
The design of a computer language for linguistic
information

Citation
Stuart M. Shieber. The design of a computer language for linguistic information. In Proceedings
of the Tenth International Conference on Computational Linguistics, pages 362-366, Stanford
University, Stanford, California, July 2-6 1984.

Published Version
http://www.aclweb.org/anthology-new/P/P84/P84-1075.pdf;http://
dx.doi.org/10.3115/980491.980566

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2309659

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2309659
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=The%20design%20of%20a%20computer%20language%20for%20linguistic%20information&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=f3544ba77b8d80eb4892400b01a626b3&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

The Design of a Computer Language for Linguistic Information
Stuart M. Shieber

Artificial Intelligence Center

SRI International
and

Center for the Study of Language and Information
Stanford University

Abstract

A considerable body of accumulated knowledge about
the design of languages for communicating information to
computers has been derived from the subfields of program-
ming language design and semantics. It has been the goal of
the P A r R group at SRI to utilize a relevant portion of this
knowledge in implementing tools to facilitate communica-
tion of linguistic information to computers. The PATR-II
formalism is our current computer language for encoding
linguistic information. This paper, a brief overview of that
formalism, attempts to explicate our design decisions in
terms of a set of properties that effective computer lan-
guages should incorporate.

I. Introduction I

The goal of natural-language processing research can
be stated quite simply: to endow computers with human
language capability. The pursuit of this objective, however,
has been a di~cult task for at least two reuons: first, this
capability is far from being a well-understood phenomenon;
second, the tools for teaching computers what we do know
about human language are still very primitive. The solu-
tion of these problems lies within the respective domains of
linguistics and computer science.

Similar problems have arisen previously in computer
science. Whenever a new computer application area
emerges, there follow new modes of communication with
computers that are geared towards such area& Computer
languages are a direct result of this need for effective com-
munication with computers. A considerable body of accu-
mulated knowledge about the design of languages for com-
municating information to computers has been derived from
the subfields of programming language design and seman-
IThis research has been made possible in part by a gift from the Sys-
tems Development Foundation, and was also supported by the Defense
Advanced Research Projects Agency under Contract N00039-80-C-
0575 with the Naval Electronic Systems Command. The views and
conclusions contained in this document are those of the author and
should not be interpreted as representative of the official policies, ei-
ther expre.,sed or implied, of the Defense Advanced Research Projects
Agency, or the United States government.

The author is indebted to Fernando Pereira, Barbara Grosr. and Ray
Perrault for their comments on earlier dra/ts.

tics. It has been the goal of the P A r R group at SRI 2 to
utilize a relevant portion of this knowledge in implementing
tools to facilitate communication of linguistic information
to computers.

The PATR-II formalism is our current computer lan-
guage for encoding linguistic information. This paper, a
brief overview of that formalism, attempts to explicate our
design decisions in terms of a set of properties that effec-
tive computer languages should incorporate, namely: sim-
plicity, power, mathematical weU-foundedness, flexibility,
implementability, modularity, and declarativeness. More
extensive discussions of various aspects of the PATR-II for-
malism and systems can be found in papers by Shieber e t
a/., [83], Pereira and Shieber [84] and Karttunen [84].

The notion of designing specialized computer lan-
guages and systems to encode linguistic information is not
new; PROGRAMMAR [Winograd, 72], ATNs [Woods, 70],
and DIALOGIC [Grosz, et al., 82] are but a few of the
better-known examples. Furthermore, a trend has arisen
recently in linguistics towards declarativeness in gram-
mar formalisms--for instance, lexical-functional grammar
(LFG) [Bresnan, 83], generalized phrase-structure gram-
mar (GPSG) [Gazdar and Pullum, 82] and functional uni-
fication grammar (UG) [Kay, 83]. Finally, in computer .sci-
ence there has been a great deal of interest in declarative
languages (e.g., logic programming and specification lan-
guages), and their supporting denotational semantics. But
to our knowledge, no attempt has yet been made to combine
the three approaches so as to yield a declarative computer
language with clear semantics designed specifically for en-
coding linguistic information. Such a language, of which
PATR-II is an example, would reflect a felicitous conver-
gence of ideas from linguistics, artificial intelligence, and
computer science.

