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Defective sister chromatid cohesion is synthetically
lethal with impaired APC/C function
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Warsaw breakage syndrome (WABS) is caused by defective DDX11, a DNA helicase

that is essential for chromatid cohesion. Here, a paired genome-wide siRNA screen in patient-

derived cell lines reveals that WABS cells do not tolerate partial depletion of individual APC/C

subunits or the spindle checkpoint inhibitor p31comet. A combination of reduced cohesion and

impaired APC/C function also leads to fatal mitotic arrest in diploid RPE1 cells. Moreover,

WABS cell lines, and several cancer cell lines with cohesion defects, display a highly increased

response to a new cell-permeable APC/C inhibitor, apcin, but not to the spindle poison

paclitaxel. Synthetic lethality of APC/C inhibition and cohesion defects strictly depends on a

functional mitotic spindle checkpoint as well as on intact microtubule pulling forces. This

indicates that the underlying mechanism involves cohesion fatigue in response to mitotic

delay, leading to spindle checkpoint re-activation and lethal mitotic arrest. Our results point to

APC/C inhibitors as promising therapeutic agents targeting cohesion-defective cancers.
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C
ell division requires the duplication of all chromosomes,
followed by their segregation as two identical sister
chromatids into two new daughter cells. Sister chromatid

cohesion holds sister chromatids together until their
proper separation is initiated at the metaphase-to-anaphase
transition. Pairing of sister chromatids is achieved by a huge
ring-shaped protein complex named cohesin, which consists of
Smc1, Smc3, Rad21 (Scc1 in yeast) and either SA1 or SA2 (Scc3
in yeast). Besides keeping sister chromatids paired during early
stages of mitosis, cohesin’s DNA tethering capacity facilitates
multiple additional processes in the cell, such as DNA repair,
ribosome biogenesis, regulation of gene transcription and
initiation of DNA replication1. Defects in the cohesion network
are the cause of several rare genetic diseases named
cohesinopathies. These include Cornelia de Lange Syndrome
(CdLS, caused by mutations in NIPBL, Smc1A, Smc3, Rad21 or
HDAC8 (refs 2–5)), Roberts Syndrome (RBS, caused by ESCO2
mutations6,7) and Warsaw Breakage Syndrome (WABS, caused
by DDX11 mutations8). Although it is not clear whether these
predispositions are linked to an increased cancer risk, mutations
in genes encoding cohesin subunits and regulators have been
reported in a substantial number of human tumours9–15.
Cohesion defects may thus form a new hall mark of cancer that
could be exploited in therapy.

When cells enter mitosis, the bulk of cohesin is removed from
chromosome arms during prophase, in a manner dependent
on phosphorylation of cohesin subunits by mitotic kinases and
the cohesion antagonist Wapl (reviewed in ref. 16). However,
centromeres are protected against loss of cohesion by Sgo1, which
attracts a phosphatase to prevent phosphorylation of the Wapl
antagonist Sororin, and SA2 (refs 17–21). During prometaphase,
the kinetochores of paired sister chromatids attach to the mitotic
spindle and subsequently come under tension of spindle pulling
forces. Resisting spindle pulling forces is an important function of
sister chromatid cohesion, preventing premature sister chromatid
separation until the last pair of sister chromatids becomes
bioriented on the mitotic spindle. The occurrence of prematurely
separated sister chromatids which lose microtubule-kinetochore
attachments activates the spindle assembly checkpoint (SAC)22.
Continuous arrest of cells in the SAC may lead to cell death or
highly aneuploid daughter cells23.

The SAC is an evolutionary conserved signalling cascade that
acts in prometaphase and keeps cyclin B1-Cdk1 active during the
process of chromosome biorientation24,25. Proper attachment of
all the paired sister chromatids to the spindle and their alignment
to the cell equator is a stochastic process that can take roughly up
to 1 h in normal cells. Maintenance of cyclin B1-Cdk1 activity
during this phase is essential to keep the mitotic state until
biorientation is complete. Simultaneously, Separase, a Rad21
protease, must be kept inactivated to protect centromere cohesion.
The SAC is kept activate by kinetochores that are not properly
attached to spindle microtubules, stimulating production of the
mitotic checkpoint complex (MCC), composed of BubR1, Bub3,
Mad2 and Cdc20 (ref. 26). The MCC blocks the anaphase
promoting complex or cyclosome (APC/C), a multi-subunit E3
ubiquitin ligase, so that three of its substrates remain stable for
multiple hours: Securin, which blocks Separase27, cyclin B1, which
keeps Cdk1 active to keep cells in mitosis28, and geminin, which
blocks premature DNA replication licensing29. Achievement of
proper attachment and centromere tension silences the SAC,
activating APC/C-Cdc20. This leads to degradation of securin to
release Separase, cleaving the cohesin subunit Rad21 and allowing
chromatid separation to opposite spindle poles. Cyclin B1
degradation occurs at the same time and causes inactivation of
Cdk1, initiation of cytokinesis and mitotic exit30. Geminin is also
degraded, preparing cells for DNA replication29.

