) by the hypotheses of the lemma. For T ⊆ [k], we may now

13

write

Pr

(

⋂

i∈T

Xi = 0

)

=
∏

x∈S

Pr
(

{i ∈ [k] : i ∈ C(x)} ⊆ T
)

=

(

Pr(‖C(x)‖ = 0) +
∑

i∈T

Pr(i ∈ C(x), ‖C(x)‖ = 1)

+
∑

T ′⊆T :|T ′|>1

Pr(C(x) = f−1
H(z)(T

′))

)n

=



1 − λ|T |
kn

+ f(n) +
∑

i∈T

gi(n) +
∑

T ′⊆T :|T ′|>1

hT ′(n)





n

∼ exp



−λ|T |
k

+ nf(n) +
∑

i∈T

ngi(n) +
∑

T ′⊆T :|T ′|>1

nhT ′(n)





= e−
λ|T |

k



exp



nf(n) +
∑

i∈T

ngi(n) +
∑

T ′⊆T :|T ′|>1

nhT ′(n)









∼ e−
λ|T |

k



1 + nf(n) +
∑

i∈T

ngi(n) +
∑

T ′⊆T :|T ′|>1

nhT ′(n)



 ,

where the first two steps are obvious, the third step follows from the definition of f , the gi’s, and
the hT ′ ’s, and the fourth and sixth steps follow from the assumption that all of those functions
are o (1/n) (since et(n) ∼ 1 + t(n) if t(n) = o(1)).

Thus, the inclusion/exclusion principle implies that

Pr(F) − Pr(∀i : Pi > 0) = − (Pr(∃i : Xi = 0) − Pr(∃i : Pi = 0))

= −
∑

∅⊂T⊆[k]

(−1)|T |+1

(

Pr

(

⋂

i∈T

Xi = 0

)

− Pr

(

⋂

i∈T

Pi = 0

))

=
∑

∅⊂T⊆[k]

(−1)|T |

(

Pr

(

⋂

i∈T

Xi = 0

)

− e−
λ|T |

k

)

∼ n
∑

∅⊂T⊆[k]

(−1)|T |e−
λ|T |

k



f(n) +
∑

i∈T

gi(n) +
∑

T ′⊆T :|T ′|>1

hT ′(n)



 .

14

To evaluate the sum on the last line, we write

M
def
=

∑

∅⊂T⊆[k]

(−1)|T |e−
λ|T |

k



f(n) +
∑

i∈T

gi(n) +
∑

T ′⊆T :|T ′|>1

hT ′(n)





=
k
∑

j=1

(

−e−
λ

k

)j ∑

T⊆[k]:|T |=j

f(n)

+
k
∑

j=1

(

−e−
λ

k

)j ∑

T⊆[k]:|T |=j

∑

i∈T

gi(n)

+
k
∑

j=1

(

−e−
λ

k

)j ∑

T⊆[k]:|T |=j

∑

T ′⊆T :|T ′|>1

hT ′(n),

and evaluate each term separately. First, we compute

k
∑

j=1

(

−e−
λ

k

)j ∑

T⊆[k]:|T |=j

f(n) = f(n)
k
∑

j=1

(

k

j

)

(

−e−
λ

k

)j

=

(

Pr(‖C(x)‖ = 0) − 1 +
λ

n

)(

(

1 − e−
λ

k

)k
− 1

)

Next, we see that

k
∑

j=1

(

−e−
λ

k

)j ∑

T⊆[k]:|T |=j

∑

i∈T

gi(n) =
k
∑

j=1

(

−e−
λ

k

)j ∑

i∈[k]

gi(n)| {T ⊆ [k] : |T | = j, i 6∈ T} |

=





∑

i∈[k]

gi(n)





k
∑

j=1

(

k − 1

j

)

(

−e−
λ

k

)j

=





∑

i∈[k]

gi(n)





(

(

1 − e−
λ

k

)k−1
− 1

)

=

(

Pr(‖C(x)‖ = 1) − λ

n

)(

(

1 − e−
λ

k

)k−1
− 1

)

,

where we have used the convention that
(

k−1
k

)

= 0. Now, for the last term, we compute

∑

T⊆[k]:|T |=j

∑

T ′⊆T :|T ′|>1

hT ′(n) =

k−j
∑

ℓ=2

∑

T ′⊆[k]:|T ′|=ℓ

hT ′(n)|
{

T ⊆ [k] : |T | = j, T ′ ⊆ T
}

|

=

k−j
∑

ℓ=2

(

k − ℓ

j

)

Pr(‖C(x)‖ = ℓ),

15

so

k
∑

j=1

(

−e−
λ

k

)j ∑

T⊆[k]:|T |=j

∑

T ′⊆T :|T ′|>1

hT ′(n) =
k
∑

j=1

(

−e−
λ

k

)j
k−j
∑

ℓ=2

(

k − ℓ

j

)

Pr(‖C(x)‖ = ℓ)

=
k
∑

j=1

k−j
∑

ℓ=2

(

−e−
λ

k

)j
(

k − ℓ

j

)

Pr(‖C(x)‖ = ℓ)

=
k
∑

j=1

k−2
∑

r=j

(

−e−
λ

k

)j
(

r

j

)

Pr(‖C(x)‖ = k − r)

=
k−2
∑

r=1

r
∑

j=1

(

−e−
λ

k

)j
(

r

j

)

Pr(‖C(x)‖ = k − r)

=
k−2
∑

r=1

Pr(‖C(x)‖ = k − r)
r
∑

j=1

(

r

j

)

(

−e−
λ

k

)j

=
k−2
∑

r=1

Pr(‖C(x)‖ = k − r)
((

1 − e−
λ

k

)r
− 1
)

=
k−1
∑

j=2

Pr(‖C(x)‖ = j)

(

(

1 − e−
λ

k

)k−j
− 1

)

.

Adding the terms together gives

M =

(

Pr(‖C(x)‖ = 0) − 1 +
λ

n

)

(

1 − e−
λ

k

)k

+

(

Pr(‖C(x)‖ = 1) − λ

n

)

(

1 − e−
λ

k

)k−1

+
k−1
∑

j=2

Pr(‖C(x)‖ = j)
(

1 − e−
λ

k

)k−j

−



Pr(‖C(x)‖ = 0) + Pr(‖C(x)‖ = 1) +
k−1
∑

j=2

Pr(‖C(x)‖ = j) − 1



 .