2. The Critical Properties of the
Language

It is not the purpose of this paper to provide a compre~
hensive description of the PATR-II project, or even of the
formalism itself. Rather, we will discuss briefly the critical
2This rather liquid group ham included at various times: John Bear,
Lauri Karttuneu, Fernando Pereira, Jane Robinson, Stan Rosenschein,
Susan Stueky, Mabry Tyson, Hans Uszkoreit, and the author.

3 6 2

properties of PATR-II to give a flavor for our approach to
the design of the language. References to papers with more
complete descriptions of particular aspects of the project
are provided when appropriate.

2 . 1 . S i m p l i c i t y : A n I n t r o d u c t i o n t o t h e

P A T R - I I F o r m a l i s m

Building on a convergence of ideas from the linguistics
and AI communities, PATR-II takes as its primitive opera-
tion an extended paltern-matching technique, unification,
first used in logic and theorem-proving research and lately
finding its way into research in linguistics [Kay, 79; Gazdar
and Pullum, 821 and knowledge representation [Reynolds,
70; Ait-Kaci~ 831. Instead of unifying logic terms, how-
ever, PATR unilication operates on directed acyclic graphs
(DAG}. s

DAGs can be atomic symbols or sets of label/value
pairs, where the values are themselves DAGs (either atomic
or complex). Two labels can have the same value--thus the
use of the term graph rather than tree. DAGs are notated
either by drawing the graph structure itself, with the la-
bels marking the arcs, or, as in this paper, by notating the
sets of label/value pairs in square brackets, with the labels
separated from their values by a colon; e.g., a DAG associ-
ated with the verb "knight" (as in "Uther wants to knight
Arthur") would appear (in at least one of our grammars)
as

[c a t : v
head: [aux: false

form: n o n f i n i t e
vo ice : a c t i v e
t r a n s : [pred: kn igh t

arg l : <f1134>
[]

arg2: <f1138>
[111

syncat: [f i r s t : [c a t : np
head: [trane: <f1134>]]

re s t : [f i r s t : [cat: np
head: [trans: <f1188>]]

r e s t : <f1140>
lambda]

t a i l : <f l140>]]

Reentrant structure is notated by labeling the DAG with
an arbitrary label (in angle brackets), then using that label
for future references to the DAG.

Associated with each entry in the lexicon is a set of
DAGs. 4 The root of each DAG will have an arc labeled eat
aTechnically, these are rooted, directed, acyclic graphs with labeled
arcs. Formal definition of these and other technical notions can be
found in Appendix A of Shieber et aL [83]. Note that some imple-
mentations have been extended to handle cyclic graph structures as
well as graph structures with disjunction and negation [Karttunen,
84].

4In our implementation, this association is not directly encoded--since
this would yield a grossly inefficient characterization of the lexicon~
but is mediated by a morphological analyzer. See Section 2.6 for
further details.

whose value will be the calegory of the associated iexical
entry. Other arcs may encode information about the syn-
tactic features, translation, or syntactic subcategorization
of the entry. But only the label cat has ally special sig-
nificance; it provides the link between context-free phrase
structure rules and the DAGs, as explicated below.

PATR-II grammars consist of rules with a context-free
phrase structure portion and a set of unifications on the
DAGs associated with the constituents that participate in
the application of the rule. The grammar rules describe how
constituents can be built up to form new constituents with
associated DAGs. The right side of the rule lists the cat
values of the DAGs associated with the filial constituents;
the left side, the eat of the parent.. The associated uni-
fications specify equivalences that must exist among the
various DAGs and sub-DAGs of the parent and children.
Thus, the formalism uses only one representation---DAGs--
for iexical, syntactic, and semantic information, and one
operat ion--unif icat ion--on this representation.