SAC silencing may involve multiple mechanisms, such as
tension-sensitive kinetochore phosphorylations31, activation of
phosphatases that antagonize certain mitotic kinases32 and
dynein-microtubule-mediated stripping of SAC proteins from
kinetochores upon microtubule attachment33. Furthermore,
p31comet promotes the release of Mad2 from the MCC, thereby
initiating Cdc20 release downstream of kinetochores34–37.

Cancer arises by an accumulation of genetic and epigenetic
alteration in cancer genes, disturbing the normal signalling routes
in the cell. This can make tumour cells highly dependent on a
specific pathway that remains intact, while in healthy cells the
backup pathway still exists. The phenomenon that two genes or
two signalling pathways can compensate each other, but
inactivation of both diminishes cell viability, is called ‘synthetic
lethality’. Such interactions between pathways can be exploited to
eradicate tumour cells without many side effects on normal
tissues38. Here, we aim to identify pathways that are specifically
lethal in combination with defects in sister chromatid cohesion, to
start to develop of a new targeted cancer therapy. We use a patient
fibroblast cell line in which DDX11 mutations cause cohesion
defects8 in parallel with its functionally corrected counterpart as
model system and subject these cell lines to siRNA screens in
order to find lethal interactors. We find that the DDX11 mutant
cells are hypersensitive to inhibition of the APC/C. APC/C
inhibition to a level that is tolerated by normal cells, causes a
detrimental further loss of chromatid cohesion during mitosis in
cohesion-defective cells, and subsequently induces mitotic death.
This lethality is observed in a range of different cohesion-defective
cells and requires a functional SAC. In line with this observation,
treatment with the recently published cell-permeable APC/C-
inhibiting drug apcin is particularly toxic in cell lines with
defective sister chromatid cohesion, including tumour cell lines.

Results
A genome-wide siRNA screen in DDX11 mutant cells. We
generated SV40-immortalized fibroblasts derived from a WABS
patient and functionally corrected the cohesion defects in this cell
line (railroad chromosomes, RR, and premature sister chromatid
separations, PCS, Fig. 1a, ref. 8) by stable transfection of DDX11
cDNA (Fig. 1a, ref. 8). We used these two cell lines, hereafter
named DDX11� and DDX11þ cells, to screen for genes whose
inactivation is specifically lethal in cohesion-defective cells by
performing whole-genome siRNA screens. An overview of the
procedure is provided in Fig. 1b. Briefly, cells were reverse
transfected in 384-well plates with single-target pools of four
distinct siRNAs using an automated platform and viability was
measured after 4 days using the CellTiter-Blue assay. We com-
puted P values and false discovery rates (FDR) for the difference
in cell viability with each siRNA between the two cell lines
(Supplementary Fig. 1). This revealed 113 siRNAs with
FDRo0.1. We excluded 32 genes based on updated library
annotation according to NCBI RefSeq58 or because they exhib-
ited the highest lethality in DDX11þ cells and cherry-picked 17
additional genes with FDR slightly above the threshold, so in total
98 hits were selected (Supplementary Data 1).

We rescreened these 98 hits in DDX11� and DDX11þ cells
with deconvoluted sets of 4 siRNAs. Subsequently, we calculated the
differential effect (ratio DDX11þ /DDX11� ) and toxicity (lethality
in DDX11þ cells) for every individual siRNA (Supplementary Data
2). Interestingly, of 19 genes showing ratio 42 and toxicity o50%,
we identified APC2, APC3/Cdc27 and APC4, which encode three
different components of the APC/C. Moreover, we also identified
Mad2L1BP/p31comet, which encodes a negative regulator of the
APC/C inhibitor Mad2. Accompanying western blots (Fig. 1c,d)
suggested that the weaker effects of siAPC3#2 and sip31comet#4 in
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DDX11� cells result from lower knockdown efficiency. The
toxicity of siAPC2#1, siAPC2#2, siAPC3#3 and siAPC4#2 in
DDX11þ cells might relate to an induction of off-target effects by
these RNAi oligos. The increased sensitivity of DDX11� cells to
APC2 inhibition was confirmed with an additional pool of four
unrelated APC2 targeting siRNAs (Supplementary Fig. 2). Together,
these results indicate that DDX11 mutant cells are highly sensitive
to knockdown of APC/C subunits.