Of course,

−



Pr(‖C(x)‖ = 0) + Pr(‖C(x)‖ = 1) +
k−1
∑

j=2

Pr(‖C(x)‖ = j) − 1



 = Pr(‖C(x)‖ = k),

so

M =

(

Pr(‖C(x)‖ = 0) − 1 +
λ

n

)

(

1 − e−
λ

k

)k

+

(

Pr(‖C(x)‖ = 1) − λ

n

)

(

1 − e−
λ

k

)k−1

+
k−1
∑

j=2

Pr(‖C(x)‖ = j)
(

1 − e−
λ

k

)k−j

+ Pr(‖C(x)‖ = k)

= ǫ(n).

16

Since

Pr(F) −
(

1 − e−λ/k
)k

= Pr(F) − Pr(∀i : Pi > 0) ∼ nM = nǫ(n),

the result follows.

Unfortunately, the schemes that we discuss in this paper are often too messy to apply Theo-
rem 6.1 generally; the values Pr(‖C(x)‖ = j) depend on the specifics of the hash functions being
use. For example, whether the size of the range is prime or not affects Pr(‖C(x)‖ = j). The
result can be applied in cases to examine specific schemes; for example, in the partitioned scheme,
when m′ is prime, Pr(‖C(x)‖ = j) = 0 for j = 2, . . . , k− 1, and so the expression becomes easily
computable. To achieve general results, we derive some simple bounds that are sufficient to draw
some interesting conclusions.

Lemma 6.1. Assume the same conditions as in Theorem 4.1. Furthermore, suppose that for
x ∈ S, it is possible to define events E0, . . . , Eℓ−1 such that

1. Pr(‖C(x)‖ ≥ 1) = Pr

(

⋃

i∈[ℓ] Ei

)

2.
∑

i∈[ℓ] Pr(Ei) = λ/n

3. Pr(‖C(x)‖ ≥ 2) ≤∑i<j∈[ℓ] Pr(Ei ∩ Ej).

then

n



Pr(‖C(x)‖ = k) −
(

1 − e−
λ

k

)k−1 (

1 + e−
λ

k

)

∑

i<j∈[ℓ]

Pr(Ei ∩ Ej)



 . Pr(F) −
(

1 − e−λ/k
)k

. n
∑

i<j∈[ℓ]

Pr(Ei ∩ Ej)

Proof. As in Theorem 6.1, we define

ǫ(n)
def
=

(

Pr(‖C(x)‖ = 0) − 1 +
λ

n

)

(

1 − e−
λ

k

)k

+

(

Pr(‖C(x)‖ = 1) − λ

n

)

(

1 − e−
λ

k

)k−1

+
k
∑

j=2

Pr(‖C(x)‖ = j)
(

1 − e−
λ

k

)k−j
,

so that

Pr(F) −
(

1 − e−λ/k
)k

∼ nǫ(n).

Now,

M
def
=

(

Pr(‖C(x)‖ = 0) − 1 +
λ

n

)

(

1 − e−
λ

k

)k
+

(

Pr(‖C(x)‖ = 1) − λ

n

)

(

1 − e−
λ

k

)k−1

=
(

1 − e−
λ

k

)k−1
((

Pr(‖C(x)‖ = 0) − 1 +
λ

n

)

(

1 − e−
λ

k

)

+

(

Pr(‖C(x)‖ = 1) − λ

n

))

=
(

1 − e−
λ

k

)k−1
(

(Pr(‖C(x)‖ = 0) + Pr(‖C(x)‖ = 1) − 1) − e−
λ

k

(

(Pr(‖C(x)‖ = 0) − 1) +
λ

n

))

=
(

1 − e−
λ

k

)k−1
(

−Pr(‖C(x)‖ ≥ 2) − e−
λ

k

(

−Pr(‖C(x)‖ ≥ 2) − Pr(‖C(x)‖ = 1) +
λ

n

))

= −
(

1 − e−
λ

k

)k
Pr(‖C(x)‖ ≥ 2) + e−

λ

k

(

1 − e−
λ

k

)k−1
(

Pr(‖C(x)‖ = 1) − λ

n

)

.

17

In particular, we have that M ≤ 0 since

Pr(‖C(x)‖ = 1) ≤ Pr(‖C(x)‖ ≥ 1) = Pr





⋃

i∈[ℓ]

Ei



 ≤
∑

i∈[l]

Pr(Ei) = λ/n.

Therefore

ǫ(n) = M +

k
∑

j=2

Pr(‖C(x)‖ = j)
(

1 − e−
λ

k

)k−j
≤ Pr(‖C(x)‖ ≥ 2) ≤

∑

i<j∈[ℓ]

Pr(Ei ∩ Ej),

establishing the upper bound in the lemma.
For the lower bound, we note that

Pr(‖C(x)‖ = 1) − λ

n
= Pr(‖C(x)‖ ≥ 1) − Pr(‖C(x)‖ ≥ 2) − λ

n

= Pr





⋃

i∈[ℓ]

Ei



− Pr(‖C(x)‖ ≥ 2) − λ

n

≥
∑

i∈[ℓ]

Pr(Ei) −
∑

i<j∈[ℓ]

Pr(Ei ∩ Ej) − Pr(‖C(x)‖ ≥ 2) − λ

n

= −
∑

i<j∈[ℓ]

Pr(Ei ∩ Ej) − Pr(‖C(x)‖ ≥ 2)

≥ −2
∑

i<j∈[ℓ]

Pr(Ei ∩ Ej),

so

M = −
(

1 − e−
λ

k

)k
Pr(‖C(x)‖ ≥ 2) + e−

λ

k

(

1 − e−
λ

k

)k−1
(

Pr(‖C(x)‖ = 1) − λ

n

)

≥ −
(

1 − e−
λ

k

)k
Pr(‖C(x)‖ ≥ 2) − e−

λ

k

(

1 − e−
λ

k

)k−1
2
∑

i<j∈[ℓ]

Pr(Ei ∩ Ej)

≥ −
(

1 − e−
λ

k

)k ∑

i<j∈[ℓ]

Pr(Ei ∩ Ej) − e−
λ

k

(

1 − e−
λ

k

)k−1
2
∑

i<j∈[ℓ]

Pr(Ei ∩ Ej)

= −
(

1 − e−
λ

k

)k−1 (

1 + e−
λ

k

)

∑

i<j∈[ℓ]

Pr(Ei ∩ Ej).

Therefore,

ǫ(n) =
k
∑

j=2

Pr(‖C(x)‖ = j)
(

1 − e−
λ

k

)k−j
+ M

≥ Pr(‖C(x)‖ = k) −
(

1 − e−
λ

k

)k−1 (

1 + e−
λ

k

)

∑

i<j∈[ℓ]

Pr(Ei ∩ Ej),

completing the proof.

Lemma 6.1 is easily applied to the schemes discussed in Sections 5.1 and 5.2.