By way of example, we present a trivial grammar for a
fragment of English with a lexicon associating words with
DAGs.

S ~ N P VP

< V P a f r > = < N P agr>

VP --* V IVP

Uther:

< VP agr> = < V agr>

< eat > = n p
<agr number> = singular
<agr person> = third

Arthur:

< e a t > = np
<agr number> = singular

< a g r p e r s o n > = third

knights:

< e a t > = v
<aqr number> = singular

<agr person> = third

This grammar (plus lexicon) admits tile two sentences
"Uther knights Arthur" and "Arthur knights Uther." Tile
phrase structure associated with the first of these is:

[s INP Utherl [vp [v knightsl [Nr' Arthurlll
The VP rule requires that the agr feature of the DAG

associated with the VP be the same as (unified with) the agr
of the V. Thus, the VP's agr feature will have as its value
the same node as the V's agr, and hence the same values
for the person and number features. Similarly, by virtue of
the unification associated with the S rule, the NP will have
the same agr value as the VP and, consequently, the V. We
have thus encoded a form of subject-verb agreement.

Note that the process of unification is order-independent.
For instance, we would get the same effect regardless of
whether the unifications at the top of the parse tree were
effected before or after those at the bottom. In either case,
the DAG associated with, e.g., the VP node would be

363

[cat : vp
agr: [person: third

number: s i n g u l a r]]

The.~e trivial examples of grammars and lexicons offer
but a glimp.~e ,~f the techniques used in writing PATR-II
granmlar~, and do not begin to employ the power of unifi-
cati,,n :is rl general information-passing mechanism. Exam-
ples of the use of PATR-[I for encoding much more complex
linguistic phenr~mena can be found in Shieber et al. [83].

2 . 2 . P o w e r : T w o V a r i a n t s

Augmented I)hrase-structure grammars such as PATR-
II can in fact be quite powerful. The ability to encode
unbc,l~nded amcmnts of information in the augmentations
(which I'ATR-II obviously allows) gives this formalism the
p,~wer c~f a 'rt, ring machine. As a linguistic theory, this
much power might be considered disadvantageous; as a
compuler language, however, such power is clearly desir-
able..-.ince the intent of the language is to enable the mod-
eling of m~my kinds of linguistic analyses from a range of
theories. As s*l,'h, PATR-II is a tool, not a result.

N,~v(,rthelc.~s, a good case could be made for maintain-
ing at least the decidability of determining whether a string
is admitted by a PATR-II grammar. This property can be
ensured by requiring the context-free skeleton to have the
property ~f off-line parsability [Pereira, 83], which was used
originally in the definition of LFG to maintain the decid-
ability of that f{,rmalism [Kaplan and Bresnan, 83]. Off-line
parsability req.ires that the context-free "skeleton" of the
grammar allows no trivial cyclic derivations of the form
A ~ A.

2.3. Mathematical Well-Foundedness: A

Denotational Semantics

One reason for maintaining the simplicity of the bare
PATR-II formalism is to permit a clean semantics for the
language. We have provided a denotational semantics for
PATR-ll [Pereira and Shieber, 84] based on the information
systems domain theory of Dana Scott [Scott, 82]. Insofar as
more com[)lex formalisms, such as GPSG and LFG, can be
modeled a~s appropriate notations for PATR-II grammars,
PATR-II's denotational semantics constitutes a framework
in which the semantics of these formalisms can also be de-
fined, discussed, and compared. As it appears that not all
the power of domain theory is needed for the semantics of
PATR-II, we are currently pursuing the possibility of build-
ing a semantics based on a less powerful model, s