Cohesion defects sensitize to APC/C inhibition. We investi-
gated the response to APC/C inhibition in a number of cell lines
from our laboratory with known cohesion status. Two head and
neck squamous cell carcinoma (HNSCC) cell lines, isolated from
a single patient, represent a highly related panel of cells. Impor-
tantly however, they differ in their sister chromatid cohesion
status. Sister chromatid cohesion is normal in UM-SCC-14C but
disturbed in UM-SCC-14B39 (Fig. 2a). Of three luminal-type
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breast cancer cell lines, OCUB-M cells exhibit severe cohesion
defects, whereas most metaphases of MCF7 and CAMA-1 cells
appear normal (Fig. 2a). Depletion of APC3 or p31comet induced
the strongest growth inhibition in UM-SCC-14B and OCUB-M
cells (Fig. 2b,c). Similarly, APC/C knockdown showed a stronger
effect in ESCO2� cells, derived from a RBS patient40, as
compared with its functionally corrected counterpart ESCO2þ

(Supplementary Fig. 3). We conclude that increased sensitivity to
APC/C inhibition is not restricted to DDX11 mutant cells, but

could be a more general feature of cells in which the cohesion of
sister chromatids during metaphase is weak.

Interestingly, a new APC/C-inhibiting compound named apcin
has recently been developed41, which partially inhibits APC/C
activity. Apcin acts by competitively binding to the mitosis-
specific APC/C cofactor Cdc20 and hampering the ubiquitination
of D-Box containing substrates41. As expected, apcin
phenocopied the effects of the APC/CCdc20 impairing siRNAs
in the DDX11� and DDX11þ cell panel (Supplementary Fig. 4).
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We then analysed a larger panel of HNSCC and luminal breast
cancer cell lines of which metaphase spreads had been analysed in
our laboratory. Sensitivity to apcin was corrected for the number
of cell divisions during three days treatment. This revealed a
remarkable and significant correlation between the presence of
cohesion defects in tumour cells and sensitivity to apcin (Fig. 2d).
Interestingly, the cohesion status did not correlate well with
sensitivity to paclitaxel (Fig. 2e), which activates the SAC by
interfering with microtubule dynamics and spindle forces.

APC/C inhibition aggravates cohesion defects and causes mitotic
death. Apparently, cohesion defects make cells particularly vulner-
able to a delay in mitosis when APC/C activity is reduced. We used
time-lapse microscopy in order to analyse the mitotic events related
to this sensitivity in live cells as they progressed through mitosis.

Microscopic fields were analysed for 16 h and mitosis durations
from nuclear envelope breakdown (NEB) to anaphase or cell death
are shown in Fig. 3a. This shows that the duration of mitosis
strongly correlates with cell death. Moreover, a larger percentage of
APC3 depleted DDX11� cells undergo mitotic death as compared
with APC3 depleted DDX11þ cells. This difference is probably
larger than displayed, as many DDX11� cells were still in mitosis at
the end of the movie (Fig. 3a bar graph). In line with these obser-
vations, consecutive flow cytometry analyses (Supplementary
Fig. 5a–c) revealed an increased mitotic fraction in DDX11� cells
(day 2) that is followed by a strong induction of a fraction with 4N
DNA content that stain negative for phospho-Histone H3 (day 3),
probably representing mitoses that do not produce two new cells
because of cytokinesis failure. APC/C inhibition using different
siRNAs shows comparable results (Supplementary Fig. 5d). Impor-
tantly, 24 h apcin treatment also specifically blocked DDX11� cells
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in mitosis (Fig. 3b). We then performed a cohesion defect analysis,
which revealed a striking enhancement of premature chromatid
separation upon APC3 knockdown in DDX11� cells (Fig. 3c).