18

Theorem 6.2. For the partition scheme discussed in Section 5.1,

k2

c2n

[

1 −
(

1 − e−
λ

k

)k−1 (

1 + e−
λ

k

) k3

2

]

. Pr(F) −
(

1 − e−λ/k
)k

.
k5

2c2n

Proof. We wish to apply Lemma 6.1. To this end, we fix x ∈ S, and for i ∈ [k], we define Ei

to be the event that i ∈ C(x) (once again, we use the convention introduced in the proof of
Theorem 4.1 that allows us to associate the elements of H(z) with the elements of [k]). Then

Pr(‖C(x)‖ ≥ 1) = Pr





⋃

i∈[k]

Ei



 .

Recall from the proof of Theorem 5.1 that the partition scheme satisfies the conditions of Theo-
rem 4.1 with λ = k2/c. Furthermore, (as we saw in the proof of Theorem 5.1),

∑

i∈[k]

Pr(Ei) =
∑

i∈[k]

1

m′
=

λ

n
.

The proof of Theorem 5.1 also tells us that for i 6= j ∈ [k],

Pr(Ei ∩ Ej) ≤
k

(m′)2
=

k3

c2n2
,

so

Pr(‖C(x)‖ ≥ 2) ≤
∑

i<j∈[k]

Pr(Ei ∩ Ej) ≤
k5

2c2n2
,

where we have used the (obvious) fact that every u ∈ U is assigned k distinct hash locations in
the partition scheme. Finally, we note that ‖C(x)‖ = k if h1(x) = h1(z) and h2(x) = h2(z), so

Pr(‖C(x)‖ = k) ≥ 1

(m′)2
=

k2

c2n2
.

Plugging these bounds into the result from Lemma 6.1 gives the result.

Theorem 6.3. For the double hashing schemes discussed in Section 5.2,

1

c2n

[

1 −
(

1 − e−
λ

k

)k−1 (

1 + e−
λ

k

) k5

2

]

. Pr(F) −
(

1 − e−λ/k
)k

.
k5

2c2n

Proof. We wish to apply Lemma 6.1. First, recall from the proof of Theorem 5.2 that every
double hashing scheme satisfies the conditions of Theorem 4.1 with λ = k2/c. Now fix x ∈ S.
We reintroduce some notation from the proof of Theorem 5.2. For u ∈ U and i ∈ [k], we define

gi(u) = h1(u) + ih2(u) + f(i)

(where we continue to use the convention that all arithmetic involving the hash functions h1 and
h2 is done modulo m).

Proceeding, for i, j ∈ [k], we define Ei,j to be the event that gj(x) = gi(z). Then

Pr(‖C(x)‖ ≥ 1) = Pr





⋃

i,j∈[k]

Ei,j



 ,

19

and, as we saw in the proof of Theorem 5.2,

∑

i,j∈[k]

Pr(Ei,j) =
∑

i,j∈[k]

Pr(gj(x) = gi(z)) =
∑

i,j∈[k]

1

m
=

λ

n
.

Furthermore, fixing any ordering < on [k]2,

Pr(‖C(x)‖ ≥ 2) = Pr(∃i1, i2, j1, j2 ∈ [k] : ∀ℓ ∈ {1, 2}, gjℓ
(x) = giℓ(x))

= Pr





⋃

(i1,j1)<(i2,j2)∈[k]2

Ei1,j1 ∩ Ei2,j2





≤
∑

(i1,j1)<(i2,j2)∈[k]2

Pr(Ei1,j1 ∩ Ei2,j2),

so the conditions of Lemma 6.1 are satisfied. To complete the proof, we note that for any
(i1, j1), (i2, j2) ∈ [k2],

Pr(Ei1,j1 ∩ Ei2,j2) = Pr(gj1(x) = gi1(z), gj2(x) = gi2(z))

≤ 1

m
· k

m

=
k

c2n2
,

where the computation in the second step was done in the proof of Theorem 5.2. Therefore,

∑

(i1,j1)<(i2,j2)∈[k]2

Pr(Ei1,j1 ∩ Ei2,j2) ≤
∑

(i1,j1)<(i2,j2)∈[k]2

k

c2n2
≤ k5

2c2n2
.

Finally,

Pr(‖C(x)‖ = k) ≥ Pr(h1(x) = h1(z), h2(x) = h2(z)) =
1

m2
=

1

c2n2
.

Plugging these bounds into the result of Lemma 6.1 yields the result.

It remains to investigate whether the error term analyzed in Theorems 6.2 and 6.3 is negligible
in practice. Recall that for all of the schemes considered so far, the asymptotic false positive
probability is (1 − exp[−k/c])k, the same as for a standard Bloom filter. We would like to
minimize this probability. The easiest way to do this is to maximize c given the application-
specific constraints on the size of the filter, and then optimize k subject to that value of c, which
results in setting k = c ln 2 (this is a standard result for Bloom filters which is easily obtained
using calculus; see, for example, [3]), yielding an asymptotic false positive probability of 2−c ln 2.
Applying Theorems 6.2 and 6.3, we have that for all of the examined schemes, this setting of k
results in

Pr(F) − 2−c ln 2 .
(ln 2)5

2

c3

n
as n → ∞.

We now give a heuristic argument that the above error term is negligible in practice. Suppose
that the asymptotic inequality above held for every n, and not just in the limit as n → ∞. Then

20

for any ǫ > 0,

Pr(F) − 2−c ln 2 ≥ ǫ2−c ln 2 ⇒ (ln 2)5

2

c3

n
≥ ǫ2−c ln 2

⇒ (ln 2)5

2

c3

n
≥ ǫ2−c

⇒ 2c+3 ln c ≥ 2nǫ

(ln 2)5

⇒ 22c+1 ≥ 2nǫ

(ln 2)5

⇒ c ≥ 1

2
log2

(

nǫ

(ln 2)5

)

.

The first step is the only non-rigorous step, and it follows from the assumption that the asymptotic
inequality above holds for every n. The second step holds since ln 2 < 1, the third step is simple
algebra, the fourth step follows from the fact that 3 ln c < c + 1 for all c > 0, and the fifth
step is also simple algebra. From this heuristic argument, we conclude that the asymptotic error
term analyzed above is negligible unless c ' log2 n. In these cases, however, it might be more
appropriate to use a hash table or fingerprints rather than a Bloom filter (see, for example, [12,
Section 5.5]).