2.4. FIexibillty: Modeling Linguistic Con-

structs

Clearly, the bare PATR-II formalism, as it was pre-
sented in Section 2.1, is sorely inadequate for any major
attempt at building natural-language grammars because of
its verbosity and redundancy. Efficiency of encoding was
s But see Pereira and Shieber [84] for arguments in favor of using domain

theory even if all the available power is not utilized.

temporarily sacrificed in an at tempt to keep the underlying
formalism simple, general, and semantically well-founded.
However, given a simple underlying formalism, we carl build
more efficient, specialized languages on top of it, nmch as
MACLISP might be built on top of pure LISP. And just
as MACLISP need not be implemented (and is not imple-
mented) directly in pure LISP, specialized formalisms built
conceptually on top of pure PATR-I1 need not be so imple-
mented (although currently we do implement thenl directly
through pure PATR-II). The effectiveness of this approach
can be seen in the fact that at lea:st a sizable portion of
English syntax has been encoded in various experimental
PATR-II grammars constructed to date. The syntactic con-
structs encoded include subcategorization of various com-
plement types (N/as, Ss, etc.), active, passive, "there" in-
sertion, extraposition, raising, and equi-NP constructic)ns,
and unbounded dependencies (such a~s Wh-movement and
relative clauses). Other theory-dependent devices that have
been modeled with PATR-II include head-feature percola-
tion [Gazdar and Puilum, 82], and LFG-like semantic forms
[Kaplan and Bresnan, 83]. Note that none of these con-
structs and techniques required expansion of the underly-
ing formalism; indeed, the constructions all make use of the
techniques described in this section. See Shieber et al. [83]
for a detailed discussion of the modeling of some ,)f these
phenomena.

The devices now available for molding PATR-II to con-
form to a particular intended usage or linguistic theory are
in their nascent stage, llowever, because of their great im-
portance in making the PATR-II system a usaHe one, we
will discuss them briefly. It is important to keep in mind
that these methods should not be considered a part of the
underlying formalism, but merely "syntactic sugar" to in-
crease the system's utility and allow it to conform to a
user's intentions.

2 . 4 . 1 . T e m p l a t e s

Because so much of the information in tile PATR-II
grammars under actual development tends to be encoded
in the lexicon, most of our research has been devoted to
methods for removing redundancy in the lexicon by all,w-
ing the users themselves to define primitive constructs and
operations on lexical items. Primitive constructs, such as
the transitive, dyadic, or equi-NP properties of a verb, can
be defined by means of templates, that is, DAGs that en-
code some linguistically isolable portion of the DAG of a
lexical item. These template DAGs can then be c(~mbined
to build the lexical item out of tile user-defined primitives.

As a simple example, we could define (with the follow-
ing syntax) the template Verb as

Let Verb be

<eat> = V

and the template ThirdSing as

Let ThirdSing be

<agr number> = singular
< a g r p e r s o n > = third

T h e lex ica l e n t r y for "knights" wou ld then be

364

knights:

Verb ThirdSin 9

Templates can themselves refer to other templates, en-
abling definition of abstract linguistic concepts hierarchi-
cally. For instance, a modal verb template may use an aux-
iliary verb template, which in term may be defined using
the verb template above. In fact, templates are currently
employed for abstracting notions of subcategorization, verb
form, semantic type, and a host of other concepts.

2 . 4 . 2 . L e x i c a l R u l e s

More complex relationships among lexical items can be
encoded by means of lexical rules These rules, such as
passive and "there" insertion, are user-definable operations
on the lexical items, enabling one variant of a word to be
built from the specification of another variant. A lexical
rule is specified as a set of selective unifications relating an
input DAG and an output DAG. Thus, unification is the
primitive used in this device as well.

Lexieal rules are used to encode the relationships among
various lexical entries that would typically be thought of as
transformations or relation-changing rules (depending on
one's ideological outlook}. Because lexical rules perform
these operations, the lexicon need include only a proto-
type entry for each verb. The variant forms can be derived
through lexical rules applied in accordance with the mor-
phology actually found on the verb. (The morphological
analysis in the implementations of PATR-II is performed
by a program based on the system of Koskenniemi [83] and
was written by Lauri Karttunen [83].)