We reasoned that such severe cohesion defects might explain
the observed cell death. If that is indeed the case, directly
reinforcing cohesion during metaphase should rescue cohesion,
mitotic progression and viability. To test this, we used an siRNA
targeting WAPL, a protein required to remove the majority of
cohesin complexes from chromosome arms during prophase42,43.
Indeed, WAPL knockdown partially restored sister chromatid
cohesion in DDX11� cells and also reverted the accumulation of
mitotic cells and lethality upon APC3 knockdown (Fig. 4a–d). We
then asked whether the opposite was also true: can artificially
weakening sister chromatid cohesion in otherwise normal cells
sensitize them to lethal APC/C inhibition? Indeed, co-depletion
of ESCO2 and APC3 in RPE1 cells resulted in severe cohesion
defects, increased mitotic delay, caspase-dependent PARP
cleavage (indicative of apoptosis induction) and reduced cell
viability (Fig. 4e–h). Co-depletion of Rad21 and APC3, or of
DDX11 and APC3, gave the same results (Supplementary Fig. 6).
Notably, acute knockdown of DDX11 in RPE1 cells did not alter
APC3 levels and by using varying concentrations of siAPC3 we
also excluded that small differences in APC3 expression underlie
the differential sensitivity of DDX11� and DDX11þ cells
(Supplementary Fig. 7).

In conclusion, our findings indicate that weakened sister
chromatid cohesion at the start of mitosis, together with a
reduction of APC/C activity, induce prolonged mitosis, massive
premature chromatid separation and mitotic death.

Weak cohesion plus APC/C inhibition leads to cohesion fatigue.
To investigate whether the observed cell death was strictly related
to mitosis, we accelerated mitosis by blocking the spindle check-
point using the Mps1 inhibitor reversine44 (Fig. 5a–d; the
experiment including DDX11þ cells is shown in Supplementary
Fig. 8). Indeed, reversine reduced caspase-dependent PARP
cleavage and partially rescued cell viability in response to APC3
knockdown (Fig. 5a,b). Furthermore, the increase of mitotic
fraction and cohesion defects (Fig. 5c,d) was strongly reduced.
These results show that a spindle checkpoint-dependent arrest
contributes to lethality by APC/C inhibition in cohesion-defective
cells. This is in line with previous reports showing that the mitotic
arrest induced by APC/C inhibition is dependent on activation
of the spindle checkpoint22,45. This mechanism involves a
phenomenon known as ‘cohesion fatigue’; a gradual loss of
sister chromatid cohesion that can be observed during a prolonged
mitosis46,47. Importantly, cohesion fatigue is thought to largely
depend on microtubule pulling forces. We therefore used
nocodazole to block the development of tension across sister
kinetochores. Indeed, APC3 knockdown did not further increase
the cohesion defects in DDX11� cells in the absence of a
functional mitotic spindle (Fig. 5e). We then investigated whether
residual activity of Separase, the enzyme that becomes activated
upon APC/C-mediated Securin degradation48, is also responsible
for additional cohesion loss. In line with the reported APC/C and
Separase independence of cohesion fatigue46, the effects of APC3
knockdown on cohesion, cell cycle and viability did not change
when Separase was co-depleted (Fig. 5f–i).

To visualize sister chromatid alignment at the metaphase plate,
we then used GFP-H2B expressing RPE1 cells and analysed
chromosome congression by time-lapse fluorescence microscopy
(Fig. 6 and Supplementary Movies 1–6). Combined depletion of
ESCO2 and APC3 caused a high percentage of mitoses to lose
chromosome alignment on the metaphase plate, a process we
termed chromosome scattering. The majority of these cells

arrested in mitosis for many hours, and in almost all cases where
APC3 RNAi was combined with ESCO2 RNAi, the prolonged
mitotic arrest culminated in cell death. Single APC3 knockdown
also increased metaphase duration, but this was in most cases
followed by a normal anaphase and cell division, although in
some cells the chromosomes also left the metaphase plate prior to
the start of anaphase. In such cases, APC3 RNAi cells eventually
divided perpendicular to the culture dish (Supplementary
Movies 3,4), which indicated that the spindle had rotated, an
effect sometimes observed after APC/C inhibition49. In addition,
increased microtubule detachment from kinetochores may lead to
a similar phenotype, for example resulting from impaired APC/
C-dependent cyclin A degradation50. This does not necessarily
induce a permanent mitotic arrest, but may still allow gradual
cyclin B degradation and eventually mitotic exit, which would
also explain cell division following scattering under conditions
when only APC3 is depleted. It seems reasonable, however, that
the more severe chromosome scattering observed in cohesion-
defective cells upon depletion of APC3 largely reflects the
premature chromatid separation that we observed in our
cohesion defect analyses of fixed cells (Fig. 4f). In summary,
when APC3 is depleted, cells delay in metaphase, which
can lead to some scattering of the chromosomes away form the
metaphase plate, but this eventually leads to anaphase and
cytokinesis (Fig. 6c,d). However, when APC3 is depleted under
conditions of impaired sister chromatid cohesion, a form of
scattering is observed that relates to cohesion fatigue and causes
cell death.