7 Multiple Queries

In the previous sections, we analyzed the behavior of Pr(F(z)) for some fixed z and moderately
sized n. Unfortunately, this quantity is not directly of interest in most applications. Instead,
one is usually concerned with certain characteristics of the distribution of the number of, say,
z1, . . . , zℓ ∈ U − S for which F(z) occurs. In other words, rather than being interested in the
probability that a particular false positive occurs, we are concerned with, for example, the fraction
of distinct queries on elements of U − S posed to the filter for which it returns false positives.
Since {F(z) : z ∈ U − S} are not independent, the behavior of Pr(F) alone does not directly
imply results of this form. This section is devoted to overcoming this difficulty.

Now, it is easy to see that in the schemes that we analyze here, once the hash locations for every
x ∈ S have been determined, the events {F(z) : z ∈ U − S} are independent and occur with equal
probability. More formally, letting 1(·) denote the indicator function, {1(F(z)) : z ∈ U − S} are
conditionally independent and identically distributed given {H(x) : x ∈ S}. Thus, conditioned
on {H(x) : x ∈ S}, an enormous number of classical convergence results (e.g. the law of large
numbers and the central limit theorem) can be applied to {1(F(z)) : z ∈ U − S}.

These observations motivate a general technique for deriving the sort of convergence results
for {1(F(z)) : z ∈ U − S} that one might desire in practice. First, we show that with high
probability over the set of hash locations used by elements of S (that is, {H(x) : x ∈ S}), the
random variables {1(F(z)) : z ∈ U − S} are essentially independent Bernoulli trials with success
probability limn→∞ Pr(F). From a technical standpoint, this result is the most important in this
section. Next, we show how to use that result to prove counterparts to the classical convergence
theorems mentioned above that hold in our setting.

Proceeding formally, we begin with a critical definition.

Definition 7.1. Consider any scheme where {H(u) : u ∈ U} are independent and identically
distributed. Write S = {x1, . . . , xn}. The false positive rate is defined to be the random variable

R = Pr(F | H(x1), . . . , H(xn)).

21

The false positive rate gets its name from the fact that, conditioned on R, the random vari-
ables {1(F(z)) : z ∈ U − S} are independent Bernoulli trials with common success probability
R. Thus, the fraction of a large number of queries on elements of U − S posed to the filter for
which it returns false positives is very likely to be close to R. In this sense, R, while a random
variable, acts like a rate for {1(F(z)) : z ∈ U − S}.

It is important to note that in much of literature concerning standard Bloom filters, the false
positive rate is not defined as above. Instead the term is often used as a synonym for the false
positive probability. Indeed, for a standard Bloom filter, the distinction between the two concepts
as we have defined them is unimportant in practice, since, as mentioned in Section 2, one can
easily show that R is very close to Pr(F) with extremely high probability (see, for example, [11]).
It turns out that this result generalizes very naturally to the framework presented in this paper,
and so the practical difference between the two concepts is largely unimportant even in our very
general setting. However, the proof is more complicated than in the case of a standard Bloom
filter, and so we will be very careful to use the terms as we have defined them.

Theorem 7.1. Consider a scheme where the conditions of Lemma 4.1 hold. Furthermore, as-
sume that there is some function g and independent identically distributed random variables
{Vu : u ∈ U}, such that Vu is uniform over Supp(Vu), and for u ∈ U , we have H(u) = g(Vu).
Define

p
def
=
(

1 − e−λ/k
)k

∆
def
= max

i∈H
Pr(i ∈ H(u)) − λ

nk
(= o(1/n))

ξ
def
= nk∆(2λ + k∆) (= o(1))

Then for any ǫ = ǫ(n) > 0 with ǫ = ω(|Pr(F)−p|), for n sufficiently large so that ǫ > |Pr(F)−p|,

Pr(|R − p| > ǫ) ≤ 2 exp

[−2n(ǫ − |Pr(F) − p|)2
λ2 + ξ

]

.

Furthermore, for any function h(n) = o(min(1/|Pr(F) − p|,√n)), we have that (R − p)h(n)
converges to 0 in probability as n → ∞.

Remark. Since |Pr(F) − p| = o(1) by Lemma 4.1, we may take h(n) = 1 in Theorem 7.1 to
conclude that R converges to p in probability as n → ∞.
Remark. From the proofs of Theorems 5.1 and 5.2, it is easy to see that for both the partition
and (extended) double hashing schemes, ∆ = 0, so ξ = 0 for both schemes as well.
Remark. We have added a new condition on the distribution of H(u), but it trivially holds in
all of the schemes that we discuss in this paper (since, for independent fully random hash func-
tions h1 and h2, the random variables {(h1(u), h2(u)) : u ∈ U} are independent and identically
distributed, and (h1(u), h2(u)) is uniformly distributed over its support).

Proof. The proof is essentially a standard application of Azuma’s inequality to an appropriately
defined Doob martingale. Specifically, we employ the technique discussed in [12, Section 12.5].

For convenience, write S = {x1, . . . , xn}. For h1, . . . , hn ∈ Supp(H(u)), define

f(h1, . . . , hn)
def
= Pr(F | H(x1) = h1, . . . , H(xn) = hn),

and note that R = f(H(x1), . . . , H(xn)). Now consider some c such that for any h1, . . . , hj , h′
j ,

hj+1, . . . , hn ∈ Supp(H(u)),

|f(h1, . . . , hn) − f(h1, . . . , hj−1, h
′
j , hj+1, . . . , hn)| ≤ c.

22

Since the H(xi)’s are independent, we may apply the result of [12, Section 12.5] to obtain

Pr(|R − E[R]| ≥ δ) ≤ 2e−2δ2/nc2 ,

for any δ > 0.
To find a small choice for c, we write

|f(h1, . . . , hn) − f(h1, . . . , hj−1, h
′
j , hj+1, . . . , hn)|

= |Pr(F | H(x1) = h1, . . . , H(xn) = hn)

− Pr(F | H(x1) = h1, . . . , H(xj−1) = hj−1, H(xj) = h′
j , H(xj+1) = hj+1, . . .H(xn) = hn)|

=

∣

∣

∣

∣

|{v ∈ Supp(Vu) : g(v) ⊆ ⋃n
i=1 hi}| −

∣

∣

∣

∣

{

v ∈ Supp(Vu) : g(v) ⊆ ⋃n
i=1

{

h′
j i = j

hi i 6= j

}∣

∣

∣

∣

∣

∣

∣

∣

|Supp(Vu)|

≤
maxv′∈Supp(Vu) | {v ∈ Supp(Vu) : |g(v) ∩ g(v′)| ≥ 1} |

|Supp(Vu)|
= max

M ′∈Supp(H(u))
Pr(|H(u) ∩ M ′| ≥ 1),

where the first step is just the definition of f , the second step follows from the definitions of
Vu and g, the third step holds since changing one of the hi’s to some M ′ ∈ Supp(H(u)) cannot
change

∣

∣

∣

∣

∣

{

v ∈ Supp(Vu) : g(v) ⊆
n
⋃

i=1

hi

}∣

∣

∣

∣

∣

by more than
∣

∣

{

v ∈ Supp(Vu) : |g(v) ∩ M ′| ≥ 1
}∣

∣ ,

and the fourth step follows from the definitions of Vu and g.
Now consider any fixed M ′ ∈ Supp(H(u)), and let y1, . . . , y|M ′| be the distinct elements of

M ′. Recall that ‖M ′‖ = k, so |M ′| ≤ k. Applying a union bound, we have that

Pr(|H(u) ∩ M ′| ≥ 1) = Pr





|M ′|
⋃

i=1

yi ∈ H(u)





≤
|M ′|
∑

i=1

Pr(yi ∈ H(u))

≤
|M ′|
∑

i=1

λ

kn
+ ∆

≤ λ

n
+ k∆.