For instance, given a PATR-II grammar in which the
DAGs are used to emulate the f-structures of LFG, we
might write a passive lexical rule as follows (following Bres-
nan [83]): e

Define Passive as

<out cat> = <in cat>
< out form > = passprt
<out subj> = <in obj>
<out obj> = <in subj>

The rule states in effect that the output DAG (the o n e
associated with the passive verb form) marks the l ex ica l
item as being a passive verb whose object is the input
DAG's subject and whose subject is the input's object. Such
lexical rules have been used for encoding the active/passive
dichotomy, "there" insertion, extraposition, and o t h e r so-
cal led relation-changing rules.

2 .5 . M o d u l a r i t y a n d D e c l a r a t l v e n e s s

The PATR-II formalism is a completely declarative for-
malism, as evidenced by its denotational semantics and the
order-independence of its definition. Modularity is achieved
through the ability to define primitive templates and lex-
ical rules that are shared among lexical items, as well as
by the declarative nature of the grammar formalism itself,
6The example is merely meant to be indicative of the syntax for and
operation of lexical rules. We do not present this as a valid definition
of Passive for any grammar we have written in PATR-IL

removing problems of interaction of rules. Rules are guar-
anteed to always mean the same thing, regardless of the
environment of other rules in which they are placed.

2.6. Implementability
Implementability is an empirical matter, given credence

by the fact that we now have three implementations of
the formalism. One desirable aspect of the simplicity and
declarative nature of the formalism is that even though
the three implementations differ substantially from one an-
other, using different parsing algorithms {with both top
down and bottom up properties}, different implementations
of unification, different methods of compiling the rules, all
are able to run on exactly the same grammars yielding the
identical results.

The three implementations of the PATR-II system cur-
rently in operation at SRI are as follows:

• An INTERLISP version for the DEC-2060 using a
variant of the Cocke-Kasami-Younger parsing algo-
rithm and the KIMMO morphological analyzer [Kart-
tunen, 83], and a limited programming environment.

• A ZETALISP version for the Symbolics 3600 using a
left-corner parsing algorithm and the KIMMO mor-
phological analyzer, with an extensive programming
environment {due primarily to Mabry Tyson} that in-
cludes incremental compilation, multiple window de-
bugging facilities, tracing, and an integrated editor.

• A Prolog version (DEC-10 Prolog) running on the
DEC-2060 by Fernando Pereira, designed primarily as
a testbed for experimentation with efficient structure-
sharing DAG unification algorithms, and incorporat-
ing an Earley-style parsing algorithm.

In addition, Lauri Karttunen and his students at the
University of Texas have implemented a system based on.
PATR-II but with several interesting extensions, including
disjunction and negation in the graph structures [b:art-
tunen, 84]. These extensions will undoubtedly be inte-
grated into the SRI systems and formal semantics for them
are being pursued.

3. C o n c l u s i o n

The PATR-II formalism was designed as a computer
language for encoding linguistic information. The design
was influenced by current theory and practice in computer
science, and especially in the arenas of programming lan-
guage design and semantics. The formalism is simple (con-
sisting of just one primitive operation, unification), power-
ful (although it can be constrained to be decidable), math-
ematieally well-founded (with a complete denotational se-
mantics), flexible (as demonstrated by its ability to model
analyses in GPSG, LFG, DCG and other formalisms), mod-
ular (because of its higher-level notational devices such as
templates and lexical rules), declarative (yielding order-
independence of operations), and implementable (as demon-
strated by three quite dissimilar implemented systems and
one highly developed programming environment).