Discussion
Mitotic cells require sister chromatid cohesion for maintaining a
physical connection between replicated DNA molecules, to resist
pulling forces and allow chromosome biorientation. Mutations in
this network may facilitate tumorigenesis, possibly because they
increase the chance of acquiring further genetic alterations10.
However, such defects might also be disadvantageous in specific
conditions, which would provide an opportunity to target those
tumours. Regardless, cohesion defects are normally not observed
in healthy cells, but can be detected in many tumours, thereby
forming an interesting new target for cancer therapy. Here, we
show that impaired sister chromatid cohesion, which is in itself
not fatal, could become particularly detrimental when a cell
encounters a substantial reduction of APC/C activity. It is
important to note that a complete abolishment of APC/C activity
is lethal in all cells (reviewed in ref. 51), but, perhaps depending
on cellular context, cells may well tolerate reduced APC/C
activity52–54. Our synthetic lethality screen revealed enhanced
sensitivity of DDX11 mutant cells for reduced protein expression
of different subunits of the APC/C, as well as the Cdc20 activating
p31comet that silences the mitotic checkpoint. We did not identify
additional APC/C subunits in the RNAi screen, which may be
due to incomplete knockdown and effects that fall outside the
window of differential tolerance, or from the induction of lethal
off-target effects by some siRNAs. Importantly, enhanced
sensitivity to APC/C inhibition was further validated in several
additional cell lines with weakened sister chromatid cohesion.
This indicates that it should be possible to pinpoint a
discriminative level of APC/C inhibition that is therapeutically
relevant.

We propose a model in which the enhanced sensitivity of
cohesion-defective cells to APC/C activity involves the previously
reported appearance of unscheduled chromatid separation during
a metaphase arrest, termed ‘cohesion fatigue’46 (Fig. 7). Although
all cells face a prolonged mitosis when APC/C activity is partially
reduced, most normal cells will eventually manage to sufficiently
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reduce cyclin B1 and Securin levels, allowing normal cell division
scheduled in synchrony with anaphase. However, cells with
impaired cohesion at the start of mitosis will sooner reach the
point at which chromatid connections on one or more paired
sister chromatids become insufficient to resist spindle pulling
forces. The resulting premature sister chromatid separation and
concomitant loss of tension and attachment to the spindle will
re-activate the SAC, or prevent its timely inactivation55. This

in turn feeds forward to block APC/CCdc20 activity more
effectively, which prolongs mitosis even more and increases the
chance of additional paired sister chromatids losing cohesion.
Eventually, many of these cells die in mitosis, or exit mitosis as
non-productive daughter cells.

The cellular responses to mitotic delay are widely variable and
appear to depend on an intriguing molecular competition
between pathways leading to either apoptosis or slippage23,56.
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Our findings suggest that the outcome of this race is strongly
influenced by the level of sister chromatid cohesion at the start of
mitosis, and the residual activity of the APC/C in prometaphase.
We propose that under conditions of further APC/C inhibition,
slippage is prevented and cells eventually die by apoptosis due to
a more severe mitotic blockade.

APC/C activity exerts both pro- and anti-proliferative effects,
which complicates its use as a target in cancer therapy. The
differential oscillation of its co-activators Cdc20 and Cdh1
confers an important level of APC/C regulation57. Although
APC/CCdc20 drives mitosis, APC/CCdh1 is mainly involved in
maintaining the G0/G1 state. It has been suggested that
inactivation of APC/CCdh1 might contribute to cancer growth,
through stabilization of oncogenic substrates that fuel
proliferation53. Indeed, Cdh1� /þ mice are more susceptible to
spontaneous tumours58. Therefore, it seems desirable to
exclusively inhibit APC/CCdc20. This argues for a strategy of
APC/CCdc20 inhibition, such as exemplified by the novel APC/C
inhibitor apcin, in favour of one that inhibits both APC/CCdch1