Therefore, we may set c = λ
n + k∆ to obtain

Pr(|R − E[R]| > δ) ≤ 2 exp

[−2nδ2

λ2 + ξ

]

,

for any δ > 0. Since E[R] = Pr(F), we write (for sufficiently large n so that ǫ > |Pr(F) − p|)

Pr(|R − p| > ǫ) ≤ Pr(|R − Pr(F)| > ǫ − |Pr(F) − p|)

≤ 2 exp

[−2n(ǫ − |Pr(F) − p|)2
λ2 + ξ

]

.

23

To complete the proof, we see that for any constant δ > 0,

Pr(|R − p|h(n) > δ) = Pr(|R − p| > δ/h(n)) → 0 as n → ∞,

where the second step follows from the fact that |Pr(F)−p| = o(1/h(n)), so for sufficiently large
n,

Pr(|R − p| > δ/h(n)) ≤ 2 exp

[−2n(δ/h(n) − |Pr(F) − p|)2
λ2 + ξ

]

≤ 2 exp

[

− δ2

λ2 + ξ
· n

h(n)2

]

→ 0 as n → ∞,

and the last step follows from the fact that h(n) = o(
√

n).

Since, conditioned on R, the events {F(z) : z ∈ U − S} are independent and each occur with
probability R, Theorem 7.1 suggests that {1(F(z)) : z ∈ U − S} are essentially independent
Bernoulli trials with success probability p. The next result is a formalization of this idea.

Lemma 7.1. Consider a scheme where the conditions of Theorem 7.1 hold. Let Fn0(z) denote
F(z) in the case when the scheme is used with n = n0. Similarly, let Rn0 denote R in the case
where n = n0. Let {Xn} be a sequence of real-valued random variables, where each Xn can be
expressed as some function of {1(Fn(z)) : z ∈ U − S}, and let Y be any probability distribution
on R. Then for every x ∈ R and ǫ = ǫ(n) > 0 with ǫ = ω(|Pr(F) − p|), for sufficiently large n
so that ǫ > |Pr(F) − p|,

|Pr(Xn ≤ x) − Pr(Y ≤ x)| ≤ |Pr(Xn ≤ x | |Rn − p| ≤ ǫ) − Pr(Y ≤ x)|

+ 2 exp

[−2n(ǫ − |Pr(F) − p|)2
λ2 + ξ

]

.

Proof. The proof is a straightforward application of Theorem 7.1. Fix any x ∈ R, and choose
some ǫ satisfying the conditions of the lemma. Then

Pr(Xn ≤ x) = Pr(Xn ≤ x, |Rn − p| > ǫ) + Pr(Xn ≤ x, |Rn − p| ≤ ǫ)

= Pr(Xn ≤ x | |Rn − p| ≤ ǫ)

+ Pr(|Rn − p| > ǫ) [Pr(Xn ≤ x | |Rn − p| > ǫ) − Pr(Xn ≤ x | |Rn − p| ≤ ǫ)] ,

implying that

|Pr(Xn ≤ x) − Pr(Xn ≤ x | |Rn − p| ≤ ǫ)| ≤ Pr(|Rn − p| > ǫ).

Therefore,

|Pr(Xn ≤ x) − Pr(Y ≤ x)|
≤ |Pr(Xn ≤ x) − Pr(Xn ≤ x | |Rn − p| ≤ ǫ)| + |Pr(Xn ≤ x | |Rn − p| ≤ ǫ) − Pr(Yn ≤ x)|
≤ Pr(|Rn − p| > ǫ) + |Pr(Xn ≤ x | |Rn − p| ≤ ǫ) − Pr(Yn ≤ x)|,

so for sufficiently large n so that ǫ > |Pr(F) − p|,

|Pr(Xn ≤ x) − Pr(Y ≤ x)| ≤ |Pr(Xn ≤ x | |Rn − p| ≤ ǫ) − Pr(Y ≤ x)|

+ 2 exp

[−2n(ǫ − |Pr(F) − p|)2
λ2 + ξ

]

,

by Theorem 7.1.

24

To illustrate the power of Theorem 7.1 and Lemma 7.1, we use them to prove versions of
the strong law of large numbers, the weak law of large numbers, Hoeffding’s inequality, and the
central limit theorem.

Theorem 7.2. Consider a scheme that satisfies the conditions of Theorem 7.1. Let Z ⊆ U − S
be countably infinite, and write Z = {z1, z2, . . .}. Then for any ǫ > 0, for n sufficiently large so
that ǫ > |Pr(F) − p|, we have:

1.

Pr

(

lim
ℓ→∞

1

ℓ

ℓ
∑

i=1

1(Fn(zi)) = Rn

)

= 1.

2. For any ǫ > 0, for n sufficiently large so that ǫ > |Pr(F) − p|,

Pr

(∣

∣

∣

∣

∣

lim
ℓ→∞

1

ℓ

ℓ
∑

i=1

1(Fn(zi)) − p

∣

∣

∣

∣

∣

> ǫ

)

≤ 2 exp

[−2n(ǫ − |Pr(F) − p|)2
λ2 + ξ

]

.

In particular, limℓ→∞
1
ℓ

∑ℓ
i=1 1(Fn(zi)) converges to p in probability as n → ∞.

3. For any function Q(n), ǫ > 0, and n sufficiently large so that ǫ/2 > |Pr(F) − p|,

Pr





∣

∣

∣

∣

∣

∣

1

Q(n)

Q(n)
∑

i=1

1(Fn(zi)) − p

∣

∣

∣

∣

∣

∣

> ǫ



 ≤ 2e−Q(n)ǫ2/2 + 2 exp

[−2n(ǫ/2 − |Pr(F) − p|)2
λ2 + ξ

]

.