365

As we have ,mq)hasized herein, PATR-II seems to rep-
l'OSO.l'it. ~'I c(~nvol'~(.llCC o f techniques from several domains - -
comt)utor science, programming language design, natural
language processing and linguistics. Its positioning at the
center of these trends arises, however, not from the ad-
mixture of many discrete techniques, but rather from the
application of a single simple yet powerful concept to the
encoding of linguistic information.

R e f e r e n c e s

Ait-Kaci, II., 1~..~83: "A new Model of Computation Based on a
Calcuhls of Type Sul)snml)tion," Doctoral Dissertation Pro-
posal, I)ept. of (?;oml~uter and Information Science, Univer-
sity of Pennsylvania (Noveml:er).

Bresnan, .loan. 19::t:~: The mental representation of grammatical
relations (ed.), (:nmbriHge: MIT Press.

Gazdar, C. and C.K. Pullum, 198'2.: "GPSG: A Theoretical Syn-
opsis," Indiana University I,inguistics Club, Bloomington,
Indiana.

Grosz, B., N. llaas, (~. Ilon,.Irix. J. tlobbs, P. Martin, R. Moore,
J. l~¢~l)inson att,I S. Rosenschein, 1982: "DIALOGIC: a
core natnral-hmgu;H~e processing system," Proceedings of the
Ninth International Co,fercnce on Computational Linguis.
tics, Prague, Czeehoslavakia (July), pp. 95-100.

Kaplan, R. and J. Bresnan, 1983: "LexlcaI-Functionai Gram-
mar: A Formal System for Grammatical Representation,"
in J. 13resnan (ed.), The mental representation of grammat-
ical rclati, rr~ (ed.), (:ambridge: MIT Press.

Karttunen, I.., 1981: "Features and Values, ~ Proceedings of
the Tenth Inter,atiomd Conference on Computational Lin.
guistics, Stanford Universil.y, Stanford California (4-7 July,
1984).

Karttuneu, L., 1983: "NIMMO: a general morphological proces-
sor," Texas Lingui.~tic Forum, Volume 22 (December), pp.
161-185.

Kay, M., 1979: "Functional C',rammar," in Proceedings of the
Fifth Annttal Meeting of the Berkeley Linguistics Society,
Berkeley, California (17-19 February).

Kay, M., 1983: "linifieation Grammar," unpublished memo, Xe-
rox Pale Alto Research Center.

Koskennicmi, 1<., 198.q: "A Two level Model for Morphologi-
cal Analysis and Synthesis," forthcoming Ph.D. dissertation,
University of Ilclsinki, llelsinki, Finland.

Pereira, F. and D.II.D. Warren, 1983: "Parsing as Deduction,"
in Proceedings of the elst .4nn~tal Meeting of the Association
for Computath, n~d l.ing,istics 115-17 June), pp. 137-144.

Pereira, F. and S. $hi~,ber, 1984: "The Semantics of Grammar
Formalisms Seen ~.s Comlmter Languages," Proceedings of
the Te~,th International Conference on Computational Lin.
guistics, Stanford University, Stanford California (4-7 July,
1980.

Reynolds, J., 1970: "Transformational Systems and the Alge-
braic Structure of Atomic Formulas," in D. Miehie (ed.),
Machine Intelligence, Vol. 5, Chapter 7, Edinburgh, Scot-
land: Edinburgh University Press, pp. 135-151.

Scott, D., 1982: "Domains for Denotationai Semantics," ICALP
'82, Aarhus, Denmark (July).

Shieber, S., H. Uszkoreit, F. Percira, J. Robinson, and M. Tyson,
1983: "The Formalism a.lld Implementation of PATI~.-[I," in
B. Grosz and M. Stickel, Research on Interactive Acquisi-
tion and Use of Knowledge, SRI Final Report 1894, SRI
International, Menlo Park, California (November).

Winograd, T., 1972: Understanding Natural Lattyuage, New
York, New York: Academic Press.

Woods, W., 1970: "Transition Network Grammars for Natural
Language Analysis," Communications of the A CM, Vol. 13,
No. 10 (October).

366