and APC/CCdc20, for example by proTAME, a drug which
generally prevents cofactor binding to the APC/C. Interestingly,

combining apcin with proTAME synergistically blocks mitotic
exit41. This may relate to a similar mechanism as described above:
in cells without pre-existing cohesion defects, APC/C inhibition
resulting from combined treatment may be sufficiently strong to
arrest cells in mitosis long enough to cause cohesion fatigue. Loss
of tension then re-activates the SAC, thereby establishing a feed-
forward loop (Fig. 7). It also indicates that apcin alone can only
partially inhibit APC/C activity during mitosis. This could be
advantageous in therapy, because basal APC/C function permits
cell division of healthy somatic cells.

The increased apcin sensitivity could be translated to most cell
lines with cohesion defects. It should be noted, however, that
apcin did not inhibit growth of all cohesion-defective cells.
Although numerous pharmacological and intracellular factors
could influence the drug response, this observation may also
indicate that not every condition that we characterize as ‘defective
cohesion’ in metaphase spreads leads to a substantial acceleration
of the process ‘cohesion fatigue’. The precise nature of defective
sister chromatid cohesion, such as those arising from reduced
total levels of cohesive rings, their improper distribution along
chromosomes or disturbed chromatin organization, may be
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relevant. Cohesion defects may result from replicative stress, such
as those found in pRB-negative cells59, so they could occur even
more frequently than currently anticipated based on common
mutations of known cohesin factors1. Pharmacological inhibition
of the APC/C has long been considered unfeasible in a clinical
setting. However, here we identified defective sister chromatid
cohesion, an emerging hall mark of many tumours, as a novel
foothold for cancer therapy by APC/C inhibitors. Future work
will need to be directed at finding biomarkers of cohesion defects,
that might predict response to apcin, and testing the effects of
apcin or other APC/C inhibitors in animal cancer models.

Methods
Cell lines and drug treatments. Human fibroblasts derived from a previously
described WABS patient8 were immortalized with hTERT and SV40 large
T antigen, stably transfected with DDX11 cDNA or an empty vector, and single
colonies were analysed for DDX11 protein levels. The official names of the
resulting cell lines are VU1149þ SV40þDDX11 and VU1149þ SV40þ pcDNA,
however for clarity they were renamed DDX11þ and DDX11� in this manuscript.
Wild-type fibroblasts LN9SV and RBS fibroblasts VU1199þ SV40 (ESCO2� ) and
VU1199þ SV40þV5-ESCO2 (ESCO2þ ) have been described before40. HNSCC
cell line VU-SCC-9917 was established from an HPV-negative T2N2B tumour in
the oral cavity of a 62-year old woman. HNSCC cell lines VU-SCC-120, VU-SCC-
147, VU-SCC-78 and VU-SCC-40 were described previously60. Luminal breast
cancer cell lines MCF7, CAMA-1, OCUB-M and Sum185PE were kindly provided
by J. Martens, Erasmus MC Rotterdam, Netherlands. MCF7 is listed in the database
of commonly misidentified cell lines, ICLAC. The authenticity was assessed by
comparing the generated Short Tandem Repeat (STR) profile with the source STR

profiles present in the American Type Culture Collection and the Deutsche
Sammlung von Mikroorganismen und Zellkulturen61. Human fibroblasts, human
Retinal Pigment Epithelial cells (RPE1) as well as the cancer cell lines used in this
study were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, GIBCO)
with 10% FBS (Hyclone) and 1% L-glutamine (Invitrogen). The Mps1 inhibitor
reversine as well as the spindle poisons paclitaxel (taxol) and nocodazole were
purchased from Sigma -Aldrich. The APC/C inhibitor apcin has been recently
described41.

The APC/C inhibitor proTAME, which causes cohesion fatigue under certain
conditions22, could not be used in the long term cell viability assays that we
describe here, due to variations in the stability of this APC/C inhibitor under cell
culture conditions.