4. For any function Q(n) with limn→∞ Q(n) = ∞ and Q(n) = o(min(1/|Pr(F) − p|2, n)),

Q(n)
∑

i=1

1(Fn(zi)) − p
√

Q(n)p(1 − p)
→ N(0, 1) in distribution as n → ∞.

Remark. By Theorems 6.2 and 6.3, |Pr(F) − p| = Θ(1/n) for both the partition and double
hashing schemes introduced in Section 5. Thus, for each of the schemes, the condition Q(n) =
o(min(1/|Pr(F) − p|2, n)) in the fourth part of Theorem 7.2 becomes Q(n) = o(n).

Proof. Since, given Rn, the random variables {1(Fn(z)) : z ∈ Z} are conditionally independent
Bernoulli trials with common success probability Rn, a direct application of the strong law of
large numbers yields the first item.

For the second item, we note that the first item implies that

lim
ℓ→∞

1

ℓ

ℓ
∑

i=1

1(Fn(zi)) ∼ Rn.

A direct application of Theorem 7.1 then gives the result.
The remaining two items are slightly more difficult. However, they can be dealt with using

straightforward applications of Lemma 7.1.
For the third item, define

Xn
def
=

∣

∣

∣

∣

∣

∣

1

Q(n)

Q(n)
∑

i=1

1(Fn(zi)) − p

∣

∣

∣

∣

∣

∣

.

25

and Y
def
= 0. Let δ = ǫ/2 to obtain

Pr(Xn > ǫ | |Rn − p| ≤ δ)

= Pr





∣

∣

∣

∣

∣

∣

Q(n)
∑

i=1

1(Fn(zi)) − Q(n)p

∣

∣

∣

∣

∣

∣

> Q(n)ǫ

∣

∣

∣

∣

∣

|Rn − p| ≤ δ





≤ Pr





∣

∣

∣

∣

∣

∣

Q(n)
∑

i=1

1(Fn(zi)) − Q(n)Rn

∣

∣

∣

∣

∣

∣

> Q(n) (ǫ − |Rn − p|)
∣

∣

∣

∣

∣

|Rn − p| ≤ δ





≤ Pr





∣

∣

∣

∣

∣

∣

Q(n)
∑

i=1

1(Fn(zi)) − Q(n)Rn

∣

∣

∣

∣

∣

∣

>
Q(n)ǫ

2

∣

∣

∣

∣

∣

|Rn − p| ≤ δ





≤ 2e−Q(n)ǫ2/2,

where the first two steps are obvious, the third step follows from the fact that Pr(Fn | Rn) = Rn,
and the fourth step is an application of Hoeffding’s Inequality (using the fact that, given Rn,
{1(Fn(z)) : z ∈ Z} are independent and identically distributed Bernoulli trials with common
success probability Rn).

Now, since Pr(Y ≤ ǫ) = 1,

|Pr(Xn ≤ ǫ | |Rn − p| ≤ δ) − Pr(Y ≤ ǫ)| = Pr(Xn > ǫ | |Rn − p| ≤ δ) ≤ 2e−Q(n)ǫ2/2.

An application of Lemma 7.1 now gives the third item.
For the fourth item, we write

Q(n)
∑

i=1

1(Fn(zi)) − p
√

Q(n)p(1 − p)
=

√

Rn(1 − Rn)

p(1 − p)





Q(n)
∑

i=1

1(Fn(zi)) − Rn
√

Q(n)Rn(1 − Rn)
+ (Rn − p)

√

Q(n)

Rn(1 − Rn)





By the central limit theorem,

Q(n)
∑

i=1

1(Fn(zi)) − Rn
√

Q(n)Rn(1 − Rn)
→ N(0, 1) in distribution as n → ∞,

since, given Rn, {1(Fn(z)) : z ∈ Z} are independent and identically distributed Bernoulli trials
with common success probability Rn. Furthermore, Rn converges to p in probability as n → ∞
by Theorem 7.1, so it suffices to show that (Rn − p)

√

Q(n) converges to 0 in probability as
n → ∞. But

√

Q(n) = o(min(1/|Pr(F) − p|,√n)), so another application of Theorem 7.1 gives
the result.

8 Experiments

In this section, we evaluate the theoretical results of the previous sections empirically for small
values of n. We are interested in the following specific schemes: the standard Bloom filter scheme,
the partition scheme, the double hashing scheme, and the extended double hashing schemes where
f(i) = i2 and f(i) = i3.

For c ∈ {4, 8, 12, 16}, we do the following. First, compute the value of k ∈ {⌊c ln 2⌋, ⌈c ln 2⌉}
that minimizes p = (1 − exp[−k/c])k. Next, for each of the schemes under consideration, repeat
the following procedure 10, 000 times: instantiate the filter with the specified values of n, c,

26

 0.146
 0.1462
 0.1464
 0.1466
 0.1468
 0.147

 0.1472
 0.1474
 0.1476
 0.1478
 0.148

 5 10 15 20 25 30 35 40 45 50

E
st

im
at

ed
 F

al
se

 P
os

iti
ve

 P
ro

ba
bi

lit
y

n/1000

c = 4

 0.02145
 0.0215

 0.02155
 0.0216

 0.02165
 0.0217

 0.02175
 0.0218

 0.02185

 5 10 15 20 25 30 35 40 45 50

E
st

im
at

ed
 F

al
se

 P
os

iti
ve

 P
ro

ba
bi

lit
y

n/1000

c = 8

 0.00312

 0.00314

 0.00316

 0.00318

 0.0032

 0.00322

 0.00324

 0.00326

 5 10 15 20 25 30 35 40 45 50

E
st

im
at

ed
 F

al
se

 P
os

iti
ve

 P
ro

ba
bi

lit
y

n/1000

c = 12

 0.00045
 0.00046
 0.00047
 0.00048
 0.00049
 0.0005

 0.00051
 0.00052
 0.00053
 0.00054
 0.00055
 0.00056

 5 10 15 20 25 30 35 40 45 50

E
st

im
at

ed
 F

al
se

 P
os

iti
ve

 P
ro

ba
bi

lit
y

n/1000

c = 16

p
Standard

Partition
Double

Ext. Double (Square)
Ext. Double (Cube)

Figure 1: Estimates of the false positive probability for various schemes and parameters.

and k, populate the filter with a set S of n items, and then query ⌈10/p⌉ elements not in S,
recording the number Q of those queries for which the filter returns a false positive. We then
approximate the false positive probability of the scheme by averaging the results over all 10, 000
trials. Furthermore, we bin the results of the trials by their values for Q in order to examine the
other characteristics of Q’s distribution.