Genome-wide siRNA screens. The DDX11� and DDX11þ cell lines were
subjected to a high-throughput reverse transfection protocol in 384-well tissue
culture plates (Cellstar, Greiner Bio-One) using established automated liquid
handling procedures. 1.5 pmol siRNA SMARTpools from the siARRAY Whole
Human Genome library (Catalogue items G-003500 (Sept05), G-003600 (Sept05),
G-004600 (Sept05) and G-005000 (Oct05); Dharmacon, Thermo Fisher Scientific)
were dispensed into the wells and plates were stored in � 20 �C. The non-targeting
siControl#2 and the siPlk1 SMARTpool were used as controls. Lipofectamin
RNAiMAX transfection reagent (Life Technologies) in OptiMem (GIBCO) was
added to the wells using a Multidrop Combi (Thermo Fisher Scientific). After two
hours, per well 500 cells in 40 ml growth medium were seeded to a final volume of
60 ml. Plates were incubated for 96 h at 37 �C/5% CO2. Cell viability was determined
by adding 6 ml CellTiter-Blue reagent (Promega). After 4 h of incubation at 37 �C,
the reaction was stopped by adding 30 ml 3% SDS and fluorescence (560Ex/590Em)
was measured using an Infinite F200 microplate reader (Tecan). The potency of the
selected hits was validated in a deconvolution screen: DDX11� and DDX11þ cell
lines were screened with four distinct siRNAs for each gene using a similar
approach as described above.

Analysis of screen data. Data were read into R and configured using the package
cellHTS2 (ref. 62). Log-transformed intensities were normalized using a linear
regression on data for all screens, correcting for experiment-wide plate and screen
effects. This helps making plate averages across all screens the same, although
individual plate averages may differ, as well as making screen averages the same
across the entire experiment. This normalization preserves differences between
screens, as it will affect all wells belonging to the same plate in the precise same way
and as such it preserves the effect between cell lines under study. We then used an
empirical-Bayes linear regression model63 to find siRNAs that led to differential
cell growth in DDX11� compared with DDX11þ cell lines. FDR-corrected P
values were selected if they were at most 0.10, so it is expected that at most 10% of
those selected are false positives64. This regression model is particularly suitable to
handling data from experiments as this one, where a small number of samples is
available per group (only 2 samples in one group and 3 in the other), and a large
number of siRNAs is tested simultaneously.

siRNA transfection and viability assay. We used a standard siRNA concentration
of 25 nM, except for the co-depletions in RPE1 cells, for which we used 2.5 nM per
single siRNA. The RNAiMAX dilution factor was optimized for each cell line
separately: 1200� for RPE1, DDX11� , DDX11þ , UM-SCC-14B and UM-SCC-
14C; 800� for ESCO2� , ESCO2þ , OCUB-M, MCF7 and CAMA-1. Unless dif-
ferently stated, we used siRNA#4 for APC3 and the pool of four siRNAs for ESCO2,
WAPL and Separase. In CellTiter-Blue assays, we used either siPlk1 or siUBB
(Ubiquitin B) as positive control for transfection efficiency. The sequences of
siRNAs that were used in the deconvolution screen are provided in Supplementary
Data 2. In addition, the following sequences were used: non-targeting siRNA
UAAGGCUAUGAAGAGAUAC; siPLK1 pool CAACCAAAGUCGAAUAUGA,
CAAGAAGAAUGAAUACAGU, GAAGAUGUCCAUGGAAAUA, CAACACGC
CUCAUCCUCUA; siUBB pool CCCAGUGACACCAUCGAAA, GACCAUCAC
UCUGGAGGUG, GUAUGCAGAUCUUCGUGAA, GCCGUACUCUUUCUGA
CUA; siAPC2 pool #5–8 GAGAUGAUCCAGCGUCUGU, GACAUCAUCACCC
UCUAUA, GAUCGUAUCUACAACAUGC, GAGAAGAAGUCCACACUAU;
siWAPL pool CAAACAGUGAAUCGAGUAA, CCAAUCAAGGGAUCUGUUA,
GAAGGAGACUUUUCAAUAA, GCAAACACAUGGAGGAUUG; siSeparase
pool CCGAGGAUCACUUGAAAUA, GGAGAAGGCUCACAGUUAC, GAUC
GUUUCCUAUACAGUA, GGAACGAAUUCUCUUUGUC.