The results are shown in Figures 1 and 2. In Figure 1, we see that for small values of c,
the different schemes are essentially indistinguishable from each other, and simultaneously have a
false positive probability/rate close to p. This result is particularly significant since the filters that
we are experimenting with are fairly small, supporting our claim that these schemes are useful
even in settings with very limited space. However, we also see that for the slightly larger values
of c ∈ {12, 16}, the partition scheme is no longer particularly useful for small values of n, while
the other schemes are. This result is not particularly surprising, since we know from Section 6
that all of these schemes are unsuitable for small values of n and large values of c. Furthermore,
we expect that the partition scheme is the least suited to these conditions, given the observation
in Section 2 that the partitioned version of a standard Bloom filter never performs better than
the original version. Nevertheless, the partition scheme might still be useful in certain settings,
since it gives a substantial reduction in the range of the hash functions.

In Figure 2, we give histograms of the results from our experiments with n = 5000 and c = 8
for the partition and extended double hashing schemes. Note that for this value of c, optimizing
for k yields k = 6, so we have p ≈ 0.021577 and ⌈10/p⌉ = 464. In each plot, we compare the

results to f
def
= 10, 000φ464p,464p(1−p), where

φµ,σ2(x)
def
=

e−(x−µ)2/2σ2

σ
√

2π

denotes the density function of N(µ, σ2). As one would expect, given central limit theorem in the
fourth part of Theorem 7.2, f provides a reasonable approximation to each of the histograms.

27

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20

T
ria

ls
 (

ou
t o

f 1
0,

00
0)

False Positives (in 464 tests)

Partition

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20

T
ria

ls
 (

ou
t o

f 1
0,

00
0)

False Positives (in 464 tests)

Double Hashing

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20

T
ria

ls
 (

ou
t o

f 1
0,

00
0)

False Positives (in 464 tests)

Extended Double Hashing (Square)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20

T
ria

ls
 (

ou
t o

f 1
0,

00
0)

False Positives (in 464 tests)

Extended Double Hashing (Cube)

Figure 2: Estimate of distribution of Q (for n = 5000 and c = 8), compared with f .

9 A Modified Count-Min Sketch

We now present a modification to the Count-Min sketch introduced in [4] that uses fewer hash
functions in a manner similar to our improvement for Bloom filters, at the cost of a small space
increase. We begin by reviewing the original data structure.

9.1 Count-Min Sketch Review

The following is an abbreviated review of the description given in [4]. A Count-Min sketch takes
as input a stream of updates (it, ct), starting from t = 1, where each item it is a member of a
universe U = {1, . . . , n}, and each count ct is a positive number. (Extensions to negative counts
are possible; we do not consider them here for convenience.) The state of the system at time T
is given by a vector ~a(T) = (a1(T), . . . , an(T)), where aj(T) is the sum of all ct for which t ≤ T
and it = j. We generally drop the T when the meaning is clear.

The Count-Min sketch consists of an array Count of width w
def
= ⌈e/ǫ⌉ and depth d

def
= ⌈ln 1/δ⌉:

Count[1, 1], . . . ,Count[d, w]. Every entry of the array is initialized to 0. In addition, the Count-
Min sketch uses d hash functions chosen independently from a pairwise independent family H :
{1, . . . , n} → {1, . . . , w}.

The mechanics of the Count-Min sketch are extremely simple. Whenever an update (i, c)
arrives, we increment Count[j, hj(i)] by c, for j = 1, . . . , d. Whenever we want an estimate of ai

(called a point query), we compute

âi
def
=

d
min
j=1

Count[j, hj(i)].

The fundamental result of Count-Min sketches is that for every i,

âi ≥ a and Pr(âi ≤ ai + ǫ‖~a‖) ≥ 1 − δ,

28

where the norm is the L1 norm. Surprisingly, this very simple bound allows for a number of
sophisticated estimation procedures to be efficiently and effectively implemented on Count-Min
sketches. The reader is once again referred to [4] for details.

9.2 Using Fewer Hash Functions

We now show how the improvements to Bloom filters discussed previously in this paper can be
usefully applied to Count-Min sketches. Our modification maintains all of the essential features
of Count-Min sketches, but reduces the required number of pairwise independent hash functions
to 2⌈(ln 1/δ)/(ln 1/ǫ)⌉. We expect that, in many settings, ǫ and δ will be related, so that only
a constant number of hash functions will be required; in fact, in many such situations only two
hash functions are required.

We describe a variation of the Count-Min sketch that uses just two pairwise independent hash
functions and guarantees that

âi ≥ a and Pr(âi ≤ ai + ǫ‖~a‖) ≥ 1 − ǫ.

Given such a result, it is straightforward to obtain a variation that uses 2⌈(ln 1/δ)/(ln 1/ǫ)⌉
pairwise independent hash functions and achieves the desired failure probability δ: simply build
2⌈(ln 1/δ)/(ln 1/ǫ)⌉ independent copies of this data structure, and always answer a point query
with the minimum estimate given by one of those copies.

Our variation will use d tables numbered {0, 1, . . . , d − 1}, each with exactly w counters
numbered {0, 1, . . . , w − 1}, where d and w will be specified later. We insist that w be prime.
Just as in the original Count-Min sketch, we let Count[j, k] denote the value of the kth counter
in the jth table. We choose hash functions h1 and h2 independently from a pairwise independent
family H : {0, . . . , n − 1} → {0, 1, . . . , w − 1}, and define gj(x) = h1(x) + jh2(x) mod w for
j = 0, . . . , d − 1.

The mechanics of our data structure are the same as for the original Count-Min sketch.
Whenever an update (i, c) occurs in the stream, we increment Count[j, gj(i)] by c, for j =
0, . . . , d − 1. Whenever we want an estimate of ai, we compute

âi
def
=

d−1
min
j=0

Count[j, gj(i)].

We prove the following result:

Theorem 9.1. For the Count-Min sketch variation described above,

âi ≥ a and Pr(âi > ai + ǫ‖~a‖) ≤ 2

ǫw2
+

(

2

ǫw

)d

.

In particular, for w ≥ 2e/ǫ and δ ≥ ln 1/ǫ(1 − 1/2e2),

âi ≥ a and Pr(âi > ai + ǫ‖~a‖) ≤ ǫ.

Proof. Fix some item i. Let Ai be the total count for all items z (besides i) with h1(z) = h1(i)
and h2(z) = h2(i). Let Bj,i be the total count for all items z with gj(i) = gj(z), excluding i and
items z counted in Ai. It follows that

âi =
d−1
min
j=0

Count[j, gj(i)] = ai + Ai +
d−1
min
j=0

Bj,i.

29

The lower bound now follows immediately from the fact that all items have nonnegative counts,
since all updates are positive. Thus, we concentrate on the upper bound, which we approach by
noticing that

Pr(âi ≥ ai + ǫ‖~a‖) ≤ Pr(Ai ≥ ǫ‖~a‖/2) + Pr

(

d−1
min
j=0

Bj,i ≥ ǫ‖~a‖/2

)

.

We first bound Ai. Letting 1(·) denote the indicator function, we have

E[Ai] =
∑

z 6=i

az E[1(h1(z) = h1(i) ∧ h2(z) = h2(i))] ≤
∑

z 6=i

az/w2 ≤ ‖~a‖/w2,

where the first step follows from linearity of expectation and the second step follows from the
definition of the hash functions. Markov’s inequality now implies that

Pr(Ai ≥ ǫ‖~a‖/2) ≤ 2/ǫw2.

To bound mind−1
j=0 Bj,i, we note that for any j ∈ {0, . . . , d − 1} and z 6= i,

Pr((h1(z) 6= h1(i) ∨ h2(z) 6= h2(i)) ∧ gj(z) = gj(i)) ≤ Pr(gj(z) = gj(i))

= Pr(h1(z) = h1(i) + j(h2(i) − h2(z)))

= 1/w,

so

E[Bj,i] =
∑

z 6=i

az E[1((h1(z) 6= h1(i) ∨ h2(z) 6= h2(i)) ∧ gj(z) = gj(i))] ≤ ‖~a‖/w,

and so Markov’s inequality implies that

Pr(Bj,i ≥ ǫ‖~a‖/2) ≤ 2/ǫw

For arbitrary w, this result is not strong enough to bound mind−1
j=0 Bj,i. However, since w is prime,

each item z can only contribute to one Bk,i (since if gj(z) = gj(i) for two values of j, we must
have h1(z) = h1(i) and h2(z) = h2(i), and in this case z’s count is not included in any Bj,i). In
this sense, the Bj,i’s are negatively dependent [7]. It follows that for any value v,

Pr

(

d−1
min
j=0

Bj,i ≥ v

)

≤
d−1
∏

j=0

Pr(Bj,i ≥ v).

In particular, we have that

Pr

(

d−1
min
j=0

Bj,i ≥ ǫ‖~a‖/2

)

≤ (2/ǫw)d,

so

Pr(âi ≥ ai + ǫ‖~a‖) ≤ Pr(Ai ≥ ǫ‖~a‖/2) + Pr

(

d−1
min
j=0

Bj , i ≥ ǫ‖~a‖/2

)

≤ 2

ǫw2
+

(

2

ǫw

)d

.

And for w ≥ 2e/ǫ and δ ≥ ln 1/ǫ(1 − 1/2e2), we have

2

ǫw2
+

(

2

ǫw

)d

≤ ǫ/2e2 + ǫ(1 − 1/2e2) = ǫ,

completing the proof.

30

10 Conclusion

Bloom filters are simple randomized data structures that are extremely useful in practice. In
fact, they are so useful that any significant reduction in the time required to perform a Bloom
filter operation immediately translates to a substantial speedup for many practical applications.
Unfortunately, Bloom filters are so simple that they do not leave much room for optimization.

This paper focuses on modifying Bloom filters to use less of the only resource that they tradi-
tionally use liberally: (pseudo)randomness. Since the only nontrivial computations performed by
a Bloom filter are the constructions and evaluations of pseudorandom hash functions, any reduc-
tion in the required number of pseudorandom hash functions yields a nearly equivalent reduction
in the time required to perform a Bloom filter operation (assuming, of course, that the Bloom
filter is stored entirely in memory, so that random accesses can be performed very quickly).

We have shown that a Bloom filter can be implemented with only two pseudorandom hash
functions without any increase in the asymptotic false positive probability, and, for Bloom filters
of fixed size with reasonable parameters, without any substantial increase in the false positive
probability. We have also shown that the asymptotic false positive probability acts, for all
practical purposes and reasonable settings of a Bloom filter’s parameters, like a false positive
rate. This result has enormous practical significance, since the analogous result for standard
Bloom filters is essentially the theoretical justification for their extensive use.

More generally, we have given a general framework for analyzing modified Bloom filters, which
we expect will be used in the future to refine the specific schemes that we analyzed in this paper.
We also expect that the techniques used in this paper will be usefully applied to other data
structures, as demonstrated by our modification to the Count-Min sketch.

Acknowledgements

We are very grateful to Peter Dillinger and Panagiotis Manolios for introducing us to this problem,
providing us with advance copies of their work, and also for many useful discussions.

References

[1] P. Billingsley. Probability and Measure, Third Edition. John Wiley & Sons, 1995.

[2] P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin, J. Morrison, M. Smid, and Y.
Tang. On the false-positive rate of Bloom filters. Submitted. Temporary version available at
http://cg.scs.carleton.ca/∼morin/publications/ds/bloom-submitted.pdf

[3] A. Broder and M. Mitzenmacher. Network Applications of Bloom Filters: A Survey. Internet
Mathematics, to appear. Temporary version available at http://www.eecs.harvard.edu/
∼michaelm/postscripts/tempim3.pdf.

[4] G. Cormode and S. Muthukrishnan. Improved Data Stream Summaries: The Count-Min
Sketch and its Applications. DIMACS Technical Report 2003-20, 2003.

[5] P. C. Dillinger and P. Manolios. Bloom Filters in Probabilistic Verification. FMCAD 2004,
Formal Methods in Computer-Aided Design, 2004.

[6] P. C. Dillinger and P. Manolios. Fast and Accurate Bitstate Verification for SPIN. SPIN
2004, 11th International SPIN Workshop on Model Checking of Software, 2004.

31

[7] D. P. Dubhashi and D. Ranjan. Balls and Bins: A Case Study in Negative Dependence.
Random Structures and Algorithms, 13(2):99-124, 1998.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable wide-area Web
cache sharing protocol. IEEE/ACM Transactions on Networking, 8(3):281-293, 2000.

[9] K. Ireland and M. Rosen. A Classical Introduction to Modern Number Theory, Second
Edition. Springer-Verlag, New York, 1990.

[10] D. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-
Wesley, Reading Massachusetts, 1973.

[11] M. Mitzenmacher. Compressed Bloom Filters. IEEE/ACM Transactions on Networking,
10(5):613-620, 2002.

[12] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms and
Probabilistic Analysis. Cambridge University Press, 2005.

[13] M. V. Ramakrishna. Practical performance of Bloom filters and parallel free-text searching.
Communications of the ACM, 32(10):1237-1239, 1989.

32