The viability assays in follow-up experiments were carried out in 96-wells
plates. Cells were counted and seeded in at least triplicates in a total volume of
100 ml medium. Optimized cell densities were: DDX11� 3,000/well, DDX11þ

3,000/well, ESCO2� 4,000/well, ESCO2þ 4,000/well, SCC-99-17 3,000/well,
VU120 3,000/well, VU147 8,000/well, MCF7 4,000/well, VU78 2,500/well,
CAMA-1 4,000/well, OCUB-M 8,000/well, VU0040 8,000/well, Sum185 8,000/well,
UM-SCC-14B 3,000/well, UM-SCC-14C 3,000/well. Cells were incubated with
10 ml CellTiter-Blue reagent (Promega) for 2–4 h and fluorescence (560Ex/590Em)
was measured in a microplate reader (TriStar LB 941, Berthold Technologies).
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Figure 7 | Model. Cells entering mitosis with weakened cohesion normally

manage to resist spindle tension until anaphase (1). Partial APC/C

inhibition slows down cyclin B1 degradation and causes a prolonged mitosis

with an intact mitotic spindle. During this prolonged mitosis, a gradual loss

of sister chromatid cohesion may occur, that is dependent on microtubule

pulling forces. This may cause some chromosomes to lose functional
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blockage of mitotic exit. This can cause additional sister chromatid pairs to

undergo cohesion fatigue (3), which in turn keeps the SAC activated (4).

Eventually, this will result in death in mitosis or aberrant exit from mitosis

as one or more aneuploid cells.
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Immunoblotting. Proteins were isolated in lysis buffer (50 mM Tris-HCl pH 7.4,
150 mM NaCl, 1% Triton X-100) with protease- and phosphatase inhibitors,
separated by 3–8% or 8–16% SDS-PAGE (NU-PAGE), blotted onto polyvinylidene
fluoride transfer membranes, incubated with the appropriate primary and
secondary antibodies, and bands were visualized by chemoluminescence
(Amersham). Antibodies used for detection are mouse anti-DDX11 (Abnova
#H00001663-B01P, dilution 1:1,000), mouse anti-vinculin (H-10, Santa Cruz
#sc-25336, dilution 1:1,000), rabbit anti-APC2 (kind gift from J. Pines, dilution
1:5,00), mouse anti-a-tubulin (B-5-1-2, Santa Cruz #sc-23948, dilution 1:5,000),
mouse anti-APC3 (BD Transduction laboratories, #610454, dilution 1:1,000),
goat anti-APC4 (C-18, Santa Cruz #SC-21414, dilution 1:500), rabbit anti-p31comet

(Abcam #ab150363, dilution 1:1,000), guinea pig anti-ESCO2 (ref. 40) (dilution
1:1,000), mouse anti-Rad21 (Oncogene #NA80, dilution 1:1,000) and rabbit anti-
WAPL (Bethyl #A300-268 A, dilution 1:1,000). Uncropped images of western blots
are provided in Supplementary Fig. 9.

Flow cytometry. Cells were harvested, washed in PBS and fixed in ice-cold 70%
EtOH. For mitosis detection, cells were incubated with rabbit anti-pS10-Histone
H3 (Millipore) for 1 h and with Alexa Fluor 488 goat-anti-rabbit (Invitrogen) for
30 min. Cells were washed and resuspended in PBS with 1:10 PI/RNase staining
buffer (BD Biosciences) and analysed by flow cytometry on a BD FACSCalibur
(BD Biosciences). Cell cycle analysis was conducted with BD CellQuest software
(BD Biosciences).

Time-lapse microscopy. Cells were seeded in a 35 mm glass-bottom dish
(Willcowells). Acquisition of DIC images started 48 h post-transfection on a
microscope (Axio Observer Z1; Carl Zeiss) in a heated culture chamber (5% CO2 at
37 �C). The microscope was equipped with an LD 0.55 condenser and � 40 NA
1.40 Plan Apochromat oil DIC objective. Images were taken using AxioVision Rel.
4.8.1 software (Carl Zeiss) with a charge-coupled device camera (ORCA R2 Black
and White CCD [Hamamatsu Photonics] or Roper HQ [Roper Scientific]) at
100-ms exposure times. Images were analysed using MetaMorph software
(Universal Imaging).

Cohesion defect analysis. For cohesion defect analysis, cells were incubated with
200 ng ml� 1 Demecolcin (Sigma-Aldrich) in medium for 20 min, harvested,
resuspended in 75 mM KCl for 20 min and fixed in methanol/acetic acid (3:1). Cells
were dropped onto glass slides, stained with 5% Giemsa (Merck) and cohesion
defects were microscopically analysed. Per condition, 25 metaphases per slide were
counted on two coded slides as technical replicate. For coding, we covered the text,
randomly distributed the slides on the bench and numbered the slides in random
order.
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